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I Introduction

The main driving force of science is our inexhaustible ambition to understand and control
the world around us. People are always trying to design new tools, or push the boundaries
of the existing ones to study, explain or predict yet unobserved or unexplained phenomena.
As the most natural observing instruments available to us are our eyes and ears, the
phenomena first studied by mankind were those that happen on the time scales these
“instruments” can detect. However, our curiosity goes way beyond the scales what we
can directly observe with our primary senses. This curiosity has lead our way in designing
tools enabling us to reveal the hidden world of objects too small, too fast, too slow, or
simply too distant to be perceived directly.

Events taking place at the very slow time scales are challenging to study, because
even a whole lifetime can be too short to detect observable changes. Therefore, the study
of these events requires very precise tools that can detect the smallest deviations in the
signals reaching them often from very large distances. Then, by observing the generalities
in their behaviour, precise predictions can be made about phenomena happening in the
astronomical time scales. The study of the fastest events is a great challenge itself, and the
goal of this introductory chapter is to familiarize the reader with the basic ideas behind
the tools that allow researchers to study some of the fastest phenomena observable by
light pulses.

In general, recording and visualizing a fast event can be done by taking still pictures
of it in its different phases, then viewing these pictures in sequence gives the illusion
of motion due to the phi phenomenon, hence it is called moving picture, or simply just
movie. This simple idea fertilized by people’s creativity gave birth to “the seventh art”,
called cinematography, which is still one of the most prominent meeting point of art and
science. As our vision allows us to perceive and process the most information in the
shortest possible time, today, movies are used not just by artists to take the viewer into
their own fantasy world, but also by scientist to study or illustrate processes measured or
calculated by sophisticated tools.

By the end of the 19th century the basics of the science behind photography was
already available and mechanical tools were designed to capture phases of events too
quick for the bare eye. These mechanical tools — now called shutters — allowed light to
hit the photographic paper for just a fraction of a second, hence the picture taken showed
a frozen moment of the event. The faster the event to be studied, the faster the shutter
has to be able to react, as keeping it open for too long would result in blurring of the
recorded picture. However, the speed of mechanical tools used in these experiments is
limited by the relatively large inertia of its moving parts, therefore even with today’s

techniques, these can typically record events taking place at time scales not faster than



several microseconds (1 ps = 1079 s).

The 20th century saw the very rapid growth of electronic devices that overcome this
limitation by being able to be controlled using only electronic signals, eliminating the need
of a mechanical shutter. As a result, the speed of these devices is limited by our expertise
of controlling electronic signals in the (semi-)conductors constituting them. Hence the
time resolution of these now reaches into the time scales of nanoseconds (1 ns=107? s).
At this time scale even the fastest bullet would move just micrometers, so it enables
the study of phenomena involving objects big enough to be observable by the bare eye.
Special electronic devices — called streak cameras — are able to capture single images with
picosecond integration time (1 ps = 107'% ), which already allowed researchers to film
a light pulse travelling in a scattering media, although the generation of such a movie
requires the experiment to be repeated many times, each take capturing only a small part
of a single phase of the event!. The response time of electronically controlled devices is
currently limited to the picosecond regime, because electromagnetic pulses shorter than
this cannot be transmitted through electronic circuits in today’s detectors.

To record even faster phenomena other ways of taking still pictures of fast events had
to be developed. Recording a picture over a relatively long time in complete darkness
but illuminating the target by a very short light pulse ensures that the detector sees and
records only a single phase of the event — while it is illuminated by the light pulse. By
taking advantage of the fact that ultrashort electromagnetic pulses can be transmitted
through air or vacuum, detectors based on light pulses initiated the next breakthrough in
the available time-resolution. In this case the time-resolution is limited by the length of
the light pulse, and by the precision this can be synchronized with the event in question—
after all, no matter how good the picture we are taking is, if nothing is happening while
it is taken. Using this method only a single phase of the event can be captured with one
take, therefore the experiment has to be reproducible and repeated many times if we want
to observe its time-evolution.

Ultrashort light signals became available to researchers after the invention of lasers
in the middle of the 20th century. The evolution of laser technology made possible the
generation of light pulses with picosecond and then even with femtosecond durations
(1fs = 1071 s). As even light only travels about 0.3 mm in one ps, the processes to be
studied with such high resolution involve minute particles that move very fast, like atoms
under the force of electric fields. These ultrafast detection methods can thus be applied
to study and control processes on the time scale of molecular reactions and they initiated
the rise of a whole new research field, called femtochemistry?.

This field focuses on the time-evolution of molecular processes, i.e. the motion of
atomic nuclei in molecules during processes like dissociation, isomerization and other

chemical reactions which take place on the femtosecond time scale. Although this field

1Such movies can be found for example on the MIT Media Lab’s website, under “Femto-Photography”.
2For a review and history of this topic see the Nobel lecture of Ahmed Zewail, summarized in J. Phys.
Chem. A, 104, 5660-5694 (2000).



only started by researchers trying to measure the time needed for a molecule’s vibrational
energy to redistribute between different vibrational modes, it led to the understanding
of such complex processes like the human vision. In fact, in his Nobel lecture in 1999,
Ahmed Zewail (who is also known as the father of femtochemistry) stated that he believes
“every time we tmprove the time resolution by a factor of even a hundred or a thousand,
we must be able to see new phenomena that we did not even think of”.

Improving the time resolution further leads us to the time domain of attoseconds
(1 as = 107!8 5), and also to smaller and faster particles interacting with these pulses
and/or evolving in this time domain: the electrons. Like in femtochemistry, the study of
attosecond processes promises a new, deeper level of understanding of nature and one of
its most fundamental processes, the interaction of light with matter. As the formation
of all molecular compounds is also governed by the Coulomb force acting on the nuclei
and the surrounding electrons, it is unquestionable that the understanding of atomic and
molecular processes in general also relies on understanding the motion of electrons.

Obviously, to directly study the time-evolution of these processes one needs signals
which are in this time domain as well. Light pulses significantly shorter than 1 fem-
tosecond are called attosecond pulses and, to date, they are the shortest experimentally
demonstrated and controllably reproducible coherent light pulses available to researchers.
Attosecond light pulses are synthesized from broadband extreme ultraviolet (XUV) and/or
x-ray radiation, and the research field studying the generation and application of these
pulses is called attosecond science or attophysics®.

The main laboratory source of attosecond pulses today is the generation of high-
order harmonics in gases by intense, femtosecond infrared laser pulses. The result of this
process is a broad spectrum of XUV to x-ray radiation ending in a cutoff and containing
odd harmonics of the fundamental field. The special phase-relation of these harmonics
enables the synthesis of attosecond pulses by filtering out the low order harmonics from
the radiation. As this process is highly nonlinear and relatively inefficient, the main focus
of research today is the optimization of the generation efficiency, the isolation of a single
attosecond pulse from a pulse-train, and the generation of the shortest possible attosecond
pulse.

The main subject of this thesis is the numerical study of the generation of XUV radia-
tion and attosecond pulse(train)s by the process of high-order harmonic generation (HHG)
in noble gases. The first part is devoted to a theoretical introduction to HHG at both
microscopic and macroscopic level while the second part enumerates the author’s main

research results in the subject of high-order harmonic and attosecond pulse generation.

3For a popular review of the research leading to the birth of attophysics see the paper of Ferenc Krausz
in PhysicsWorld website, entitled “From femtochemistry to attophysics” (September 2001, pages 41-46).



II Scientific background

II.1 Background, aim and outline of this thesis

The aim of this work, which started in 2010, was to investigate high-order harmonic and
attosecond pulse generation in gases by near-infrared laser pulses, with special focus on the
effects of weak long-wavelength assisting fields, and on the macroscopic processes involved
in the generation. In Szeged, the physics of attosecond pulse generation is a quickly
developing topic, and is continuing to attract both young and experienced researchers
into the city. This interest can be attributed mainly to the presence of the Extreme Light
Infrastructure, a large research facility which will focus on attosecond physics and is under
construction in Szeged at the moment.

I was introduced to attosecond physics in 2008 in Cluj-Napoca, where I performed the
optimization of a numerical code that describes the complex, macroscopic process of at-
tosecond pulse generation in gases. During this time I assisted a macroscopic investigation
of high-order harmonic generation by mid-infrared (MIR) fields [1]. After a few adven-
tures in interdisciplinary physics research, I arrived in Szeged with a renewed interest in
attosecond science, and began working on numerical studies of isolated attosecond pulse
generation by near-infrared laser pulses assisted by strong THz fields. For this purpose
I used a much simpler and more intuitive model that describes the high-order harmonic
and attosecond pulse generation by a single gas atom in the generating field. After a
thorough investigation of this process at single-atom level [2], T continued the analysis
with the 3D numerical code I got familiar with during my earlier research months in Ro-
mania [3, 4]. With this step, a long-term collaboration started between the two research
groups. These results awoke interest of researchers in Max-Born-Institut, Berlin, and a
3-way collaboration still continues today, after we experimentally observed the predicted
results in a similar configuration.

My research continued with the studies of THz fields on HHG, but in a different config-
uration: we started investigating the possibilities of using THz fields to quasi-phase-match
the generated high-order harmonics. Based on the single-atom calculations I had used
before, I built a one-dimensional propagation model to analyse the effect of these long-
wavelength fields on the phase of high-order harmonics. This helped defining the optimal
parameters of the THz field to be used in such situations and also to the understanding
of the underlying physics [5, 6]. I continued the investigation of quasi-phase-matching in
HHG by low-intensity assisting fields and the obtained results were collected in recently
submitted paper [7].

In 2011 T was offered an opportunity to gain experience in experimental attosecond



physics in the attosecond laboratory of Lund University, Sweden. The setup has been
prepared for measurements of attosecond group delays and actively stabilized to maintain
interferometric accuracy of group delay measurements over long periods. I arrived at a
stage when the stabilization of the system was still in progress. After reasonable stability
had been achieved, we measured the variation in the group delay of attosecond pulses by
changing the gas pressure in the generation cell. 1 assisted the research group at both
preparation and measurement stages of these experiments, contributed to the analysis of
the measured data, and assisted in the preparation of manuscript [8]. T also participated in
experiments of photo-ionization delay measurements, summarized in a recently submitted
paper [9].

Inspired by experimental advances we started another theoretical study in collabora-
tion with Wigner Research Centre (Budapest) and Max-Planck-Institut fiir Quantenoptik
(Garching), in which we investigated the possibilities of genetic optimisation of light-field
synthesizers for attosecond pulse generation. These tools make use of a multi-parameter
control over different colour ultrashort pulses, combined together to sculpt the electric
field of a one-cycle pulse. I supervised the integration of a single-atom HHG model into
the optimization algorithm and performed the macroscopic modelling of the process [10].

The first aim of this thesis is to provide an introduction to microscopic and macroscopic
processes of attosecond pulse synthesis by HHG in inert gases. This will, hopefully, also
provide the necessary theoretical background to understand both the used methods and
obtained research results mentioned so far, and detailed in the second half of the thesis.
To this end, in the first part, the requirement of ultrashort pulse synthesis and the main
laboratory sources of XUV and x-ray radiations are briefly reviewed, also showing the main
advantages of HHG in gases. Then, the theoretical background behind the generation of
high-order harmonics is discussed, with special focus on the tools and models used in
this thesis to study the process. Single-atom models of HHG are presented in the frame
of strong-field approximation, and the main characteristics of attosecond pulses are also
revealed. Macroscopic aspects of HHG are also discussed, like the main effects of phase
matching, and models of quasi-phase matching. The last section of the first part presents
experimental tools used to measure the duration of attosecond pulses and also to study
processes on the attosecond time scale.

The second aim is to sum up the results of my research related to attosecond pulse
generation in a coherent way, hopefully leading to a better understanding of macroscopic
processes in HHG, especially when long-wavelength assisting fields are involved in the
generation. Studies of attosecond pulse generation by laser and THz fields are presented
both from a single-atom and from a macroscopic point of view, showing the advantages
of using long wavelength assisting fields in HHG. Macroscopic processes arising during
attosecond pulse generation by synthesized light transients are also discussed, showing
the necessity of appropriate spatial filtering to obtain short, isolated attosecond pulses.

Studies of quasi-phase-matching of HHG are also presented, discussing the effects of weak



assisting fields on the phase of the generated harmonics, and their ability to increase
harmonic yield under unfavourable phase-matching conditions. Results obtained in group
delay measurements of attosecond pulses, and their walk-off as a result of generation
pressure variation is discussed in the last section of the next chapter. Finally a brief
review concludes the thesis as the last chapter of the main text.

For ease of reading, in the remainder of this thesis, I shall use the word “we” as a
substitute for the reader and myself, the interested scientific community, the authors of

the articles I co-authored, or simply myself.

II.2 Introduction to attosecond pulse generation

11.2.1 Ultrashort pulses

The generation of short electromagnetic pulses was revolutionized by laser technology
which made possible the leap from nanosecond to pico- and femtosecond time resolution.
A short pulse is made from the superposition of waves with slightly different frequencies,
and their phases locked to one another. The temporal and spectral structure of pulses

are interrelated through the (inverse) Fourier transform:

1 o0
Bt) = o= / E(w)eltte@l gy, (1.1

where E(w) is the real spectral amplitude function, the real part of E(t) is the time-
dependent field, and the function ¢(w) contains the phases of different spectral compo-
nents.

A short pulse laser oscillator produces radiation with frequency components evenly
distributed (called longitudinal modes) under a spectral envelope defined by the gain
bandwidth of the active medium and by losses in the cavity. Such a radiation source is
capable of producing short pulses, if the phase behaviour of different spectral components
can be controlled. Without control over spectral phases this type of frequency comb does
not produce a short pulse, but a continuous radiation with a coherence length limited by
the bandwidth (like in Figure II.1.a). This type of radiation can have peaks resembling
short pulses, but without the control over spectral phases these are not reproducible.

Locking the spectral phases to a constant value (e.g. ¢(w) = 0) yields a train of short,
identical pulses, with a time-shift defined by the inverse of the frequency gap' between
adjacent spectral components (A7 = 1/Av). The field in the pulse oscillates with the

central frequency (wp) defined as the spectral centre of mass, and the oscillation is enclosed

1Tt is worth noting that the distinct spectral peaks in the spectrum of a pulse train are obviously
not observable if the detector has not got the necessary spectral resolution to resolve these peaks, nor if
the detector has a time-resolution superior to the time-delay between neighbouring pulses in the train.
In other words, a spectrometer which is able to measure the spectrum of individual pulses in a train
will record a continuous spectrum for each individual pulse, whereas a time-integrating spectrometer will
record a spectrum with distinct peaks.
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Figure II.1: Frequency combs (top) with random (left) and locked spectral phases
(middle and right), and the temporal features of synthesized pulses (bottom). Middle
and right graphs show that different frequency separation between spectral peaks (Av)
produces pulse trains with different time-delays (AT ).

under an envelope, defining the shape of the pulse(train).

A sparser frequency comb allows the generation of a pulse train with smaller time de-
lays between individual pulses, like in Figure I1.1 (b) and (c), while a continuous spectrum
suggests one single pulse. The temporal width of the pulse(s) (AT) is inversely propor-
tional to the spectral width of the radiation (A2). The relation between the spectral
and temporal widths can be defined through the time-bandwidth product AT x AQ = ¢,
where the value of ¢, depends on the shape of the spectrum [11]. The most widespread def-
inition for the spectral and temporal widths are the full width at half maximum (FWHM)
and the second order moment (see [11] for details).

In most of the cases the phase variation of spectral components is more complicated,
requiring a more complex description. In case of smooth phase variation of a radiation
with limited bandwidth, the function ¢(w) can be expanded into Taylor series, for example

around the central frequency, and physical quantities can be assigned to the different

factors:
dp(w) 1 d*p(w) s 1 dPpw) 3
(W), = Po+ o |, (w—w0)+§ |, (w—wp) +6 |, (W—wp)” + ...
1 1
= g + GD(w — wy) + 5GDD(W —wp)? + 6TOD(W —wp)+ ..., (I1.2)

where g is an initial phase, and the other quantities note the group delay (GD), the group
delay dispersion (GDD) and the third order dispersion (TOD) of the pulse in question.
These define special characteristics of the pulse: the GD represents only a shift of the



pulse peak along the time axis (see Figure 11.2.a), the GDD shows the variation of the
frequency in time, also causing a widening of the pulse (see Figure 11.2.b) and a nonzero

TOD makes the pulse asymmetric with smaller “sidewings” (see Figure I1.2.c).

g 0r@ i - (© 115
':—é g

E
@ 05F . 10 %
g T
)

OIOII.I.I.I.II.lI.I.I.I.Il.lI.I.I.I. ._15
7 9 11 13 15 17 19 7 9 11 13 15 17 1 7 9 11 13 15 17 19
Frequency Frequency Frequency

9-— ] M ] M = ] M ] M ] = ] M ] M ]
6r
8 3t
a 5
< 3
-6

Ok ] . ] . ] 3 ] . ] . ] 3 ] . ] . ]

-1 0 1 -1 0 1 -1 0 1

Time Time Time

Figure II.2: Continuum spectrum and phase (top) of three pulses with only first-
(left), second- (middle) and third-order (right) spectral phases. The corresponding
pulses are shown in the bottom row.

This also shows that simply measuring the spectrum of a pulse is not enough to
determine its duration. However, as it is apparent from Equation II.1, measuring the
phase of individual spectral components allows the reconstruction of the complete electric
field, giving all the information required to determine the characteristics of the pulse. The
measurement of absolute phase is, however, not straightforward, and most measurement
techniques allow the measurement of higher order phase derivatives giving access to the

most important factors that determine the duration and shape of the pulse.

11.2.2 Complex representation and time-frequency map of ul-

trashort pulses

As the direct measurement of a laser pulse’s electric field is also possible today — although
requires very specialised equipment [12, 13] — and in parts of this thesis the electric field of
attosecond pulses will be calculated, some of the characteristics of these pulses is discussed
here and also the information obtainable from these electric fields.

In Equation II.1 it is apparent that the Fourier transform of a spectrum yields a com-
plex, time-dependent electric field. The use of such a complex representation, although
complicated and at first sight lacks a straightforward physical meaning, is very convenient

in calculations, and helps the understanding of the properties of these pulses.



As it was already mentioned, the spectral amplitudes E(w) and spectral phases p(w)
contain all information about the pulse. These two independent quantities (amplitude
and phase) can, however, also be represented by a single complex number (the complex
amplitude) that is defined as E(w) = E(w)e®®) = E(w)cos(p) + 1E(w)sin(p). The

complex function E(w) holds information about the spectral amplitude and phase as

well. These can be reconstructed as E(w) = ‘E(w) and p(w) = arg [E(w)}, the arg
function being equivalent to the arctan function, but incorporating additional /2 and 7
shifts depending on the sign and values of the real and complex part of E (w) (see for ex.
[14] for the details).

In a similar manner, a complex electric field amplitude (F(t)) can also be defined, that

can reveal characteristics of the radiation not always apparent from the real electric field
(E(t)). In this case the real electric field (the one that has a physical meaning and can
be measured directly) is defined as the real part of the complex field (E(t) = Re [E (t)} ).
By the absolute value of the complex field the envelope of the pulse is defined, and this is
noted as Env(t) = ‘E’ (1) ‘ This is the quantity represented by the red line in the bottom
row of Figure I1.2. Just like the spectral phase, the temporal phase can also be defined
as p(t) = arg [E (t)} . Similarly to spectral phases, the temporal phase derivatives give us
information about the pulse structure. The first derivative is essentially the instantaneous

_ de(t) d2e0(t))

frequency w(t) = =5~, and the second derivative represents the “chirp” of the pulse (=%

that is the variation of the instantaneous frequency with time. As is apparent, the chirp

and GDD are also interrelated, although analytical correspondence between the two is
only possible for well-defined pulse-shapes [11, 15].

Experimental measurements of the spectral amplitudes and phase-derivatives allows
one to determine the complex amplitudes, and, as we have seen above, the determination
of pulse envelope and the reconstruction of the complete electric field. Direct measure-
ments of the electric field can yield the same information, and allows the calculation of the
different spectral phases by the inverse Fourier transform. A basic property of the Fourier
transform is that a real function is transformed to a hermitian function, meaning that
the real part of the function is symmetric and the imaginary part is antisymmetric to 0
(f(=z) =[f(x)]"). In our case it means that the inverse Fourier transform of the electric
field produces a spectrum with positive and negative frequencies? having the same am-
plitudes and absolute phases, thus containing the same information. Thus transforming
only the positive frequencies back to time domain gives us a complex electric field, and al-
lows the study of time-frequency properties of the radiation. These calculations, although
might seem simple, have limitations, as the arg function projects the phase into the [0, 27)

domain. Due to this, especially when higher order phase derivatives are present and only

2Negative frequencies, in most cases, are used just for their mathematical convenience. They possess
the same role as positive frequencies, just representing waves moving in another direction. For example,
if we define the displacement in a harmonic oscillator as the projection of a clockwise rotating vector to
the oscillator plane, then the same definition can also be applied using the same vector rotating counter-
clockwise. In this case the two rotation direction can represent positive and negative frequencies, although
the physical quantity they describe (the displacement) is the same in both cases.



limited density data is available, unravelling the correct phases and phase-derivatives can
be tedious.

Another way of determining the characteristics of a pulse is the calculation of the
Wigner distribution [16], or that of a short-term Fourier transform, like the Gabor trans-
form [17]. The Wigner distribution, unfortunately, is not applicable to pulse trains, only
individual pulses, because it requires the calculation of an autocorrelation, that introduces
a cross-term (interference of separate pulses), giving misleading results [18].

The Gabor transform is free of this cross-term problem, therefore it can be applied to
individual pulses as well as pulse trains [18]. In the Gabor transform, a short Gaussian
window function is applied to part of the pulse, then the Fourier transform is calculated
revealing the spectral components present under the applied window. By moving this
window along the pulse and repeating the calculation it is possible to obtain a time-

frequency map of the pulse. This transformation is defined as:

0 am@ (-2
G(r,v) = / " arz  E(t)e ?™dr. (IL.3)
The first exponential in the integrand represents the Gaussian window function with a
FWHM of AT, the rest being a simple inverse Fourier transform. The value of AT defines
the achievable time resolution of the time-frequency map. However, the use of a short
window function also means that the iFT is applied to a short pulse, therefore we are
introducing an uncertainty in the frequency domain. Other types of window functions
can be used instead of the Gaussian, but this one has the smallest uncertainty. Based
on the definition above, the frequency uncertainty of the Gabor transform is given by
Av =2In(2)/(mAT) ~ 0.44/AT.

Applying this transform to the pulses shown in Figure I1.2 the time-frequency dis-
tribution shows clear signature that a linear spectral phase synchronizes all frequency

components (Figure 11.3.a). The positive GDD is transformed into a positive linear chirp
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Figure I1.3: Normalized time-frequency map of pulses with linear, quadratic and
cubic spectral phase (also shown in Figure I1.2), calculated using the Gabor trans-
form.

(Figure I1.3.b), showing the increasing central frequency towards the trailing edge of the

pulse (at increasing time values). The positive TOD introduces asymmetric oscillations
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at the trailing edge of the pulse, and the “C-shaped” quadratic time-frequency distri-
bution is also a signature of third order spectral phase. Along the vertical, frequency
axis — especially in Figure I1.3.b — the distribution is widened due to the time-frequency
uncertainty of the Gabor transform. Projecting the two-dimensional time-frequency map
to the time axis would give information about the temporal shape of the pulses (as seen
in the bottom row of Figure 11.2), while projecting it to the frequency axis would reveal
the characteristics of its spectrum, which is the same for all three cases.

The resolution can be increased by combining the Gabor transform with Wigner dis-
tribution calculations, yielding the Gabor-Wigner distribution that is also free of the
cross-term problem (if the chosen window function is shorter than the separation between
neighbouring pulses) [18].

