
This is the author’s version of a work that was submitted/accepted for pub-
lication in the following source:

Furda, Andrei & Vlacic, Ljubo (2011) Enabling safe autonomous driving in
real-world city traffic using multiple criteria decision making. IEEE Intelli-
gent Transportation Systems Magazine, 3(1), pp. 4-17.

This file was downloaded from: http://eprints.qut.edu.au/72228/

c© Copyright 2011 IEEE

Personal use of this material is permitted. Permission from IEEE must be
obtained for all other users, including reprinting/ republishing this mate-
rial for advertising or promotional purposes, creating new collective works
for resale or redistribution to servers or lists, or reuse of any copyrighted
components of this work in other works.

Notice: Changes introduced as a result of publishing processes such as
copy-editing and formatting may not be reflected in this document. For a
definitive version of this work, please refer to the published source:

http://dx.doi.org/10.1109/MITS.2011.940472

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Queensland University of Technology ePrints Archive

https://core.ac.uk/display/33490976?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://eprints.qut.edu.au/view/person/Furda,_Andrei.html
http://eprints.qut.edu.au/72228/
http://dx.doi.org/10.1109/MITS.2011.940472


Enabling Safe Autonomous Driving in
Real-World City Traffic using

Multiple Criteria Decision Making

Andrei Furda and Ljubo Vlacic

Intelligent Control Systems Laboratory (ICSL),
Institute of Integrated and Intelligent Systems,

Griffith University, Brisbane, QLD 4111, Australia
(e-mail: andrei.furda@griffithuni.edu.au; l.vlacic@griffith.edu.au)

Abstract: This paper addresses the topic of real-time decision making for autonomous city
vehicles, i.e. the autonomous vehicles’ ability to make appropriate driving decisions in city
road traffic situations. The paper explains the overall controls system architecture, the decision
making task decomposition, and focuses on how Multiple Criteria Decision Making (MCDM) is
used in the process of selecting the most appropriate driving maneuver from the set of feasible
ones. Experimental tests show that MCDM is suitable for this new application area.

1. INTRODUCTION

Autonomous city vehicles capable of driving safely through
urban traffic and sharing the roads with other traffic
participants, have been a vision for many years (Kolodko
and Vlacic, 2003; Li and Tang, 2009).

One of the research topics which are crucial for enabling
autonomous vehicles to cope with urban traffic conditions
is their ability to make safe and appropriate driving
decisions in any traffic situation.

The solution to this high-level vehicle decision making &
control problem depends on a variety of related research
areas and topics, such as (Figure 1):

Fig. 1. Overview of research topics of autonomous city
vehicles and the scope of real-time decision making.

• Sensor technology for on-board sensor systems, which
are able to deliver accurate and reliable information
about the vehicle’s environment in any light, weather,
and road conditions.

• Perception algorithms which use information ob-
tained from on-board sensor systems and enable the

reliable recognition of relevant traffic features, such
as traffic signs, road markings, obstacles, pedestrians,
vehicles, etc.

• Localization technology is crucial for path planning
and decision making. The currently used localization
methods based on GPS and DGPS, and Inertial
Navigation Systems (INS) sensors does not offer the
required level of reliability and accuracy in urban
areas, where GPS reception between high buildings
is unreliable.

• Communication technology which enables reliable ex-
change of information between autonomous vehicles
(vehicle-to-vehicle, V2V), but also between the road
infrastructure and autonomous vehicles (vehicles-to-
infrastructure, V2I). Communication enables cooper-
ation between vehicles, and is relevant for improving
the efficiency and safety of autonomous vehicles.

• High-Level Vehicle Control tasks, such as real-time
decision making, and the execution of driving ma-
neuvers.

• Low-level Vehicle Control includes the control of actu-
ators for steering angle, accelerator, brakes, gearbox,
etc.

• System Reliability, Safety, and Fault Tolerance: since
human safety will depend on them, autonomous ve-
hicles will not be accepted unless they are safer than
today’s human driven cars.

This paper deals with the high-level vehicle control tasks
and addresses the question on enabling driverless city vehi-
cles to decide about the most appropriate driving maneu-
ver to perform under the given road traffic circumstances,
using Multiple Criteria based Decision Making techniques
and methods.

The following section gives an overview about the au-
tonomous vehicle’s control software architecture.



Fig. 2. Simplified view of the driverless vehicle decision
making & control software architecture and the flow
of data.

2. THE AUTONOMOUS VEHICLE DECISION
MAKING AND CONTROL SYSTEM

The driverless vehicle decision making & control system
consists of the following functional subsystems (Figure 2):

• Perception Subsystem,
• Real-Time Decision Making & Driving Maneuver

Control,
• Driving Maneuvers,
• Vehicle Interface.

The purpose of the Perception Subsystem is to collect
available information about the vehicle’s road traffic en-
vironment obtained from either on-board sensors (Munz
et al., 2010), or from external sensors (Li and Jia, 2009;
Zhao et al., 2009), to manage and process it, and to provide
it in an adequate form to the Real-Time Decision Mak-
ing & Driving Maneuver Control, and Driving Maneuver
subsystems. The Perception Subsystem’s components are
(Figure 3):

• A Priori Information: software components provid-
ing information which is available before the vehicle
begins its journey (typically provided as a data file,
such as the RNDF (route network definition) file in
the DARPA Urban Challenge (DARPA, 2006)).

• Sensor Components: software and hardware compo-
nents providing information obtained from on-board
sensors.

• Communication: software and hardware components
providing information obtained through communica-
tion with other vehicles or infrastructure (e.g. traffic
management centre).

• World Model: software component which collects in-
formation from subsystems, maintains an up-to-date
view of the vehicle’s environment, actively notifies
other subsystems about relevant events in the traffic
environment, and provides access to all its informa-
tion to other software components through an API
(Application Programming Interface) (Figure 3).

Fig. 3. World Model Input and Output.

