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Abstract 

Microwave power is used for heating and drying processes because of its faster and volumetric heating capability. Non-uniform 

temperature distribution during microwave application is a major drawback of these processes. Intermittent application of 

microwave potentially reduces the impact of non-uniformity and improves energy efficiency by redistributing the temperature. 

However, temperature re-distribution during intermittent microwave heating has not been investigated adequately. Consequently, 

in this study, a coupled electromagnetic with heat and mass transfer model was developed using the finite element method 

embedded in COMSOL-Multyphysics software. Particularly, the temperature redistribution due to intermittent heating was  

investigated. A series of experiments were performed to validate the simulation. The test specimen was an apple and the 

temperature distribution was closely monitored by a TIC (Thermal Imaging Camera). The simulated temperature profile matched 

closely with thermal images obtained from experiments.  
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1. Introduction 

Microwave penetrates a material until moisture is located and heats up the material volumetrically. Thus a rapid 

and convenient heating method is offered by microwave application. This unique heating capability has resulted in 

considerable interest in heating and drying related commercial situations. However, the major drawback associated 

with microwave heating is the non-uniform temperature distribution, resulting in hot and cold spots in the heated 

product[1].  This non-uniformity of temperature is due to (1) interference of electromagnetic waves inside the 

microwave cavity resulting in hot and cold spots, and (2) variation in dielectric, physical, and thermal properties of 

food components during heating. Temperature uniformity is critical for ensuring food safety because the cold spot 

can be a source of pathogens [2]. Vadivambal and Jayas [1] mentioned that the non-uniform temperature distribution 

not only affects the quality of the food but also raises the issue of food safety when the microorganisms may not be 

destroyed in the cold spots. For this reason, our research group has accepted the challenge to reduce this non-

uniformity. One of the potential solutions to reduce non-uniformity is to apply microwave intermittently. 

Gunasekaran and Yang [3] argues that pulse or intermittent microwave heating is preferred over continuous heating 

when uniform temperature distribution is important.  

 

An appropriate theoretical model to describe the heat and mass transfer process during intermittent microwave 

heating has to be developed to facilitate an improved strategy for applying this intermittency[4]. Extensive 

modelling efforts have been made to simulate microwave heating but none of them consider intermittency and 

temperature redistribution. Moreover, the complex nature of food structure and variability in properties during the 

drying process complicate the modeling of drying of fruits and vegetables [5, 6]. Inclusion of microwave heating 

further complicates the model. Several authors[7, 8] considered Lamberts law to calculate microwave heating of 

food product. However, Lambert’s Law does not accurately predict the heating situation and electric field 

distribution [9]. Chandrasekaran et al. [9] reviewed the comparison between Lambert’s law and Maxwell’s equation, 

they reported that Maxwell’s equation provided a more accurate solution for microwave propagation in samples. 

Recently, Malafronte et al. [10] developed a simulation model for combined microwave convective drying for food 

wherein they considered moisture and temperature dependent dielectric properties. These latter authors solved both 

heat and mass transport equations and Maxwell equations in transient regime.  Maxwell’s equation has also been 

considered for modelling puffing of potato [11], combined drying [12] and combined heating[13]. However, none of 

the previous studies considered the intermittent heating nor did they investigate spatial temperature redistribution 

due to cycled microwave. The objectives of this study were to: 

1. Develop an intermittent microwave heating model considering Maxwell equations and variable dielectric 

properties 

2. Validate the model comparing the temperature distribution obtained from a TIC (Thermal Imaging 

Camera) and simulation 

3. Investigate the temperature redistribution due to intermittency 

 

Nomenclature 

E electric field intensity (V/m)     ρ density 

ε′ dielectric constant      Cp specific heat 

ε′′ dielectric loss        k thermal conductivity 

ω angular wave frequency (2πf, rad/sec)    M Moiture content dry basis 

μ′ relative permeability of the material     ℎ𝑇  heat transfer coefficient 

i imaginary unit       ℎ𝑚          mass transfer coefficient 

c speed of light in free space (3x10
8
, m/s)     𝜇  Dynamic viscosity, (Pa.s)  

Qe electromagnetic losses/heat sources     T  temperature  

Qrh resistive losses       c concentration(mol/m
3
) 

Qml magnetic losses       u domain velocity  

D diffusion coefficient      MC  moisture content wet basis 
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2. Materials and method 

The experiments were carried out using a Panasonic 1100W inverter microwave oven (Model NN-SD691S). The 

microwave oven had a cavity dimension of 355mm (W) x251mm (H) x365mm (D) as shown in Fig.1. An apple 

sample was placed at the center of the glass tray. The intermittent heating was achieved by heating the sample in a 

microwave for 60s and then drying with a convection dryer for 150s at 40
0
C. A thermal imaging camera (FLIR i7) 

was used to obtain the temperature distribution after 60s (heating) and 150s (tempering). 

Fig. 1. The geometry with waveguide and sample. 