It is apparent both from Figure I1.2 and Figure I1.3 that higher-order phase derivatives
can increase the length of a pulse. In fact, pulses having no higher than first order spectral
phase derivatives are the shortest possible for a given spectrum and are called transform
limited pulses. The duration of such a pulse is the Fourier transform limit (FTL) of the
spectrum. Gaussian pulses have the smallest time-bandwidth product, showing a physical
limit for the shortest possible pulse for a given bandwidth®. As the largest achievable
spectral bandwidth of a pulse is related to the central frequency, the duration of a short
pulse is limited by the period of the radiation producing it (the shortest pulse consist
only of a single cycle of the central frequency). For example, the widely used near-
infrared (NIR) lasers producing pulses with 800 nm central wavelength have a period
of T'= \/c = 2.66 fs, therefore the shortest possible pulse with this central frequency is
2.66 fs long, although when using the FWHM as a measure of pulse duration this limit
can be broken slightly. Visible light (between about 400 and 700 nm wavelength) also has
a period of a few femtoseconds, hence the prerequisite of attosecond pulse generation is
the use of broadband, coherent UV, XUV or x-ray radiation.

I1.2.3 Sources of x-rays and attosecond pulses

As argued above, high-frequency radiation is needed to produce short pulses: going into
the sub-femtosecond domain requires the use of at least UV, but more preferably XUV
or x-ray frequencies, a wide bandwidth and control over spectral phase. In this frequency
region primary sources of radiation are mainly due to electron acceleration (or deceler-
ation) and electronic dipole radiation: transitions from highly excited electronic states
to ground state, inner-shell transitions, bremsstrahlung, synchrotron and free electron
laser (FEL) radiation, high-order harmonic generation, plasma oscillation, Thomson (or
Compton) backscattering, etc.

The use of electron transitions between different shells has several drawbacks. In the

absence of a seed pulse it is driven by spontaneous emission (one of the two possible sources

3Smaller time-bandwidth products than that of a Gaussian exists, but only for different definitions
than the second-order moment.

11



of radiation in x-ray tubes), thus the phase-behaviour of the produced spectrum cannot
be controlled. Moreover, these sources usually have a limited bandwidth making them
more suitable for the generation of longer pulses and, as a result, their development is
concentrated around techniques that improve their spatial and temporal coherence rather
than short pulse production.

Bremsstrahlung (the other source in x-ray tubes), produced by decelerating electrons,
can emit radiation with a wide bandwidth, however this is also an incoherent process,

therefore not suitable for controlled short-pulse generation.

X-ray lasers

In the visible and IR region mode-locked lasers revolutionised ultrashort pulse generation,
but it is not straightforward to transform the concept to the x-ray regime. The most
widespread gain materials in this frequency region are hot dense plasmas, and a population
inversion in these can be kept only for picoseconds. Moreover they would very quickly
destroy any optics in their vicinity. The short lifetime of excited states combined with high
photon energies causes the pump energy requirement to scale with the central frequency
as w®, making x-ray lasers very demanding and impractical [19].

The main difficulty with short pulse production from these lasers, however, is not the
large pump energy requirement, but the lack of mode synchronization, which, in general
requires an oscillator or pre-seeding of the XUV generation process. Oscillators that can
achieve mode-locking require a relatively long lifetime gain medium (the laser pulse has
to travel back and forth in the oscillator at least several times before the gain is depleted)
and high reflectivity mirrors, therefore this is not straightforward to achieve in this region,

and usually x-ray lasers rely on single-pass amplified spontaneous emission.

Synchrotrons, free-electron lasers and Thomson backscattering

These (and several other) limitations drove scientists to develop other sources of broad-
band XUV and x-ray sources. In free-electron lasers and modern synchrotrons x-rays and
gamma rays are generated by a high-energy electron beam being steered into an undu-
lator or wiggler (a series of magnets with alternating poles) that makes the relativistic
electrons oscillate in the periodically alternating magnetic field. The oscillating electrons
emit a radiation whose properties depend on that of the electron beam, the strength of
the magnetic field (distinguishing the undulator and wiggler regime) and on the density
of magnetic pole switches. There are great advantages in using relativistic electron beams
(the electron bunch travels through the undulator with a velocity close to speed of light),
as this narrows the radiation cone and increases the frequency of the produced radiation
due to both Lorenz contraction and Doppler shift [19]. The length of the generated pulse
in this case depends on the length of the electron bunch, and, although there are proposals
for short pulse generation, to date, the shortest pulses generated this way are still of the

order of 10 fs [20], and their precise synchronization (below ~100 fs precision) with other
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sources is still not resolved [20, 21].

Another way of x-ray generation is by undulating the electron beam using counter-
propagating laser pulses instead of periodic magnets [22, 23, 21]. This technique is usually
referred to as Thompson (or Compton) backscattering, and has several advantages over
“traditional” FELs, like the short wavelength of the laser field (~pm) that is not possible
to achieve with magnets in undulators. This technique, however, is still very much in the
development stage, and only very few research groups have the capability of generating

relativistic electron beams and synchronising them with high-intensity laser pulses.

High-order harmonic generation on solid surfaces

A promising way of pulsed x-ray generation is the interaction of intense ultrashort laser
pulses with solid targets. Depending on the laser intensity there are two mechanisms
that result in the generation of high-order harmonics of the fundamental laser field, called
coherent wake emission (CWE) and relativistic oscillating mirror (ROM) [24]. In both
cases the leading edge of the laser pulse ionizes the surface of the solid target generating
a dense plasma that reflects the incident laser beam (plasma mirror).

The free electrons oscillate in the laser field, and, upon returning to the surface they
can induce plasma oscillations at a characteristic frequency (plasma frequency) which
produce high-order harmonic radiation (CWE). The plasma frequency changes with the
free electron density, and the steep gradient of the plasma density allows the generation
of different harmonics close to the surface. This mechanism is the dominant source of
harmonic emission below relativistic intensities [25].

At intensities which can accelerate electrons to relativistic velocities
(> 1.37 x 10" Wem?pum?) a new mechanism appears [24].  In every optical cy-
cle of the laser field, relativistic electrons leave the surface of the target and reflect the
incident beam. Due to Doppler shift, the reflected beam now contains x-ray bursts
separated by one optical cycle (ROM harmonics).

Generation of high-order harmonics on solid surfaces has the advantage that it has
not got a known upper limit to the applicable laser intensity, therefore it is a possible
source of very bright x-rays. This process is under intense investigation, and it might,
one day, be a widespread method for attosecond pulse generation. However, because
of the large intensities required to produce these harmonics, the large divergence of the
generated radiation, the technical difficulties risen by the need for “fresh” solid surface at
every laser shot and the challenges in stabilization of the beam reflected from the moving
surface, these methods of x-ray generation are still not widespread, and limited to smaller

repetition rates.

High-order harmonic generation in gases

Today, attosecond pulses are most widely generated by the process of high-order harmonic

generation in gas targets [26]. This mechanism produces XUV to x-ray photon energies
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with very wide bandwidth and excellent temporal and spatial coherence. It is demon-
strated that this process works at very high repetition rates (*MHz) and can produce
attosecond pulses [27], although with relatively low efficiency. Due to this, it is actively
researched not just for its direct applications in attophysics, but also for its possible use
in generating seed pulses for some of the more efficient schemes which are able to produce
very intense radiation, like FELs or x-ray lasers [28].

In this scheme an intense, femtosecond, IR laser pulse is focused into a gas cell or jet

placed inside a vacuum chamber. The vacuum is needed to prevent: 1) the destruction of
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Figure I1.4: Schematic representation of high-order harmonic generation. Spectral
and temporal structure of the (1) laser and (2) generated radiation before filtering.
(8) Harmonic spectrum and attosecond pulses after spectral and spatial filtering.
Temporal intensities are not to scale.

the pulse before the focus by nonlinearities in air, and 2) the absorption of the generated
radiation. The gas jet (or cell) contains a gas with high ionization potential (in most
cases a type of noble gas), that can withstand intense laser radiation without complete
ionization. Through interaction of the laser pulse with gas particles, high-order harmonic
generation takes place inside the gas cell, and the unconverted laser pulse and the harmonic
beam leave the target gas together. At this point, the spectrum is dominated by the low-
order harmonics, hence the duration of the pulses is in the femtosecond domain (see (2)
in Figure 11.4). After leaving the target cell, a thin metallic foil (Aluminium, Zirconium
etc.) blocks the IR beam and also the low-order harmonics while letting the XUV beam
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through [29]. An aperture is usually used to block the divergent part of the beam [29]. The
remaining harmonic beam — now collimated and free of low-order harmonics — contains
a train of attosecond pulses (see (3) in Figure II.4), which can be manipulated with
specialised XUV optics and used in applications. The processes taking place in the gas

cell are discussed in the next sections, and, in fact in most of this thesis.

II.3 Single-atom description of high-order harmonic

generation by ultrashort infrared laser pulses

The subject of this thesis being the study of HHG in noble gases by infrared laser fields, the
physics leading to the understanding of this process is discussed in this section. In this area
of physics some approximations are straightforward, and these are used in the descriptions
to follow. The major approximations used are the following: (1) the laser frequency is
far from any resonant transition of the gas in which HOHs are generated, (2) the laser
intensity is low enough so that relativistic effects, and the effect of its magnetic field on
the wiggling electrons are negligible, and (3) the wavelength of the generated harmonic
radiation is significantly larger than the atom emitting it (called dipole approximation).

To introduce the used models we summarize very briefly the perturbative approach
to light-matter interaction, then discuss the corrections needed to describe intense pulses
propagating through gaseous media and the appearance of high-harmonics in this regime.
Major part of this section is devoted to the description of HHG by the interaction of

intense laser field and a single atom.

11.3.1 The breakdown of perturbative description

The complexity of the description of light-matter interaction greatly depends on the inten-
sity of the light and the type of material in question. At low intensities, in non-magnetic,
dielectric materials, far from resonant transitions, light-matter interaction is well charac-
terized by the electronic susceptibility, responsible for the refractive index, the relation
being n = /1 + x. In a simplistic model, the polarization of the matter follows the electric
field of the light — just like a forced, damped, harmonic oscillator — continuously absorbing
and re-emitting radiation with different phases set by the sum of contributions from all
resonant frequencies. In this approximation the magnitude of the generated polarization
is given simply as P = ¢yxE. As a result, light only experiences a phase shift, macro-
scopically observable as a matter specific phase velocity described by the refractive index.
The magnitude of the interaction and the phase shift itself depends on the frequency off-
set from the resonant transition, hence the refractive index is itself frequency dependent.
This causes the phenomenon called dispersion, transforming the phase behaviour (¢(w))
of the radiation passing through the material.

The above description explains phenomena apparent at low light intensities, where the
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strength of the light electric field is much lower than the fields binding the electrons to the
core, and can be considered a weak perturbation. With the invention of lasers the analysis
of light-matter interaction at high intensities became possible, and the study and use of
nonlinear interactions became common in laser laboratories. At higher intensities the
polarization of matter is not following the light field directly, and the previous description
needs refinement. Still, treating the external field as a perturbation, and expanding the
susceptibility into Taylor series, an accurate description of laser matter interaction at

moderate intensities becomes possible. The generated polarization now becomes
P = exWE + eoxPE? + oxP E3... (IL.4)

Higher orders of the Taylor series become significant at increasing field strengths, the
step size between orders being a characteristic of the material, and depending on the field
strengths electric charges experience inside it [11, 30]. As a result, the contribution to the
final polarization of different order susceptibilities usually decreases very quickly?. Even
order susceptibilities are present only in atomic structures without inversion symmetry
[30], and they are responsible for processes like second harmonic generation and frequency
mixing. As a result, the first nonlinear processes observable in monatomic gases are
described by the third order susceptibility (x*), responsible for the optical Kerr effect
and third harmonic generation for example.

Further increasing the laser intensity the Taylor expansion of the susceptibility fails.
At field strengths which cause dielectric breakdown of the material, free electrons appear
and disturb the propagation of light pulses. In noble gases irradiated by IR pulses this
can be caused by multiphoton or optical ionization of the atoms, requiring field strengths
comparable to the Coulomb field binding the valence electron to the atomic core. At these
high intensities, electrons can tunnel into the continuum, creating a plasma that changes
the interaction of laser with matter significantly. In noble gases this process becomes
observable at laser intensities as “low” as 10" W/cm? in Xenon, and slightly higher for
others with higher ionization energies.

At these intensities the generation of harmonics above 15th order were observed al-
ready at the end of the 1980s using both ultraviolet and infrared lasers [31, 32]. The
first HOH spectra recorded showed an interesting characteristic: after the first few har-
monics with perturbatively decreasing intensity, a plateau was observable containing odd
harmonics with similar intensities, and ending in a sharp cutoff. These high harmonics
(especially above the ionization energy) with constant amplitude are not explained by
perturbation theory, thus it was clear that new approaches were necessary to describe the
phenomenon.

The accurate description of light-matter interaction would be the solution of the time-

4Tt is worth noting that an nth order susceptibility is not a simple number, but an n+ 1th order tensor,
thus (depending on the order) giving a polarization vector that is sensitive not just to the amplitude but
the phase and polarization of the E vector and also to possible combinations of different F vectors (for
more details see [30, 11]).
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dependent Schrodinger equation for the atomic response coupled with Maxwell’s equations
for the electromagnetic wave. This, however, is computationally demanding, and the
extraction of illustrative and intuitive physics behind the process is very challenging. Just
as the approximation of the matter’s response by susceptibility proved very useful for the
low-order harmonics, in HHG there are also simplified models, which, depending on their
complexity, can give different levels of understanding of the process. In the next sections
we present some of the most widespread models of HHG in gases used today, starting

from the simplest semi-classical model, and advancing to strong field approximation.

I1.3.2 Classical model of HHG

The first successful model that explained the process in an intuitive manner used an
approach from plasma physics: it assumed that the laser field forces the electrons into
continuum by tunnelling ionization, and there they move in the field of the laser, unaf-
fected by the Coulomb field of the parent ion [33, 34]. This approach then gained the

name of classical or three step model of HHG.

Figure I1.5: Scheme illustrating the initial state of the system (left) and the three
steps of the HHG process.

This model is based on the fact that the laser electric field strengths used in HHG are
already comparable with the Coulomb field acting on the outermost electron. Together
they create a potential barrier through which electrons can tunnel into the continuum,
and quickly departing from the ionic core they become unaffected by the Coulomb field so
their movement in the laser field can be treated classically. As they oscillate in the laser
electric field, some of them re-encounter the parent ion, recombining and releasing their
energy in form of a high-harmonic photon. In this simple model a few assumptions are
made: 1) the electrons appear in the continuum very close to the nucleus with 0 initial
velocity, 2) after ionization, the motion of the electrons in the continuum is governed by
Newton’s equations, while the classical laser electric field is the only force acting on them,
3) if the electrons re-encounter the core, they emit a photon, whose energy is the sum of
the electron’s kinetic energy at the moment of recombination and the ionization energy.

Using these assumptions, some of the most fundamental properties of HOHs can be

calculated. Taking a linearly polarized laser electric field with amplitude £y and angular
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frequency wq, described as
E(t) = Ey cos(wit + ) (IL.5)

causes the electron to wiggle with an average kinetic energy of

2E2
U, = 1 (IL6)

Me W1
where e and m, are the electron charge and mass respectively, and U, is called the pon-
deromotive energy.

Depending on the instant the electron “appears” in the continuum, it may drift away,
producing above threshold ionized (ATI) electrons, or return to the nucleus, recombining
and emitting a harmonic photon®. The highest kinetic energy at the moment of first
return is calculable to be 3.17U,, which explains both the presence and position of the

sharp cutoff observed in the experiments, and shown to be at I, + 3.2U, [35].
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Figure II.6: FElectron trajectories (top) calculated from the classical model with
final kinetic energies shown by colour-codes. On the bottom the ionization times
(red lines) and return times (blue) of short (short dashed) and long (long-dashed)
trajectories is also shown.

The instant of ionization unambiguously determines the electron trajectory, its possible
time of return and final kinetic energy. The process has half-cycle periodicity, and in a
single half-cycle there are two possible paths with the same final energy (except for the
cutoff). The two electron paths producing the same energy radiation are called short and
long trajectories, the long ones starting earlier and returning later. The distribution of the
return energy as a function of electron trajectory is also illustrated in Figure I1.6. These
properties of the returning electron are transformed to the generated photon, defining its
“emission time” and photon energy (hv = I, + Ej;,) . As a result the harmonic radiation

resulting from short (long) trajectories possesses an intrinsic positive (negative) chirp.

5Upon re-encountering the ionic core the electrons can also rescatter, and elastically rescattered elec-
trons driven by the laser field produce the long second plateau of the ATI electron spectra.

18



Already at the dawn of HHG studies it was shown that longer wavelength fields can
produce harmonics with higher photon energies [36]. This model (more precisely Equa-
tion I1.6) also explains why the position of the cutoff increases with the second power of
the generating field’s wavelength, showing the main advantage of longer wavelength IR
and MIR pulses in HHG. As a result, although ultraviolet lasers have been used since to
produce HOHs [37] and excimer UV lasers remain useful in high-efficiency generation of
low-order harmonics with femtosecond durations [38, 39], the most widespread tools for
HHG are still near- and mid-infrared femtosecond lasers [40, 41].

This classical model proved to be very valuable in understanding the fundamental
physics of HHG, but it is unable to account for any quantum-mechanical effects, which
are clearly present in all three steps of the process. Therefore, more accurate descriptions

are needed to study the properties of the generated radiation.

I11.3.3 Strong-field approximation

One of the most successful quantum-mechanical treatments of the process was introduced
by Lewenstein et al. [42], known as the strong field approximation (SFA) model of HHG.
The derivation of this model is rather involved, and the interested reader can find it in
[42, 43], or a rather detailed description in chapter 5 of [44]. Below the approximations
and steps leading to the final result — that is the time-dependent dipole moment of a
model atom generated by a strong, long-wavelength laser field — are briefly discussed.

Atomic units are used in this section.

The Lewenstein integral

Further approximations (to those mentioned in the beginning of section I1.3) used in the
SFA model are [42]: 1) there is a single active electron in the ground state, and the
contribution from all excited states is negligible. 2) the population-depletion of this state
during the interaction can be neglected. 3) the electron in the continuum can be treated
as a free particle, under the influence of the laser electric field.

As discussed by Lewenstein et al., these approximations hold in the strong-field regime,
characterized by a Keldysh parameter (v = \/M) smaller than one®, showing that
the application of SFA model requires a laser intensity and wavelength to satisty 2U,, > I,,.

Under these assumptions, and treating the continuum electron wavepacket as a plane

6The Keldysh parameter distinguishes the strong-field interaction regimes based on the ratio of U, and
I,,. Initially it related the “classical” tunnelling time for the given potential barrier to the laser oscillation
period (lifetime of barrier). Although the tunnelling time has more than half a dozen different definitions
[45] and it is an ongoing debate if such a time delay actually exists or not [46, 47], in the region of v < 1
the SFA model produces good results for HHG by NIR and MIR fields.
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wave (Volkov state), the time-dependent dipole moment can be calculated as [42]:

t us

x(t) = QRG{Z/_OO dt’(m
X exp[—st(t',t)]}, (IL.7)

)" Bl 1)~ A2 1) — AW

where E(t) and A(t) denote the time dependent electric field and vector potential of the
laser pulse, d(p) denotes the atomic dipole matrix element for the bound-free transition, e
being a small positive number to remove the singularity at ¢t = ¢/, while pj is the stationary

point of the canonical momentum, and S(#',¢) is the quasi-classical action defined as:

S(ps,t't) = [ <w + Ip) dt”. (IL.8)

The stationary point of the canonical momentum selects the contributions to the dipole
moment of those electrons which have appropriate initial momentum at ¢’ to return to

the nucleus at ¢:

t
R / At (1L.9)
t/

t—t
The transition probabilities can be determined for known electron states. For a
hydrogen-like ground state, with I, ground-state energy, the transition probability is
approximated by [48]

L\ p —p?
d(p) = B 11.10
(») Z(WO.SIP) o.gfpexp{z-o.gfp} (IL.10)

In the following Equation II.7 will be referred to as the Lewenstein integral. These
equations can be calculated analytically for some specific electric fields, and numerical
calculations can be performed on any type of field, described either analytically or nu-
merically. This freedom makes the use of the Lewenstein integral very convenient in
numerical models.

From the dipole moment x(¢) the dipole spectrum x(w) can be calculated by Fourier

transformation Figure I11.7.

1 - —wwgqt
T(w,) = Ner /oox(t)e dt. (I1.11)

The source of the produced radiation is the dipole acceleration, which is proportional to

2
q

harmonics — as is done in experiments — and inverse Fourier transforming the remaining
part of h(w,).

For a quasi-monochromatic generating field, equally spaced odd harmonics of the fun-

ﬁ(wq) X w; T(w,). Attosecond pulses are then obtained by filtering out the low order

damental are obtained, as one expects from any centrosymmetric system. By calculating

the temporal structure of the radiation from the plateau region one gets two attosecond
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Figure II.7: Dipole moment (left), harmonic spectrum (middle, on logarithmic
scale) and attosecond pulses (right) calculated using the the Lewenstein integral.
Attosecond pulses are synthesized from the middle plateau region of the spectrum,
hence at the expected position of the cutoff there is a gap separating the pulses from

short and long trajectories. 800 nm quasi-monochromatic laser pulse is used with
6 x 104 W/cm? intensity.

pulses in every half-cycle of the fundamental. As is apparent from Figure I1.7, the sub-
sequent pulses are delayed and possess opposite chirp, in accordance with the classical
model that showed the presence of short and long trajectories constituting the high-order

harmonic radiation.

Saddle-point approximation of the Lewenstein integral

Further approximations can be used to calculate the dipole spectrum also helping to
gain further insight into the process [42, 48]. By inserting z(t) from Equation I1.7 to
Equation I1.11, a double integral (over ¢ and t') is obtained, with an integrand having an
exponential with a phase factor of ®(ps,t,t") = w,t — S(ps,t,t'). Integrals of this type
can be approximated using the saddle point method [49], according to which the main
contributions to the final result arise from the saddle-points of the exponent”, namely at
(t,t') points where V®(p;,t,t') = 0. This means that the approximation of this integral

involves the search for those values of ¢ and ¢’ which satisfy:

) (ps — A(t)))?

=M Vs LT — I1.12
5t/ " 2 + p 07 ( )
bl (ps — A(t,))? B
E . = wq 9 Ip =0 (:[113)

With n number of different saddle points for a given final photon energy (w) the value

"The saddle-point method is an extension of the Laplace method to the complex Q plane. The
Laplace method is an asymptotic expansion of integrals of type F(X\) = [, f (x)e*@)dg, that uses a
Taylor expansion of the S(x) function to approximate the value of the integral by transforming it to
Gaussian-type integrals. It is discussed for example by A. Erdélyi [50], and by M. Dahlstrom et al. who
focused on its applications in attosecond physics [51].
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of the Equation II.11 is approximated as

B =Y % (Ga=7) PO = AWM. (¢.0) = A
X exp[—1Ss(t', t) + wyt], (I1.14)

where ®” denotes the Hessian matrix containing the second order partial derivatives of

®(ps, t,t') around the saddle points. Its determinant takes the following form®

otor | o2 ot (IL.15)

2
det(—d") { 0*P } 0?P 9?P
Calculating the derivatives around the saddle points and inserting it to Equation II.14
gives the spectral amplitudes of the harmonic in question.

Equations I1.12,I1.13 and I1.9 have nice physical interpretations, enforcing energy con-
servation during ionization and recombination, and also showing that the electron has to
return to the core to emit a photon, proving the basic assumptions of the semi-classical
model.

These solutions can also be interpreted in the frame of Feynman’s path integral formal-
ism of quantum mechanics [52]. It has been discussed that the HHG photon emission is a
result of the coherent sum of all possible quantum orbits (trajectories) weighted by their
probability factor, the most probable quantum orbits being those that satisfy equations
I1.9,I1.12 and II.13, their probabilities given by the product of ionization and rescattering
probability taking into account the diffusion of the continuum electron wavepacket.