Based on the information provided by the Perception
Subsystem, the Real-Time Decision Making & Driving
Maneuver Control subsystem makes driving decisions.
This software subsystem decides about the activation and
the execution of the most appropriate driving maneuver
for any given traffic situation.

The Driving Maneuvers subsystem contains a set of closed-
loop control algorithms, each able to maneuver the vehicle
in a specific traffic situation (e.g. road following, overtak-
ing, crossing intersections, etc.). The driving maneuvers
direct their output to the Vehicle Interface subsystem.

The Low-Level Vehicle Control subsystem contains hard-
ware and software components, which control the vehicle’s
speed, steering angle, and other actuators (e.g. transmis-
sion).

2.1 World Model and Route Planner - Information Basis
for Decision Making

The main purpose of the World Model is to provide infor-
mation input for the real-time decision making subsystem.
The World Model merges the various types of information
and provides at any given time an accurate and up-to-
date representation of the driverless vehicle’s traffic envi-
ronment.

The following are the World Model’s most relevant func-
tional requirements:

• Stores a priori information, such as roads, intersec-
tions, and traffic signs (a priori known).

• Stores information provided by sensors, such as ob-
stacles, traffic lanes, and perceived traffic signs.

• Stores information obtained through communication
with other vehicles or a traffic management centre.

• Cyclicly merges and updates the a priori information
with the information obtained continuously from sen-
sor and communication components.

• Calculates cyclicly the relationships between the
stored entities. For example, if sufficient data is avail-



able, the World Model determines the positions of
the current road, the current traffic lane, obstacles on
the current road, the type of obstacles on the current
lane/road, and distances to obstacles.

• Notifies other subsystems of relevant events in the
traffic environment through an asynchronous mecha-
nism.

• Provides other subsystems complete access to all
stored information by replying to synchronous data
requests (Figure 3).

The World Model API (Application Programming Inter-
face) consists of two entities, each implementing a different
concept:

• World Model Events,
• Object-oriented data structure.

A World Model Event represents a discrete event which
signals the availability of certain information, that certain
conditions are suddenly met, or the occurrence of a certain
event happening in the real world. The principle is along
the line of Discrete Event Systems (Cassandras and Lafor-
tune, 2008). The state of a World Model Event is modeled
as a boolean variable.

World Model Events are used to notify other software com-
ponents about the state of certain predefined conditions,
which are relevant for the execution of driving maneuvers.
The specification of each driving maneuver requires that,
in order to be safely performed, certain conditions have to
be met, or certain information has to be available. Such
conditions can be, for instance, related to traffic situa-
tions (e.g. “pedestrian n meters in front of the vehicle”),
but might as well be related to the availability of sensor
information (e.g. “GPS localization available”).

The World Model Events enable a flexible way to define
what information is relevant for decision making, and
provide an easy mechanism for quick information exchange
between the World Model and the Real-Time Decision
Making subsystem.

The state of all defined World Model Events is provided
as a k-tuple:

WMevents = (w1, w2, ..., wk) : wl ∈ {true, false}, (1)

where each element wl (l = 1, 2, .., k) represents an event.

The k-tuple WMevents is updated cyclicly, and other
(as observer registered) software components are actively
notified about the occurrence of certain conditions as
defined for each event. A timestamp assigned to the event
tuple may be used to ensure that the update operation is
performed within the required time intervals.

Besides World Model Events, the World Model provides
other software components full access to all its data
through an object-oriented data structure. Further details
about the developed World Model have been published in
(Furda and Vlacic, 2010).

The Route Planner: In many situations, the planned
route has a significant impact on decision making. For
instance overtaking a slower vehicle just before a planned
turn may not be adequate. Therefore, a route planner
provides the decision making module with information

about the prospective planned route, well in advance (e.g.
50-150m) before required turns and changes of direction.

Without the loss of generality, we require that the provided
route planner information is specified as an element of the
set

Droute = {forward straight, forward right,

forward left, turn around}, (2)
where each element indicates the future travel direc-
tion. The direction forward straight indicates that the
planned route is to follow the current road, forward right
and forward left indicate a turn in the near future, while
turn around indicates that the next destination lies be-
hind and a U-turn is necessary.

2.2 Driving Maneuvers - The Decision Alternatives

Driving maneuvers are closed-loop control algorithms,
each capable of maneuvering the driverless vehicle over
a time period or distance. All driving maneuvers are
structured in a common way. Their operational behaviors
are modeled as deterministic finite automata (Hopcroft
et al., 2007; Cassandras and Lafortune, 2008) (Figure 4):

Fig. 4. A driving maneuver finite automaton with multiple
Run states. The number of Run states qr

i , i = 1, 2, ...N
equals the number of driving maneuver phases.

• a start state q0 is the waiting or idle state, in which
the automaton is waiting for the Run signal.

• a set of Run states Qrun = {qr
1, q

r
2, ..., q

r
n} ⊂ Q,

each representing a phase of a driving maneuver,
perform the maneuvering of the vehicle. Each of
them includes checking of necessary preconditions,
such as the availability of required information and
safety conditions. As long as the defined preconditions
are met, the Run states execute closed-loop control
algorithms. Otherwise, if certain preconditions are
not met, the Error symbol is generated, and the
automaton changes into the error state qE .



• two final states {qF , qE} = F . The final state qF

(finished) represents a successful completion of the
driving maneuver, while the error state qE (error)
signals that the driving maneuver has been aborted
due to an error or some other reason.

• a set of input symbols Σ, which consists of at least
the symbols: Run, Stop, Restart, Error, and

• the state transition function δ : Q× Σ → Q.

Furthermore, each driving maneuver offers a set of execu-
tion alternatives, which are specified by discrete parame-
ters. Parameters are reference values (setpoints) for the
closed-loop control algorithms implemented in the Run
states Qrun. For instance, an overtaking maneuver requires
the specification of parameters which define how close and
how fast the driverless vehicle should approach the front
vehicle before changing lanes.

