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Abstract 

Intense resistance exercise causes mechanical loading of skeletal muscle, followed by 

muscle adaptation. Chemotactic factors likely play an important role in these processes. 

Purpose: We investigated the time course of changes in the expression and tissue 

localization of several key chemotactic factors in skeletal muscle during the early phase of 

recovery following resistance exercise. Methods: Muscle biopsy samples were obtained 

from vastus lateralis of eight untrained men (220.5 yrs) before and 2, 4 and 24 h after 

three sets of leg press, squat and leg extension at 80% 1 RM. Results: Monocyte 

chemotactic protein-1 (95×), interleukin-8 (2,300×), IL-6 (317×), urokinase-type plasminogen 

activator (15×), vascular endothelial growth factor (2×) and fractalkine (2.5×) mRNA was 

significantly elevated 2 h post-exercise. Interleukin-8 (38×) and interleukin-6 (58×) protein 

was also significantly elevated 2 h post-exercise, while monocyte chemotactic protein-1 

protein was significantly elevated at 2 h (22×) and 4 h (21×) post-exercise. Monocyte 

chemotactic protein-1 and interleukin-8 were expressed by cells residing in the interstitial 

space between muscle fibers and, in some cases, were co-localized with CD68+ 

macrophages, PAX7+ satellite cells and blood vessels. However, the patterns of staining 

were inconclusive and not consistent. Conclusion: In conclusion, resistance exercise 

stimulated a marked increase in the mRNA and protein expression of various chemotactic 

factors in skeletal muscle. Myofibers were not the dominant source of these factors. These 

findings suggest that chemotactic factors regulate remodeling/adaptation of skeletal muscle 

during the early phase of recovery following resistance exercise. 
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Abbreviations: 

FKN: fractalkine 

GAPDH: glyceraldehyde 3-phosphate dehydrogenase 

IL-6: interleukin-6 

IL-8: interleukin-8 

MDC: macrophage-derived chemokine 

MCP-1: monocyte chemotactic protein-1 

RM: repetition maximum 

RT-PCR: reverse transcription polymerase chain reaction 

TNF-: tumor necrosis factor- 

uPA: urokinase-type plasminogen activator 

VEGF: vascular endothelial growth factor 
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INTRODUCTION 

Skeletal muscle shows a remarkable capacity for rapid and extensive adaptation following 

mechanical loading. This adaptation involves complex and coordinated interactions between 

various cell types (e.g., macrophages and satellite cells) and proteins expressed and 

secreted by these cells (Charge and Rudnicki 2004). Proteins such as monocyte chemotactic 

protein (MCP)-1, tumor necrosis factor (TNF)-, interleukin (IL)-8, vascular endothelial 

growth factor (VEGF), macrophage-derived chemokine, leukemia inhibitory factor, 

fractalkine and urokinase-type plasminogen activator mediate muscle adaptation by acting 

as chemotactic factors for satellite cells, neutrophils and macrophages (Lu et al. 2011a; 

Peterson et al. 2006; Peterson and Pizza 2009; Bryer et al. 2008; Chazaud et al. 2003). In 

turn, these cells clear cellular debris and release factors that regulate satellite cell activity 

and myogenesis (Arnold et al. 2007; Tidball and Wehling-Henricks 2007; Lu et al. 2011b; 

Bryer et al. 2008; Chazaud et al. 2003). Some secreted proteins such as MCP-1, IL-6 and TNF-

 also directly stimulate myoblast proliferation and differentiation (Chen et al. 2007; Kurek 

et al. 1997; Serrano et al. 2008; Yahiaoui et al. 2008). 

 

The role of chemotactic factors as mediators of muscle adaptation is well established 

following severe and prolonged muscle injury and degeneration in mice (Bryer et al. 2008; 

Chen et al. 2005; Lu et al. 2011b; Lu et al. 2011a; Warren et al. 2002; Warren et al. 2004). By 

contrast, resistance exercise does not cause such severe muscle damage (Malm and Yu 

2012), yet it induces many of the hallmark characteristics of muscle regeneration and 

hypertrophy, including satellite cell activation, leucocyte infiltration and angiogenesis 

(Beaton et al. 2002; Moore et al. 2005; Psilander et al. 2003; Vella et al. 2012; Trenerry et al. 
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2007). Various studies have examined changes in the gene expression of various 

chemotactic factors, such as MCP-1, IL-8, TNF- and VEGF within skeletal muscle following 

resistance exercise (Buford et al. 2009; Louis et al. 2007; McKay et al. 2009; Nieman et al. 