From a practical point of view, the saddle point approximation has the disadvantage
that equation Equation II1.13 can only by satisfied by complex p, or A values, which arise
only from complex time instants. As a consequence, the functions E(t) and A(t) have to
be defined for complex variables, enforcing the use of analytically defined laser electric
fields in the calculations.

For the same parameters as before, this approximation also yields the short and long
trajectory pairs. This model enables the separation of the contributions from the two
pairs, and it becomes apparent that indeed the opposite chirp of subsequent pulses seen
in the previous section is a result from the contribution of the two trajectory sets (see
Figure 11.8). The spectrum from each trajectory set can also be calculated separately,
showing that a continuum is generated in each half-cycle, and the frequency comb is, as
expected, the result of interference from radiation produced in consequent half-cycles. As
will be shown later, in experiments short and long trajectories can be spatially separated,
and most practical uses favour the use of short trajectory radiation, making the saddle-

point approximation a useful tool in single-atom calculations.

8 According to Schwarz’ theorem, as ® is a continuous function of ¢t and ¢’ in the region concerning us,
the differentiation order in mixed partial derivatives is exchangeable.
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Figure I1.8: Returning electron trajectory parameters (time, energy, probability)
and the generated harmonic radiation described in (a) time and (b) frequency do-
main, calculated from the solutions of the saddle-point approximation.

Comparison of the models

The three different levels of approximation presented before give different levels of un-
derstanding of the process, but analysing them make clear that they contain the same

physics at different levels of accuracy. A comparison of emission times calculated from the

Harmonic Order

A-iMV

-3 -2 -1 0 1 2 3
Time (fs)

Figure I1.9: Density plot of time-frequency analysis of the dipole moment calculated
by the Lewenstein integral, its saddle-point approximation (continuous line), and
from the classical model (grey dots). For all three calculations an 800 nm, 4 x 101
W/em?, 8 fs long laser pulse has been used.

time-frequency map of the dipole radiation from the Lewenstein integral, the frequency-
dependent electron return times of the classical model and the same quantities from the

saddle-point equations shows a remarkably good agreement (see Figure 11.9). The saddle-
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point method can also be used to determine the exact position of the cutoff, which is at
1.321, + 3.17U, in the high-intensity limit [42]. There are, however, inaccuracies in all of

the above mentioned models, which are briefly discussed in the following subsection.

Accuracy of the Lewenstein model

In case of low-order harmonics (below I,,) the presented models are obviously not accurate,
as those harmonics can be emitted by electrons remaining bound to the core, which is not
described well by the approximations.

For higher harmonics, although not quantitatively accurate, the Lewenstein integral
gives a good approximation of the HHG spectrum amplitude, especially for monatomic
gases. The lack of quantitative agreement is partly due to the problem that the approx-
imations used in the derivation make the application of the Ehrenfest theorem — which
states that the wavepacket acceleration can be calculated as the second time-derivative
of the wavepacket centre of mass position — inappropriate [53], especially for molecules
[54]. For some atomic gases an improved description of the rescattering part enhances
accuracy, especially around Cooper minima — apparent around 40 eV in Argon for exam-
ple [55, 56]. The main problem here is the Volkov state approximation of the continuum
electron wavefunction at the rescattering process, which can be corrected by improved
cross-section calculations [57, 58].

Considering the phase of the produced harmonics, the agreement is a lot better, giving
very good quantitative results when compared to the solution of the Schroedinger equa-
tion, especially for the phase derivatives [59, 60], with only minor misbehaviour shown
to be present in case of two-centre molecules with vibrational motions [60]. The phase
derivatives from the saddle-point approximation have also been shown to give excellent

quantitative agreement with measurement data [61, 15, 62].

I1.3.4 Phase of the generated high-order harmonics

As argued earlier, the spectral phase of a radiation also defines the temporal characteristics
of the resulting pulse. The initial phase of harmonic ¢ is given by ¢, = arg[z(w,)]. A
scrutinous examination of Equation II.14 reveals that the harmonic phase arising from a
single trajectory is defined by %SS (ps, t, ts) +wyts, and also by a phase-factor arising from
the rest of the integral. The latter can be discarded as it adds a very small contribution,
therefore only the phase arising from %Ss(ps, th,ts) + wyts is of importance.

The w,ts part describes the phase resulting from the time moment the electron returns
to the core and “emits” the photon. At a fixed laser intensity the S part remains constant
for a given harmonic. However, the start and finish of electron trajectories shift together
with the laser field, therefore this relation shows that the phase of harmonic ¢ (¢, = ¢(w,))
is directly inherited from the phase of the laser pulse as gyp;. The relation also shows that
the group delay of the attosecond pulse (dy,/dw) shifts together with the phase-delay of

the generating laser pulse, as expected from the three-step model. From this equation it

24



also becomes apparent that the harmonic radiation inherits the coherence properties of
the generating laser radiation.

If the laser intensity is changed, however, the other part of the phase — which arises
from the quasiclassical action denoted %Ss (ps, th, ts) —is also changed. From Equation I1.8

it is clear that this part of the harmonic phase describes the phase of the electron accu-

[ps+AX)]?

5 ) dt"” as compared to its bound

mulated along its journey in the continuum }ll f; (

counterpart % f; (I,)dt". Due to this, the intensity-dependent part of the phase — from
the quasiclassical action and intensity-dependent return time ¢, — is also called the atomic

9 Tt is apparent that it depends on the length of the trajectory, and also on the

phase
average kinetic energy during the electron’s travel. For a given harmonic order, both of
these change if the intensity of the laser is changed. The total phase of the harmonic ¢ is

thus the sum of the phase inherited from the laser field and the atomic phase

Pq = 4P1 + Par. (I1.16)

Fortunately, this intensity dependent (atomic) phase can be approximated well with

a simple formula

—al,
howy

where « can be calculated from the quasi-classical or saddle-point approximation [63].

Pat = (1117)

It can also be approximated with constant values for short, long and cutoff trajectories
[64, 65], when precise calculations are not feasible. The saddle-point calculation gives the
value of « as a function of trajectory length defined by the energy of the emitted photon
(see Figure 11.10).
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Figure I1.10: Coefficient of intensity dependent harmonic phase for different tra-
jectories.

The dependence of the atomic phase on the intensity has important consequences. If
short laser-pulses are used, the phase of a harmonic generated at each half-cycle will be

slightly different. This causes a shift of the frequency for which constructive interference

9The dipole oscillation emitting the harmonics can be understood as a result of the interference between
the ground state electron wavepacket and the returning continuum wavepacket. The interference part
depends on their phase difference, hence, it is oscillating exactly with (Eyin + |1p]) /R
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occurs in consecutive half-cycles, therefore in the rising and trailing edge of the pulse
the generated harmonics are blue- and red-shifted with respect to odd harmonics of the
fundamental radiation. A result of this is a broadening of the individual harmonic lines,
which is more pronounced in case of long trajectories, because of their stronger intensity-
dependent phase [43]. The broader spectrum of harmonics from long trajectories also
means that their temporal coherence properties are worse [66], making radiation from

short trajectories more suitable for most applications in attophysics.

II.4 Macroscopic processes in HHG

To accurately describe HHG in gases the entire macroscopic generation process has to be
modelled. Because HHG is a highly nonlinear process, it is very sensitive to the shape
and intensity of the laser field. A focused laser beam, however, has a spatial intensity
distribution through the cross-section of the beam, and also different phase velocities on
and off-axis around the focus. There are also propagation effects arising as the laser pulse
propagates through the gas cell, like absorption and dispersion, and nonlinear interactions
appear at high intensities, like self-focusing and plasma generation. These effects create
different conditions for HHG in different parts of the gas cell.

Because HHG is a coherent process, perfect constructive interference from all radiating
sources in the cell can cause the harmonic intensity to increase quadratically with the
number of interacting particles, but destructive interference can eliminate the harmonic
radiation altogether at the detection target. The phase difference between the atomic
sources depends not only on the phase with which harmonics are generated, but also on
their phase velocities in the generation medium. These processes altogether define the
characteristics of the harmonic beam, and they can also significantly alter the intensity
and structure of the attosecond pulses.

In this section details of the above-mentioned relations and processes are discussed
and tools used to model HHG in macroscopic media based on the Lewenstein integral are

presented.

I1.4.1 General phase-matching considerations

Phase matching is a well-known phenomenon in nonlinear optics, and an important factor
to deal with in second harmonic and sum frequency generation [30, 11]. It also plays an
important role in high-order harmonic generation, but its source is different, and so are the
possible ways to improve it. In this subsection general formulas and some quantities are
introduced that are necessary to understand the concept of phase-matching and its role
in HHG. Some of the discussed relationships are illustrated by one-dimensional examples,
where the z axis is the common propagation axis of the laser and XUV radiation.

Phase matching, as its name suggests, describes how well the phases of harmonics

generated at different parts of the cell matches each-other. To illustrate the importance
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of phase-matching two radiating dipoles are singled out and studied along the z axis. One

84
PRVARV AR AV oA mng
0 z, IL z

Z,=

is placed at the origin z; = 0, radiating with an initial phase of p,(z = 0), the other at
an arbitrary distance zo, radiating with initial phase ¢,(z = 22). The radiation produced
by these sources interfere, and the resulting field is highest if the phase-difference at the
detection point — for example at the end of the L long gas cell — is 0. This is the case of
perfect phase-matching.

At any other phase-difference, the total field will be smaller; or even 0 when the two
sources produce radiation with exactly opposite phase and the same amplitude. Therefore,
to describe phase-matching the following has to be known: 1) the phase accumulated
during the propagation of a harmonic from one part of the cell to the other (from z; to
29), and 2) the differences in phase between harmonics generated at different parts of the
cell (i.e. the ¢,(2) function).

The first part of phase-matching (phase accumulated during propagation) depends
on the properties of medium the harmonic propagates through, more precisely on the
refractive index of the medium. Along a chosen direction it can be described by the

wavevector k;, whose norm is given by

gy

|kq|: c (11.18)

where n, denotes the refractive index for harmonic g.
The second part (phase of the generated harmonic) depends on the properties of the
generating laser pulse in that particular point in the cell. Its evolution in the cell can be

described by the gradient of ¢,, or in mathematical terms by
Ky = Vi, (I1.19)

In the one-dimensional case the operator V is replaced by the derivative V, = 0/0z. As
shown in the previous section the phase of the generated harmonic (¢,(z)) is related to the
phase of the laser field, and to its intensity. Considering that the propagation of the laser
field along z is described by the wavevector k; = Vi, the evolution of the generation
phase of harmonic ¢ can be described as

Up(2)

Un(2) = qk12 — a———, (I1.20)

sﬁq(z) = qp1(z) — am hioy

where it was taken into account that the laser intensity, and therefore the ponderomotive
energy may change along z. The first part of the right hand side describes the evolution of

the laser’s phase along the axis times the harmonic order, while the second part originates
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from the intensity-dependent atomic phase discussed earlier. A wavevector K, can also

be assigned to the gradient of this atomic phase, and the following relation can be written

Un(2)

1

K,=—-aV = —a'VIi(2). (I1.21)

Here o/ is derived from «, and includes all the constants so that the equation can be
ae2

2cegme fl/.d:f

of the generated harmonics thus is given by the sum of ¢ times the wavevector of the laser

written in terms of laser intensity (o/ = ). The wavevector describing the phase

field plus the wavevector from the gradient of the atomic phase [64]
Ky = qk1 + K. (I1.22)

Using the above-mentioned quantities, the condition for phase-matching can be de-
scribed by a simple relation
k, =Ky (I1.23)

meaning that for phase-matching to be achieved the wavevector of the gth harmonic in the
medium should be matched with the wavevector of the gth component of the polarization
[64].

Perfect phase-matching

This formulation of the phase-matching condition allows the definition of related quan-
tities useful in the description and analysis of this phenomenon. The quantity defining

the amount of phase-mismatch along a chosen direction is described by
g — kg (11.24)

where Ak, is called the wavevector mismatch.

k » Ak, :
! J Phase-mismatch

It should be mentioned that, in a real, three-dimensional description, the three

wavevectors above does not have to be collinear. Thus, non-collinear phase-matching

k, K Non-collinear
gk, a phase-matching

also becomes possible. This situation can arise when through the cross-section of the
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laser beam the intensity is changing, creating a K|, that points outward from the centre
of the beam [64]. The presence of such an outward-pointing K, vector also causes the
divergence of harmonic beam to increase, which is much more pronounced in case of long
trajectories [29, 67]. The detailed discussion of this, however, is not the subject of this

thesis.

I1.4.2 One-dimensional description

To present the effects of phase-mismatch a one-dimensional case is considered and it is
assumed that Ak is constant along the propagation axis. The harmonics generated at each
point in the medium interfere with all the radiation generated before that point, hence,
the harmonic field at any z point in a cell beginning at zy = 0 is given by integrating all

the radiation up to z

Hq(z):/o hq(zf)edsoq(z’wzz’)kq]dzfz/o hq(z/)el[s"q(o)“’“q*Aquqd,z’, (I1.25)

where h,(2) is the emission rate of harmonic ¢ at any z point, and for the second equality
the wavenumber mismatch is introduced.

To illustrate the evolution of harmonics along the axis, the zk, part of Equation II1.25
is discarded for the moment!'®, and the emission rate is taken to be unity. The field along

the z axis is then given by

ezAkz/? ezAkz/Q _ e—zAkz/Q

z , 1
)as 1Akz d I 1Akz 1) = .
a(?) /0 ‘ © T Ak (e ) Ak ¢
sin (—Akz) Akz
9 2 1Akz/2 i T ) grAk2/2 11.2
=2 e =z sine | —— Je (11.26)

The equation above shows that the field intensity is oscillating with a period

2T

Lc = TA7 1’
|Ak,|

(11.27)

where L, is called the coherence length!!, an important and commonly used quantity in
nonlinear optics'?. It also shows that the phase of the propagated field ¢,(z) = arg[]:lq(z)]
has exactly half the value of the generated field at the same point in the medium, or
in other words: the harmonic phase at any z is the average of the phases generated
before z [69]. Thus the phase difference between the propagated and generated fields
(pq(2) — ¢4(2)) is exactly half the value of the phase-difference between ¢,(0) and ¢,(2)

(see Figure II.11.a). Due to this, the intensity of the radiation increases until z = 7 /Ak

10T ater it will be shown that this is equivalent to describing the process in a different coordinate frame,
and does not affect the results discussed here.

1Tt is a somewhat unfortunate name, because it has no direct relation to the coherence length of a
radiating source. The latter is directly related to the coherence time which characterises the temporal
coherence of a radiating source and is inversely proportional to the emission’s bandwidth [68].

12Some textbooks use the definitions of L. = m/|Ak|, that is half the length of L. used here.
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Figure II.11: (a) Phase of the generated (pq(z), black line) and that of the prop-
agated (¢q(z) blue dashed line) harmonic radiation along the propagation axis. (b)
Phase difference (pq — ¢q) between fields generated at and propagated until z, and
(c) the normalized intensity of the field.

is reached, i.e. when the phase difference between the harmonic generated at z and the
radiation generated before z is 7/2.

The right-hand side of Equation I1.26 also shows that the intensity of the radiation at
the exit of a one-dimensional L long cell is given by [30]:

. CNg€p

1,(L) = = ‘ﬁq(L)(roL%inc?(N;qL). (11.28)

Thus, in case of perfect phase-matching Ak = 0 the harmonic intensity (and the generated
number of photons) scales quadratically with the length of the cell (I oc L?). With a
nonzero phase-mismatch on the other hand, a longer cell can reduce the intensity of the
harmonic radiation.

By controlling the phase mismatch in a fixed-length medium, the intensity varies as
in Figure 11.12, a well-known feature in nonlinear optics, and it is responsible for the

observation of the “Maker fringes” [70].
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Figure I1.12: Intensity of the radiation in a fized-length medium, as a function of
the phase-mismatch.

These relations above constitute the basis of phase-matching calculations. In the next
section a more detailed view of phase-matching is presented through a one-dimensional
model, where physical quantities are inserted in the equations, revealing general conditions

for phase-matching.
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I1.4.3 Sources of phase-mismatch

To describe phase-matching the evolution of a harmonic signal is considered in one di-
mension, along the propagation axis of the laser field (z), in a medium that begins at
the origin and has a length of L. In this frame only the projection to the z axis of
all the above-mentioned wavevectors is important, and this can be described by simple
wavenumbers.

Controlling the phase-mismatch is done by balancing the sources producing negative
and positive wavevector mismatches. For this description it is convenient to use a frame of
reference, moving with ¢ in the propagation direction, thus transforming the coordinate
system as t' = t — z/c and 2/ = z. To illustrate the sources of phase-mismatch, the
wavenumbers can also be illustrated within such a reference frame, thus their definitions
become k' = k — w/c. In this frame a negative wavenumber is assigned to any wave with
a phase-velocity higher than ¢ (n < 1), and a positive to any wave with a phase-velocity
smaller than ¢ (n > 1). In the following part of this section this frame of reference
and illustration method is used, but the prime symbol (') in the notation is dropped for

simplicity.

A) Neutral dispersion

Most commonly high-order harmonics are produced in noble gases, which have ionization
energies between 12.1 eV (Xenon) and 24.5 eV (Helium). The plateau of a high-order
harmonic spectrum begins at harmonics with photon energies higher than I,,, therefore
these harmonics are above the absorption line in the respective gas'®. Due to this, the
refractive index is slightly smaller than 1 (the phase velocity of the harmonics is higher
than ¢). The wavenumber of the propagating XUV field in the moving frame is k, =
wy(n —1)/c.

The refractive index in this region can be measured experimentally, or calculated
from the Kramers-Kronig relation'* from experimentally measured absorption spectrum
[19, 71, 72, 73]. Databases containing the values of atomic scattering factors'® for different
gases are freely available [74]. The refractive index is related to these scattering factors

by the relation [19]:

27N, r.c?

n(w) =1 [fi(w) = of2 (W), (I1.29)

where N, is the atomic density and r, = e2/(4regmec?) is the classical electron radius

w2

(here e denotes the elementary charge).

To exemplify the arguments refractive index data is presented for neon gas

13 Absorption lines of inner-shell electrons are usually weaker and at much higher energies than the
cutoff energy of the high-harmonic radiation, therefore these do not add a significant contribution to the
refractive index in this region.

4The Kramers-Kronig relation connects the real and imaginary parts of a physical system’s “response”
to a “stimulus”. It is applicable to linear, stable and casual systems, and it is widely used in optics for
calculations of the part of the refractive index that is not directly accessible through measurements.

5These factors relate the scattering of a multi-electron atom to the scattering of a single, free electron.
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(I, =21.56 €V), at 1 bar pressure (see Figure I1.13). As expected, the refractive index is

Harmonic order of 800 nm
32 65 97 129

] —refractive index at 1 bar |
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A\
.15 .
-2.0 .
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Figure I1.13: Refractive index in the XUV and lower part of the z-ray region of
273 K neon with 1 bar pressure. ng — 1 scales linearly with pressure.

smaller than 1, therefore it adds a negative contribution to the wavenumber £, .

As seen above, the wavenumber , depends on the phase-velocity of the laser field,
and its intensity gradient. The frequency of IR lasers producing the harmonics, lays well
below I, and below all stronger resonance peaks in noble gases. As a result, in this region,
normal dispersion is present, and the refractive index is higher than 1 (see Figure 11.14).
Refractive index in the IR region can be calculated from the Sellmeier equation using

coefficients form experimental measurements [75].
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Figure I1.14: Refractive index in the visible and NIR region of 273 K neon gas
with 1 bar pressure. n1 — 1 scales linearly with pressure.

Due to this difference in phase-velocities between the generating IR and the XUV
field, phase-mismatch is naturally present during HHG. If the wavenumber of the gener-
ated polarization were to depend only on the refractive indices, the wavenumber of the
polarization for harmonic 29 would be k, = (n; — 1)29w;/c. At a pressure of 1 bar this
would produce a coherence length of just 0.3 mm, limiting the useful length of a gas cell

to just 150 pm.

B) Plasma dispersion

However, there are other contributions to the phase velocities, the most significant being

the presence of free electrons, due to ionization. Free electrons contribute to the refrac-
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tive index through their large negative polarizability. This adds a frequency-dependent
susceptibility of
N_e?
=) I1.30
Xp €oTTew? ( )
where N, denotes the density of free electrons. Introducing the plasma frequency w, =
/ Ne€e?/egm, in the equation above, the plasma contribution to the refractive index can

be written as

w2 w?
ny(w) =1/1— w—g ~1-— 2—:;2. (I1.31)

r — plasma refrective index 1
-40 at 1 bar and 1% ionization rate .
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Figure I1.15: Plasma contribution to the refractive index in the visible and NIR
region of 273 K neon gas with 1 bar pressure and at 1% ionization rate.

This contribution (like neutral dispersion) scales linearly with the particle density,
therefore, at a fixed ionization rate, the gas has a refractive index that also scales linearly

2 scaling of the plasma refractive index, it quickly

with pressure. Because of the w™
becomes negligible for high-order harmonics, and has to be taken into account only for
the IR field. For 800 nm laser field the refractive index in neon becomes 1 at 0.8 %
ionization rate (a method to calculate the ionization rate is discussed in Appendix A). At
even higher ionization rates this contribution can balance the difference between IR and
XUV refractive indices. For harmonics around 45 eV, at an ionization rate of 1.1 % the

refractive indices of the laser and harmonic field are matched.

Focusing effects

In most laser systems beams are attempted to be as close as possible to a Gaussian beam
(T E My transversal mode [76]). The electric field of a focused, Gaussian beam along the

propagation axis is given as

BE(zt) = Elﬁexp [0 (—wt + k12 + e(2))]. (1L.32)

Here ¢¢ is called the Gouy phase shift, and its value around the focus is given by

va(z) = —arctan(z/z,), (I1.33)
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where z, = mw2/)\; denotes the Rayleigh range, i.e. the distance from the focus where

the radius of the beam w(z) becomes v/2 times larger than the beam waist wy.

C) Gouy phase

From the equation above, it becomes apparent that around the focus of a laser beam the
phase experiences a shift of 7, increasing the phase-velocity of the focused laser field on

axis, as compared to a plane-wave. It is apparent that the Gouy phase shift is quicker
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Figure I1.16: (a) Gouy phase (pq) around the focus of a Gaussian beam, and (b)
its derivative (V,pq) calculated for 800 nm laser beam with z, = 7 mm Rayleigh
range.

for tightly focused beams (when z, is small). For example, using 800 nm laser source and
focusing a w = 3 mm wide Gaussian beam with f = 50 cm optics produces a Rayleigh

range of z, = 7 mm and wg = 42 pm beam waist, and a phase-derivative as shown in
Figure II.16.b.

D) Atomic phase

The last contribution to the wavenumber mismatch is the atomic phase. The intensity of

a Gaussian beam around the focus is given by

1(0)w?(0)

& ==p

(I1.34)
where I(0) is the peak intensity of the beam at the focal spot, and w(z) = w(0) (1 + 2%/2z2)
is the radius of the beam at z distance from the focal spot. Due to the variation of
the driver intensity (see Figure 11.17.a), the atomic phase is also changing, according to
Equation I1.21. This introduces a contribution which depends not only on the focusing

geometry, but also on the peak intensity of the laser beam, and on the length of trajectory.
The value of the K vector varies from negative to positive while passing through

the focal spot (Figure I1.17). For short trajectories this contribution is small, and its

positive value after the focus slightly increases the optimal ionization rate and thus the
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Figure I1.17: (a) Intensity variation of a Gaussian beam around the focus, along
the propagation azis. (b) The derivative of the atomic phase for short trajectories
(from the lower plateau region, where a ~ —2mw/10), in case of 800 nm driver field
with 4 x 101 W/cm? peak intensity. For long trajectories the magnitude of the K
vector 1s = 10 times larger.

optimal laser intensity. As a result, placing the cell after the focus can yield more intense
harmonics.