3. REAL-TIME DECISION MAKING

Based on the elaborated prerequisites, the decision making
task can be specified as follows:

• a set Mall = {m1, m2, ...mn}, n ∈ N 1 , of all available
driving maneuvers which can be performed by the
driverless vehicle,

• a k-tuple (w1, w2, ..., wk) ∈ Wevents of World Model
Events, wl ∈ {0, 1}, l = 1, 2, ..., k

• a route planner direction indication di ∈ Droute.

The general task of decision making in this context
is to identify the most appropriate driving maneuver
mmost appr. ∈ Mall, which leads to a driverless vehicle
driving behavior conforming to the specification.

3.1 Decomposition into Subtasks

The general decision making task is decomposed into the
following two consecutive stages:

1. Decision regarding feasible, safety-critical driving ma-
neuvers subject to World Model Events and route
planner indication. A driving maneuver is defined as
feasible if it can be safely performed in a specific
traffic situation, and is conforming to the road traffic
rules. In order to ensure safety, it is assumed that the
autonomous vehicle will always obey the traffic rules,
which however might need to be adapted for such
vehicles in the future. In any traffic situation, there
can be multiple feasible driving maneuvers (e.g. over-
taking a stopped vehicle or waiting for it to continue
driving).

2. Decision regarding the most appropriate driving ma-
neuver. This stage selects and starts the execution
of one single driving maneuver, which is selected as
the most appropriate for the specific traffic situation.
Since only those driving maneuvers are considered in
this stage which have been selected as feasible (and
therefore safe), this stage is not safety-critical because
it does not include any decision making attributes
which affect safety.

The decomposition into two stages with different objec-
tives leads to subtasks with manageable complexity, en-
1 N=set of natural numbers

abling the verification and testing of each stage in particu-
lar. While the main focus of the first stage is to determine
which driving maneuvers are safe and conform to traffic
rules, the second, non safety critical decision stage focuses
on improving comfort and efficiency.

The entire decision making process (i.e. the two stages)
is executed cyclicly. Once a driving maneuver has been
activated, it remains active within the given cycle, and it
will be executed as long as its execution is feasible, until it
finishes in one of its two final states qF or qE . If a driving
maneuver becomes infeasible during its execution, the
decision making subsystem is able to abort its execution,
and activate another driving maneuver instead.

3.2 Decision Stage 1: Feasible, Safety-Critical Driving
Maneuvers

This section presents a modeling approach for the first
stage of the decision making task, the decision regarding
the set of feasible driving maneuvers.

The goal of this stage is to decide about the feasible driving
maneuvers, i.e. the subset of all driving maneuvers, which
can be performed without putting any traffic participants
at risk.

The following aspects are relevant for the decision making
on feasible driving maneuvers:

• Information about the vehicle’s environment, which
is provided in the form of World Model Events.

• Knowledge about traffic rules and compliance with
them.

• Information about the planned travel direction, which
is assumed to be provided by the route planner.

Figure 5 shows the processing steps for the selection of
feasible driving maneuvers. Each driving maneuver re-
quires information about the traffic environment, which is
provided by the World Model in the form of events. There-
fore, occurring World Model Events define which driving
maneuvers are operational (i.e. which can be performed).
In order to comply to traffic rules, additional restrictions
of driving maneuvers are required. The knowledge about
traffic rules is embedded in the first step of this stage
(DMU1A).

Fig. 5. The decision making unit for the selection of feasible
driving maneuvers.

As a third aspect, the planned traveling route plays a
further role in reducing the number of candidate driv-
ing maneuvers (DMU1B in Figure 5). Driving maneuvers
which lead the vehicle into the wrong direction, or maneu-
ver it inadequately with respect to the planned route, are
omitted from the set of feasible driving maneuvers. For in-



stance overtaking a slower vehicle while the route planner
indicates a necessary U-turn might not be adequate.

Consequently, the large number of factors to be considered
in this decision stage requires a model which enables
the design and analysis of a highly complex operational
behavior. As Petri nets are a suitable modeling method for
this purpose (Peterson, 1981), we use Petri nets to model
this decision stage.

The decision making unit shown in figure 5 is modeled as a
Petri net (Figure 6) consisting of two subnets. Each subnet
models the decision making units DMU1A and DMU1B,
respectively.

The structure of the Petri net modeling DMU1 (Figure
6) is as follows. The input to the Petri net consists of
two sets of input places. The first set of input places
represents World Model Events; each World Model Event
is represented by one single input place. The second set of
input places represents the route planner indication; each
route planner direction indication is represented by one
input place. The output of the Petri net modeling DMU1
represents driving maneuvers. There is one output place
of the Petri net for each available driving maneuver.

Fig. 6. The decision making unit for the selection of feasible
driving maneuvers and its two steps, each modeled by
the subnets DMU1A and DMU1B, respectively.

In each execution cycle the World Model and the Route
Planner mark the Petri net’s input places. A token is
placed by the World Model into each place which rep-
resents a World Model Event which has the value true.
Similarly, the Route Planner marks the input places which
correspond to the planned travel direction.

The purpose of subnet DMU1A is to select those driving
maneuvers which are operational (i.e. possible due to
sufficient information) and which conform to traffic rules.
Therefore, the knowledge and application of traffic rules
is embedded in the execution structure of the subnet
DMU1A, which marks only those places which represent
operational driving maneuvers. The result of DMU1A is
passed to the second subnet DMU1B.

The purpose of the subnet DMU1B is to filter out those
driving maneuvers which were determined as operational
by DMU1A, however which do not lead the vehicle into
the direction indicated by the route planner. Therefore,
the subnet DMU1B receives both inputs from the route
planner and inputs from the subnet DMU1A. After its
execution, DMU1B places a token into each Petri net
output place which represents a driving maneuver which

is both operational and according to the route planner
indication.

After the execution of the complete Petri net DMU1, only
those Petri net output places are marked, which represent
feasible driving maneuvers (i.e. operational and according
to the route planner). After each decision making cycle,
all marked places of the Petri net are cleared, and a new
decision making cycle begins.