2004; Hyldahl et al. 2011; Trenerry et al. 2007; Vella et al. 2012; Hubal et al. 2008). 

However, there were several important limitations in some of the studies.  

 

First, some of these studies only collected muscle samples at one time point after exercise 

(Buford et al. 2009; Nieman et al. 2004; Hyldahl et al. 2011; Hubal et al. 2008), which does 

not necessarily capture adaptation/remodeling of skeletal muscle during the early phases of 

recovery after exercise. Second, only a few of these studies examined the protein 

expression and cellular localization of chemotactic factors in skeletal muscle after exercise 

(McKay et al. 2009; Hyldahl et al. 2011; Hubal et al. 2008). Due to post-transcriptional 

modifications, cytokine/chemokine mRNA may not necessarily be translated to 

corresponding proteins in skeletal muscle after resistance exercise (Anderson 2008). 

Furthermore, measuring cytokine/chemokine mRNA expression in muscle homogenates to 

assess cytokine gene expression (Buford et al. 2009; Louis et al. 2007; Nieman et al. 2004; 

Trenerry et al. 2007; Vella et al. 2012) does not indicate which resident cell types in skeletal 

muscle secrete cytokines and chemokines after resistance exercise. 

 

Considering these analytical issues and the critical role of chemotactic factors as mediators 

of muscle adaptation, the aims of the present study were two-fold: (1) to explore the time 

course of changes in the expression of MCP-1, IL-6, IL-8, TNF-, VEGF, fractalkine and 

urokinase-type plasminogen activator following resistance exercise and (2) to assess the 

cellular localization of MCP-1 and IL-8 in cross-sections of muscle tissue. The findings from 
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this study demonstrate that mRNA and protein expression of many of these chemotactic 

factors increased in the first few hours after resistance exercise, and returned to normal 

after 24 h. Immunofluorescent staining for MCP-1 and IL-8 also increased after exercise, but 

it was unclear which cell types were the dominant sources of these chemokines in skeletal 

muscle after resistance exercise. 

 

 

MATERIALS AND METHODS 

 

Ethics statement 

Before participating in the study, the nature, purpose and risks of the study were explained 

to the subjects. They then provided informed written consent. All experimental procedures 

involved in this study adhered to the principles of the Declaration of Helsinki and were 

formally approved by the Deakin University Human Research Ethics Committee. 

 

Subjects 

Thirteen untrained, but recreationally active individuals volunteered to take part in this 

study. Eight males participated in the exercise component of this study (mean + SD age 22.0 

± 0.5 yrs, height 1.79 ± 0.05 m, body mass 83.3 ± 19.1 kg and BMI 24.1 ± 0.1 kg.m-2). The 

other individuals comprised a non-exercising control group (23.0 ± 0.9 yrs, 1.76 ± 0.05 m, 

74.0 ± 4.8 kg and 23.8 ± 2.0 kg.m-2).  Exclusion criteria included resistance training within the 

past six months, any medications, or a previous history of a diagnosed condition or illness 

that would present a health risk during strenuous resistance exercise. We also restricted this 
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study to males because of the well known effects of estrogen on muscle inflammation and 

regeneration (Kendall and Eston 2002), which was not the main focus of this study.  

 

Experimental design 

Each subject in the exercise group completed a familiarization session prior to the 

experimental protocol to learn how to perform each exercise, and to determine their 

individual 1 repetition maximum (1 RM). During the session, a 5 RM test was performed for 

each subject for the leg press, squat (assisted by the Smith machine) and leg extension. 1 

RM was then calculated using the Brzycki equation (1 RM=weight lifted (kg)/1.0278–[reps to 

fatigue x 0.0278]). The familiarization session took place at least 7 days prior to allow ample 

recovery time before the experimental trial commenced. 