Long trajectories have an atomic phase about 10 times larger, which adds a very large
positive contribution to K,. This contribution also changes very quickly along the axis,
and severely limits the length of the cell over which the phase-matching of long trajectories
is achievable after the focus. However, for these trajectories non-collinear phase-matching
is achievable before the focus [64]. In most phase-matching calculations, however, only
short trajectories are taken into account, which have a weak intensity dependent phase,

and this contribution sometimes is considered negligible [77].

Summary of phase-matching

As the efficiency of harmonic generation is quite low (& 107° at 800 nm) and decreases
further by using longer wavelengths (A5 - \76-5) [78, 79|, efficient generation relies on
involving as many coherent generation centres as possible. This can be achieved in a large
interaction volume that requires good phase-matching conditions. In summary it can be
said, that for phase-matching to be achieved several linear and nonlinear contributions to
phase-mismatch have to be finely balanced, which depend on the type of gas, pressure,
focusing geometry, cell position, length of trajectory and laser intensity. These sources
define the phase-matching conditions in HHG, and methods to balance them are still
researched today [77, 80, 41]. A summary of different contributions is presented in Fig-
ure I1.18, where contributions to the XUV wavevector (k,) and polarization wavevector
(k) are listed. For comparison, the values of these contributions are listed in Table II.1
for a specific focusing geometry and neon gas.

In the last two decades several phase-matching models have been developed for HHG,
where some of the contributions were considered insignificant in a limiting case. For
example taking into account the neutral and plasma dispersion is already a reasonable

approximation to phase-matching conditions, when harmonics are generated by loosely
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Figure I1.18: Summary of contributions to wavevectors of the propagating (blue)
and generated (red) harmonics. Vector lengths are not to scale.

Ak(nxuv)/p | Ak(nrr)/p Ak(ny)/Ne aVea | Va
(rad/m)/bar | (rad/m)/bar | (rad/m)/(barx %;.,) | rad/m | rad/m
—4370 15053 —17486 > —4140 | < [900|

Table I1.1: Contributions to wavevector mismatch from different sources, calculated
for harmonic 29 of a 800 nm laser field, focused to 42 wm spot into neon. Atomic
phase approzimated for short trajectories and at 4x 1014 W/em? peak laser intensity.
Note: in equations I1.30 and I1.31 the electron density (N.) is used in unit of m=3,

not in the very specific unit given in this table, which is used only to make the
comparison easier.

focused IR beams [41]. In this approximation the coherence length is maximised by
balancing out the phase-mismatch from neutral dispersion with the plasma dispersion.
This results an optimal ionization rate which is independent of pressure, as plotted in

Figure I1.19.a for the specific case of harmonics around 45 eV generated in neon gas.

: 16 g 16 g
S 15} E ©15 £
~ L - ~ et
g I 12 ‘g 8 12 ’%
8 g 5 o
§ 0.5} < § 0.5 4 <

[ ] I O

0.0L 0.0 0
0 200 400 600 800 1000 0 200 400 600 800 1000
Pressure (mbar) Pressure (mbar)

Figure I1.19: Coherence length in neon for 45 eV radiation produced by 800 nm
laser field, as a function of pressure and ionization rate, calculated in (a) plane wave
approximation, and (b) for a focused beam with wy = 42 pm beam waist.

However, the presence of the Gouy phase shift adds a pressure-independent contri-
bution to k4. In this case the balancing of refractive indices for the XUV and IR does
not produce good phase-matching conditions. As a result, the coherence length is now
defined by the ionization rate, pressure, focusing geometry and position of the cell relative
to the focal position. Due to this, the optimal ionization rate and/or pressure becomes

dependent on the generation geometry. For the focusing geometry discussed so far, the
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coherence length in the focus evolves like in Figure 11.19.b.
The generation geometry and ionization rate now also define the optimal pressure,
which maximizes the coherence length [81, 82, 77]:

Akqg
pmatch = — 8(Ak‘n) 9 (IIS5)

Op

where Ak, contains all the pressure-dependent contribution to the wavenumber mismatch
(i.e. those contributions that depend on the refractive index).

Because the wavevector mismatch arising from the Gouy phase shift Ak is negative,
the formula above also shows that phase-matching is not possible when the contributions
from the refractive index is negative. This sets an upper limit to the ionization rate where
phase-matching still can be achieved [83, 77]. This limit is called the critical ionization
rate, and is defined by the neutral refractive indices at the IR and XUV. This critical
ionization rate sets a limit to the highest laser intensity that can be used for HHG, and this
also limits the achievable cutoff energy under conventional phase-matching [84, 83, 40, 41].
The critical ionization rate depends on the driver wavelength and gas type: for 800 nm
driver field in neon it is around 1.1% and in argon around 4.8% (these values slightly
depend on the harmonic order). Using three-cycle driver pulses for example, these values
are achieved at laser intensities capable of producing high-order harmonics up to 70 eV

in argon and 120 eV in neon [41].

I1.4.4 The effects of absorption

The refractive index given by Equation I1.29 is a complex quantity, but so far only its
real part has been addressed. n(w) can be split into a real and imaginary part like
n(w) = 6(w)+26(w)'®. In this description § describes the evolution of the radiation’s phase
in the medium, while 8 the evolution of its amplitude. Radiation in a one-dimensional,

linear medium propagates as (see equation I1.18 and I1.25)

BE(w,2) = E(w, 2 = 0) - exp [z@z] . (11.36)

Inserting the complex refractive index into the equation above, yields an amplitude that
is exponentially decreasing with the propagation distance as exp(—3%z). Without an
emission source, under absorption the intensity of the radiation decreases, and drops to

1/e of the initial value over the absorption length given by

A

La s — -
b A3

(11.37)

Under absorption the highest intensity of the generated radiation is limited and does

not increase quadratically with cell length even if there is no phase-mismatch. As seen

16Different notations are used in the literature regarding the sign of j3.
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in Figure I1.20 the absorption length in neon, especially for lower harmonics, can be

very short at high pressures. If the absorption length is much smaller than the length of

Harmonic order of 800 nm
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Figure I1.20: Attenuation coefficient (B, black line, left scale) and absorption
length (Lays, green line, right scale) of XUV radiation in neon at 1 bar pressure.

the medium, only radiation generated around the end of the cell can leave the medium,
therefore it is an important factor to consider in optimization of the generation parameters.
In an absorbing medium the intensity of the harmonics at the end of an L long cell

assuming constant h, emission rate is given by [85]

412

L oL L
I(L) < h? abs 1 — —2 - — .
o(L) 9T+ 1672(Laps/ Lo)? [ pr( Labs> COS( L. >e$p< 2Lab5)}
(11.38)

One effect of the absorption is that it washes out intensity oscillations at the coherence

length and stabilizes the intensity even under phase-mismatch. Under perfect phase-
matching the intensity saturates after a few L, [85], converging to the absorption limited
intensity that is defined by the generation efficiency and absorption length.

Depending on the absorption length, the minimum values of the coherence length (L.)

and medium length (L,,.q) are defined by the equations [85]:

Lmed > 3Labsa (11393)
Lo > 5Laps. (I1.39D)

These ensure that the harmonic intensity at the end of the cell is at least half of the
absorption limited intensity. For Figure I1.20 it is apparent that absorption limits the
achievable harmonic intensity at lower photon energies. At high photon energies on the

other hand, phase-mismatch becomes the main limiting factor.

11.4.5 Quasi-phase matching in HHG

At photon energies where conventional phase-matching is hard to achieve, quasi-phase

matching (QPM) schemes are often used to increase harmonic yield [41]. QPM is a
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powerful tool when conventional phase matching is not possible, thus phase-mismatch
(PMM) arises, resulting an oscillating harmonic intensity along the propagation axis (see
Figure II.11). The zones where harmonic intensity increases/decreases are called zones
of constructive/destructive interference. The basic idea of QPM is to eliminate harmonic
emission in destructive zones, or switch these into constructive zones, thus increasing the
harmonic yield over longer propagation distances.

As in gas HHG the traditional QPM schemes based on birefringence (achieved by
periodic poling of the nonlinear crystal [86]) are not possible other methods have been
proposed. These are based on some type of periodic modulation along the propagation
axis, which includes atomic density, driving field intensity, or modulation caused by a
secondary periodic field, which is either static [87], or propagating in another direction
than the driving field [88, 65, 89, 90, 91, 5].

Periodic modulation of gas density is able to induce QPM in HHG with the possibility
to select short and long trajectory components by changing the length of the modulation
period, and even spectral selection can be achieved this way [92, 93, 94, 95]. The use
of acoustic waves or multi-jet configuration target gas to obtain the required density
modulation is also feasible theoretically [93, 94]. The principle of high photon flux soft
x-ray generation in the QPM regime was already demonstrated experimentally using
consecutive gas sources'” [100]. The use of multi-jet systems employing two different gas
types where harmonics are only generated in one type of gas from the two, the second
only contributing to the phase-shift, was also demonstrated recently [101, 102].

Periodic modulation of the driver field intensity to induce QPM is also feasible in
waveguides [103, 104], and has been already demonstrated experimentally at extreme
ultraviolet [105] and at soft x-ray photon energies [106]. Periodic refocusing of the beam
in the hollow core fibre, and QPM by multimode beating in capillaries has also been
demonstrated [107, 108, 109].

The periodic modulation of the generated harmonic’s phase by a weak assisting field,
which propagates in another direction than the driver is also able to induce QPM [110,

111]. In the following section these methods are briefly reviewed.

General description of quasi-phase-matching methods employing low-intensity

assisting fields

To describe the QPM process it is convenient to use a coordinate frame moving with the
phase velocity of the harmonic in question (2’ = z,#' = t—2/v,). PMM can be assumed to
grow linearly over shorter distances for harmonics generated in a waveguide [84, 83], and
in some case also for harmonics generated in gas cells, or jets [63], therefore, when shorter

periods are discussed, Ak, can be considered constant over z. The phase of the generated

"Enhancement of HHG by using two consecutive gas targets of different gas types was demonstrated
earlier [96, 97], however the enhancement observed in this case was shown to be present because XUV
pulses generated in the first gas replace the role of tunnelling ionization in the second target allowing the
control of quantum trajectories [98, 99] and improving phase matching, not due to QPM.
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harmonic field in the moving frame can be expressed as yp,(z) = —2mz/L. where L. is
the coherence length (see Equation 11.27). The generated harmonic field at any given z
then can be described as Eq(z) X hy(2)explrp,(2)], where hy(z) is the emission rate for

harmonic q.
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Figure I1.21: (a) lllustrating phase-mismatch in harmonic generation via phase
and intensity variation along the propagation direction z. (b)-(e) Schematic presen-
tation of QPM methods employing periodic assisting fields. Top row: illustration
of the assisting field distribution. Second row: Effect of the assisting field on the
generated harmonic’s phase. Third row: Phase difference (modulo 27) between the
generated and propagated fields and local efficiencies shown in colour scale. Bottom
row: Harmonic intensities, whose values at L. also show the overall efficiency of the
process. @ and ¢ denote phases of the generated and the propagated harmonic fields,
as i Figure I1.11.

An assisting electric field periodic in space induces a periodic modulation of the po-
larization phase, so this becomes ¢ (z) = —27z/L.+ Af(2), where A is the amplitude of
the phase-modulation induced by the assisting field and f(z,t) is a normalized function
with A spatial periodicity in the moving frame. QPM methods employing low-intensity
assisting fields are based on the fact that the phase-shift induced by the assisting electric
field scales linearly with its amplitude (E,) in the limit when that is much weaker than
the amplitude of the generating field (E, < E, see [89] for details), and the shape of the
phase-modulation resembles that of the assisting field. The phase-modulation amplitude

can be expressed as
A=C(FE,, (I1.40)

where ( is a scaling factor.

The efficiency of the phase-matching method can be defined as
Mg = Iq(L>/IfM(L)a (I1.41)

~ I 2
where IPM(L)] o [HPM(L)? = ‘ JE hy(2)dz
field produced with perfect phase-matching.

, i.e. it is the intensity of the propagated
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As seen in Figure I1.21, in QPM the intensity of the generated harmonic increases
approximately quadratically with the length of the cell as n - (L/L.)?, with only slight
sub-coherence-length oscillations around the parabola. The intensity in optimal QPM
conditions might increase until it reaches the absorption limit. Whereas in the case of
PMM, the peak intensity is reached at half of the coherence length, severely limiting the
achievable photon number in macroscopic media.

Periodic assisting fields that can induce QPM can be of many types: to date periodic
static electric fields, perpendicularly propagating THz fields, and counterpropagating (to
the IR) quasi-cw laser and sawtooth-shaped fields and pulse trains have been proposed

or used.

Periodic static electric fields

QPM in HHG by using periodic static electric field has been proposed by Biegert et al.
[87, 112]. In this scheme high-order harmonics are periodically generated with no assisting
field over half a coherence length, then, just before destructive interference would occur a
DC field shifts the phase of the selected harmonic by A = 7, and constructive interference
continues over the other half of the coherence length (see Figure 11.21.b). Alternating
zones with and without static electric field create the condition for QPM. This scheme
produces the same efficiency as conventional QPM (2/(m))? in case of second-harmonic
generation, which has been discussed extensively by Fejer et al. [113]. This also means
that higher order spatial QPM is possible, where the periodicity is mA, m being a positive
integer number. For odd m orders the length of 0 and 7 phase-shift zones should be mL../2,
however for even orders (m—1)L./2 and (m+1)L./2 long zones should alternate [113]. It
also follows that higher order QPM in the amplitude of phase-modulation (n) is possible,
however only for odd n orders, and these produce the same efficiency as first order QPM.
In conclusion, using this scheme 40.5% efficiency can be obtained by A = 7 rad phase-shift

with A = L, periodicity.

Sinusoidal electric fields matching the coherence length

QPM is also achievable with sinusoidal phase-modulation as illustrated in Figure I1.21.c.
Such schemes were proposed where the phase-modulation is achieved by counterpropa-
gating quasi-cw fields [89, 114], or perpendicularly propagating THz pulses [5] . In both
cases the optimal phase-shift induced by the assisting field has to be A = 1.85 radian (the
position of the first extremum of the first order Bessel function of the first kind J;(A))
[89]. Higher order QPMs can be achieved when the spatial period or amplitude of the
phase-modulation is higher than required for first order. QPM of mth order in space
and nth order in amplitude occurs when the phase-modulation period is mL. and the
amplitude is at the position of the nth maximum of (J,,(A))%. The efficiencies in these
cases can be calculated by the values of (J,,,(A))?, the highest being 33.7% for first order
QPM [89].
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Counterpropagating pulse trains

Another method of QPM is to scramble the phase of the generated harmonics at zones
of destructive interference by a counterpropagating pulse or pulse train, that suppresses
emission in these regions (see Figure 11.21.d, [115, 116, 65]), and this can induce QPM
[88]. The intensity of counterpropagating pulse interfering with the forward-propagating
driving pulse has to be only a small fraction of the driving intensity to eliminate emission
[65]. With this method the coherence length should match the width of the counterprop-
agating pulse, not its wavelength, therefore it is easiest to implement when the coherence
length is much larger than the wavelength of the assisting pulse (A, < L) [90].

Complete elimination of emission in destructive zones can achieve an efficiency of
10.1% (1/7?) with flat-top pulses [90]. Such laser pulses can be generated experimentally
for this purpose [117]. However, destructive zones can also be switched into partially
constructive zones, increasing efficiency [111, 90, 88]. In case of square-shaped pulses the
best efficiency of 20% is produced by a phase-shift of A = 3.83 rad, this being the global
minimum of Jy(A) [90].

The phase-shift induced by the counterpropagating light yielding the best efficiency for
sech?-shaped pulses is A = 4.5 rad (case shown in Figure I1.21.d), increasing the overall
efficiency to 14% [90]. In this case the optimal length of the counterpropagating pulse is
0.23 L. (intensity FWHM) [90].

The obvious advantage of this scheme is, that any phase-modulation comparable or
larger than m would produce partial extinction of harmonic yield, therefore this method

is not very sensitive to the parameters of the assisting field [65].

Sawtooth-shaped fields

In theory, perfect elimination of the PMM can be obtained, if a sawtooth-shaped field is
applied as proposed in [118], see Figure I1.21.e. Therefore, this in not a traditional QPM
method, it is mentioned due to the fact that it also uses an assisting field and, in theory,

this can achieve 100% efficiency.

Determination of assisting field parameters

The implementation of all QPM schemes which employ a secondary, periodic or quasi-
periodic electric field requires a precise determination of the assisting field’s parameters
to achieve significant enhancement of the macroscopic radiation. The assisting field can
be described by its period and amplitude.

The periodicity of the field is determined by the coherence length of the high order
harmonic generation process by the fundamental field. As seen in the previous section,
the calculation of the coherence length is feasible in waveguides or in very loose focusing
geometries, where the intensity dependence of the polarization phase is not crucial [84].

In focused beams the calculation of the coherence length is difficult because the chang-
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ing intensity along the propagation axis produces different ionization rates, thus the refrac-
tive index is also changing through the interaction region. Moreover, at high intensities,
effects like self-focusing and plasma defocusing can occur [63]. Nonetheless, the measure-
ment of the Maker fringes for different harmonics has been experimentally demonstrated
to be possible by varying the length of the generation cell [119]. Lytle et al. have also
found that two counterpropagating pulses can be used to measure the coherence length
even in cases when the intensity of the driving field changes during propagation through
the medium [91]. The measurement of the coherence length in a waveguide was also
demonstrated by using one [120, 88], or two counterpropagating pulses [91]. In these
conditions efficient QPM has already been demonstrated experimentally by counterprop-
agating pulses and pulse trains [88, 121].

Efficient QPM also requires the knowledge of the electric field amplitude which shifts

the phase of the polarization by the required value, and this is discussed later in the thesis.

11.4.6 Three-dimensional description

The propagation of an electromagnetic wave through a nonlinear medium in general can
be described by the wave equation [30]
10’E 1 &°P

2
VE- 5 on = —a g (I1.42)

As seen earlier, at the intensities used for HHG, free electrons are also generated, hence
the response of the medium (P) calculated in the perturbative description is not accurate
any more. However, because the high-order components of the nonlinear polarization
are orders of magnitude weaker than the low-order components (perturbative response),
the propagation of the laser field can be described independently of HHG. Therefore, the
nonlinear response affecting the laser field can be calculated using the standard pertur-
bative description but including the effect of plasma dispersion, while the generation of
high-order harmonics and their propagation is described separately.

As a result, the three-dimensional description of HHG can be broken down to three
distinct phases: 1) propagation of the driving field through the ionized medium, 2) gen-
eration of the harmonic field by single-atom sources and (3) propagation of the harmonic
field through the medium.

Macroscopic description of HHG is easiest if radial symmetry of the laser and harmonic
beam is assumed: the necessary dimensions are r and z in cylindrical coordinates, the
time-dependence of the description completing the third dimension. As in case of the
1D model, a coordinate frame moving with ¢ is used (2’ = z and ¢’ =t — z/c), because
this introduces further simplifications. Once again, the prime symbol is dropped from the
notation for simplicity. The model described here is based on the paper by Priori et al
[122], and further developed by Takahashi et al. [123], and Tosa et al. [124, 125]. The

detailed description of the numerical model can be found in [124, 125]; here just a brief

43



summary of the important steps is provided.

Laser pulse propagation in ionized gases

The real electric field in a Gaussian beam, transmitting linearly polarized laser light,
in cylindrical coordinates and in the moving frame can be described by the following

equation

2 2 2
B wo —r o —2In(2)t
E(r, z,t) = Elw(z)exp <w2(z)) cos (klz wt + ME() + QOG) exp ( AT ,
(I1.43)

where R(z) denotes the radius of curvature, and is defined as

2
R(z) = » ll +(2) } . (I1.44)
z

This equation defines the electric field at the entrance of the interaction region. From
there on, the electric field can no longer be described by an analytical expression, due
to the distortion effects, so it is numerically propagated: an (r,z) grid is defined over
the interaction region, and on every grid point the laser field is calculated. The pulse

evolution in an ionized gas can be described by the wave equation in following form [122]

20°E(r,z,t) Wi

2
E gLy
ViE(r21) c  0z0t c2

(1—=n2 ) E(r,2,1), (I1.45)
where V| = 3/0r denotes the radial derivative. Paraxial approximation is used'®, and
0?E/02* is neglected [122].
In the above formula the temporal derivative can be eliminated by a Fourier transform,
yielding the equation
2w OE(r,z,w)  ~

2 _—— =
ViE(r z,w) . P G(r, z,w). (I1.46)

The spectrum of the laser pulse is calculated as

E(r, z,w) = F[E(r, z,1)], (I1.47)

the operator F denoting the Fourier transform acting on the temporal coordinate. The
time-dependent response of the medium is also Fourier transformed to describe the source

term )
G(r,z,w) = F ﬂ(1 —n ) E(r 2, 1) . (I1.48)

c2

Small parts of this section might overlap with the author’s previous work: “Modeling Generation of
Water Window X-rays”, Master’s Thesis, Babes-Bolyai University, Cluj-Napoca, 2010.
18The paraxial approximation is valid for beam sizes much larger than the wavelength [76], which is
generally satisfied in HHG because the laser wavelength is usually around 1 pm and the beam waist is
seldom narrower than 40 pm.
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The effective refractive index contains both the linear and nonlinear polarizability of
the medium. The third-order susceptibility can also be included here in form of the non-
linear refractive index ny. Because the nonlinear refractive index and ionization rate are
time-dependent, the effective refractive index of the medium also becomes time-dependent,

and can be written as

wy(r,2,t)

Nepr(r, z,t) = n(r, z,t) + nol(r, 2,t) — 52
1

(I1.49)
Here ny = 6 + if is the linear term which accounts for the neutral dispersion (§) and
absorption (/). The calculation of ny is discussed in Appendix B.

Using this propagation equation E(r, z;,w) is calculated for the grid points z; along
the propagation direction by the Crank Nicolson method [126, 127, 128], (here z; =
20+1idz, i =1,2,...N and z is the entrance of the interaction region). Having the values
of E(r,z;,w) at a set of r coordinates, to obtain the values at z;, it is required to have
an initial approximation for E(r, z;11,w), which we get from the unperturbed beam, as
defined in I1.43. An important fact to mention is that due to the nonlinear source term in
the right-hand side of the wave equation, at every step in z one integrates the propagation
equation by using an iterative method until convergence is achieved and FE(r, z;1,w) is
obtained. This also requires the calculation of the refractive index in each iteration step.

At the boundaries (r = 0 and 7 = R,,4,) the following conditions are used:

OE(r, z,w)

o =0, E(rzuw)]

r=0

= 0. (I1.50)

r=Rmaax

Propagation of harmonic field

After the calculation of the propagated laser field, the nonlinear dipole moment
x(r,z,t) can be obtained from the Lewenstein integral on every grid point (see
subsubsection 11.3.3). This quantity is then used as a source term in the propagation
equation of the harmonic field.

In this case the equation needed to be solved is

2_n@ﬁ]2(r,z,t)_ D?P(r, z,1)
c ozt T oz

V2 H(r, 2 t) — (I1.51)
where P(r,z,t) = [N, — No(r, z,t)]z(r, z,t) is the nonlinear polarization calculated from
the dipole moment of a single atom, and N,(z) is the initial atomic density. In this
equation n is the refractive index which contains the neutral dispersion and absorption.

The temporal derivative can be eliminated by a Fourier transform as before:

Qinw, OH (r, z,w,)
c 0z

V2 H(r,z,w,) — = —uowgﬁ(r, Z,Wy), (I1.52)
where H(r, 2,w,) = F[H(r,z,t)] and P(r, 2,w,) = F[P(r, ,t)]. These equations are also
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solved, for each value of w, using the Crank-Nicholson method.

