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Text S1. ERA5 Soil Moisture Evaluation 
While the ERA5 soil moisture product is in principle derived with a land surface model and 

therefore can potentially reflect its shortcomings. The assimilation of observations from space-
borne microwave instruments provides quantitative information for the surface SM, facilitating 
the retrieval of root-zone SM (Albergel et al., 2012). The model structure and parameterization 
governing the root-zone soil moisture dynamics has been thoroughly validated against related 
variables such as runoff or the surface heat fluxes (Balsamo et al. 2009, Balsamo et al. 2015).  
Therefore, we chose to use ERA5 multi-layer soil moisture in our analysis, even though it is nec-
essarily less constrained by direct observations and larger uncertainties are expected for deep 
soil layers than for surface layers (Drusch et al., 2009).  

Many studies evaluated soil moisture products from the European Centre for Medium-
Range Weather Forecasts (ECMWF) (e.g. ERA5, ERA-Interim) against in-situ observations from 
global hydrology networks (Albergel et al., 2012; Albergel et al., 2013; Liu et al., 2013; Jing et al., 
2018; Albergel et al., 2018; Li et al., 2020b; Hersbach et al., 2020). As listed above, most compari-
sons of reanalysis SM products agreed that ERA-Interim from ECMWF reproduces well the spa-
tial and temporal dynamics, and ERA5 as the newest released product from ECMWF clearly en-
hances the simulation performance over ERA-Interim by improving the data assimilation from 
higher resolutions and better understanding the global balance of precipitation and evapora-
tion. 

Different layers of SM were also evaluated separately from the top down to 1 meter in 
many studies. Li et al., 2020b found that ERA5 total SM shows a higher consistency with obser-
vations than the other products at the network scale, while MERRA-2 is closer to the observa-
tions regarding to linear trends. Based on the hydrology network in Australia, Jing et al., 2018 
evaluated first three layers in ERA-Interim SM, and concluded that all the evaluated layers of SM 
can capture temporal features well except for the depth of 28-100 cm in the winter, and the lay-
er of 7-28 cm has higher absolute and temporal accuracy. Albergel et al., 2012 also evaluated 
the good quality of multi-layer SM from ERA-Interim even over 1 meter. 
  



Text S2.  More Details in the Random Forests (RF) Modeling 

2.1. Cross-validation and Identification of Variable Importance Using RF 
During RF model training, the data are randomly split 63% into training and the remaining 

into cross-validation when separating between decision trees, because bootstrap method is 
used in RF (Breiman 1996; Breiman 2001). After training, the performance of the RF model is 
evaluated at each 3x3 grid cell matrices by computing the R2 between the modeled and ob-
served target variable for data that was not used for training (out-of-bag data; Breiman 2001). 

Permutation importance measures the relative importance of each predictor variable from 
the difference of errors before and after a temporal permutation applied to the particular varia-
ble (Cutler et al., 2012; Gómez-Ramírez et al., 2020). When RF perform regression, the difference 
of R2 instead of errors is calculated, and the permutation importance generally ranges from -1 
to 1, but a negative value indicates no efficient information from a predictor. To validate results 
of permutation importance we employ two more methods: (i) Spearman correlation (Zwillinger 
& Kokoska, 2000) and (ii) SHapley Additive exPlanations (SHAP) feature importance which 
measures marginal contribution of each predictor to the target variable (Lundberg et al. 2017; 
Sundararajan & Najmi, 2019).  

 

2.2. SHapley Additive exPlanations (SHAP) Dependence to Measure the Target Sensitivity 
In addition to the determination of the most relevant hydrometeorological controls we 

study the sensitivity of the vegetation response to each predictor variable. The sensitivity is de-
termined by the slope from fitted linear quantile (median) regression between the SHAP de-
pendence of a target variable and a predictor variable (similar method was applied by Forkel et 
al., 2019 using partial dependence plots), as SHAP dependence enables to measure the margin-
al effect each predictor variable has on the target variable for individual and global explanations 
(Lundberg et al. 2017). The magnitude and the sign of sensitivity complement the information in 
importance identification.  

All data-processing and analyses are done with Python 3.7 by using the NumPy 1.16.1 (Oli-
phant 2006), Statsmodels 0.11.1 (Skipper & Perktold, 2010), Scikit-learn 0.22.1 (Pedregosa et al., 
2011), Matplotlib (Hunter 2007) and shap 0.35.0 packages (Lundberg et al. 2017). 
  