In the current prototype implementation, since this is
the safest option, in the unlikely event that there is no
feasible driving maneuver, the vehicle stops, and waits for
a maneuver to become feasible. However, with a complete
system specification, which defines how the vehicle should
respond to any traffic situation, and a complete list of
required driving maneuvers, this will be avoided.

Besides its scalability, the main benefit of the Petri net
model is that it allows to model, analyze, and verify
the correctness of a very complex operational behavior of
the first, safety-critical decision making stage, including
a large number of World Model events (Petri net input
places), which represent real-world events in the vehi-
cle’s traffic environment. This allows the decision making
subsystem to deal with very complex real-world traffic
situations. Furthermore, since the Petri net structure is
decoupled from the control software implementation, and
loaded from an external XML file, only its execution is
implemented in the vehicle control software source code.
Consequently, changes of the decision making operational
behavior (in the Petri net XML file) do not require changes
of the source code, and this in turn minimizes the possi-
bility to introduce new software errors.

3.3 Decision Stage 2: Selecting the Most Appropriate
Driving Maneuver using MCDM

The goal of the second decision making stage is to select
and execute the most appropriate alternative from those
driving maneuvers which have been determined to be
feasible in the current traffic situation.

Each of the feasible driving maneuvers offers multiple exe-
cution alternatives, which can be selected through discrete
driving maneuver parameters. For instance, the overtaking
maneuver could be performed at low or high speed, in
distant or close proximity to the front vehicle, and on the
right or left hand side. In order to select the most appro-
priate driving maneuver, and for it the most appropriate
execution alternative, we apply Multiple Criteria Decision
Making (MCDM) as follows.

Objectives: we define a hierarchy of objectives starting
from a main, most general driving objective, which is then
further successively broken down into more specific and
therefore more operational objectives on lower hierarchy
levels. Eventually, the bottom level of the objective hier-
archy contains only objectives objj which are fully opera-
tional and which are measurable through their attributes.

The most general objective for autonomous driving is
to safely reach the specified destination. More precisely,
this objective is broken down into a lower hierarchy level
containing more specific objectives, which specify how to
achieve the objective of the higher level.



Thus, we define the following example objective hierarchy
consisting of four (k = 4) level 2 objectives:

• Drive to destination safely =: objLevel1

· Stay within road boundaries =: objLevel2
1

keep distance to right boundary := attr1

keep distance to left boundary := attr2

· Keep safety distances =: objLevel2
2

keep distance to front vehicle := attr3

keep distance to moving obstacles := attr4

keep distance to static obstacles := attr5

· Do not collide =: objLevel2
3

keep minimum distance to obstacles := attr6

drive around obstacles := attr7

avoid sudden braking := attr8

avoid quick lane changes := attr9

· Minimize waiting time =: objLevel2
4

maintain minimum speed := attr10

avoid stops := attr11

Attributes: a set of measurable attributes
{attr1, attr2, .., attrp}, p ∈ N (3)

is assigned to each objective on the lowest hierarchy level
(in our example p = 11). An attribute is a property of
a specific objective. In order to define various levels of
importance, weights may be assigned to each attribute.

Alternatives: in the context of our application, decision
alternatives correspond to the execution of driving ma-
neuvers. Therefore, in a first step, we regard each element
of the set of driving maneuvers {M1, M2, .., Mn}(n ∈ N)
to be an element of the set of alternatives A:

A = {M1,M2, .., Mn} (4)

However, each driving maneuver Mm (1 ≤ m ≤ n)
offers one or multiple execution alternatives by specifying
discrete parameter values (e.g. fast/slow, close/far, etc.).
The driving maneuver parameters correspond in MCDM
terms to decision variables, where each alternative is
respresented by a decision variable vector.

We obtain:

M1 = {M1
1 ,M1

2 , .., M1
j }

M2 = {M2
1 ,M2

2 , .., M2
k} (5)

...

Mn = {Mn
1 , Mn

2 , .., Mn
l },

where n denotes the number of driving maneuvers, and j,
k, l the number of execution alternatives for the maneuvers
M1, M2, and Mn respectively.

Therefore, the set of alternatives A contains all execution
alternatives of all n driving maneuvers:

A =
n⋃

m=1

Mm

= {M1
1 ,M1

2 , .., M1
j ,M2

1 , ..,M2
k , .., Mn

1 , ..Mn
l } (6)

For the sake of readability, we denote all alternatives as:
A = {a1, a2, .., aq}, (q = j + k + .. + l) (7)

Utility Functions: utility functions f1(ar), ..., fp(ar) spec-
ify the level of achievement of an objective by an alter-

native ar ∈ A (r ∈ [1, q]) with respect to each of the p
attributes.

For each attribute attri (i ∈ [1, p]), we define a utility
function fattri

= fi:
fi : A → [0, 1] (8)

Consequently, defining utility functions fi for all alterna-
tives a1, a2, .., aq and all attributes attri (i ∈ [1, p]) results
in the following decision matrix:

ar attr1 attr2 ... attrp

a1 f1(a1) f2(a1) ... fp(a1)
a2 f1(a2) f2(a2) ... fp(a2)
...

...
...

...
...

aq f1(aq) f2(aq) ... fp(aq)

The remaining task is to calculate a best solution among
the feasible alternatives. A variety of MCDM methods can
be applied in order to solve this problem, such as domi-
nance methods, satisficing methods, sequential elimination
methods, or scoring methods (Yoon and Hwang, 1995).

In the following example we choose a widely used scoring
method, the Simple Additive Weighting Method, in which
the value V (ar) of an alternative ar is calculated by
multiplying the utility function values with the attribute
weights and then totaling the products over all attributes
(see equation 11) (Yoon and Hwang, 1995). The alternative
with the highest value is then chosen. Besides being easy to
calculate, the Simple Additive Weighting Method allows to
indicate the level of importance of certain attributes using
weights.