Near- and far-field spectra

At the exit of the interaction region (z = L) the spectral power density is given by

I(w) = 27r/ 7|H(T,L,w)| rdr. (I1.53)
0

From the near field spectrum (at the exit of interaction region) the far field (H(ry, 25, w))

at a given zy distance from the exit (now taken to be zy = 0 for simplicity) can be

calculated by Huygens’ integral defined for arbitrary ABCD ray-transfer matrices [76],

which reads as

~ Dr? B _ Ar2
H(ry, zp,w) = %exp {2% (Zf + Z_Bf)] i H(r,0,w)exp (@% : 22) 7 [wcrér] i

(I1.54)

Here Jy is the zero-order Bessel function of the first kind, and the spectral power density

at the far field from H (r, z,w) is calculable in the same way as for the near field. If only
free-space propagation has to be calculated (A = 1, D = 1 and B = z) this equation
reduces to the Hankel transform [129].

Using this transformation the harmonic field can be propagated to the circular aperture
which cuts the components above a specified r radius, then the far field after focusing
can also be calculated. Usually after passing through the aperture, the harmonic beam is
focused into a detector where it is characterized or it is used to study attosecond processes.
Although in a 2f-2f focusing geometry, if no aperture is put in the way, the far field at
the detector reproduces the near field at the exit of the cell.

II.5 Experimental characterization of attosecond

pulses

As electronic devices have a response time around the nanosecond region, characteriza-
tion of ultrashort pulses require techniques to be invented. For this purpose many non-
interferometric and some interferometric methods were developed working in the pico-
and femtosecond regime [11, 130]. As these methods evolved, it became clear that general
requirements can be set for the device that is able to characterize ultrashort pulses. These
requirements were described in detail by Walmsley et al. [130], and they state that for a
complete characterization of an ultrashort pulse with a time-integrating detector, at least
one time-stationary and one time-non-stationary filter is needed, and the latter one must
rely on a phenomenon that is comparably fast (or in some cases much faster) than the
pulse to be characterized.

In most methods an auto- or cross-correlation of the pulse is recorded using a non-
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linear process as a basis for the time non-stationary filter, and an algorithm is used to
reconstruct the pulse from the recorded signal. As broadband XUV radiation is hard
to manipulate due to the fact that most materials absorb in this region, autocorrelation
methods, although already demonstrated [131, 132], are still far from being widespread
in this field. They require a nonlinear detector, and so far two-photon ionization of He-
lium atoms has been demonstrated which has a limited bandwidth of applicability. The
other limiting factor is the intensity of the attosecond pulses, but because this is also
very important for XUV-pump XUV-probe experiments, its optimisation is in the focus
of research [133, 134], and significant progress is expected in the near future.

To date, most attosecond pulse characterization techniques rely on cross-correlation
of attosecond pulses with a replica of the generating IR pulse, that were the first methods
demonstrated experimentally proving the existence of attosecond pulse(train)s [135, 136].
These two methods are the reconstruction of attosecond beating by interferometric two-
photon transition (RABITT) and attosecond streaking. They are common in a sense that
in both methods photoelectrons generated by the attosecond pulse in the presence of an IR
field are recorded; however they are fundamentally different in the physical phenomenon
applied. In RABITT a weak IR field is used and this method is able to characterize
attosecond pulse trains, while in attosecond streaking a strong IR field is used, and the
method is suitable to characterize isolated attosecond pulses. In the next subsection a
short description of the RABITT technique is given, which is used later in this thesis to

study macroscopic processes in attosecond pulse generation.

II.5.1 Reconstruction of attosecond beating by interferometric

two-photon transition

This method makes use of one of the main characteristic of the harmonic spectra, that
it contains only odd harmonics of the fundamental frequency. When interacting with an
atom, these harmonics can be absorbed releasing a photoelectron wavepacket into the
continuum with energy of qw; — I, (¢ being an odd number). If this process happens
in the presence of a weak IR field, two-photon transitions can take place generating
photoelectrons with energies corresponding to even harmonic orders (sidebands). These
transitions can occur in two ways: the absorption of an XUV photon is followed by the
absorption or emission of an IR photon. Although a process starting with the absorption
of the IR photon is also possible, for most cases when RABITT is used this can be
neglected [137], because in the commonly used target atoms there are no resonances for
the IR (the IR field has to be weak), and the polarizability is low (for ex. in noble gases).

An experimental setup is presented in Figure I1.22. The generated harmonic beam
is filtered from low-order harmonics and from the fundamental IR beam by a thin (few
hundred nm) metallic filter. The metallic foil also compresses the attosecond pulse by
partially compensating for its GDD [29]. The harmonic beam is then recombined with

the IR probe beam, and a toroidal mirror focuses them into a low-pressure gas jet at the
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Figure II.22: Scheme of an experimental RABITT measurement tool. The IR
laser beam is split into a weak and a strong part by a beam splitter (BM). The strong
beam is focused into a gas jet and generates high-order harmonics which pass through
a metallic filter and a holey mirror before focused into a detector. The weak probe
beam is combined with the harmonic beam at the curved holey mirror and is also
focused into the detector. The time delay between the pump (XUV) and probe (IR)
beams is controlled by the delay stage. The holey mirror serves as an aperture for
the XUV and also matches phase-fronts of the IR probe and XUV beams.

target area of an electron spectrometer. This spectrometer then measures photoelectrons
released from the target atoms by ionization in this two-colour field. The electron spec-
trometer can distinguish electrons with different momenta by their time of flight from
the target gas to the detector!?. The time delay between the IR and XUV pulse is var-
ied while continuously recording the photoelectron spectrum. The cross-correlation term
appears in the oscillation of the sideband signal, which enables the reconstruction of the
attosecond pulse.

To understand the principle mechanism of RABITT, two-photon transitions producing
the sidebands are described below, following the approach used in [138]. The transitions
produce a final state (|f)) with energy (¢ + 1)hw; — I,. The system starts in the ground
state (|g) with energy —1I,, and ¢*%»/M time-dependent phase), proceeds to a possible
intermediate state (|¢)) by the absorption of an XUV photon (qw; or (¢ + 2)w;) and then
to the final state (| f)) by the absorption or emission of one IR photon. The two processes
described above produce the same sideband and these can interfere, and the phases of
different harmonics can be reconstructed from the cross-correlation measurement.

Following a textbook treatment of the process using second-order perturbation the-

ory and single active electron approximation [139], the complex transition rates can be

YMany types of spectrometers can be used for detection. These include the simple time-of flight spec-
trometers (TOF), magnetic bottle electron spectrometers (MBES), velocity map imaging spectrometers
(VMIS), reaction microscope (REMI, also measuring ions) and some other detectors with unique designs.
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(11.55)

7

where 7 is the delay between the IR and XUV fields, €4, €¢; and €; denote the energies of
the ground, intermediate and final states, and classical electric fields polarized in the x
direction are assumed. These fields can be separated to a slowly varying envelope and an

oscillating part:

Ei(t) = Enuy(t)e t@rtten) 56
H,(t) = Enw,(t)e (a1t+6), (IL.56)

q

In Equation I1.55 it is reasonable to assume that the perturbing fields are uniform
across the spatial extent of the electron wavepacket (do not depend on x), and the formulae
can be simplified by separating the time-dependent parts affected by the electric fields

and noting the rest as:

Rabse—zd)gbs _ Z <f| ex | > <| ex |g>

h(e; — €, — hqwy)’

(I1.57)
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Now choosing ¢; = 0 initial phase for the IR field the following stands
Abs = Rbsem 08 H0mnm) By (t — 1) Enug(t)e et Der—lo/Mt (IL58)
Aem —= RZT2€71’(¢2T2+¢€1+2+“"17)Envl (t _ T)E/n//UquQ (t)efl[(qul)UJl*Ip/h]t' '
The signal recorded by the electron spectrometer can be calculated as:
00 2
S(w,T) '/ As 1 ATt (I1.59)

The time-integration reduces the field envelopes and the [(¢ + 1)w; — I,/h] t oscillation
to a spectral line, which — for simplicity — now is assumed to be the same for the two
processes, and is noted by f(w,+1). To get an easily interpretable result it is also assumed

that the real numbers R“bs and R{Ty are equal. Doing the arithmetic for the rest of the

20In case of RABITT the possible intermediate states are in the continuum, therefore the summation
over 4 turns into an integral over continuum states with different energies. This also means that the
integrand always has a singularity, but methods to solve this problem have been described by Toma et
al. [137].
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Figure II1.23: FElectrons ionized by two-photon transitions yield sidebands which
oscillate as a function of the delay between the IR and XUV field. Right-hand side
of the figure shows an experimentally recorded photoelectron spectrum. The phase of
sideband oscillations is directly related to the GD of pulses synthesized from the two
neighbouring harmonics.

equation the final result for the sideband signal is obtained
S(w,7) oc 2f (wgr1) [1 4 cos(@STy — ¢1° + dyra — dg + 2w 7)] . (I1.60)

This shows that the sideband signal will oscillate as 2w;7 and the phase of the oscilla-
tion depends on the phase difference between neighbouring harmonics Agy11 = @412 — @4
(see Figure I1.23). This can also be understood as the GD of an XUV pulse synthesized
only from these two harmonics (7,41 = GDg41 = Apyr1/(2w1)), therefore by recording
different sideband signals simultaneously, one can measure the GD of neighbouring har-
monic pairs. Their absolute value, however, would only be measurable if the absolute
value of 7 was known. This is usually not the case, therefore one cannot extract the ex-
act GDs just their variation over the spectrum, which allows the determination of higher
order phase derivatives (GDD, TOD and so on).

An example of a RABITT trace is shown in Figure I1.24. The values of A¢,;; can
be calculated by finding the phase of the oscillations using cosine fitting or the Fourier-
transform method. The relative harmonic phase is an integral of the retrieved GD and
can be calculated as the sum of these phase differences, assuming a zero value for the
lowest order sideband for example. For the reconstruction of the attosecond pulse now
only the spectral amplitudes of the harmonics are needed, which can be extracted from
the recorded XUV-only photoelectron spectrum (i.e. spectrum recorded by blocking the
probe beam), corrected with the transition probabilities.

Some of the assumptions made to derive the results are discussed below. First of all,
the validity of the assumptions made about the spectral line ( f(w,+1)) and transition rates
(RgbS and R{T,) being equal does not change the drawn conclusions as those only affect
the contrast of the oscillation, but not its phase i.e. in Equation I1.60 1+ cos(...) becomes

C1 + Cseos(...). As apparent from Equation I1.60 the sideband phase also depends on
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Figure I1.24: FExperimentally recorded photoelectron spectrum. Harmonics were
generated in argon by 800 nm, 35 fs laser pulses at 1 kHz repetition rate. The delay
was varied in 100 as steps, and the spectrum was summed for 1000 shots in each
delay step. Argon was also used for the detection in the magnetic bottle electron
spectrometer which can distinguish electron energies by their time of flight from the
target gas to the micro-channel plate.

the phase difference arising from the electron transitions Agbgil = ¢glly — (bgbs, which is
also called atomic delay (777, = A¢Z\,/(2w1)). When the technique is used for pulse
characterization noble gases are used as target where the atomic delays are small and
do not affect the shape of the reconstructed pulse significantly, but still, for an accurate
reconstruction they have to be taken into account [135].

RABITT is also used to study the photo-ionization of the target gas for examples by
measuring the above-mentioned atomic delays. These have two components: one is caused
by the energy dependence of the scattering phase [140], also called Wigner delay, and the
other is the result of phase-shifts arising during continuum-continuum transitions [141].
It should be noted that the Wigner delay can be very high when resonant transitions are
involved [140, 142], however, using noble gases as target, in most cases the harmonics are
far away from any resonance, and it becomes very small. Although, almost negligible from
the point of view of pulse reconstruction, these delays encompass interesting physics and
their measurement is very much in the focus of attosecond science [143, 141, 144, 51, 9].

It should be also mentioned that the method described here allows the reconstruction
of an “average” pulse in the pulse train, and its accuracy depends on how much the
individual pulses vary in the train. The length of the generating pulse strongly influences
this variation, and pulse trains generated by few-cycle laser pulses need more advanced
methods for accurate characterization [145, 146]. The principles of RABITT were also
used in trying to characterise pulse trains with both even and odd harmonics, relying on
the fact that due to dipole selection rules, electrons produced by one- and two-photon
transitions have different angular momenta, allowing their separation in the measurement

using a velocity map imaging spectrometer [147, 148].

51



IIT Results

As XUV radiation and attosecond pulses are used to study electron dynamics with the
highest possible spatial and/or temporal resolution, the main goals of research in this
area are to produce even shorter light pulses [149, 150], to realize XUV pump XUV
probe experiments [133], and to extend the applicability of these sources by increasing
the maximum photon energy [41, 151], photon flux [80] and repetition rate [82, 152, 27]
of the generated harmonics.

In this chapter my contribution to research in the field of HOH and attosecond pulse
generation is reviewed. The results to be presented here focus on the possibilities to
increase the HHG cutoff, isolate single attosecond pulses from a pulse train while also
minimizing its duration, increase harmonic yield at high photon energies, and in general
to understand macroscopic processes in HHG. These are based on our theoretical papers
about THz assisted attosecond pulse generation [2, 3, 4], quasi-phase matching of HOH
radiation and its study for the special case of perpendicularly propagating IR and THz
fields [5, 6, 7], optimization of attosecond pulse generation in light-field synthesizers [10],

and an experimental study of attosecond GD dependence on generation gas pressure [8].

III.1 High-order harmonic generation in the pres-

ence of long wavelength fields

The most widespread laser for HHG uses Titanium doped Sapphire crystal as gain mate-
rial, which produces a central wavelength of =800 nm. As we have seen earlier the highest
usable laser intensity in HHG is limited by ionization, and there exist laser sources which
produce a lot more energy than what is usable for HHG. The excess laser pulse energy
can be used to generated ultrashort pulses at different wavelengths using, for example
parametric processes in nonlinear crystals. Mixing these pulses with the original 800 nm
laser pulse and carefully tuning the parameters of the individual pulses can create an
advantageous environment for generation of high photon energies and isolated attosec-
ond pulses [153, 154]. Using difference frequency generation (DFG), very strong (up to
100 MV /cm) THz fields have been demonstrated [155]. The mixing of these fields with
800 nm laser pulses, therefore promised interesting features in HHG.

Many studies have been carried out on the effect of long wavelength (compared to
the laser field generating HOH) or DC fields on high-order harmonic generation, and
at single atom level this process has been analysed thoroughly using classical [156] and
semi-classical models [157], using zero range potential calculations [158], strong-field ap-

proximation [159, 160] and by solving the time dependent Schréodinger equation for a
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model atom [156, 161, 162, 163, 164].

It has been revealed that the addition of a DC or THz field to the generating laser
pulse breaks the half-cycle symmetry of the HHG process, and leads to the appearance of
both odd and even harmonics in the spectrum [158, 156, 161]. The presence of a relatively
low-intensity, low frequency field can extend the cutoff [159, 160], while a double-plateau
structure appears in the spectrum, and it can prevent the closing of some trajectories
which favours the generation of a broad supercontinuum and the selection of a single
attosecond pulse in cases when the generating laser pulse is short enough [162, 164].
As reported in [162], the origin of this supercontinuum is radiation from recombining
electrons passing through short trajectories, the THz field suppressing the emission from
the corresponding long ones. It is also observed that with a strong negative chirp of the
laser pulse, the width of this supercontinuum may be further increased to obtain a flat
spectrum as wide as 700 harmonic orders [162]. However, laser pulses and DC fields used
by Xiang et al. [162] are not yet available, hence we focused our study on longer laser
pulses without chirp and THz pulses instead of DC fields.

100 MV /em peak electric field of THz pulses is already comparable with that of the
laser pulse’s used in gas HHG (usually between 300 and 1000 MV /cm), therefore it can
considerably alter this highly nonlinear process. In our work we study the effects of these,
experimentally demonstrated fields on the process of HHG using the easily interpretable

saddle-point approximation and we verify the predictions in a macroscopic model as well.

III.1.1 Single-atom calculations

HHG by quasi-monochromatic laser field and a static electric field

To understand the process, first, we study electron trajectories in one optical cycle of the
generating, quasi-monochromatic 800 nm laser field, in the presence of a DC field, and
later we move to THz fields and few-cycle laser pulse.

The most obvious effect of the field is breaking the usual periodicity of the process,
as consequent half-cycles now have different properties. In one half-cycle we observe
trajectories corresponding to weaker dipole strengths and ending in a higher cutoff (1), in
the other half-cycle the trajectories meet at a lower cutoff but the corresponding dipole
strengths are stronger (2). In earlier studies the difference in dipole strengths has been
attributed to diffusion effects [159, 160], which certainly play a role, as the trajectory sets
with higher cutoff energy (1) spend a longer time in the continuum than they would in
the absence of an assisting field (0.65 optical cycles in case of cutoff trajectories [165]).
And the opposite is true for those trajectory sets which have a lower cutoff (2), as can be
seen in Figure III.1.

However, our model also shows that the direct relationship between ionization prob-
ability and the instantaneous electric field strength at the time of ionization plays an

important role too. In laser-only, quasi-monochromatic case, the ionization step of cutoff
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Figure III.1: Electron trajectories and high harmonic spectrum generated in the
presence of the THz field. THz field strength is 100 MV /cm indicated in green, the
6x 10" W/em? laser intensity corresponds to 672 MV/cm. In (a) ionization (thin
lines) and recombination (thick lines) times of electron trajectories from a single
optical cycle (o.c.) are presented to show the generation of the alternating properties
of the produced radiation as a result of the broken symmetry in consequent half-cycles
induced by the DC field. (b) The two cutoffs with different emission rates produce
the double-plateau structure of the spectrum.

trajectories takes place ~0.05 T after the peak of the pulse [165, 166]. In the presence of
the assisting field this step occurs earlier and electrons that leave before the peak return
to the ion in half-cycle (1). At appropriate ratios of the laser and DC field, electrons per-
forming a short trajectory are ionized around the peak of the field, while long trajectories
are ionized earlier. As a result, in this half-cycle the dipole strength of short trajectories is
stronger than that of the long ones. In cases with extremely high assisting field strengths
the closing of long trajectories can even be prevented [164].

Figure III.1 shows that electron trajectories noted with (1) start at a weaker field
strength (=570 MV /cm) where the ionization probability is lower, hence the lower emis-
sion rate. However the strong field present in the next half-cycle allows them to gain more
kinetic energy before recombination, producing a higher cutoff. Electrons released in the
next half-cycle (2) start at much higher field strengths (=660 MV /cm), but the cutoff is
reduced as the THz field prevents them gaining kinetic energy. These field strengths are
not necessarily higher than in laser-only case, however diffusion effects are less pronounced
due to the shorter trajectories, resulting in slightly higher emission rates.

For a multicycle pulse this process is repeated in every optical cycle, therefore a time
resolved spectrometer should see a half-cycle variation of the spectrum: strong with nar-

rower and weak with broader bandwidth. Using a time-integrating spectrometer a double-
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Figure III.2: Variation of the higher (black squares) and lower (red triangles)
cutoffs with THz field strength. Higher cutoffs are generated when the THz field,
having the same sign as the IR, is increasing the kinetic energy of the recombining
electrons.

plateau spectrum is recorded, where the two cutoffs are almost symmetric of the THz-free
cutoff (Figure II1.2). The position of these varies almost linearly with the applied field
strength, but the contrast between the dipole strengths also increases as reported by Wang
et al. [159], limiting the applicability of very strong fields. In our case the higher cutoff is
extended by ~0.43 harmonic order (=~0.66 €V), and the lower one decreases with ~0.32
harmonic order (=0.5 eV) for each MV /cm of the assisting field, but these numbers vary
with the wavelength and intensity of the laser field.

If attosecond pulses are synthesized from the lower plateau, a harmonic pulse is pro-
duced every half-cycle with alternating amplitude, whereas from the higher plateau only
one pulse per cycle is obtained. A consequence of the full-cycle periodicity produced by

this symmetry-breaking is the appearance of even harmonics in the spectrum [158].

Effect of a THz pulse on HOHs generated by few-cycle laser pulses

As each half-cycle where the cutoff is extended is surrounded by two half-cycles, where
the cutoff is decreased, it is well funded to assume that the combination of THz fields
with few-cycle laser pulses is able to significantly increase the available spectral width for
SAP generation. To this end we use 10 pm wavelength fields (30 THz), as these high
fields were experimentally demonstrated around this region [155].

For a 5.2 fs laser pulse the trajectories are modified such that the highest harmonics are
produced only in a single half-cycle, and a very broad continuum appears in the spectrum
(see Figure I11.3). Wider spectral widths can support shorter pulses. In HHG, how-
ever, the shortest attosecond pulse is not necessarily generated from the widest available
spectrum due to the inherent GDD of harmonics. Due to this intrinsic chirp (see Fig-
ure I11.3), transform limited pulses are only achievable using post-compression methods,
or when using only cutoff harmonics for synthesis [29, 167, 168|.

As experimentally long trajectories are eliminated either by phase-matching or by iris-

ing the harmonic beam, we use only short and cutoff trajectory radiation when synthe-

95



672

= %Am IR+THz
= -
- AN WA E N
QI . NG
b 0 > N — — G
55 \/ 4 g2 T T BR V4
o m
672 S72ps
5 140} (@) I19000 o 140 (b)
T 120 T 120
£ 100 £ 100
é 80 é 80 .
= \/\ = A
\ « M0.019 ol '
2 - 0 2 -1 0 1
Time (o.c.)
30F T T T T T T T T T T

—~ | __ 250 ——h80-114 -
7 25[© 2 1@ ——h80-160 T
c L c 20+
J 20t 5 770

L o]
3 15[ 5 1
2 [ > L
g 10 L £ 10
g sl g 5f
E E

B I 1 — L 1 0

04 -02 00 02 04 06 08 10 0.1

Time (o.c.)

= 2.0 _
] 1.5 =
£ - “
s - NU} 8 NV}
2 1.0 5 3 s
e i <z & o
= =) =
2 05 2 £ a
Z <) Z )
g il g
M0 ‘ 0.0 Mo )
40 60 80 100 120 140 160 40 80 100 120 140 160
Harmonic order Harmonic order

Figure II1.3: (a-b) Trajectories, (c-d) attosecond pulses, and (e-f) spectra produced
by a few-cycle (5.2 fs, 6 x 101 W/cm?) laser pulse in the absence (left column) and
presence (right column) of the THz pulse. The spectral range indicated by grey
shading can be used for single attosecond pulse synthesis. Dark red, dashed lines
on the bottom graphs show the group delay dispersion (GDD) of short trajectory
components from the middle half-cycle of the laser pulse. Long trajectories have
similar GDD wvalues (not shown) but with opposite sign.

sizing the attosecond pulses. In the laser-only case the shortest clean isolated attosecond
pulses obtainable is 222 as (FTL 218 as) synthesized from harmonics 87 to cutoff (x97).
If we allow a SAP with a slightly worse contrast ratio of 1:50 (i.e. a small second pulse
is also present), the SAP duration can be reduced to 179 as (FTL 159 as), synthesized
from radiation above harmonic 82. In the THz assisted case the shortest SAP without
compression is generated from harmonics 80 to 114, resulting in 81 as long SAP with a
transform limited duration of 73 as. However, in this case a much wider spectrum can be
used for SAP production if post-compression methods are available, reducing the shortest
theoretically achievable SAP duration to 46 as.

As shown in Figure I11.3 the extension of the cutoff also decreases the GDD of the
plateau harmonics. Focusing on the middle half-cycle it can be seen that the GDD around

the plateau is reduced from ~4000 as® to ~2400 as®. The latter value is very similar to
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what one would get from an IR pulse with 9.5 x 10 W/cm? peak intensity that also
produces a cutoff at harmonic 135 without an assisting field.

From single-atom calculations we can conclude that the effects of THz pulses on HHG
are manifold: spectrally we observe an increase in amplitude in the lower plateau, and a
large extension of the cutoff with reduced GDD. In the time domain the repetition of the
attosecond bursts are modified. A comparison of the trajectories also shows that in the
usual, laser-only case, the long trajectories carry the larger portion of radiation, whereas
in the THz assisted case, there is a redistribution of electrons to the shorter trajectory
class. When THz pulse is combined with few-cycle laser pulse the available bandwidth

for SAP production can be significantly extended.