 

For the 24 h preceding exercise, and the day of the trial, the subjects consumed a standard 

diet (20% fat, 14% protein and 66% carbohydrate) and abstained from alcohol, caffeine, 

tobacco and additional exercise. On the morning of the trial, subjects presented to the 

laboratory in a fasted state. Following 30 min of supine resting, a muscle sample was 

collected from the vastus lateralis under local anesthesia (Xylocaine 1%) by percutaneous 

needle biopsy technique modified to include suction. Excised muscle tissue from each 

biopsy was immediately frozen and stored in liquid nitrogen for later analysis. Subjects then 

completed a single bout of resistance exercise, specifically targeting muscles of the leg. 

Following 5 min of light cycling for warm-up, subjects completed two sets of eight to twelve 

repetitions of bilateral leg press, squat and leg extension at 80% 1-RM. This was followed by 

a third set to voluntary fatigue, also at 80% 1-RM. Subjects were allowed 1 min rest 

between exercises and 3 min rest between sets. The entire exercise protocol lasted 2025 
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min. This intensity of this exercise protocol was similar to other studies on resistance 

exercise (Buford et al. 2009; Louis et al. 2007; Vella et al. 2012), but lower than other studies 

involving purely eccentric exercise that caused severe muscle damage (McKay et al. 2009; 

Hubal et al. 2008). 

 

Additional muscle samples were collected at 2 h and 4 h after the exercise. Subjects were 

provided with their evening meal on the day preceding the trial as well as lunch and their 

evening meal for the days of the trial. The following morning, subjects again reported to the 

laboratory in a fasted state for the collection of a final muscle sample 24 h post-exercise. To 

minimize the potential for inflammation arising from the biopsy procedure itself, biopsies 

were collected from separate incisions in the same leg, at least 2 cm distal from previous 

biopsy sites. We collected venous blood samples before exercise, and again at 24 and 48 

hours after exercise. Blood samples were collected in tubes containing lithium heparin and 

centrifuged for 10 min at 2,500 rpm to separate the plasma. Plasma was stored in aliquots 

at 80°C prior to analysis. 

 

We included a non-exercising control group to examine whether the muscle biopsy 

procedure itself caused any inflammatory responses in skeletal muscle. Five individuals in 

the control group reported to the laboratory in a fasted state, having abstained from 

alcohol, caffeine, tobacco and additional exercise in the previous 24 h. Muscle biopsies were 

collected (as described above) at rest (0 h) and at 2 and 4 h following the initial muscle 

sampling. Between the collection of the biopsies, the control subjects rested with minimal 

movement. 
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RNA extraction and RT-PCR 

Total cellular RNA was extracted using a modification of the phenol/chloroform extraction 

and isopropanol precipitation protocol, using the TōTALLY RNA™ Kit (Ambion Inc., Austin, 

TX). RNA quality and concentration were determined using the Agilent 2100 Bioanalyzer 

(Agilent Technologies, Palo Alto, CA). First-strand cDNA was generated from 0.5 μg total 

RNA using the AMV RT kit (Promega, Madison, WI). RT-PCR was performed using the 

GenAmp 7500 sequence detection system (Applied Biosystems, Foster City, CA). PCR was 

performed in duplicate with reaction volumes of 20 l, containing SYBR Green 1 (Applied 

Biosystems), forward and reverse primers and cDNA template (diluted 1:20). Data were 

analyzed using a comparative critical threshold (Ct) method where the amount of target 

normalized to the amount of endogenous control relative to control value is given by 2-ΔΔCt 

(Applied Biosystems, Foster City, CA). GAPDH was selected as an endogenous control 

because expression of this gene was unchanged in response to the exercise intervention or 

sampling time (data not shown). Primers for MCP-1, IL-8, TNF-α, IL-6, macrophage-derived 

chemokine (MDC), VEGF, fractalkine (FKN), urokinase-type plasminogen activator (uPA) and 

myogenin were designed using Primer Express software package version 3.0 (Applied 

Biosystems) from gene sequences obtained from GenBank (see Table 1 for details). 