Instead of using the Simple Additive Weighting Method,
other methods can also be applied, in order to seek a
Pareto optimal (noninferior) solution, i.e. a solution where
no other alternative will improve one attribute without de-
grading at least another attribute (Chankong and Haimes,
1983). This comparison has to therefore be performed in
the context of finding safety-critical solutions. Also, having
in mind the decision making algorithm’s hard real-time
requirements which in turn are safety-crucial, the benefits
of finding a Pareto optimal solution will be achieved if and
only if the necessary computing power is available.

3.4 Example for Decision Stage 2

In this example we assume the traffic situation where a
driverless vehicle decides about passing a stopped vehicle.
Without oncoming traffic, the first decision making stage
determined the following two driving maneuvers as feasi-
ble: Passing the stopped vehicle, or Stop&Go (i.e. waiting
behind the temporarily stopped vehicle).

For the sake of simplicity, we assume that only the follow-
ing few execution alternatives for the two driving maneu-
vers are possible:

• Passing maneuver M1:
· a1 := speed=slow, lateral distance=small
· a2 := speed=slow, lateral distance=large
· a3 := speed=fast, lateral distance=small
· a4 := speed=fast, lateral distance=large

• Stop&Go maneuver M2:
· a5 := distance to front vehicle=small



Table 1. Heuristic definition of utility functions fi : A → [0, 1] for the 6 alternatives a1, .., a6

and 11 attributes attr1, .., attr11. Weights indicate the level of importance. The column V (ar)
lists the calculated values for each alternative ar.

ar attr1 attr2 attr3 attr4 attr5 attr6 attr7 attr8 attr9 attr10 attr11 V (ar)

a1 1 0.5 0.5 0.5 0.25 0.25 1 0.5 0.75 0.75 1 11
a2 1 0.25 0.5 0.5 1 1 1 0.5 0.75 0.75 1 12.25
a3 1 0.5 0.5 0.5 0.25 0.25 1 1 0.25 1 1 12
a4 1 0.25 0.5 0.5 1 1 1 1 0.25 1 1 13.25
a5 0.5 0.5 0.25 0.5 0.25 0.25 0 0 1 0 0 4.5
a6 0.5 0.5 1 0.5 0.75 1 0 0.25 1 0 0 8

Weight w1 = 1 w2 = 1 w3 = 2 w4 = 1 w5 = 1 w6 = 1 w7 = 1 w8 = 3 w9 = 2 w10 = 2 w11 = 2

· a6 := distance to front vehicle=large

Consequently, the set of feasible alternatives is:

A = {a1, a2, .., a6} (9)

The utility functions fi(A) evaluate the achievement level
of each attribute i for each of the 6 alternatives. In order
to allow comparisons between the levels of achievement of
different objectives, the values of the utility functions fi

are scaled to a common measurement scale, the interval of
real numbers between 0 and 1. We define:

fi ∈ [0, 1] ⊂ R, (10)

where the value 1 denotes the optimal achievement of
an objective, while 0 denotes that the objective is not
achieved at all.

We define the utility functions as follows. Each of the 6
alternatives are rated regarding on how well they fulfill
the driving objectives on the lowest hierarchy level. We
rate the alternatives on a scale from 0 to 1, where:

• 1 denotes optimal fulfillment of the objective,
• 0.75 denotes good fulfillment,
• 0.5 denotes indifference,
• 0.25 denotes bad fulfillment,
• 0 denotes unsatisfactory fulfillment.

In our example, the utility function values are assigned
based on heuristics reflecting the preferences of a human
driver, as listed in Table 1.

For calculating the best solution, we choose in this example
the Simple Additive Weighting Method (Yoon and Hwang,
1995). We define the value of an alternative ar as follows:

V (ar) :=
p∑

j=1

wjfj(ar), (11)

where p denotes the number of attributes.

Each attribute is assigned a weight wj , which reflects its
importance. For autonomous driving, the importance of
various objectives changes depending on the road condi-
tions. For example, on a wide boulevard at higher speed,
the attribute “attr8 : avoid sudden braking” is more im-
portant than the attribute “attr1: keep distance to right
boundary”. However, in a residential area, the opposite
might be the case. Consequently, instead of defining invari-
able attribute weights, this method offers the possibility
to adapt the attribute weights, and therefore the decision
preferences, according to the current traffic environment.
In our example, we define the attribute weights as listed
in Table 1.

Using the utility functions and attribute weights as listed
in Table 1, we calculate the value of each alternative:

V (a1) =
11∑

j=1

wjfj(a1)

= 1 ∗ 1 + 1 ∗ 0.5 + 2 ∗ 0.5 + 1 ∗ 0.5 + 1 ∗ 0.25

+ 1 ∗ 0.25 + 1 ∗ 1 + 3 ∗ 0.5 + 2 ∗ 0.75 + 2 ∗ 0.75

+2 ∗ 1 = 11.0

V (a2) = 12.25;V (a3) = 12.0; V (a4) = 13.25;

V (a5) = 4.5;V (a6) = 8.0 (12)

The highest value max
1≤i≤6

V (ar) = 13.25 is achieved

by alternative a4 (passing at fast speed with a large
lateral distance to the stopped vehicle). Therefore, this
alternative is chosen for execution. Since there is no vehicle
oncoming, and the road is sufficiently wide, a human driver
would very likely choose the same alternative.

3.5 Ensuring Real-Time Performance

One of the most important aspects for the decision making
process is its ability to perform in real-time, i.e. to deliver
correct results within specified time limits. However, in
this application, the real-time requirements depend on a
variety of factors, such as the vehicle’s speed, the surround-
ing environment, etc. At high vehicle speed, the decision
making subsystem, and all other safety-relevant compo-
nents, need to react faster than at slow vehicle speed. On
the other side, even at low speed, while driving in an urban
area with pedestrians nearby, a quicker reaction time is
needed, in order to avoid collisions.