II1.1.2 Macroscopic generation setup

In order to see if the predictions observed in single-atom calculations are robust against
propagation, we further study the process using our macroscopic model. As described
in Equation 11.4.6, in this model the single-atom response is calculated from the full
Lewenstein integral, which includes contribution from all trajectories. We keep the laser
parameters used in the previous section, but reduce the THz wavelength to 8 pm which
is more suitable to be used in the numerical model. In the two main cases to be discussed
we use 0.3 mJ, 5.2 fs (or 0.47 mJ, 8 fs) pulses in a beam having 2 mm diameter, focused
by a mirror of 0.6 m focal distance, resulting in a beam waist of 76 pm in the focus with a
Rayleigh range of 22.9 mm. The peak amplitude of the THz field is the same 100 MV /em
as in the previous section (although here we do not restrict the THz pulse energy to
experimentally demonstrated one).

Both the IR and THz pulses are treated as Gaussian beams, focused at the same spot.
The 1 mm long gas cell containing neon gas with a pressure of 20 mbar is placed right
after the focus. To have the best spatial overlap between the two pulses, the THz field is
focused to have the same 76 pm beam waist, resulting in a Rayleigh range of 2.29 mm.
Both pulses propagate in the same direction, having parallel linear polarization, and are
synchronized so their peaks overlap at the focus. When the limits of the method or certain
aspects of the process were tested, some of these parameters were changed, as specified

later.

II1.1.3 THz and laser field propagation

In case of these fields tunnelling is dominant over multiphoton ionization, a process
strongly dependent on the electric field strength of the field, therefore it can be expected
that the ionization rate is changed due to the presence of the THz field, even if that field
is not capable of producing significant ionization alone. In Figure I11.4(a) we can see that
indeed the addition of THz field increases the peak ionization rate from 1.6 to 4.2%. At

this rate and at such low pressure, however, the contribution to the refractive index is still
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Figure II1.4: (a) Ionization rate caused by the IR (black line) and both the IR and
THz fields (red line). (b) Different contributions to the refractive index at 800 nm.
Plasma dispersion (red) being the most significant part, but still comparable with the
Kerr nonlinearity (blue) and neutral dispersion (black).

small enough for the IR field (see Figure I11.4(a)) to pass through the whole cell without
significant distortions. At the exit of the interaction region (after 1 mm propagation) the
peak of the IR pulse on axis is ahead by =16 as, which is mostly caused by the Gouy
phase shift that yields an 18.5 as change in the same direction.

In the case of low frequency fields like the THz field the effect of the plasma dispersion
is particularly important because this scales with (w,/w)? (w, and w noting the angular
plasma and electric field frequency). This means that for the 8 pm THz field, this effect is
two orders of magnitude higher than in case of the IR, causing more significant distortions.

Figure I11.5(a) shows that macroscopic effects are much more evident in the case of
the THz field. Because of the 2.29 mm Rayleigh range, the Gouy phase shift is 0.4 radians
at 1 mm from the focus, which yields a 1.74 fs shift of the pulse’s peak, referenced to
a plane wave propagating in vacuum. Since the plasma dispersion scales with A\? even
a reasonably small ionization leads to a considerable distortion of the THz field. As
the dominant part of the ionization happens when the IR field is present and especially
around the peak of the IR pulse, the part of the THz pulse after this peak propagates
through a medium with much higher electron density than the leading edge, therefore
the effect of plasma dispersion is also considerably higher. This effect can be observed
by comparing cases with weaker and stronger IR fields i.e. lower and higher ionization.
When a 5.2 fs long IR pulse is used with 6 x 10* W/cm? peak intensity (causing 4.2%
ionization on axis) the main cause of the dephasing is the short Rayleigh range, however
with a peak intensity of 10> W/cm? the total ionization raises to 21.7% and the trailing
edge of the THz pulse suffers from the effects of plasma dispersion. This can be seen in
Figure II1.5 where the initial field at the focus and the propagated fields at the exit of the
interaction region (1 mm) are compared showing that the plasma dispersion introduces a
significant blue-shift and loss of pulse energy during propagation. With longer, 8 fs pulses
the ionization rate at 6 x 10" W/cm? intensity is 5.8%, leaving the Gouy phase shift the
main cause of dephasing.
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Figure II1.5: Electric field of the THz pulse at the focus (black solid lines) and
after 1 mm propagation in the presence of a 5.2 fs laser pulse, with a peak intensity
of 6 x 1014 W/em? (red dashed line) and 10Y> W/em? (blue dotted line). The upper
insets show the incident laser field for the 6 x 101* W/em? case. (b) Central portion
of the THz pulse’s electric field in the focus (black solid line), and after 1 mm
propagation in a medium with 0% (green dash-dotted line), 4.2% (red dashed line),
and 22% (blue dotted line) ionization, indicating the strong distortion of the THz
field due to ionization right after the peak of the IR pulse.

I1I.1.4 Attosecond pulses in the near field

In this section we show the propagated, and radially integrated intensities of the harmonic
bursts at the exit of the interaction region (i.e. in the near field), hence including all phase
matching effects. SAPs can be obtained without the need of advanced gating techniques
and control fields, “just” by using adequate spectral filtering, and sufficiently short laser
pulses. For example, a 5.2 fs laser field with 6 x 10'* W/cm? peak intensity, generates a
harmonic spectrum with a cutoff around the 90th order (see Figure I11.6(a)). By selection
of harmonics >81 an isolated attosecond pulse can be obtained at the single atom level
(see Figure II1.6(b)). For our conditions of cell length, pressure and ionization level,
propagation does not distort the laser field. Additionally, the cell starts at the focus and
we select cutoff harmonics, so the conditions for good phase matching are met [169, 64],
thus a Gaussian-like pulse is observed in the near field. The duration of this pulse is
360 as produced at single atom level which becomes 225 as in the near field. Increasing
the spectral window leads to the appearance of two additional attosecond pulses at half-
cycle delay before and after the central one.

On addition of the 100 MV /em THz field, the spectrum is reshaped to the familiar
two-plateau structure, one ending at around order 81 and the other extending its cutoff
to harmonic 135. As demonstrated by the trajectory analysis (Figure I11.3), the second
plateau of the spectrum contains only emissions from a pair of a short and a long trajec-
tory, being emitted in a specific optical half-cycle. At the end of the interaction region
the single atom cutoff is reduced to the 125th harmonic order as a result of the distortions

(reducing amplitude, and phase shift) of the THz field during propagation.
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Figure I11.6: (a) Harmonic spectra from a single atom, generated at the beginning
(black solid line) and at the end (red dashed line) of the cell obtained by using a 5.2 fs
IR laser pulse combined with the 100 MV /cm THz pulse. The spectrum on the bottom
(blue dash-dotted line) shifted 5 orders of magnitude downward shows the generated
spectrum by the same IR pulse but without the THz field. (b) (d) The resulting
attosecond pulse from the single atom response. (c) (e) the propagated and radially
integrated harmonic field intensity (resulting power) at the exit of the interaction
region. (b-c) IR-only case, (d-e) THz assisted generation. The attosecond bursts
were synthesized by selecting harmonic orders >81 from the harmonic spectra.

Using the same spectral filter as before (>81st harmonic), a single burst is obtained
with a duration of 330 as (FWHM). Although the spectrum is much wider than in the IR
alone case, the presence of both trajectories and their phase modulation (chirp) produces
a pulse duration comparable to that in the IR only case. At the exit of the interaction
region macroscopic effects reduce the contribution from the long trajectory components,
and hence the duration of the SAP to just 190 as.

When a longer laser pulse is used (8 fs, with the same 6 x 10'* W/cm? peak intensity,
containing 0.45 mJ energy), the part of the spectra from orders 80 to 100 becomes more
modulated, suggesting the interference of more trajectories. Using the same spectral filter
as before (>81), we obtain three distinct attosecond pulses generated at the single-atom
level. However only the central one survives the propagation, and arrives to the exit of
the interaction region with considerable intensity. The details of the macroscopic effects
responsible for the cleaning and shortening of the attosecond bursts are discussed in the

following subsection.

I11.1.5 Phase matching effects

Due to the distortion of the THz field during propagation, the harmonic generation con-
ditions vary substantially along the axial coordinate. The selection of the central burst
seen in Figure II1.7(b) in the 8 fs case also suggests that phase matching promotes only
a distinct class of trajectories, and the others are eliminated because of destructive in-
terference. To investigate phase matching of the single atom spectra during propagation,

the propagated and radially integrated harmonic intensities (power density spectra) are
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Figure II1.7: (a) Harmonic spectra from a single atom, generated at the beginning
and at the end of the cell obtained by using an 8 fs IR laser pulse combined with
the 100 MV /em THz pulse. (b) The resulting attosecond pulse from single atom
response obtained by selecting harmonics >81, and (c) the propagated and radially
integrated harmonic field intensity at the exit of the interaction region showing a
clean SAP. The inset in logarithmic scale shows a contrast of almost 10° between
the main pulse and the second most powerful one.

plotted at different axial (2) coordinates for the 6 x 10 W /cm? case, see Figure II1.8. For
harmonics up to the order of 115 the spectral power increases with propagation distance,
suggesting good phase matching for the whole length of the cell. On the other hand for
the highest harmonics there is no increase for the second part of the cell.

Analysing the spatial structure of different harmonics along the r and z axes, one
can see where good phase matching conditions are fulfilled for a specific harmonic (see
Figure I11.9). These maps show for example that the intensities of harmonics from order
81 to 101, which belong to the lower part of the plateau, undergo a constant increase
along the propagation direction with the best rate slightly off axis. Harmonic 121 is
phase matched close to the beam axis but only in the first part of the medium, while
after ~800 nm of propagation the field intensity decreases. The reason for this decrease
is the phase mismatch of the specific harmonic and not the reabsorption of harmonic
radiation by the medium. This claim is supported by the fact that the cutoff on axis is
still slightly above harmonic 121 at the exit of the interaction region (see Figure I11.7) and
the absorption length is larger than 20 mm for this frequency and under these conditions.

We can conclude that the spectral power density in the lower and middle part of the
plateau increases through the propagation, but this analysis is not conclusive on whether
phase matching conditions promote certain sets of trajectories. This would have a strong
effect on the shape, duration and chirp of the resulting pulses.

It is well documented that in HHG with only the IR laser pulse, mainly short tra-
jectory components survive the propagation in a long interaction region, especially after
focus, however, in gas cells only a few millimetres long, the contribution of long trajecto-
ries to the final pulse might still be significant in specific conditions [63]. As we have seen,

the short- or long-trajectory origin of the resulting burst is important since it defines the
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Figure I11.8: Radially integrated spectral intensity of the propagated field after dif-
ferent lengths of the gas cell for the (a) 5.2 fs, and the (b) 8 fs laser pulses combined
with the 100 MV /em THz pulse. The spectra shown for z=1 mm correspond to the
temporal shapes shown previously in figures I11.6 and II1.7, respectively.
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Figure II1.9: Spectral intensity of the propagated harmonic field as a function of
radial and axial (z) coordinate for harmonic 81 (a), 101 (b) and 121 (c) calculated
for generation with the 8 fs laser pulse.

temporal, and may alter the spatial properties of the resulting attosecond pulses. Attosec-
ond bursts from short/long trajectories have positive/negative chirp [15, 138]. Likewise,
radiation generated from short/long trajectories usually has a lower/higher divergence
[170, 67], making radiation from short trajectories more suitable for applications. There-
fore it is important to investigate whether short or long trajectory components survive
the propagation through a 1 mm long gas cell.

We mentioned in the previous subsection that the high frequency part of the single
dipole spectrum (>81 harmonic order) consist of two sets of trajectories. This is visible
in the temporal profile of the attosecond burst where the presence of short and long
trajectories is observable as two separate peaks at a delay less than half IR optical cycle.

We present in the upper row of Figure II1.10 the (¢,7) map of the single dipole bursts
produced by an 8 fs pulse at 6 x 10 W/cm? at different propagation distances in the
gas cell. We observe that the short and long trajectory components merge into the
cutoff while the radial coordinate increases (corresponding to decreasing field strength).
In Figure I11.10(a) the short and long trajectory classes are indicated, as deduced from

the trajectory analysis. As the laser and THz intensity decreases along the propagation
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direction (due to beam divergence and plasma defocusing), there is no change in the
generation of the central attosecond burst, whereas the post pulse strength decreases
along the cell. This can be attributed to the accentuated decrease of the THz field
amplitude and phase shift during propagation in the ionized medium, which decreases
the cutoff at that specific half-cycle to near the lower limit of the spectral domain from
which the harmonic burst is synthesized.

The same set of plots has been produced for the propagated harmonic fields (bottom
row of Figure I11.10) to study the effect of phase matching. Two bursts separated by an IR
optical cycle are observed, similar to the single atom results above. While the main burst
is building up during propagation, the strength of the post pulse is decreasing suggesting
unfavoured phase matching. Most importantly, we would like to point out that, although
long trajectory components are generated at any axial coordinate along the cell (top
graphs in Figure I11.10), they gradually disappear from the propagated field, suggesting
phase mismatch for these emissions. We conclude that harmonic emissions from electrons
travelling along short trajectories are well phase matched during propagation, while those

from long trajectories are gradually eliminated by destructive interference.
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Figure II1.10: (a),(b),(c) Harmonic field intensity of the generated single atom
emission at different azial (z) and radial (r) coordinates, and (d),(e),(f) the intensity
of the propagated field at the same coordinates.

II1.1.6 Parameter sensitivity

Now we review the effect of several parameters on SAP production, the reference parame-
ters being the ones described in subsection I11.1.2 in particular we remind the reader that
we used an 8 fs laser pulse with a peak intensity of 6 x 10* W/cm?, focused to a 76 pm

beam waist into a 1 mm long gas cell with 20 mbar pressure. The peak amplitude of the
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THz field was 100 MV /ecm. By selecting harmonic orders >81 this configuration yielded a
SAP with 185 as duration and a contrast ratio of 85:1. In each of the following subsections
the effects of varying one parameter is discussed, except in subsubsection II1.1.6 where
the delay between the IR and THz pulses and the length of the interaction region are

discussed together.

Laser pulse duration

For the duration of the IR pulse, we see that the shorter the pulse the better for the
positive effects of the THz field, although we did not explore extreme cases like sub-cycle
pulses. Using 5.2 fs laser pulses the continuum part in the near field spectrum starts at
the 71st harmonic order and therefore a much wider spectral range can be used for SAP
production. However, because of the chirp of the resulting harmonic pulse, the wider
spectral range does not decrease the duration of the obtained SAP, this can be balanced
by eliminating cutoff harmonics by spectral filtering. For example, for a 5.2 fs pulse
and selecting harmonic orders 81-115 a 160 as pulse is predicted. To take advantage of
the broad bandwidth an XUV pulse shaping method needs to be implemented to obtain
transform limited pulses [171, 167]. With a suitable chirp compensation technique the IR
only SAP duration of 225 as is reduced to 210 as, while the 185 as pulse generated in the
presence of the THz field is reduced to just ~50 as.
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Figure III.11: Generated harmonic bursts at the single atom level (top row) and
the propagated and radially integrated harmonic field intensities at the exit of the
interaction region (bottom row) for different generating laser pulses having 10 fs (a)
and (d), 12 fs (b) and (e), and 15 fs duration (c) and (f), assisted by the THz field.

Longer laser pulses may be used for SAP production, but this affects the contrast.
Using the same spectral filtering (harmonics >81) and a 10 fs laser pulse the contrast is
decreased to 40:1 and this ratio is further decreased to 15:1 with 12 fs, and to 8:1 with 15
fs pulses. By increasing the lower limit of the spectral filter the contrast can be slightly

increased at the cost of reduced power of the main pulse.
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Figure II1.12: Radially integrated spectral intensity of the propagated field after
different lengths of the gas cell for 33, 45 and 66 mbar gas pressure showing the
detrimental effect of high gas pressure on the phase matching of cutoff harmonics.

Gas pressure

The increase of the gas pressure has a detrimental effect for the phase matching in the
high frequency range thus narrowing the spectral range available for SAP generation.
However, due to the GDD of HOH, the elimination of the highest frequency radiation
also makes the resulting SAP slightly shorter. We found that the optimum pressure in
terms of contrast ratio is around 33 mbar. At this pressure the contrast is increased to
170:1, the peak power of the SAP is doubled and its duration is reduced to 165 as when
the same spectral filtering as before is used. On further increase of the gas pressure the
pulse duration is further decreased to 140 and 130 as with 45 and 66 mbar gas pressure

respectively; however, this also results in a decrease in contrast to 130:1 and 35:1.

Optimal cell length and delay between THz and IR pulses

Another important parameter is the length of the interaction region, the optimal value of
which is limited by phase matching conditions and reabsorption. With the base configu-
ration where the Rayleigh range of the THz pulse is 2.29 mm the most powerful SAP can
be obtained with a 1.3 mm long cell. In this case the near field SAP duration is reduced
to 150 as and the contrast is increased to 130:1.

By scanning the delay from -2.0 fs (IR pulse behind) to 1.5 fs (IR pulse ahead) the
near field cutoff is increased from harmonic 85 to 125. When the IR is 1.5 fs ahead, the
near field spectral power density for harmonics in the cutoff region is increased 4.5 times
compared to the case without delay (using a 1 mm cell in both cases). However, by putting
the IR pulse ahead of the THz by 1.5 fs, the optimal cell length (in terms of harmonic
pulse power) is also increased from 1.3 to 2 mm. In this case the harmonic pulse’s peak
power is doubled, the duration of the obtained SAP is 150 as, and the contrast is 75:1.

Laser pulse energy

By increasing the IR pulse energy we could still generate SAP and favourable phase
matching for the short trajectories. Of course, due to the increased cutoff we also adjusted

the spectral filtering for an optimum SAP generation. For 8 x 10' W /cm? peak intensity
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(8 fs pulse, 16.4% peak ionization) a 165 as SAP is produced with a contrast of 230:1
when harmonics >101 are selected. Further increasing peak intensity to 10> W/cm? the
resulting ionization is 32%, (compared to 21.7% in Figure I11.5(b) with a 5.2 fs laser pulse
having the same peak intensity) which affects very strongly the THz field propagation in
its trailing edge. The gating effect of the THz pulse is still present, and a SAP with 150
as duration and a contrast of 100:1 is obtained in the near field (by selecting harmonics
>111). In this case the single atom cutoff is at harmonic order 191, although by the end
of the 1 mm gas cell it decreases to order 142 (without the THz field the cutoffs are at
harmonic orders 136 and 121, respectively). Without the THz field, by use of the same
spectral filtering two almost identical pulses are obtained (concerning their duration and
peak power) with half the IR optical cycle delay between them, and a third one having

much lower peak power is also observable.

I11.1.7 Summary

e T1l.a I have analysed high-order harmonic generation in the presence of
strong THz fields, and I have shown that: THz pulses can cause a large
extension of the cutoff with reduced GDD, and they can redistribute the
amplitude of electron trajectories, making the shorter trajectory class
more dominant. Besides the different trajectory lengths, the increased
field strength at the moment of ionization (due to the shifted ioniza-
tion times) also contributes to the stronger yield from short trajectory

radiation.

e T1.b I have studied how in a macroscopic environment the generation
process differs significantly from the single-atom results, and shown that
even in cases when longer laser pulses are used (8, 10 or 12 fs) and the
single atom response would yield multiple attosecond pulses, propagation
effects can eliminate the contribution from certain sets of trajectories,
yielding an isolated attosecond pulse at the exit of the gas cell. The

large bandwidth of these pulses greatly decreases their transform limit.

I have also shown that the long-trajectory components are also cleaned
from the surviving pulse during propagation, resulting in an effective de-
crease of pulse duration, making the technique promising for obtaining
a reliable source of short, isolated attosecond pulses with good contrast
and low divergence. By careful adjustment of the parameters, such as
gas pressure and peak intensity of the laser pulse, and by adequate spec-
tral filtering short SAPs can be produced in a straightforward manner

(without post-compression).
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Legal notes

Parts of the text in this section and most of the figures have been taken over from “E.
Balogh et al., Physical Review A, 85, 023806, 2011. Copyright (2011) by the American
Physical Society.” and “E. Balogh et al., Central European Journal of Physics, 11, 1135-
1140, 2013. Copyright (2013) by Versita”.

II1.2 Optimization of focusing geometry in THz as-
sisted HHG

In the previous sections we have shown that there are significant differences between
micro- and macroscopic results, and the use of long wavelength assisting pulses favour the
isolation of a single attosecond pulse even beyond the predictions of single-atom calcu-
lations. However, it has also been shown that phase-mismatch caused by dephasing and
distortions of the pulses limits the use of longer gas cells or higher gas pressures, signif-
icantly limiting the achievable energy of the generated pulse. Now, after understanding
the main aspects of THz assisted HHG, we carry on an analysis on what is the most
advantageous configuration to be used experimentally, when we limit ourselves to the
experimentally demonstrated THz pulse energies.

HHG being a coherent process, the photon number of harmonics increases quadrat-
ically with the number of interacting particles, therefore an increase in cell length can
increase the attosecond pulses energy considerably under phase-matching conditions. So
far we have seen that the THz and laser pulse go out of phase due to their different
Gouy phase shift around the focus and also due to the strong plasma dispersion affecting
the long wavelength THz pulse. This leads us to the use of pulses with smaller differ-
ence between their wavelength, in hope of better overlap through longer cells and smaller
distortions leading to better phase-matching.

The method of DFG used by Sell et al. [155] to produce the intense THz pulse has
the advantage of tunable central wavelength, and their measuring technique allowed the
characterization of the generated pulses up to 72 THz central frequency. This frequency
already corresponds to 4.17 pm wavelength, that is well in the region called MIR radiation,
however, as the limits between these regions are not strictly defined, they kept the THz
name for these pulses as well, and so will we during this chapter. Although, probably at
this frequency the pulse energy achieved in the experiment is smaller than the peak 19
nJ, we do not have information about these parameters, therefore in our calculations we
limit the THz energy to this value, and optimize the parameters under this limitation.

To optimize the generating conditions in this new configuration the effects of several
parameters is studied. The focusing geometry is optimized, limited by the constraints of
using maximum spatial overlap between the IR and THz pulses (i.e. same beam waist).

Besides the focusing conditions the delay between the two pulses, the length and position
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of the gas cell is optimized to generate short and powerful SAPs of high energy photons.
In the previous section we have seen that the generated plasma — when using high IR
intensities — distorts the THz pulse, therefore we optimize the focusing geometry while
keeping the peak intensity of the IR pulse at 6 x 1014 W /cm? (this means that the IR pulse
energy is adjusted for each configuration). On the other hand, in case of THz fields the
pulse energy is limited in experiments, therefore we fix this energy to the demonstrated

value (this means that in each focusing configuration the THz field strength is changed).

II1.2.1 Disadvantages of tight focusing geometry

In the THz generation experiment to get the highest field strength of 100 MV /cm the
pulses were focused to 31 pm beam waist. We assume beam diameters in our first config-
uration such that a focusing element with 0.6 m focal length produces this beam waist for
both fields. In this case the cutoff of the harmonic radiation can be extended to harmonic
130 in the near field (see Figure I11.13) when an 8 fs, 78 uJ IR pulse is focused in a 2 mm
long target cell. However, the tight focusing used to obtain the extreme high electric field
of the THz pulse results a Rayleigh range of just 0.7 mm (3.7 mm for the IR beam), which
is not beneficial to phase match the generated harmonics as illustrated in Figure I11.13.b
showing decreasing signal after 2 mm propagation. By increasing the beam waist the
peak intensity of the THz field drops, limiting the achievable cutoff, but helping to phase

match the higher spectral components.
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Figure I11.13: Spectral power density of the propagated harmonic field at the exit
of a 0.2 mm (black solid lines) and 2.0 mm (red, dashed lines) gas cell for the
cases when only the IR field (a) and when the combined fields (b) are focused by a
f = 0.6 m mirror, producing a beam waist of 31 uym. The blue dotted line on graph
(b) represents the same quantity for a 5 mm cell showing the decreased yield due
to phase mismatch in the tight focusing conditions. The vertical lines at harmonic
75 and 97 show the lower limit of spectral filtering used to synthesize the attosecond
pulses discussed later.
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Figure II1.14: Spectral power density of the propagated harmonic field at the exit
of a 0.2 mm (black solid lines) and 5.0 mm (red, dashed lines) gas cell when both
the IR field and THz fields are focused by a f = 1.7 m (a), and by a f = 2.5 m
mirror (b) producing beam waists of 85 and 125 pm respectively. The vertical lines
at harmonic 75 and 97 show the lower limit of spectral filtering used to synthesize
the attosecond pulses.