 

Multiplex analysis 

A bio-plex assay (Bio-Rad Labarotories, Hercules, CA) was used to analyze the protein 

expression of cytokines within skeletal muscle tissue. In the present study, kits were 

designed for the simultaneous analysis of IL-6, IL-8, MCP-1 and TNF-α. The assay was 

conducted following the manufacturer’s instructions (Bio-Rad Labarotories, Hercules, CA) 

and using reagents from the Cytokine reagent kit (Bio-Rad). Tissue samples (10 mg) were 
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homogenized in lysis buffer (20 mM Tris-HCl, 5 mM EDTA, 10 mM Na-pyrophosphate, 100 

mM NaF, 2 mM Na3VO4, 1% Igepal  CA-630, 10 g/ml Aprotinin, 10 g/ml Leupeptin, 3 mM 

Benzamidine, 1 mM phenylmethylsulfonyl fluoride (PMSF) using a hand-held homogenizer. 

The homogenate was rotated at 4°C for 1 h, centrifuged at 13,000 rpm at 4°C for 10 min, 

and the supernatant was collected. This supernatant was then diluted to 500 µg/ml. The 

supplied standards were diluted according to the manufacturer’s instructions for running 

the plate with the high sensitivity range (High PMT), which equated to 0.3–4,182pg/ml for 

IL-6, 0.1–2,353 pg/ml for IL-8, 0.2–2,718 pg/ml for MCP-1, and 0.6–9176 pg/ml for TNF-α. 

The plate was then read on the Bio-Plex Suspension Array System (V.5.0, Bio-Rad). All 

samples were run in triplicate, using the High PMT function. Average intra-assay CV% was as 

follows: IL-6: 10.6%, IL-8: 5.7%, MCP-1: 5.6% and TNF-α 12.1%. 

 

Immunohistochemistry 

A small section from each biopsy was dissected free of any connective tissue, blotted dry 

and then mounted in Tissue Tek (ProSciTech, Australia) and frozen in isopentane cooled in 

liquid nitrogen. Tissue sections (10 m) were fixed with 4% (w/v) paraformaldehyde in PBS 

for 10 min, permeated with 5% (v/v) Triton X-100 (TX100) for 5 min and blocked in 3% (w/v) 

bovine serum albumin in PBS overnight at 4˚C. Primary antibodies were diluted in blocking 

reagent as outlined in Table 2. All mouse primary antibodies were co-incubated with rabbit 

anti-Laminin (1:50 Sigma-Aldrich, St. Louis, MO), which was used to stain the sarcolemma. 

Tissue sections were incubated overnight at 4C with combinations of these primary 

antibodies. After five washes with PBS, sections were incubated at room temperature for 2 

h with appropriate secondary antibodies coupled to fluorophores (Alexa Fluor goat anti-

mouse 488 or donkey anti-rabbit 594 [Molecular Probes, Invitrogen, Australia]). Nuclei were 
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stained by incubating with the DNA binding dye, Bisbenzamide Hoechst 33285 (Sigma) for 

10 min. Following another series of washes, immuno-stained sections were visualized using 

an Olympus IX70 fluorescent microscope (Olympus, Australia), and digital images were 

collected using Spot RT slider camera and Magnifire Software (Olympus, Australia).  

 

Blood analysis 

We analyzed serum creatine kinase activity in pre- and post-exercise blood samples using an 

enzymatic assay (CK-NAC kit, CDT14010, Thermo-Fisher Scientific Clinical Diagnostics, 

Sydney, Australia) and an automated clinical analyser (Cobas Mira, Roche Diagnostics, 

Germany). We also analysed serum myoblobin concentration in these samples using an 

immunoassay (Roche Diagnostics, Germany) and an automated clinical analyzer (Cobas E411, 

Roche Diagnostics, Germany). The intra-assay coefficient of variation was 10.4% for creatine 

kinase and 1.7% for myoglobin. 

 

Statistical analysis 

Statistical analysis was performed using GraphPad Prism 4.1 (GraphPad Software, San Diego, 

CA). Means were compared using one-way repeated measures analysis of variance (ANOVA) 

and any significant differences analyzed using a Newman-Keuls Multiple Comparison Test. 