Since the goal is to achieve a driving performance similar
to a human driver, however with improved safety, it can
be estimated that the overall guaranteed response time
of the entire autonomous vehicle control system needs
to be at least as short as the typical reaction time of
a human driver. For the calculation of the autonomous
vehicle’s control system response time, all hardware and
software subsystems need to be included. Therefore, since
it is a critical subsystem of the autonomous vehicle’s
control software, the decision making subsystem’s real-
time performance needs to be ensured.

The developed decision making approach facilitates the
analysis, simulation, and testing of real-time performance
in the following ways:

• Decision Stage 1: The Petri net, which models the
first, safety-critical stage of the decision making pro-



cess can be analyzed, simulated, and tested indepen-
dently from the rest of the autonomous vehicle’s con-
trol system components. This also allows to measure
the execution times for the Petri net execution on
the actual computing system, including the worst-
case scenarios.

• Decision Stage 2: Although the second decision mak-
ing stage does not include safety-critical attributes,
its real-time performance ability does have an effect
on the entire decision making process. Therefore,
the number of MCDM objectives, the choice of the
MCDM method, and for instance the calculation cost
for seeking Pareto optimal solutions, need to be in
line with real-time requirements. For this reason, the
Simple Additive Weighting Method has been chosen
in the implementation, due to its low calculation
costs.

3.6 Real-Time Performance Measurements

In order to assess the real-time performance of the first,
Petri Net based decision making stage, the Petri net imple-
mentation has been tested and its execution performance
has been measured independently from the vehicle control
software. For this purpose, two different Petri Net struc-
tures have been created, which reflect the building blocks
of a complex decision making net:

• A Petri Net with a single transition with multiple
inputs and multiple outputs (Figure 7), and;

• A Petri net with multiple transitions with single
inputs and single outputs (Figure 8).

Single Transition with Multiple Inputs / Multiple Outputs
The first measured Petri Net structure consists of a single
transition with a multiple inputs and multiple outputs
(Figure 7). In order to assess the execution time of this
structure, a large number of input places and output places
has been created, the input places have been marked, and
the execution time for the execution of the Petri Net (i.e.
the firing of the single transition) has been measured.

Fig. 7. Petri Net with a single transition with multiple
inputs and multiple outputs.

Table 2 shows the average execution times with respect
to the number of input and output places, as well as the
time required to remove all Petri Net markings after the
execution of the entire Petri Net (Reset). The removal of
remaining markings after each execution cycle is required,
in order to reset the Petri Net to its original state before
the execution of a new decision making cycle.

Multiple Transitions with Single Input and Single Output
The second measured Petri Net structure consists of

multiple transitions, each with a single input and single

Table 2. Measured processing time in [ms] for
the execution of a Petri Net with a single
transition with multiple inputs and multiple
outputs (Figure 7). The measured execution
times are average values for multiple (1000 -
10000) executions. The resetting times (Reset)
are measured execution times for the removal
of all markings from the Petri Net. Values of
0 indicate that the execution time was below
measurable limits of 1ms. (CPU: Intel T5450,

1.66GHz).

#Inputs #Outputs Exec. [ms] Reset [ms]

100 20 0.4 1
1000 20 3 2
5000 20 16 2
10000 20 31 20

100 100 0.5 1
1000 100 4 1
5000 100 16 2
10000 100 32 31

100 1000 2 0
1000 1000 5 0
5000 1000 18 8
10000 1000 34 36

output (Figure 8). In order to assess the execution time
of this structure, a large number of transitions has been
created, each connected by a single input and single output
place, the Petri Net’s input place has been marked, and
the execution time for the execution of the Petri Net (i.e.
the firing of all transitions) has been measured.

Fig. 8. Petri Net with multiple transitions with a single
input and a single output.

Table 3 shows the average execution times with respect
to the number transitions. Since the execution times for
the removal of remaining markings was below timing
measurement limits (less than 1ms) for the listed number
of places, these values have been omitted.

Table 3. Measured processing time in [ms]
for the execution of a Petri Net with multi-
ple transitions, each with a single input and
single output. The measured execution times
are average values from 1000-10000 executions

(CPU: Intel T5450, 1.66GHz).

#Transitions Exec. Time [ms]

10 5
20 7
50 38
100 78
200 296
500 1600
1000 6300
2000 25000
5000 160000

The significantly longer and rapidly increasing execution
times for a Petri Net with multiple transitions (Table 3) is
due to the fact that in each Petri Net execution cycle all
transitions need to be checked whether they are enabled



or not. Enabled transitions fire by removing a marking
from their input place and placing it into their output
place, which in turn enables other following transitions to
fire. The search for enabled transitions and their firing is
executed until there are no more enabled transitions, which
results in increased processing times.

The measured execution time values listed in tables 2 and 3
can be used to estimate the maximum required processing
times for a decision making Petri Net in a worst case
scenario.

For example, the execution for a Petri Net consisting of 200
transitions with each 1000 input and 100 output places,
will require on this specific hardware in a worst case (Table
2): 200 ∗ 4ms = 800ms.

Additionally, the time required to reset the net (i.e. to clear
all markings) is around 1ms for each transition. Therefore,
the execution time for the entire Petri Net on this specific
CPU is: 800ms + 1ms ∗ 200 = 1000ms

Although the implemented prototype system does not in-
clude all required aspects for an autonomous vehicle to be
fully operational in real-world traffic, the conducted tests
attest that the developed approach is suitable to fulfill real-
time requirements. So far, the developed software has been
successfully tested on a Windows Vista notebook PC with
an Intel T5450 CPU at 1.66GHz with satisfactory results
for the low vehicle speed of around 1m/s. On this low-end
notebook CPU and general purpose (i.e. non-realtime) op-
erating system, the decision making process was executed
at 1-2 Hz, concurrently to all other vehicle control tasks
on the same CPU. During these tests, the CPU load was
relatively low (30-40%), which indicates that the decision
making process, if executed on a dedicated CPU, under
a real-time operating system, is able fulfill the real-time
requirements for much higher vehicle speeds.