111.2.2 High intensity single attosecond pulses

Using f=1.7 m focusing and 0.585 mJ IR pulse energy the corresponding beam waist is
85 pm; the addition of the THz field with 38 MV /cm peak amplitude and same 85 pm
waist extends the cutoff by 20 harmonic order (see Figure III.14.a), reaching harmonic
100 compared to the cutoff at harmonic 80 obtained using only the IR pulse. The plateau
region is phase matched during propagation through a 5 mm gas cell. This configuration
supports the production of 145 as SAP obtained by selecting harmonics above harmonic
75 (see Figure I11.15.e). The larger interaction volume resulting from the increased spot
size and favourable phase matching conditions through a 5 mm cell result in an increase
of more than two orders of magnitude in the peak power of the generated SAP (see
Figure I11.15 d,e,f), despite the lower cutoff (i.e. narrower bandwidth).

Further loosening the focusing geometry (f = 2.5 m, 125 pm beam waist, 1.25 mJ
IR pulse energy) the amplitude of the THz field drops to 27 MV /cm and the cutoff is
extended by only 13 harmonic orders (Figure I11.14.b) compared to the IR only case
with a cutoff at harmonic 80. Using the same spectral filtering (>75), satellite pulses
appear around the main pulse, and the peak power of the main pulse does not increase
significantly (see Figure II1.15.f and Table III.1) despite the larger interaction volume.

Our analysis shows that the production of 97 as SAP (f=0.6 m) is mainly attributed to
the elimination of long trajectory components by phase mismatch. These pulses reappear
on Figure II1.15.f due to the decreased THz field strength in looser focusing.

By increasing the lower limit of the spectral filtering SAP still can be obtained at
the cost of reduced power. Selecting only harmonics 97, SAP can be obtained in all the
focusing geometries used so far (see Figure I11.16 and Table III.1). However, the loose
focusing (f=2.5 m) also shifts the cutoff below harmonic 97, resulting a reduced pulse

power compared to the case with f=1.7 m focusing. We note that the SAP obtained this
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Figure III1.15: Attosecond pulses obtained by selecting harmonic radiation above
harmonic 75 using different focusing geometries with the IR only (top row), and with
the combined field (bottom row). The transform limit of the pulses is also shown in
cases when SAP is obtained.
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Figure II1.16: Attosecond pulses obtained by selecting harmonic radiation above
harmonic 97 using different focusing geometries with the combined field. The trans-
form limit of the pulses is also shown.

way is nearly transform limited (Figure II1.16.c), because cutoff harmonics possess no
chirp [26], and the bandwidth is very narrow.

The 50 as transform limit of the SAP presented in Figure I11.15.d corresponds to an
effective bandwidth of 23 harmonics (with a time-bandwidth product of 0.44, characteris-
tic of Gaussian pulses), which can be explained by the strong drop of the harmonic yield
at =145 eV seen in Figure II1.13.b. By selecting only harmonics above 97 the spectrum
is flatter which explains the shorter transform limit of the synthesized SAP shown in
Figure III.16.a.

As seen earlier, the differences in the degree of cutoff extension by the THz field at
different focusing geometries can be attributed not only to the different amplitude of the
THz field, but to macroscopic effects as well.

A summary of the results is presented in Table III.1. The values for SAP duration,
peak power, and contrast presented in the table are calculated for the optimal cell lengths

in the actual focusing geometry, whereas the values presented in figures Figure I11.15 and
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f Erg, Loptimat  cutoff SAP duration SAP peak power  contrast

- - h 75/97* - h 75/97 h 75/97 h 75/97
(m) (MV/cm) (mm) (h.o.) (as) (arb. units) (dB)
0.61 108 2.1/0.6 132 97 / 136 14.2 / 0.62 22.3 / 344
1.1 60 51/ 1.6 105 110 / 184 384 /24.1 22.1 / o
1.7 38 52 /23 100 150 / 230 1947 / 68.2 216 / oo
2.45 27 43 /2.1 95 174 / 260 3085 / 29.8 12.2 / o0

*h 75/97 stands for distinguishing the two spectral filters

Table II1.1: Summary of the THz field and SAP parameters obtained for different
focusing geometries using two different spectral filters, and cell lengths optimized for
SAP peak power. Contrast ratio labelled oo means that the contrast is higher than
the precision of our calculations (=107 ).

Figure II1.16 are calculated for cell lengths more commonly used in experiments. The
contrast ratio is defined between the peak powers of the two most powerful attosecond
pulses.

For the position of the gas cell we have found that the most reliable solution is to place
its entrance at the focus. With the looser focusing geometries slightly better results were
obtained by moving the cell 1 mm before the focus, however the increase is not significant.
With the f=1.7 m case for example 10% increase can be obtained in the SAP peak power

when an extended, 6 mm long cell is placed beginning 1 mm before the focus.

I11.2.3 Quantum path control

So far the two pulses were assumed to be synchronized, i.e. to have a field maximum
at t=0. In this case the short trajectory components are phase matched and the corre-
sponding long ones are eliminated due to phase mismatch. To demonstrate the effect, the
intensity of the propagated XUV pulse is plotted in (r,t) maps (see Figure I11.17).

First we calculate the radiation produced in a very short cell (0.2 mm, see Fig-
ure I11.17.a), where macroscopic effects do not start to play, and such illustrating the
single atom results. As seen earlier both short and long trajectory radiation is generated
in the cell, however the long ones gradually disappear from the propagated field due to
phase mismatch (see Figure I11.17.b). Short trajectories dominate the harmonic radiation
already after 1 mm propagation (not shown), with the long ones completely eliminated
after 2 mm.

Using the same f=1.1 m focusing mirror, (56 pm beam waist) and delaying the THz
pulse by 1 fs compared to the IR, we observe an almost identical field intensity map at
the beginning of the cell (see Figure II1.17.c). However, during propagation only long
trajectories are phase matched in the first mm of the gas cell, with the corresponding
short ones eliminated (see Figure II1.17 bottom row).

To understand this effect, we analyse phase-matching of short and long trajectories in

these conditions. When both IR and THz fields are present the harmonics in question are
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Figure II1.17: Intensity maps in (r,t) of the propagated harmonic field at different
azial (z) coordinates. Top row shows the selection of short trajectories by phase
matching after 2 mm propagation in case of 0 delay, while the bottom row shows the
selection of long trajectories by phase matching after 1 mm propagation obtained by
delaying the THz field by 1 fs compared to the IR. In this case f=1.1 m focusing is
used producing 56 pm beam waist.

well in the plateau region, therefore short and long trajectories have significantly different
intensity-dependent phases. In Figure I11.18 the total phase of a selected harmonic (of

order 81) is shown along the propagation axis. In case of short trajectories the drop in
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Figure III1.18: Phase of the generated harmonic (order 81) along the propagation
azis for short (a) and long (b) trajectories.

intensity caused by the divergence and phase shift of the THz field compensates for the
phase mismatch.

When the THz field is initially delayed by 1 fs, at start its field strength is lower in the
half cycle where this attosecond pulse is generated. After the focus the Gouy phase shift
compensates for the initial delay, and causes the effective field to drop slower in the first
part of the cell. As a result, in this configuration phase-mismatch is increased for short

trajectories, but there is a region where the long trajectories have an almost constant
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phase (between 0.3 and 1 mm in Figure II1.18(b)).

These results also show that the variation of the assisting fields can compensate for
phase-mismatch arising in the medium. We conclude that by using well chosen focusing
and varying the delay between the THz and IR pulses, the selection of long trajectories

can be achieved allowing one to select the sign of the chirp of the resulting SAP.

II1.2.4 Summary

e T2.a I have analysed the importance of focusing geometry on phase
matching and harmonic yield in HHG when the IR pulse is assisted by a
THz pulse, using experimentally verified parameters. I have shown that,
despite the limited THz pulse energy, the most powerful SAP can be pro-
duced by relatively loose focusing. I attributed this to the deteriorated
phase-matching conditions under strong focusing of the long-wavelength
fields.

e T2.b I have shown that the assisting field can be used to compensate
phase mismatch that arises during harmonic generation and the selec-
tion of the short or long trajectory components (defining the sign of the
resulting SAP’s chirp) can be achieved by varying the delay between the
THz and IR pulses.

Legal notes

Parts of the text in this section and most of the figures have been taken over from “E.
Balogh et al., J. Phys. B: At. Mol. Opt. Phys. 45, 074022, Copyright (2012) by IOP
Publishing Limited”.

III.3 Attosecond pulse generation by synthesized

light transients

So far we have seen how the mixing of electromagnetic fields with different wavelengths
can alter the electron trajectories producing isolated attosecond pulses, or increasing the
efficiency of the HHG process in long interaction regions. In these processes the tunable
parameters were the strength of the generating and assisting fields and their relative
delay, which adds up to just 3 independent variables, and despite this, we have seen
widely different results.

The ultimate tool in manipulating electron trajectories would be a field synthesizer
that can produce arbitrary waveforms. Recent development in ultrashort laser pulse
generation yielded a tool that gets close to this goal, these are the light field synthe-

sizers [172, 173]. Such a device is based on the spectral separation of laser radiation
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to 3 or more interferometer channels where amplitudes, CEP values and relative delays
are independently adjustable. These instruments promise unique possibilities for highly-
controlled attosecond pulse generation, however, from the practical point-of-view, one
needs to consider the large number of degrees of freedom in such a tool. The two or three
independently controllable parameters for each spectral channel, together with spectral
filtering of the harmonic beam creates a parameter space with so many dimensions that
is already infeasible to be scanned experimentally in order to study its capabilities in
attosecond pulse production.

Numerical calculations allow us to test the theoretical limits of these tools, and also
to predict their possible uses, although in the calculations we face the same challenge:
the parameter space is too large, hence we need fast calculations and advanced numerical
tools. As complete 3D calculations can take very long time, here we rely on single-atom
predictions. We have seen that the dipole response of an atom to the laser field can be
calculated using Equation I1.7 and attosecond pulses are obtained by spectral filtering of
the dipole radiation, from the point of view of numerical calculations we can treat this
as a highly nonlinear, multivariable function. Widely used tools in optimization of such
functions are genetic algorithms, which enable the search for a parameter set that would
produce a predefined result, in our case, attosecond pulse(s) with specific features.

In fact, evolutionary algorithms have been used in numerical calculations of HHG
to optimize harmonic yield [174, 175, 176] and phase matching [177], extend the cutoff
[178, 179], and to generate single attosecond pulses SAPs [180, 157]. The optimization of
several experimental HHG setups has also been carried out with self-learning algorithms
[181, 182, 183, 184]. In order to study the possibilities offered by light field synthesizers in
attosecond pulse generation, in our numerical optimization we set the goals to produce the
shortest possible isolated attosecond pulses, and attosecond double-pulses with variable

separation between them.

I11.3.1 Model and approximations

We are modelling a light field synthesizer with four spectral channels. Three of the spectral
channels emulate that of an experimental setup described in [172], and the fourth one is
an UV channel added to have more freedom in light field synthesis, and also because
technical development is heading in this direction.

As this area of laser technology is developing quickly, and also because the available
field intensity from each spectral channel depends on the focusing geometry, in our calcu-
lations we did not restrict this parameter to the experimentally demonstrated one, but we
assumed infinite freedom of the parameters. The only limitation we use in the optimiza-
tion is related to the peak intensity of the synthesized pulse, set to 1.5 x 10> W/cm?. We
fixed the peak intensity of the synthesized laser pulse to eliminate this effect from the in-
terpretation. Because both the bandwidth and phase locking of the generated harmonics

are improved by increasing the driver intensity [61], this strongly affects the characteris-
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Figure I11.19: Spectral channels of the driving wave from 1040 nm to 272 nm. The
boundary wavelengths correspond to 698 nm, 501 nm and 347 nm. We extended the
three experimentally demonstrated channels with a fourth super-Gaussian in the UV
range.

tics of the attosecond pulse, and we set the goal to analyse the effect of the adjustable
pulse shape. At this intensity the generating sub-cycle pulse produces an ionization rate
of ~15-22% (depending on the pulse shape) in neon, that is still feasible to be used
experimentally. As a result we have as free parameters the relative intensities of each
spectral channel (Figure II1.19), their relative delay, their CEP, and also the lower and
upper limits of the spectral filter applied to the harmonic radiation.

The genetic algorithm starts from a set of randomly chosen points in the parameter
space, calculates the produced attosecond pulses for each, checks these against the pre-
defined goal, and assigns a “fitness” value to each depending on how well they fit to the
requirements. After this, the fittest individuals are kept and several mutations of these
are created, i.e. a few of their parameters are altered, to create a new set of points in the
parameter space, and the whole process starts again, until the results are close enough to
the desired goal. After the optimisation is finished, we analyse the obtained results and
test them against propagation to see if they keep their advantageous features.

Earlier we have seen that single atom predictions are closer to macroscopic results
if the effect of long trajectories is eliminated, but even in these conditions, macroscopic
processes may alter the final result significantly. Trajectory selection is straightforward
when using the saddle-point method for sinusoidal generating fields, however here we use
experimentally measured light fields, and these cannot be described by simple analytical
formulae, we only know the numerical values of the electric field in different time steps.
The main problem is that the saddle-point approximation requires the knowledge of the
electric field and its vector potential for complex values of time, and these calculations
have only been demonstrated either by approximating the complex part of the function
using tailor expansion [185], or by approximating the function itself by a high-order poly-
nomial [186]. Both of these methods get less accurate by increasing the complexity of
the waveform and neither was tested for such unusual fields light-field synthesizers can

produce. Therefore we rely on the calculation of the full Lewenstein integral in obtaining
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Figure II1.20: Gabor transform of the dipole acceleration generated by a 5 fs Gaus-
sian laser pulse and calculated using the Lewenstein integral. In (a) the length of
the integration region is 1.1 optical cycle, including both short and long trajectories,
in (b) this is limited to 0.6 optical cycles, eliminating most contributions from long
trajectory components.

the single-atom response.

When calculating equation Equation I1.7 the lower ¢ and upper ¢ limits of the integral
define the longest electron travel time that is accounted for in the model. By limiting
the integration to a short time region, the emissions from recombining electrons that
perform long trajectories can be minimized (see Figure I11.20), and we chose this method
to emulate the macroscopic elimination of long trajectories in the genetic algorithm.

In the field synthesizer the central frequency of the generated pulse may vary on a
wide range, and its broad spectrum also enables the production of pulses possessing strong
chirp, thus for each parameter set classical calculations are performed to find the travel
time of electrons belonging to the cutoff trajectory. This value is then used to define the
length of the integration time. This method should give a reasonable first approximation,
as it has been demonstrated also experimentally that the classical calculations give a good
approximation of the ionization and recombination times in the HHG process, especially
in the case of harmonics well above the ionization potential [62].

To verify the approximations of long trajectory elimination by limiting the integral
we perform macroscopic calculations. In the 3D model we assume Gaussian beams with
40 pm beam waist for all four fields, and a gas medium placed at their common focus. In
these calculations single-atom response over the interaction region is calculated without
restricting the integration time in equation Equation I1.7. We assume linear polarizations
in a common direction for all fields, thus the single-atom response is also linearly polarized
in the same direction and enters the source term for the wave equation describing the
propagation of the harmonic field. The final result of this step is the harmonic near field
at the exit of the gas medium. The far field is calculated by propagating the harmonic
field through an aperture and refocusing in a 2f-2f geometry. This procedure basically
reproduces the near-field at the focus, but eliminates the components with high divergence
(blocked by the aperture).
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As we calculate the ionization using the ADK model [187], which loses accuracy when
applied to few-cycle pulses [188], we tried to minimize the role of ionization in our in-
terpretation of the macroscopic results. To this end, no optimization of the macroscopic
parameters has been carried out, apart from selecting a gas pressure which favours the
phase-matching of short trajectories (in our case this varies from 20 to 66 mbar), some-
thing that is usually the case in experiments as well. We mention that in the results to
be presented here the effect of gas pressure is not significant when this is kept between
the previously mentioned limits. The only exception from this is the case of double-pulse
generation with 300 as separation, where the role of long trajectories is significant, and
single-atom results could only be reproduced by using the lower gas pressure of 20 mbar.

The length of the gas cell is also limited to just 0.6 mm in all cases.

II1.3.2 Isolated attosecond pulses

Today the shortest SAP demonstrated experimentally is 67 as long, produced with double
optical gating and compressed through a zirconium filter. That setup uses polarization
gating to isolate a SAP from a pulse train, and advantageous macroscopic effects to
eliminate high group delay dispersion harmonics close to the cutoff that would make the
generated pulse longer [150]. Without the use of the polarization gating technique, the
shortest SAP demonstrated is 80 as long, measured after passing through a zirconium foil
used for post-compression [149].

If we take a driver pulse that can be derived from the light field synthesizer spectrum
(Figure I11.19) with constant spectral phase (i.e. no optimization performed) and normal-
ize to the peak intensity we are using, we can generate a SAP with 73 as FWHM pulse
length with only the single atom response considered. Therefore, we set out to see first
whether a genetic optimization process of the driving field can deliver a shorter pulse,
restricting the intensity contrast ratio of the possible side-pulses to at least 1:10.

The GA converged to a solution, where the optimized single-atom calculations pre-
dicts the possibility to generate 55 as long SAP (see Figure I11.21). We observe a broad
emission between -1.0 and 0.2 fs, and there is also a narrower emission around 0.5 fs
emitted in the next half-cycle, however this is eliminated from the temporal picture by
spectral filtering. The optimization procedure indicated 118 eV to 195 eV bandwidth for

2. The spectrally

the shortest single pulse production and an average GDD of 1460 as
filtered radiation transformed to the time domain (part c) indicates 51 as pulses when the
Lewenstein integral is limited to include short trajectories only. The unlimited integral
affects slightly the duration of the pulse (55 as) and produces a second peak correspond-
ing to long trajectories cf. time-frequency map. Macroscopic calculations predicts slightly
longer 72 as pulse duration with the same generating field, when radiation with >1 mrad
divergence is filtered out from the harmonic beam (Figure I11.21(d)). We add here, that
the 73 as pulses generated by the constant spectral phase driving field (cosine shape)

would stretch to a 106 as length by propagation, and is narrowed to 95 as by spatial
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Figure II1.21: Generation of short, isolated attosecond pulses. (a) Driver electric
field and instantaneous half-period. (b) Time-frequency map of the generated dipole
radiation from the full Lewenstein integral shows the presence of the two trajectory
components, which results in the two pulses in the (c¢) single-atom calculations. (d)
Macroscopic effects however eliminate the second pulse, and spatial filtering also
makes the remaining one shorter. Harmonics between 118 and 195 eV are used here
for the gemeration of the attosecond pulse.
filtering.

The other criterion used in this optimization, to have a SAP with a minimum contrast
ratio of 1:10 (that is, suppressing the side pulses), is also fulfilled and improved in the
macroscopic results. We see that the contribution of long trajectories and the second
side-pulse is already eliminated by the end of the gas cell, but the spatial filtering is
required to shorten the pulse in the far-field. We find that the improved phase-locking
— achieved by filtering out harmonics generated off-axis [189] — is responsible for the
shortening of the pulse from the 156 as in the near-field to the 72 as measurable in the
far-field. The pulse durations quoted in this section are as-generated values, i.e. not
using any postcompression method. Alternatively, a different optimization procedure can
be carried out when postcompression is also available and the inherent chirp is not limiting

the achievable pulse duration.

II1.3.3 Double attosecond pulses with variable separation

The generation of double attosecond pulses (DAP) with variable separation on the multi-
femtosecond scale has been predicted to be realizable using multi-cycle driver pulses and
polarization gating technique [190]. Normally the natural separation of pulses in an

attosecond pulse train is rooted in the half-cycle periodicity of the process: 1.3 fs pulse
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Figure III1.22: Double pulse, with 900 as separation. (a) The electric field and
instantaneous half-period calculated from the phase derivative shows the complex
structure of the driving field. (b) Time-frequency analysis showing the two pulses
created in different half-cycles. Suppressing harmonics below 81 eV produces the two
pulses which are present both in (c) single atom and (d) macroscopic results.

separation for the 800 nm fundamental. Here we focus on producing DAPs with sub-
femtosecond separation: aiming at equally intense pulses with different separation between
them. The results of the optimization process are illustrated in figures I11.22-111.24 in the
same manner as Figure II1.21.

For 900 and 700 as separations (Figure I11.22 and Figure I11.23) single atom calcula-
tions yielded the required pulse structure, and the results were also confirmed by macro-
scopic calculations, although the separation of the pulses is slightly smaller and their
amplitudes are slightly different in the macroscopic response for both cases. Our analysis
shows that for both cases the two pulses are produced by short trajectory components
in different half-cycles of the generating driver field. We also see, that the instantaneous
half period of the generating fields (calculated as 7/|dp;/dt|) varies between 900 as and
600 as in the interval where the production (ionization — free travel — recombination of the
electrons) of the attosecond pulses takes place. Since the electron travel responsible for
the generation takes up about half a laser cycle, we cannot directly link the instantaneous
period to the separation of the pulses.

In case of DAP with 700 as separation, the generating field’s spectral centre of mass is
at 416 nm, meaning that the half-cycles of the driver field follow each-other by ~700 as.
From this case we could think that by simply tuning the spectral centre of mass of the
driver field generates attosecond pulse with the required separation. However in case

of DAP with 900 as separation central wavelength of the generating pulse is at 423 nm

79



£ 1000 118 100F . —

E 3 o) _(C) full integral

% 500 119 5 5 8o} short trajectories ||

= 0 11.2 f._l .% L QWN:

2 09 8 T 60f : 1

o w = - :

'S -500¢ 10.6 § g 40+ 700as ! .

8 loa g E i i 1

W-1000+ g 20+ -
00 & I ]

= 0 — Y2777 ZAY VL P

‘/Q{me(fs) \

121 (d) near-field |
140 S Lol —farfidd ||
S o8} .
120 .t ]
0.32 08| .
100 0.10 041 m ]
0032 T 02 %, ¥
0.010 0.0 /O

0.0 0.5 1.0 15 2.0
T| me (fs) Time (fs)

Photon energy (eV)
Power (arb. units)

Figure II1.23: Double pulse, with 700 as separation. (a) Generating electric field
and instantaneous half-period. (b) Time-frequency analysis showing the two pulses
created in different half-cycles. Spectral selection from 108 to 170 eV produces the
two pulses which are present both in (c) single atom and (d) macroscopic results.
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Figure III1.24: Double pulse, with 300 as separation. (a) Generating electric field
and instantaneous half-period. (b) Time-frequency analysis showing the two pulses
created in the same half-cycle by short and long trajectories. Spectral selection (from
130 to 166 €V) produces the two pulses in (c) the single-atom calculations, which
merge in (d) the near-field, but are again separated in the far field by spatial filtering
of the harmonic beam.
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(corresponding to 705 as half-cycle periodicity). In both cases it can be seen that the
half-cycle periodicity of the laser pulse is changing in a sub-cycle level. This illustrates
us that the desired results are produced by nontrivial field shapes, and these subcycle
variations of the driving pulse are important.

On the other hand, we found that the generation of attosecond double pulses with
less separation can be performed in a fundamentally different manner. When optimizing
the driver wave for attosecond pulse production with 300 as distance, we ended up with
two trajectory sets emitting harmonics in the same half-cycle (Figure I11.24). Thus the
separation between pulses is defined by the time-delay between returning electrons from
short and long trajectories, and the main role of field-shaping is to ensure that only a
single half-cycle contributes to the selected part of the spectrum.