Data are presented as mean±SEM. A probability level of <0.05 was adopted throughout to 

determine statistical significance. 
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RESULTS 

Compared with pre-exercise values, the mRNA abundance of MCP-1 (95) (Figure 1A), FKN 

(2.5) (Figure 1B), uPA (15) (Figure 1C), VEGF (2) (Figure 1D), IL-6 (317) (Figure 1E) and 

IL-8 (2,300) (Figure 1F) was significantly elevated at 2 h following exercise. uPA (11) and 

VEGF (2) mRNA was also significantly elevated beyond 2 h post-exercise. TNF-α mRNA did 

not change significantly following exercise (Figure 1G), while MDC mRNA expression was not 

detectable at any time point (data not shown). Our group has previously reported no 

changes in mRNA expression of these chemotactic factors as a result of the biopsy 

procedure itself (Vella et al. 2012). 

 

The bio-plex suspension assay system was used to assess the protein content of MCP-1, IL-8, 

IL-6 and TNF-α within muscle in both the exercise and non-exercising control groups. 

Following exercise,  the expression of MCP-1 (Figure 2A), IL-6 (Figure 2B) and IL-8 (Figure 2C) 

protein followed a very similar pattern to the mRNA expression, with the largest increase 

evident 2 h following exercise (MCP-1 22, IL-6 38 and IL-8 58). Although all of these 

factors remained elevated at later time points, only MCP-1 expression at 4 h post-exercise 

was significantly greater than pre-exercise values. TNF-α expression was below the range of 

the standards at each time point. Data from the non-exercising control group indicated no 

significant changes in the protein expression of MCP-1, IL-6 or IL-8 in response to the muscle 

biopsy procedure itself (Figure 2). 

 

At rest, both IL-8 (Figure 3A) and MCP-1 (Figure 3C) were not visible in skeletal muscle 

sections. Following exercise, however, staining for both IL-8 (Figure 3B) and MCP-1 (Figure 

3D) was clearly visible 2 h after exercise. MCP-1 (Figure 4A) and IL-8 (Figure 4B) was 
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localized within the endomysium between the muscle fibres and not within the muscle 

fibers themselves. To investigate which cells within the endomysium were associated with 

MCP-1 and IL-8 expression, serial sections of muscle tissue were stained, firstly, with MCP-1 

and IL-8, and then with antibodies for CD68 for macrophages, PAX7 for satellite cells and 

Collagen IV for blood vessels.  Within the subject cohort, we found several examples of 

MCP-1 and IL-8 co-staining with or in close proximity to macrophages (Figure 5) and small 

blood vessels (Figures 6 and 7), and of MCP-1 co-staining with satellite cells (Figure 6). 

However, the staining was not conclusive or consistent, and did not account for the 

widespread staining and large increase in the protein abundance of MCP-1 and IL-8 after 

following exercise.  IL-8 staining also appeared turquoise in many of the images, suggesting 

that IL-8 (shown in green) may be predominantly expressed by the nuclei of interstitial cells 

(shown in blue) (Figure 4). Large blood vessels were also evident in some sections and 

showed strong expression of MCP-1 (Figure 8). 

 

There were no significant changes in plasma creatine kinase activity (p=0.36) and plasma 

myoglobin concentration (p=0.56) after exercise (Figures 9A and 9B). 

 

 

DISCUSSION 

In this study, we have profiled changes in the gene and protein expression of various 

chemotactic factors in skeletal muscle at several time points during the early phases of 

recovery from resistance exercise. We have also demonstrated that MCP-1 and IL-8 

expression was not restricted to mature myofibers after resistance exercise. This study 
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highlights the complex interactions between various cell types and secreted proteins in the 

skeletal muscle microenvironment during early adaptation of skeletal muscle after exercise. 

 

Some exercise studies have only investigated changes in the gene expression of MCP-1, IL-6 

IL-8 and VEGF at a single time point after resistance exercise: immediately (Nieman et al. 

2004), 3 h (Hyldahl et al. 2011; Buford et al. 2009) or 6 h (Hubal et al. 2008) after exercise. 