3.7 Error Recovery

Due to quickly and unexpectedly changing traffic condi-
tions, in some situations, the decision making subsystem
may need to abort the execution of certain driving maneu-
vers (such as overtaking), and switch to the execution of
driving maneuvers specifically developed for error recov-
ery. However, since the structure of error recovery driving
maneuvers is identical to normal driving maneuvers, the
process of error recovery does not require any changes of
the decision making approach.

One of the challenges for the near future, and a so far not
addressed question, is the development of a complete and
detailed system specification for autonomous driving in
urban traffic conditions, which foresees and includes how
to deal with such unexpected traffic conditions.

4. TEST RESULTS

The Decision Stage 1 outcomes have already been demon-
strated in both 3D simulation (Boisse et al., 2007) and
in on-road experiments with a Cycab vehicle (Furda and
Vlacic, 2009), where the decision about passing a stopped
vehicle was repeatedly made correctly, with and without
oncoming traffic (Figure 9).

Fig. 9. On-road decision making experiment with on-
coming traffic.

The second stage of the decision making process has been
evaluated in the 3D simulation. We have conducted exper-
imental tests for a variety of urban road traffic situations,
however in the scope of this paper, only four situations
are discussed. The following 11 attributes attr1, .., attr11

have been used in the experimental tests (also addressed
in subsection 3.3):

• keep distance to right boundary := attr1

• keep distance to left boundary := attr2

• keep distance to front vehicle := attr3

• keep distance to moving obstacles := attr4

• keep distance to static obstacles := attr5

• keep minimum distance to obstacles := attr6

• drive around obstacles := attr7

• avoid sudden braking := attr8

• avoid quick lane changes := attr9

• maintain minimum speed := attr10

• avoid stops := attr11

The list of the considered driving maneuver alternatives is
as follows:

• a1 = GPS Point2Point fast
• a2 = GPS Point2Point medium speed
• a3 = GPS Point2Point slow
• a4 = Intersection crossing fast
• a5 = Intersection crossing slow
• a6 = Pass slow/small distance
• a7 = Pass slow/large distance
• a8 = Pass fast/small distance
• a9 = Pass fast/large distance
• a10 = Platooning large distance
• a11 = Platooning small distance
• a12 = Emergency Stop

In order to test the sensitivity of the developed Decision
Stage 2 method, three different attribute weight distribu-
tion sets have been applied for each of these 11 attributes,
as shown in Figure 10. The Weight Set 1 was chosen in
such a way that the highest weight factors of 5 is assigned
to both attributes 1 and 11, while the weight factor of
2.5 is assigned to attribute 6; the Weight Set 2 assigns
increasing weight factors in steps of 0.5, while the Weight
Set 3 assigns decreasing weight factors in steps of 0.5.

The outcomes of the first decision making stage are pre-
sented in Table 4, Column 2, as follows:



Fig. 10. MCDM attribute weight distributions applied to
the 11 attributes.

• Situation 1: the autonomous vehicle is following a
road, relatively far from the coming intersection.
In this situation, the first, Petri net based decision
making stage has determined the driving maneuver
for following a road using GPS coordinates, and its
three execution alternatives (i.e. fast, medium speed,
slow), as feasible.

• Situation 2: the autonomous vehicle is approaching
an intersection, with a road crossing pedestrian. In
addition to the road following maneuver, the first
decision making determines the intersection crossing
maneuver as feasible.

• Situation 3: the autonomous vehicle is following an-
other vehicle. The first decision making stage deter-
mines the driving maneuvers “Pass” and “Platoon-
ing” as feasible.

• Situation 4: a static obstacle (a tree) is in front of
the autonomous vehicle. The only feasible driving
maneuver is the emergency stop.

The second, MCDM-based decision making stage calcu-
lates the values V (ai) for each of the feasible alternatives
using Equation 11, which provided in this case the follow-
ing results (Table 4, column 3):

• Situation 1: the use of the Weight Set 1 and Weight
Set 2 result in the alternative a1 to be most ap-
propriate (i.e. maximum value), while the Weight
Set 3 results in the alternative a3 to be the most
appropriate.

• Situation 2: the alternative a4 is the most appropriate
for weight sets 1 and 2, while alternative a3 becomes
the most appropriate if the Weight Set 3 is applied.

• Situation 3: the use of the Weight Set 1 results in the
decision to execute alternative a9, while alternatives
a7 and a10 are chosen for weight sets 2 and 3
respectively.

• Situation 4: the only feasible driving maneuver is the
emergency stop. In our implementation the emer-
gency stop is not evaluated by the MCDM based
stage, but is instead immediately executed whenever
it is determined to be the only feasible alternative.

As expected, whenever the World Model fails to provide
accurate information, such as for instance information
regarding oncoming vehicles (e.g. Table 4, Situation 3), the
first decision making stage may make the wrong decision

about the feasible driving maneuvers. This error is then
further passed on to the second stage, and may result in
inappropriate or even unsafe driving decisions. Therefore,
since it is mainly responsible for safety aspects, the first
decision making stage has a crucial impact on the entire
decision result.

On the other side, the MCDM results in Table 4 show
that even when the attributes and utility functions of the
second, MCDM based decision making stage have not been
specified appropriately, for instance by assigning weights
too high to irrelevant attributes, the resulting driving
decisions are still safe. For example, applying the first set
of attribute weights in Situation 1 results in the decision
to approach the intersection at fast speed (i.e. alternative
1), while applying the third attribute weight set results in
the more appropriate decision to approach the intersection
at a lower speed (i.e. alternative 3).

Consequently, the developed decision making approach
delivers correct decision results under the following con-
ditions:

• accurate and sufficient information is provided by the
World Model in real-time, especially regarding the
MCDM attributes;

• the Petri Net based logic of the first decision making
stage is defined according to a complete specification
(i.e. a specification which defines the decision logic for
all urban traffic conditions);

• the MCDM attributes and their weights are specified
according to their importance as judged by the trans-
port system experts.