 

3. Model development  

 

In this study the model has been developed considering coupled electromagnetic and heat and mass transfer. 

Maxwell’s equations were solved to obtain the electric field in the oven cacity and sample. The Maxwell equation 

for  rectangular waveguide in frequency domain time can be written as Eq. 1[10]. 
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The heat generated due to electromagnetic losses, Qe (SI unit: W/m
3
) then calculated by 
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Mass and heat transfer is considered by Eq.3 and Eq. 4 respectively  
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3.1. Initial and boundary conditions 

 



  Kumar et al. 

Uniform initial condition was considered for both the oven cavity and the sample. Initial conditions are: electric 

field, E=0;  sample temperature, T0=20
0
C and moisture content, M0=6 kg/kg dry basis. 

 

Electromagnetic boundary condition: Entrance of electromagnetic energy (port boundary) is defined as a 

rectangular port with TE10  mode and the walls were modelled with the perfect electric conductor. 

Heat transfer boundary condition: Convection and evaporation has been considered in heat transfer boundary 

condition [14]. 

 

).()().( cDnTThTkn refairT    (5) 

 

 Mass transfer boundary condition: 𝒏.  𝐷𝛻𝑐 = ℎ𝑚 (𝑐𝑏 − 𝑐) 
Heat and mass transfer coefficient was assumed to be 20W/m

2
 and 3.6x10

-6
 respectively.  

 

3.2. Input parameters 

 

Table 1. Properties of apple used in the simulation. 

Property  Value Unit Reference 

Initial moisture content 84.89 % [15] 

Electrical conductivity 0 S/m  

Dielectric constant 2887.14518.0'  MCe  1 [16] 

Dielectric loss 0343.12912.00024.0'' 2  MCe  1 [16] 

Relative permeability 1 1  

Thermal conductivity 0.46 W/(m.K)  

Density 850 kg/m
3 

 

Heat capacity 3734 J/(kg.K)  

 

4. Results and discussion 

 

4.1. Temperature redistribution 

  

Fig. 2 compares temperature re-distribution obtained from both the theoretical model and actual experiments. It 

shows that the hot spot is concentrated in a region with a maximum temperature rise of 63.9
0
C after 60s of heating. 

As expected, after tempering for 150s, temperature redistributes due to conduction and hot spot disperse. Thus 

intermittency facilitates reduction in non-uniform temperature distribution  which may contribute to improve food 

quality. In the case of drying, the tempering period removes the accumulated moisture on the surface. Thus 

combining microwave with convective drying creates unique drying system with high energy efficiency.  During the 

experimentation, it was observed that microwave power is more efficient in the initial stage of drying. As a 

consequence, the final stage of drying should include power reduction or tempering time should be increased to 

avoid burning. More involved simulation studies need to be carried out  to optimize the power level and tempering 

time.     

 

4.2. Maximum temperature  
 

Maximum temperature is important in food drying as it can potentially cause burning after a certain temperature 

is risen. Therefore, prediction of the highest temperature achievable is of significant value as it can be employed to 

prevent burning, and avoid damage due to extreme temperature exposure (heat damage). Maximum temperature 

obtained from the simulation was compared with experimental peak temperature values measured by a thermal 

imaging camera [Fig. 3]. It shows that the maximum temperature drops after tempering. Thus, from the model it is 

possible to suggest when the microwave power should be stopped. Tracing the maximum temperature it is possible 

to find suitable power level or tempering period. The graph also shows that in the second cycle of heating, peak 

temperature is higher than the first cycle. This latter behaviour indicates microwave power “on time” should be less 
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than that of the previous cycle in order to keep the temperature constant. Otherwise if the tempering time/pulse ratio 

is same throughout the process, it may cause burning, because the temperature continues to rise in the subsequent 

cycle.  

 

 Heating 

scheme 
Cycle 1 Cycle 2 
Heating (60s) Tempering (150s) Heating (60s) Tempering (150s) 

     Experimental  

 
   

Computed 

    
   

Fig. 2. Temperature distribution comparing the experimental and simulation for 100MW power with 60s on 150s off  

 
Fig. 3. Maximum temperature for 100 W with 60s on and 150s off 

 

5. Conclusions 

In this study a theoretical model for intermittent microwave convective drying has been developed to investigate 

temperature redistribution. This model correlated well with the experimental results. A key observation of this 

research is that, intermittency helps to reduce the non-uniformity of temperature in the material of interest. 

Intermittent heating reduces the temperature difference between hot and cold spots. Intermittent heating also can 

limit the maximum temperature , which can in turn prevent burning or scorching of product. The model can help to 

find the suitable power level or tempering period to avoid overheating of the product. Moreover, the model can help 

to understand the microwave heating process inside an oven which thus contribute to design of a microwave cavity 
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characterized by more uniform heating. The model developed in this research can predict the optimum intermittency 

and power level for enhanced product quality. 
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