We present new evidence that in addition to major chemotactic factors such as MCP-1 and 

IL-8, the gene expression of urokinase-type plasminogen activator and fractalkine also 

increased after exercise. Specifically, urokinase-type plasminogen activator and fractalkine 

was elevated at 2 h after exercise, while urokinase-type plasminogen activator mRNA 

expression remained elevated at 4 h post-exercise. Urokinase-type plasminogen activator is 

a chemoattractant for monocytes (Chazaud et al. 2003), which accounts for its role in 

muscle regeneration (Bryer et al. 2008). Fractalkine also likely promotes muscle adaptation 

after exercise by attracting monocytes (Chazaud et al. 2003) and stimulating angiogenesis 

(Volin et al. 2001). In contrast with muscle-damaging eccentric exercise, we propose that 

the increased gene expression of these chemokines after intense resistance exercise likely 

reflects their role in muscle adaptation/remodeling, rather than muscle repair. This notion is 

supported by our finding exercise did not cause any substantial muscle damage, as indicated 

by the lack of any significant changes in plasma creatine kinase activity and plasma 

myoglobin concentration at 24 and 48 h after exercise (see Figure 9). 

 

We discovered for the first time that in addition to IL-8 and MCP-1 mRNA, the protein 

abundance of these chemokines also increased markedly after resistance exercise. IL-8 

mRNA and protein expression peaked after 2 h. MCP-1 mRNA expression also peaked after 2 
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h, while MCP-1 protein expression remained elevated 4 h after exercise. The importance of 

MCP-1 and its receptor CCR2 in muscle adaptation is well established (Lu et al. 2011b; 

Shireman et al. 2007; Warren et al. 2005; Warren et al. 2004; Yahiaoui et al. 2008). One of 

the key mechanisms by which MCP-1/CCR2 regulate muscle adaptation is by recruiting 

monocytes to the site of muscle injury, where these cells are converted to macrophages 

(Chazaud et al. 2003; Lu et al. 2011b). MCP-1 may also assist muscle adaptation by 

stimulating the proliferation of myoblasts (Yahiaoui et al. 2008), vascular smooth muscle 

cells (Selzman et al. 2002) and endothelial cells (Weber et al. 1999). By contrast, the role of 

IL-8 in muscle adaptation is not so well defined. IL-8 may promote muscle adaptation by 

attracting neutrophils (Peterson and Pizza 2009) and upregulating expression of VEGF 

receptors (Petreaca et al. 2007).  

 

The large increase in the protein expression of MCP-1 and IL-8 (as measured using the bio-

plex assay) strongly suggests that there was also a substantial increase in the number 

and/or activity of cells secreting these chemokines in skeletal muscle. Relatively few studies 

have attempted to identify the cells types that secrete cytokines and chemokines in skeletal 

muscle after resistance exercise (Hubal et al. 2008; McKay et al. 2009). Muscle cells secrete 

MCP-1 and IL-8 in vitro in response to cyclic strain (Nedachi et al. 2009; Peterson and Pizza 

2009) and stimulation with other cytokines (Sugiura et al. 2000; De Rossi et al. 2000; Marino 

et al. 2008). However, in healthy individuals, and patients with inflammatory myopathies, 

MCP-1 and IL-8 are not expressed within myofibers. Rather, they are expressed within blood 

vessels and regions of inflammation (De Paepe et al. 2007). It was therefore not surprising 

that we could not detect MCP-1 and IL-8 within myofibers before exercise. After exercise, 

there was little change in MCP-1 and IL-8 staining within myofibers. Instead, these factors 
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were expressed within the endomysium between the myofibers. We attempted to identify 

the cells within this region that were secreting MCP-1 and IL-8 after exercise by staining 

tissue sections with CD68 for macrophages, PAX7 for satellite cells and collagen IV for blood 

vessels. There were no consistent patterns of staining associated with these cell types. In a 

few samples, MCP-1 staining was co-localized with satellite cells (Figure 5). By contrast, in 

other samples MCP-1 and IL-8 staining was co-localized with macrophages and/or within 

large blood vessels (Figures 4, 5 and 6).  

 

These findings highlight two important issues. First, muscle cells themselves do not appear 

to be a major source of MCP-1 and IL-8 after resistance exercise. Second, despite the 

marked increase in the gross protein abundance of MCP-1 and IL-8 in skeletal muscle, the 

patterns of tissue staining for the chemokines show substantial variation. Further work 

using more advanced imaging technology (e.g., confocal microscopy) is warranted to 

investigate which types of cells secrete chemotactic factors in skeletal muscle following 

exercise, and whether this secretion is regulated in an autocrine or paracrine manner. 