Text S3. Uncertainties in Vegetation Data and Model Tests 

3.1. Uncertainties in Vegetation Data 
NDVI can saturate because of red band reflectance in high biomass regions such as the 

Amazon, as it has been reported in previous studies (Huete et al., 1997; Huete et al., 2002). But a 
significant linear relationship between tower-based daily mean SIF and GPP has still been found 
even when NDVI clearly saturated at high GPP (Yang et al., 2015). In fact, unlike vegetation opti-
cal indices, SIF is mechanistically linked to photosynthesis, does not saturate in the tropics, and 
has been shown to have a near-linear relationship with ecosystem GPP at weekly and monthly 
scales (Guanter et al., 2012; Green et al., 2020). Magney et al., 2019 suggested that SIF is less 
affected by clouds and is not prone to saturate with high leaf area. 

Dense canopy has the potential to confound the relationship between SIF and GPP, as the 
fluorescence escaping probability is associated with canopy structure (Fournier et al., 2012; 
Migliavacca et al., 2017; Dechant et al., 2020). However, Zeng et al 2019 and Dechant et al., 2020 
show that SIF is highly sensitive to canopy structure that this underlies, in part, the strong corre-
lation between SIF and GPP, particularly at the seasonal time scale. Besides, previous literature 
suggests that SIF and GPP could decouple under extreme environmental stresses due to leaf-
level photosynthetic regulation (Helm et al., 2020; Wohlfahrt et al., 2018). In our analysis, we 
consider the full variability range of SIF conditions where extreme conditions only represent a 
small fraction of the data. We therefore expect that changing SIF-GPP relationship under ex-
treme conditions do not have a major effect on our analyses. 

Further, sun-sensor geometry could also confound SIF-GPP relationship, as Köhler et al., 
2018 illustrated geometry effects in Amazon forests. While the differences accounting or not for 
the observation angle is not that much regarding to the correlation between SIF and GPP (He et 
al., 2017), and our study is focusing on partitioning global controls on vegetation productivity in 
global domain using half-month data anomalies, and thereby the influence of observation an-
gles would not conclude to a different pattern of global vegetation controls with consistent 
main results coming from SIF, NIRv and NDVI. 

3.2. Model Tests 
We perform further RF model experiments to investigate if the added skill in the case of the 

multi-layer SM is related to the increased number of predictor variables, and therefore an in-
creased flexibility of the model, or to the additional information contained in the individual lay-
ers compared with the total SM. First, the experiment of multi-layer RF (4 variables) preforms 
better than the experiment of 5 SM variables, showing that the enhanced performance is not 
exclusively due to the increased number of variables and hence increased flexibility of the RF 
model (Figure S3). We note that, the fifth layer is supposed to provide no additional information 
as a weighted average from the other four predictor variables it is. Second, regionally enhanced 
performance can be found when replacing total SM with individual layers (Figure S4), indicating 
that additional information can be explored by the RF model from SM from individual layers. 
 



Text S4. Complemented analyses about main Hydrometeorological Controls on Sun-
induced fluorescence (SIF) 

4.1. Main Hydrometeorological Controls on Sun-induced fluorescence (SIF) When Only 
Considering Positive Variable Contributions 

We repeat the analysis from Figure 2 while only considering variables with positive contri-
butions to SIF prediction. The result shows that consistent proportions of water-related controls 
can be found when using multi-layer SM, while around 4% of the study area is shifted from en-
ergy- to water-control in the total SM experiment, confirming potential confounding effects can 
be minimized using multi-layer SM (Figure S6). However, total SM does not provide sufficient 
information to the RF model to detect water-controlled regions, because confounding effects 
may mislead main controls identification. For example, energy-related variables can misleading-
ly be detected as main controls in the total SM experiment in the case that surface soil moisture 
is the actual main driver: temperature and VPD co-vary with surface soil moisture, while its vari-
ations are overshadowed by that of deeper layers in the total SM information.  