4.1 Future Work

While the prototype implementation and the presented
evaluation results demonstrate that the developed decision
making approach is applicable and suitable, additional
work is necessary in order to advance its development
towards commercial real-world applications.

In order to obtain unconditional reliable decision making
results, the following aspects need to be addressed by
transportation system experts:

• The minimal set of traffic environment information
provided by the World Model needs to be refined in
the context of making safe driving decisions.

• The currently developed set of driving objectives
needs to be expanded to unquestionably reflect the
system specification.

• Additional research is required for the development
of a complete set of driving maneuvers for urban
traffic, in order to enable real-time decision making
and autonomous driving in any situation.

5. CONCLUSION

This paper has addressed and presented a solution for
the task of Real-Time Decision Making for autonomous
city vehicles using Petri nets and MCDM. The decision
making task has been divided into two consecutive stages.
While the first decision making stage is safety-critical
and focuses on selecting the feasible and safe driving
maneuvers, the second decision making stage focuses on



Table 4. Real-Time Decision Making Results of both decision making stages. Column 2 shows
the feasible driving maneuvers, while column 3 shows the result values of the second, MCDM-
based stage. There are 11 alternatives in total, but only those which are determined as feasible in
the first stage are evaluated in the MCDM based stage. Each of the 11 alternatives are evaluated

three times, applying the 3 different weight sets shown in Figure 10.

DM Stage 1 Results (Feasible) DM Stage 2 Results (MCDM)

Situation 1: Following Road

a1 = GPS Point2Point fast
a2 = GPS Point2Point med. speed
a3 = GPS Point2Point slow

Situation 2: Intersection

a1 = GPS Point2Point fast
a2 = GPS Point2Point med. speed
a3 = GPS Point2Point slow
a4 = Intersection crossing fast
a5 = Intersection crossing slow

Situation 3: Following Vehicle

a6 = Pass slow/small distance
a7 = Pass slow/large distance
a8 = Pass fast/small distance
a9 = Pass fast/large distance
a10 = Platooning large distance
a11 = Platooning small distance

Situation 4: Static Obstacle

a12 = Emergency Stop Only Emergency Stop as feasible alternative.
(not considered in MCDM evaluation)

⇒ Decision: Emergency Stop

non safety-critical driving objectives, such as improving
comfort and efficiency. We have demonstrated a solution
for the first decision making stage based on Petri nets, and
we have designed and developed the MCDM model, which
is applied in the second decision making stage.

The application of MCDM methods for the second decision
making stage enables the consideration of a large number
of driving objectives, including possible conflicting ones,
and leads to a powerful and flexible solution for non-
simplified urban traffic conditions. Furthermore, compared
to so far existing solutions, which were however intended
only for simplified traffic conditions, the application of
MCDM in this new research area offers a variety of

benefits with respect to the problem specification, decision
flexibility, and scalability.

ACKNOWLEDGMENTS

We would like to thank INRIA’s team IMARA for the
financial support provided towards conducting the exper-
imental work at their test track in Rocquencourt, France.
We are particularly grateful to Dr. Michel Parent, Lau-
rent Bouraoui and Francois Charlot for their effort and
assistance in performing the experiments.



REFERENCES

Boisse, S., Benenson, R., Bouraoui, L., Parent, M., and
Vlacic, L. (2007). Cybernetic Transportation Systems
Design and Development: Simulation Software. In IEEE
International Conference on Robotics and Automation -
ICRA’2007. Roma, Italy.

Cassandras, C.G. and Lafortune, S. (2008). Introduction
to Discrete Event Systems. Springer, second edition.

Chankong, V. and Haimes, Y.Y. (1983). Multiobjective
Decision Making. Elsevier Science Publishing Co., Inc.

DARPA (2006). Urban Challenge Rules. URL
http://www.darpa.mil/grandchallenge/docs/
Urban Challenge Rules 121106.pdf.

Furda, A. and Vlacic, L. (2009). Towards Increased Road
Safety: Real-Time Decision Making for Driverless City
Vehicles. In 2009 IEEE International Conference on
Systems, Man, and Cybernetics. San Antonio, TX, USA.

Furda, A. and Vlacic, L. (2010). An Object-Oriented
Design of a World Model for Driverless City Vehicles. In
2010 IEEE Intelligent Vehicles Symposium (IV 2010).
San Diego, California, USA.

Hopcroft, J.E., Motwani, R., and Ullman, J.D. (2007).
Introduction to Automata Theory, Languages, and Com-
putation. Pearson Education, Inc., third edition.

Kolodko, J. and Vlacic, L. (2003). Cooperative Au-
tonomous Driving at the Intelligent Control Systems
Laboratory. IEEE Intelligent Systems, 18(4), 8–11.

Li, L. and Tang, S. (2009). Intelligent Transportation
Systems in China. Intelligent Transportation Systems
Magazine, IEEE, 1(2).

Li, R. and Jia, L. (2009). On the Layout of Fixed Urban
Traffic Detectors: An Application Study. Intelligent
Transportation Systems Magazine, IEEE, 1(2).

Munz, M., Mahlisch, M., and Dietmayer, K. (2010).
Generic Centralized Multi Sensor Data Fusion Based on
Probabilistic Sensor and Environment Models for Driver
Assistance Systems. Intelligent Transportation Systems
Magazine, IEEE, 2(1), 6–17.

Peterson, J.L. (1981). Petri Net Theory and the Modeling
of Systems. Prentice-Hall, Inc.

Yoon, K.P. and Hwang, C.L. (1995). Multiple Attribute
Decision Making. SAGE Publications Inc.

Zhao, H., Cui, J., Zha, H., Katabira, K., Shao, X., and
Shibasaki, R. (2009). Sensing an Intersection using a
Network of Laser Scanners and Video Cameras. Intelli-
gent Transportation Systems Magazine, IEEE, 1(2).