 

Consistent with the changes in MCP-1 and IL-8 expression, we identified that expression of 

IL-6 mRNA and protein also increased dramatically in skeletal muscle after resistance 

exercise. IL-6 regulates muscle adaptation after exercise by stimulating satellite proliferation 

(Toth et al. 2011). The lack of any change in TNF- expression following exercise in the 

present study was somewhat surprising. TNF- is a chemotactic agent in vitro (Peterson et 

al. 2006), and plays an important role in muscle regeneration following myotoxin injury 

(Chen et al. 2005) and freeze injury (Warren et al. 2002). Other research has reported an 

increase in TNF- mRNA expression in skeletal muscle after resistance exercise (Buford et al. 
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2009; Louis et al. 2007; Nieman et al. 2004). Possible reasons for the disparity between our 

findings and other studies may include differences in the timing of muscle biopsies, training 

status of the subjects and/or methods of molecular analysis. Only a few studies have 

detected TNF- protein expression in human skeletal muscle using enzyme-linked 

immunoassay (Barreiro et al. 2008; Greiwe et al. 2001), Western blotting (Plomgaard et al. 

2007; Kim et al. 2011) and immunohistochemistry (Plomgaard et al. 2007; Plomgaard et al. 

2005). The bio-plex assay that we used in the current study may not have been sensitive 

enough to detect TNF- protein. Plomgaard et al (Plomgaard et al. 2005) reported that only 

type II muscle fibers express TNF- protein. In the present study, we collected muscle 

samples from vastus lateralis, which is comprised of equal proportions of type I and II fibers 

(Plomgaard et al. 2005). TNF- protein expression may therefore be greater after exercise in 

muscle comprised of a higher proportion of type II fibers. 

 

In conclusion, this study demonstrates that the early phase of recovery from intense 

resistance exercise is characterized by a large increase in the gene and protein expression of 

several important chemotactic factors. Although somewhat inconclusive, the 

immunohistochemistry analysis in this study is suggestive of complex communication and 

secretory actions between myofibers, macrophages, satellite cells and other stromal cells, 

and the major sources of these factors within skeletal muscle are cells residing within the 

endomysium. Importantly, the marked increased in the protein expression of MCP-1, IL-8 

and IL-6 in the first few hours after resistance exercise follows a similar time course to 

myogenesis and protein synthesis in skeletal muscle. The chemotactic function of 

chemokines is an essential aspect of muscle adaptation to mechanical loading. However, the 

current data indicate that chemokine expression in skeletal muscle after exercise peaks 
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before monocytes typically begin to invade muscle fibers. More research is therefore 

required to determine the sequence of events leading to chemokine production in skeletal 

muscle, in addition to the targets and functions of chemokines in muscle fiber adaptation 

following exercise.  
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Figure Legends 

Figure 1 – The effect of a single bout of resistance exercise on skeletal muscle mRNA 

expression of MCP-1 (A), fractalkine (B), urokinase-type plasminogen activator (C), VEGF (D), 

IL-6 (E)  IL-8 (F) and TNF-α (G). Values are arbitrary units normalized to the expression levels 

of the housekeeping gene GAPDH representing the mean ± SEM for eight individuals. * 

Significantly different from resting levels (p<0.05). 

Figure 2 – Protein abundance of MCP-1, IL-8 and IL-6 within skeletal muscle homogenate in 

response to resistance exercise and in a biopsy-only control group. Multiplex analysis using 

a Bio-plex assay was used to quantify expression of MCP-1 (A), IL-8 (B), IL-6 (C) in biopsy-

only controls (white bars) and in response to resistance exercise (black bars). Values are 

mean ± SEM protein abundance normalized to total protein loaded per well for eight 

individuals. TNF-α was below the range of measurement at all time points. * Significantly 

different from resting levels (p<0.05). 

 

Figure 3 – IL-8 (A,B) and MCP-1 (C,D) localization within skeletal muscle before and 2 h after 

a single bout of resistance exercise from a representative subject. At rest, neither IL-8 (A, 

green) nor MCP-1 (C, green) staining was visible.  Following exercise, widespread staining 

for both in IL-8 (B, green) and MCP-1 (D, green) was visible. Sections were also double 

stained with an antibody against laminin (red, sarcolemma) and bisbenzamide (blue, nuclei). 

Scale bar = 100 µm. 