4.2. Main Hydrometeorological Controls on Sun-induced fluorescence (SIF) in the Early 
and Late Growing Seasons 

The main hydrometeorological controls which we determine for the entire growing season 
may vary from early to later periods. To analyze potential differences, we separate the growing 
season into two periods, an early period before the first peak of the seasonal cycle of SIF (half-
month with the highest SIF across each year) in each grid cell, and a later period including the 
peak and the time thereafter. In the early growing season, larger regions show temperature 
control, such as the north Europe, while in the late growing season, the control of root-zone soil 
moisture (7-28 cm in ERA5) is expanded, such as the central North America and south Europe 
(Figure S10). Despite the difference in could cover between the early and late growing season 
periods we find overall similar results but expected increased water controls following the drier 
conditions (Figure S10), highlighting that cloud cover likely has no major influence on our re-
sults. Elevated evapotranspiration in the early growing season can induce water deficits in the 
later growing season in previously energy-limited ecosystems, and hence soil moisture plays a 
more important role in vegetation productivity in the later growing season, especially in the 
transition zone of climate and vegetation types (Figure S11; Zhang et al., 2020; Buermann et al., 
2018; Lian et al., 2020). Patterns for the whole growing season are generally consistent with 
these two partitioned periods (Figure 3a, d; Figure S10a). We note, however, that alternative ap-
proaches of distinguishing between early and late growing seasons can affect these results, es-
pecially for regions with complex growing season timing, even though the main conclusion with 
the increased water-control is expected to hold.  
  



Text S5. Additional Global Soil Moisture and Rooting-depth Products 
To further complement our results on the relative importance of vertical SM layers, we in-

clude three global model-based products of vegetation rooting depth distributions from (i) Fan 
et al., 2017 (https://wci.earth2observe.eu/thredds/catalog/usc/root-depth/catalog.html), (ii) 
Schenk & Jackson, 2009 (https://daac.ornl.gov/ISLSCP_II/guides/ecosystem_roots_1deg.html), 
and (iii) from Yang et al., 2016 (effective plant rooting depth, 
https://data.csiro.au/collections/collection/CI19813). 

Rooting depths from Fan et al. 2017 and Schenk & Jackson, 2009 show similar patterns with 
deepest roots in semi-arid areas and for non-tree vegetation such as grasses and shrubs (Figure 
4d-i). Less agreement is found with the rooting depths from Yang et al. 2016 (Figure S12). The 
former two products were rooting-depth data driven by extrapolation, and the one from Yang 
et al. 2016 was instead derived by a hydrological model by balancing the trade-offs between 
carbon costs and the benefits of deep rooting. From a perspective of maximum physical rooting 
depths modeling, actual effective water uptake may partly diverge inferred by the former two 
products due to ignored seasonal variability of hydraulic traits in the model framework, while 
the third one may largely underestimate effective roots in grasses, shrubs and savannas without 
using deep rooting strategies (Sakschewski et al., 2020). 

To validate our findings we also use alternative SM products: (i) MERRA-2 surface and root-
zone SM (Gelaro et al., 2017), (ii) GLEAM v3.3 surface and root-zone SM (Martens et al., 2017), 
and (iii) SoMo.ml with three layers (O and Orth, 2020). Table S1 shows the information of depths 
for all SM products that we use and classify into surface SM and root-zone SM. 
  



 Surface SM Root-zone SM 

ERA5 Layer 1 (0-7 cm) Layer 2 (7-28 cm) 

Layer 3 (28-100 cm) 

Layer 4 (100-289 cm) 

GLEAM Layer 1 (0-10 cm) Layer 2 (10-100 cm) 

MERRA-2 Layer 1 (0-5 cm) Layer 2 (0-100 cm) 

SoMo.ml Layer 1 (0-10 cm) Layer 2 (10-30 cm) 

Layer 3 (30-50 cm) 

Table S1. Depths and layers for different soil moisture (SM) products 

  



Figure S1. The flow chat of data-processing and data analysis. Details about data-processing 

can be found in the Data and Methods section. Hydrometeorological data are considered as 

predictor variables (blue color). Vegetation data relating to different proxies of vegetation 

productivity (normalized difference vegetation indices, NDVI; near-infrared reflectance 

vegetation, NIRv; and sun-induced fluorescence, SIF) are the target variable (green color). Three 

aspects are needed when implementing predictions: Model evaluation by Out-of-bag (OOB) R2 

is conducted to test our methodology. Permutation importance method is used to identify the 

relative importance of each predictor variable. SHapley Additive exPlanations (SHAP) 

importance method is also used to confirm the result of Permutation Importance. Target 

sensitivity is the slope of each linear regression between SHAP dependence and one predictor 

variable to obtain the sensitivities of target variables (e.g. SIF) to predictor variables (e.g. multi-

layer SM).