 

Figure 4 – High magnification (40x) images of MCP-1 (A) and IL-8 (B) localization within 

skeletal muscle before and 2 h after a single bout of resistance exercise from a 
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representative subject. Images show expression of both MCP-1 and IL-8 was confined to 

cells outside the sarcolemma and within the endomysium. Sections were also double 

stained with an antibody against laminin (red, sarcolemma) and bisbenzamide (blue, nuclei). 

Scale bar = 100 µm. 

 

Figure 5 – Representative serial sections indicating co-localization of MCP-1 and IL-8 with 

macrophages (CD68) 2 h following resistance exercise. Sections were stained with either 

anti-mouse CD68 (A), MCP-1 (B) or IL-8 (C), all of which appear green. Sections were also 

double stained with an antibody against laminin (red, sarcolemma) and bisbenzamide (blue, 

nuclei). Scale bar = 100 µm. 

 

Figure 6 - Representative serial sections indicating co-localization of MCP-1 with satellite 

cells (PAX7) and showing MCP-1 in close proximity to blood vessels (Collagen IV) 2 h 

following resistance exercise. Sections were stained with either anti-mouse MCP-1 (A), PAX7 

(B) or Collagen IV (C), all of which appear green. Sections were also double stained with an 

antibody against laminin (red, sarcolemma) and bisbenzamide (blue, nuclei). Scale bar = 100 

µm. 

 

Figure 7 - Representative serial sections indicating co-localization of IL-8 with blood vessels 

(Collagen IV) 2 h following resistance exercise. Sections were stained with either anti-mouse 

IL-8 (A) or Collagen IV (B), both of which appear green. Sections were also double stained 

with an antibody against laminin (red, sarcolemma) and bisbenzamide (blue, nuclei). Scale 

bar = 100 µm. 
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Figure 8 – Large blood vessels within skeletal muscle cross sections expressed MCP-1 

(green) 2h (A) and 24h (B) following resistance exercise.  Sections were also double stained 

with an antibody against laminin (red, sarcolemma) and bisbenzamide (blue, nuclei). Scale 

bar = 100 µm. 

 

Figure 9 – Plasma creatine kinase (CK) activity (A) and myoglobin concentration (B). Values 

are mean ± SEM.  



29 
 

Tables 

 

Table 1 – List of Primers used for RT-PCR. 

Gene 
GenBank 

Accession no. 
Forward (5’ – 3’) Reverse (5’ – 3’) 

MCP-1 NM_002982 CGCCTCCAGCATGAAAGTCT GGAATGAAGGTGGCTGCTATG 

MDC NM_002990.3 GCGCGTGGTGAAACACTTC ACTCTGGGATCGGCACAGAT 

VEGF AYO41581 GCGCAAGAAATCCCGGTATA GCTTTCTCCGCTCTGAGCAA 

FKN NM_002996.3 CGAAAGATGGCAGGAGAGATG GGGCACCAGGACATATGAATTAC 

uPA NM_002658.3 GGAAAACCTCATCCTACACAAGGA GGATCTTCAGCAAGGCAATGTC 

IL-8 NM_000584 CTGGCCGTGGCTCTCTTG TTAGCACTCCTTGGCAAAACTG 

TNF-α NM_000594 GGAGAAGGGTGACCGACTCA TGCCCAGACTCGGCAAAG 

IL-6 NM_000600 GTGACATCCTCGACGGCATCT GTGCCTCTTTGCTGCTTTCAC 

GAPDH NM_002046 CATCCATGACAACTTTGGTATCGT CAGTCTTCTGGGTGGCAGTGA 
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Table 2: Details of primary antibodies used for immunofluorescence. 

Antigen Antibody Clone Dilution Source 

MCP-1 Mouse monoclonal IgG 5J 1:20 Santa Cruz (Santa Cruz, CA) 

IL-8 Mouse monoclonal IgG NYR-HIL8 1:40 Santa Cruz 

CD68 Mouse monoclonal IgG E-11 1:100 Santa Cruz 

PAX7 Mouse monoclonal IgG PAX7 1:20 
Developmental Studies Hybridoma 

Bank (Iowa city, IA) 

Collagen IV Mouse monoclonal IgG M3F7 1:100 
Developmental Studies Hybridoma 

Bank 
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