 

Figure S2. Model performance (R2) in prediction for (a) NIRv and (b) NDVI in the multi-layer SM 
(SM layer 1, 2, 3 and 4) experiment. 

 
 



 

Figure S3. The differences of R2 in predicting SIF between the experiments with 5 variables of 
SM (SM layer 1, 2, 3, 4, and total SM) and 4 variables of SM (SM layer 1, 2, 3, and 4) as predic-
tors. The differences in prediction performance using 4 or 5 layers of SM are negligible, indicat-
ing that the increase in model performance when using 5 SM layers are not exclusively due to 
the increased number of variables and hence increased flexibility of the RF model. 
  



 

Figure S4. The differences of R2 in predicting SIF between models including (a) SM layer 1, (b) 
SM layer 2, (c) SM layer 3, or (d) SM layer 4, with a model including total SM. All the other pre-
dictor variables (precipitation, temperature, solar radiation, and VPD) are used in the analyses as 
predictors. Regions with positive values show that the performance of SIF prediction using one 
individual SM layer as predictor is better than using total SM as predictor. 



 

Figure S5. The differences of R2 in predicting SIF between models including multi-layer soil 
moisture and total soil moisture, and (b) summarizes differences across climate regimes. Figure 
S5 a is similar to Figure 1 c but total soil moisture is calculated by 4-layer averages weighted by 
root fraction per layer from ERA5 scheme.  



Figure S6. Main hydrometeorological controls on sun-induced fluorescence (SIF) by only 

considering grid cells and variables with positive contributions using (a) total soil moisture (SM) 

alongside all other predictor variables, and (b) multi-layer SM alongside all other predictor 

variables. The figure insets (c and d) representing the proportion of study area where each 

variable is the most important factor. Figure S5 is similar to Figure 2 but focusing on positive 

contributions from hydrometeorological variables only.  



Figure S7. Main hydrometeorological controls on (a) NIRv and (b) NDVI at a global. The figure 

insets (c and d) representing the proportion of study area where each variable is the most 

important factor. 



 

Figure S8. The sensitivities of SIF to hydrometeorological controls at a global scale. Mean 

values are calculated for all grid-cells in the map except the ones with fractional vegetation 

cover below 5% and poor performance in SIF prediction (R2<0). 



 

Figure S9. Main hydrometeorological controls on (a) SIF, (b) NIRv, and (c) NDVI across classes 
of fraction of tree covers and aridity.  



 

Figure S10. Main hydrometeorological controls on sun-induced fluorescence (SIF) in the (a) 
early and (b) late growing seasons at a global. The figure insets (c and d) representing the pro-
portion of study area where each variable is the most important controlling factor.  
  



 

Figure S11. Main hydrometeorological controls on sun-induced fluorescence (SIF) in the (a, b, 
c) early and (d, e, f) late growing seasons across climate regimes, vegetation characteristics and 
classes of fraction of tree covers and aridity. 
  



 

Figure S12. Distributions of rooting depths from Yang et al. 2016 across (a) climate regimes, (b) 
vegetation characteristics, and (c) classes of fraction of tree covers and aridity. 

 
  



 

Figure S13. Main hydrometeorological controls on SIF by applying Spearman Correlation (a) in 
a global scale and (b) with proportion of study area where each variable is the most important 
factor. 

 

 

Figure S14. Main hydrometeorological controls on SIF by applying SHAP feature importance 
method (a) at a global scale and (b) with proportion of study area where each variable is the 
most important factor. 
  



 

Figure S15. Main water-supply-related controls on SIF by applying (a-c) GLEAM soil moisture, 
(d-f) MERRA-2 soil moisture and (g-i) SoMo.ml across climate regimes, vegetation characteris-
tics and classes of fraction of tree covers and aridity. Dark-gray hatching indicates that tempera-
ture, solar radiation or VPD is identified as the main control on SIF in these boxes. 
  



 

Figure S16. Main hydrometeorological controls on SIF using water potentials across (a) climate 
regimes, (b) vegetation characteristics, and (c) classes of fraction of tree covers and aridity. Wa-
ter potentials in ERA5 scheme are calculated by the differences between actual volumetric soil 
moisture and volumetric soil moisture in permanent wilting point defined by the soil type per 
grid cell from ERA5 scheme. 

 

 