In this case the two pulses merge in the near-field, and spatial filtering is essential to
separate them. This also means that a large part (90%) of the pulse energy is filtered out.
In this configuration, the fact that a lower pressure has been used — in this configuration
favouring phase-matching of long trajectory components — also helps to keep both pulses
in the far field with comparable peak power.

It is seen that short (300 as) and long (700 and 900 as) separation of the attosecond
pulses was feasible via different schemes. With the spectral components for the driver
laser field shown in Figure II1.19, the algorithm produces double attosecond pulses with
larger than 670 as separation from two different half-cycles of the driver laser pulse. We
find that shorter separations are possible only from short and long trajectory components

of harmonic radiation generated in the same half-cycle.

I11.3.4 Summary

A genetic algorithm was used to optimize gas HHG in a modelled multivariable light field

synthesizer device.

e T3.a I have worked out a model suitable for further optimization, which
is based on the single atom response calculation with limited temporal
integration. I have shown with macroscopic HHG modelling that the
Lewenstein integral is able to partially predict a good approximation of
the macroscopic behaviour of the attosecond pulse generation process. I
have interpreted the two distinct ways (consecutive half-cycle or short
and long trajectory radiation in a single half-cycle generation) of the

double attosecond pulse generation.

e T3.b I have modelled attosecond pulse generation by the selected driver
waveforms with a 3D macroscopic model and shown that the pulse short-
ening achieved by the optimization remains robust in a macroscopic en-

vironment. I have also shown that in case of Gaussian generating beams,
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tight spatial filtering of the harmonic beam is required for the pulse du-
ration to come close to the ones obtained in the optimization. Moreover,
I predict that double attosecond pulses generated from short and long
trajectories are only reproducible macroscopically in very inefficient gen-

erating conditions.

I1I.4 Quasi-phase matching by low-intensity assisting
fields

So far we have analysed possibilities of generating attosecond pulses by combining field
with different wavelengths. These combinations were used to control electron trajecto-
ries, and in subsection II[.2.3 we have seen that — due to the sensitive nature of the
harmonic phase to the shape of the generating field — they are also able to control macro-
scopic processes when a phase-slip between the two fields arises during propagation. In
subsection I1.4.5 we have seen that this can be exploited to induce QPM of generated
harmonic radiation by weak assisting fields for example by a counterpropagating quasi-
monochromatic field. We have seen that such an assisting field causes a modulation of
the harmonic phase. This phase-modulation resembles the shape of the assisting field in
the moving frame of the generating laser field. Some of the details of the process are still
not clarified, and in this section we analyse this mechanism in detail. In particular we
discuss the relationship between the amplitude of the assisting field (E,) and that of the
phase-modulation (A), the bandwidth of the QPM processes, and optimal profile of the
assisting field.

I11.4.1 Phase-modulation caused by weak assisting fields

We analyse the situation of a generating driver and a weak assisting field propagating in
another direction. As seen earlier the phase-modulation of the generated harmonics can be
expressed as A = (F,, where ( is a scaling factor that relates the assisting field amplitude
to the phase modulation amplitude. Using assisting fields of the same wavelength as
the driver (A, = A1) the induced phase-modulation can be expressed analytically. Two
separate contributions of the interference to the harmonic phase can be identified: a direct
one caused by the phase-modulation of the driver field, and an indirect contribution,
caused by the intensity modulation [115, 65], see Appendix C for more details. In the
limit of F, < F; the amplitude of the direct phase-modulation for harmonic ¢, caused
by the driver field’s phase-modulation can be expressed as [65]:
E,

Ao ~ =2 I11.1
Pp A (ITL.1)

82



The indirect phase-modulation can be linked to the intensity-dependence of the harmonic’s
phase, quantified by the a coefficient. Thus the harmonic’s indirect phase modulation

caused by the modulated driver intensity can be approximated as

—ae’ELE, _ —a2U, E,
2m w?  hw, By

Ap; =~ (I11.2)

The maxima of the two — direct and indirect — components of the phase-shift occurs
shifted by m/2 in phase difference between the two interfering fields, as illustrated in
Figure I11.25. For the analytic derivation see Appendix C. Due to this delay, the total
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Figure II1.25: Direct and indirect harmonic phase-modulation caused by interfer-
ing driver and assisting waves, shown as a function of the phase difference between
the two fields. More details in [115, 65] and Appendiz C.

phase-modulation can be calculated simply as

Ay = \/ApT + Apl. (I11.3)

From the above equation, the scaling factor ( between the assisting field strength and the
phase-shifting effect (of Equation I1.41) for cases when the assisting and driver fields have

the same wavelength can be expressed as

| = \/(E%)Q + (ﬁofl%l>2' (I11.4)

For cutoff harmonics it is known that ¢ = (1.321, + 3.2U,)/hw; and « ~ 7, therefore, in

cases when [, < U,, the scaling factor becomes

cutof f 7UP

: o By B3 (I1L.5)

We observe that for cutoff harmonics where QPM methods are found to be most effective

the required field strength scales inversely with the driving field strength and the third
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Figure III.26: Phase-modulation coefficients for arbitrary wavelength assisting
fields. (a) shows the coefficients up to assisting wavelengths 5\1, while (b) is accurate
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power of its wavelength
A
el — e B (I11.6)

As the cutoff energy in HHG scales as E%- A2, the same energy photons still require weaker
assisting fields when generated by weaker, but longer wavelength driver fields.

With an assisting field of arbitrary wavelength we rely on numerical calculations to
obtain the same information. In this case the direct and indirect modulation cannot be
separated so easily, so we compare the amplitude of the total phase-modulation caused
by an arbitrary wavelength assisting field to the case when the two wavelengths are the
same ((;). We calculate the harmonic phase-modulation amplitude (using the saddle-
point approximation for the combined driver and assisting field), by varying the phase-
difference between the two fields in small steps in a 27 interval. We do this procedure
for assisting fields with different wavelengths and compare the results to the case when
the two wavelengths are the same. Thus, we relate the phase-shifting effect of arbitrary

wavelength assisting fields (¢) to the same-wavelength case ((1) by a correction factor

=GB/ A, tr), (I11.7)

where tr distinguishes trajectories with different return time, and \,/\; is the ratio of
the two wavelengths. The value of S(A,/\1,tr) is shown in Figure I11.26.a.

By definition of the parameters, at A, = A; all the trajectory dependence of the phase
shift is included in (3. It is interesting to see how the correction factor for short and
long trajectory components cross at this point. For all values of A\, > \; we observe that
the value of the correction factor is almost constantly 1 for the shortest trajectories, and
for the longest trajectories the deviation from 1 has the largest magnitude. This finding
is consistent with the simple view, that the longer the electron stays in the continuum,

the more sensitive it becomes of the effect of the assisting field [89]. In the limit when
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Ao > A\p (i.e. when the assisting field can be considered static during the electron’s travel
in the continuum), the value of the § correction factor goes to 1.45 for cutoff harmonics.
For other trajectories this factor varies as shown in Figure II1.26.b, being very close to
one in case of the shortest trajectories and going slightly higher than two for trajectories
with a return time of one optical cycle. The values of 8 calculated for DC fields (in
Figure I11.26.b) are accurate for assisting fields with A, > 5.

The figure also indicates, that for A, < A; the dependence of the correction factor
on trajectory length is reversed; the longer the trajectory, the less the effect — which can
be understood as the perturbation caused by the assisting field can average out through
the longer travelling time of the electron. This means that in this regime the relative
effect of the assisting field on shorter trajectories becomes more and more pronounced.
We would like to point out the practicality of this limit: since the assisting field’s wave-
length is determined by the coherence length, and L, scales inversely with harmonic order
[93], it might reach very small values when increasing driver wavelengths are applied to
generate very high harmonics in the x-ray region [191, 151]. In this scenario under very
unfavourable PM conditions short wavelength assisting fields might be useful in achieving
QPM.

We performed calculations with different laser field and ionization potential parame-
ters, all yielding very similar results to what is shown in Figure I11.26, only finding small
deviations from it. The results are found to be more accurate in the high-intensity regime,
where U, > I,.

Finally, combining equations I1.40, II1.4 and III.7, the formula for the strength of
the assisting field causing the required A phase-modulation for harmonic order ¢ can be
expressed as

E, = APy : (I11.8)
Brla® + <%>2
hwy

the value of 8 depending on the ratio of the driver and assisting fields wavelength, and

shown in Figure I11.26.

We note here, that the wavelength of the assisting field, A\, is not a free choice, it is
determined by the coherence length. This implies, that the correction factor 5 has only
an indirect dependence on the generating laser pulse parameters through the coherence
length, and depends directly only on the chosen trajectory, thus the scaling law expressed
in Equation II1.6 holds generally. We note that our model is obviously not applicable
to the cases when the assisting field alone causes photo-ionization, replacing the role of

tunnelling ionization in the three-step model of HHG.

I11.4.2 Quasi-phase-matching bandwidth

There are two main contributions limiting the bandwidth of effective QPM with assisting

periodic fields: one concerns the chosen period, the other the amplitude of the assisting
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field. The phase-shift induced by the assisting field is different for different harmonics
due to the indirect phase-modulation: thus the amplitude of the required assisting field,
as presented in the previous section, depends on the harmonic order through « and also
B when the assisting wavelength is different from the driver. The period, set by the
coherence length shows an even stronger dependence on harmonic order. By applying a
single period, the bandwidth over which QPM can be achieved depends on the variation
of the coherence length, and it decreases with the length of the gas cell. In the present
section we only discuss in detail the bandwidth of QPM achieved with an assisting DC
or sinusoidal fields to simplify calculations. Since in most cases we expect the bandwidth
to be limited by the spectral variation of the wavevector mismatch, these results can be
considered to be relevant for all cases.

It is known from nonlinear optics that the efficiency of a QPM method strongly de-
pends on the difference between the coherence length and the spatial periodicity of the
phase-modulation. To describe this dependence, we denote a wavenumber-like quan-
tity defining the value of PMM by kpyy = 27/L., and the wavenumber of the phase-
modulation caused by the assisting field by k,,,¢ = 27/A. Then a wavenumber mismatch
between the two quantities can be defined as Akgpayr = kpyvr — kmoa- In a similar way to
QPM in second-harmonic generation, we find that Akgpys in HHG has the same role as
the wavenumber mismatch in standard nonlinear optics [30], and the harmonic intensity
at the end of a cell with length L (when L > L.) is given by

1

Ak L
wrop(L) o< L?sinc? (ﬂ) :

: (I11.9)

showing that the efficiency drops to half of the maximum value at Akgpy = £2.78/L.
Using the equation above, the overall efficiency of the QPM processes as a function of
the wavenumber mismatch (Akgpys) and amplitude of the phase-modulation (A), for the

cases when the applied electric field is static or sinusoidal, are given by:

e =Y [lsin (g) sinc (g (mAkopy — (m — 1)kpMM)>] 2, (I11.10)

mm
m=1,3,5...
L 2
m=1,2,3...

where J,,(A) is the mth order Bessel function of the first kind, and by summation over m
we considered the contribution of higher-order spatial QPM. In most cases higher orders
can be neglected, eliminating the summation and also the second part of the sinc function,
simplifying the formulae. Also in the case of the DC assisting field even order QPM is
only achievable with different field distributions than odd order QPM [113], hence they
do not appear simultaneously.

For a case study we use the 1D model presented earlier and calculate the values

of the emission rate h,(z) and phase ¢,(z) using the saddle-point approximation. For
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Figure II1.27: Efficiency of QPM in a 2mm long cell with sinusoidal (a) and DC
(b) assisting fields optimized to the short trajectories at harmonic 75.

these calculations we took an 8 fs long, 800 nm cos?-shaped laser pulse with constant
8 x 10 W /cm? intensity along z, that propagates with the same phase and group veloc-
ities (to eliminate the effect of carrier-to-envelope phase-shift). We chose a phase velocity
higher than that of the harmonic ¢ that causes a phase slip of ¢27/0.01. This produces a
coherence length of L. = 133 pm for harmonic 75, which is in the plateau region of the
spectrum, the cutoff being at harmonic 115. Then, we added a sinusoidal assisting field
matching this coherence length and having an amplitude of 12.8 MV /cm calculated from
Equation II1.8 to produce optimal phase-shift for short trajectories at this harmonic order.
Then, we calculated the efficiency of the QPM method at L = 2 mm by Equation I1.41
for the whole spectrum. The efficiency was calculated considering only a single set of
short trajectories from the middle of the pulse (red dashed line in Figure I11.27), and all
the trajectories throughout the pulse which are shorter than one optical cycle (thick blue
continuous line in Figure I11.27), and we compared with the analytical formula (thin black
continuous line in Figure I11.27).

We observe that trajectory interferences can be significant in QPM methods, especially
for sinusoidal modulation, but the general shape is well described by the analytical formu-
lae. We note that the phase-shift imposed by the assisting field for harmonics generated
in opposite half-cycles of the driving field has opposite sign. With multi-cycle driving
pulses this can lead to the elimination of odd harmonics and the coherent addition of
even ones when a periodic static field is used producing a phase-shift of A = £7/2. This
is discussed in detail by Diskin and Cohen [192].

As apparent from equations II1.10 and III.11 the drop in efficiency with changing
harmonic order can have two sources:

First, the field optimized for harmonic 75 causes different phase shifts (A) for different
trajectories resulting in a drop in efficiency due to the sin?(A/2) and JZ(A) dependencies

seen in equations II[.10 and III.11 respectively. The contribution to efficiency arising
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Figure III.28: (a) and (b) illustrate the efficiency of QPM methods for different
harmonics arising from the phase-shift caused by the assisting field optimized for
harmonic 75 of the short trajectory. Efficiency calculated for (a) sinusoidal assisting
field with 12.8 MV /cm strength causing 1.85 rad phase-shift and (b) periodic static
electric field with a 21.4 MV/cm strength causing m rad phase-shift for the selected
trajectory. (c) illustrates the wavevector mismatch at different harmonic orders,
the right scale showing the corresponding medium length where sinc2(AkaML/2)
reaches its first minimum. The two grey vertical lines show this minimum for a 2
mm long cell.

from the phase-modulation’s shape and amplitude is plotted in Figure I11.28(a) and (b),
showing similar behaviour for sinusoidal and periodic static assisting fields around the
selected trajectories. As is apparent, this contribution allows a much wider bandwidth
than what is observed in Figure I11.27 (note the different horizontal scales on Figure I11.27
and Figure I111.28). Therefore, we conclude that the bandwidth is limited by a different
source.

The wavevector mismatch is also trajectory dependent, giving the second source of
bandwidth limitation. In our case, when a constant intensity is assumed along the prop-
agation axis, kppsar scales linearly with the harmonic order. This results in a linearly
increasing wavevector mismatch (Akgpys) away from the selected harmonic order, limit-
ing the efficiency as sinc*(AkgparL/2). The value of |Akgpy| is common for both QPM
methods analysed by us, and is illustrated in Figure I11.28(c). As the bandwidth is in-
versely proportional to the length of the medium, the contribution from |Akgpa| is the
significant limiting factor in most cases except when QPM is applied over a medium just
a few L. long. In the particular case discussed here, after 3L, (L=0.4 mm) the bandwidth
arising from the wavevector mismatch is already slightly smaller than the one arising from
the phase-shift dependence (efficiency dropping to 0 at harmonic 100), and it is quickly

becoming the main limiting factor when increasing the length of the medium. As a con-
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sequence, for the 2 mm long medium (L = 15L,) used to calculate Figure I11.27, the
envelope of the efficiency curve resembles the bandwidth limited only by the wavevector
mismatch, without significant differences due to the different shape of the assisting field.

Figure I11.28(a) and (b) also illustrate that the assisting field optimized for short tra-
jectories is usually not optimal for long ones at the same harmonic order. Although in
special cases, higher order (in amplitude) QPM of long trajectories can be obtained, pos-
sibly increasing the efficiency for both trajectory classes. This, however, is only achievable
if both the phase-shift and Akgpys is optimal at the same time.

If one considers a more realistic case where the phase-velocity and/or driver intensity
is also changing along the propagation axis, then the coherence length also becomes
dependent on z and chirped assisting fields should be used for optimal QPM [117, 5].

1I1.4.3 Assisting beam profile

In order to induce QPM in a macroscopic media the phase-shifting effect of the assisting
field for a given harmonic has to be the same at different spatial coordinates across the
beam. However, due to the intensity profile across the beam the same harmonic order
falls at different parts of the plateau and thus has an « and g value varying with the
radial coordinate. Both of these affect the phase-shifting effect of the assisting field. To
compensate this, the assisting field must have an appropriate spatial profile. For the
short trajectories lower IR intensity (off-axis) means that the same harmonic is closer to
the cutoff, has both higher o and higher § values, therefore the required assisting field
strength is lower. The opposite stands for long trajectories, where o and 8 decreases with
intensity. This issue is not raised for cutoff harmonics which are only generated close to
the axis.

Assuming that the generating laser beam has a Gaussian spatial profile, the intensity
profile of the assisting field can be determined. In Figure II1.29 the calculated intensity
profile is shown for different harmonics generated by 800 nm driving field for the case
when A== radian, and A\, > .

The intensity profile required by QPM (Figure I11.29) for short trajectories closely
resembles a Gaussian suggesting that counterpropagating fields may be used to induce
QPM in the whole cross section of the gas cell. As for long trajectories the required field
intensity is higher off-axis, which could be an explanation why the most efficient QPM was
found for harmonics close to the cutoff [87, 5]. Another important aspect of Figure I11.29
is that for long trajectories the required field strength is two orders of magnitude lower
and almost constant for different harmonics (close to the axis), while for short trajectories
it shows high variation with harmonic order (a result consistent with the findings of Zhang
et al. [88]). Thus spectral selection might be easier to achieve for short trajectories by
varying the strength of the assisting field.

However, in case of counterpropagating pulse trains, the only constraint for (partial)

elimination of harmonic emission from destructive zones is that the phase-shift should be
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Figure II1.29: Numerically calculated radial intensity profiles needed to induce
7w phase-shift for different plateau harmonics, when generated by a Gaussian beam
having a beam radius of wg. Calculations done for Ay = 800 nm driving field, and
long wavelength assisting fields Ay > A1.

larger than 7. In this respect short trajectories dominate the selection of the field strength,
since those always require higher intensity assisting field for the same phase-shift. This is
also consistent with the findings of O’Keeffe et al. [65].

II1.4.4 Summary

e T4.a1 have described a method to calculate the phase-modulation of har-
monics by a weak assisting field in terms of the generating laser pulse’s
parameters, depending on the two fields’ relative wavelength and the
length of the electron trajectory in question. I have discussed the rela-
tionship between the simplest case of a counter-propagating, same wave-
length assisting field (analytical treatment), to the case when a different
wavelength assisting field is used, and showed that the two can be related

through a wavelength-dependent correction factor.

e T4.b I have analysed the bandwidth of QPM methods and formulated an
approximate expression to calculate it. I have shown that the dependence
of phase-modulation amplitude on the harmonic order is not limiting the
QPM bandwidth significantly when the method is applied to a large
number of coherence periods. Therefore, in these cases the bandwidth
does not depend on the shape of the applied assisting field. On the
other hand, I have shown that trajectory interferences can significantly

change the fine-structure of the QPM efficiency. I have also discussed
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the optimal field profile of assisting fields for short and long trajectory
components for efficient QPM, and I have found that short trajectories
have the advantage of requiring the same profile for driver and assisting

beams.

II1.5 Quasi-phase matching by perpendicularly prop-
agating THz fields

So far we have seen that the presence of a spatially modulated electric field along the
propagation axis of the generating laser field is able to modulate the phase of the generated
harmonics and create suitable conditions for QPM. In this section we present numerical
calculations where we apply this idea and show that THz pulses can be used to realize
conditions of efficient HHG at photon energies above the phase matching limit. We
test the use of perpendicularly propagating IR and THz pulses to produce the required
modulation Figure I11.30.

Figure II1.30: Schematic representation of HHG by perpendicularly propagating
IR and THz fields.

I11.5.1 Possible configurations

We aim at creating a spatially periodic electric field along the propagation axis while the
IR field passes through the cell. In the configuration sketched in Figure I11.30 as the IR
pulse propagates, at different position it meets different phases of the THz pulse therefore
“feeling” different field strengths. To illustrate the effect, we plot the THz field in the
moving frame of the IR pulse at t=0 i.e. at the peak of the IR pulse (Figure I11.31). In
cases when the cell is illuminated by one THz pulse from the side, the IR feels a periodic
electric field, however the phase front is tilted (Figure II1.31.a).

One-dimensional analytical and numerical calculations shows that the efficiency of
QPM is not affected by a phase shift of the assisting field as long as the number of
coherence lengths covered is large enough. On the other hand, under QPM conditions the
propagated harmonic field’s phase converges to a value that is dependent on the initial

phase of the assisting field. This, together with the apparently tilted phase-front of the
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THz field might alter the propagation direction of the harmonic beam, although we have
not analysed the importance of this effect using three-dimensional calculations.

To eliminate this possible issue, two counter-propagating THz pulses (both hitting the
gas cell from the side) can be used to create a standing wave, which produces a periodic
electric field (Figure IT1.31.b). This configuration has the advantage of requiring half the
energy in the THz beams to reach the same amplitude. The fact that the nodes of the
standing wave are at A/4 distance from the middle of the cell limits the width of the
region where QPM is achieved.

Figure II1.31: THz fields hitting the side of the gas cell as viewed from a coordinate
frame moving with an IR pulse which is propagating in the direction of increasing
z. The amplitudes are plotted in the plane of the two propagation azes. In (a) one
THz pulse is focused into the cell, whereas in (b) two pulses hit the cell from opposite
direction creating a standing wave along the width of the cell (in x direction).

In these configurations the width of the THz beam has to cover the whole length
of the cell and the pulse also has to be long enough to be present while the IR passes
through. In theory the energy requirement due to the large beam diameter can be reduced
by cylindrical focusing, and the necessary duration of the pulse can also be reduced by
tilting the pulse front.

The width of the THz beam in both directions might be reduced in a configuration
where the THz field is counter-propagating to the IR. This configuration also eliminates
the possible issue of the tilted phase fronts or that of the reduced area between nodes
of standing waves. In this case the wavelength has to be doubled to create the same
periodicity felt by the IR pulse. The length of the gas cell in this configuration is limited
by the Rayleigh length of the THz beam and by the length of the pulse, which also has
to be doubled.

In our numerical 3D model we use cylindrical symmetry and a moving frame of refer-
ence, hence we cannot properly account for all the focusing and propagation effects of the
assisting field. Due to this, we set the goal to test the proof of principle that a periodic,
sinusoidal field in the THz range can induce QPM in a macroscopic medium. In our model
we use the perpendicularly propagating scheme (Figure I11.30) to calculate the value of

the field strength on-axis, however, we assume this field strength to be uniform along the
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radial direction. As we will see, this is a good approximation in the region the model is
tested, as the harmonics to be quasi-phase matched are only generated very close to the

axis, in a region significantly narrower than the wavelength of the assisting field.

I11.5.2 Finding THz pulse parameters

To test the idea we chose a tight focusing geometry and high-intensity IR pulses producing
a relatively high ionization rate and generating harmonics above the phase matching limit.
In particular we use 20 fs long, 0.2 mJ laser pulse with a central wavelength of 800 nm,
which is focused into a gas cell containing neon at 33 mbar pressure. The beam has 25
num waist radius, and it could, theoretically, reach a peak intensity of 9 x 10 W/cm?.
The gas cell is 2 mm long and it is centred in the geometrical focus of the IR beam.

Due to nonlinear effects the peak intensity of the beam reaches only 8 x 10 W /cm?
and it decreases slowly after the focus. At this intensity the single-atom cutoff is around
harmonic 111, which corresponds to 172 eV, well above the ~120 eV phase matching limit
available in waveguides [40, 41]. In the current free-focusing geometry phase-mismatch
decreases the cutoff to harmonic 85 (130 eV) by the end of the 2 mm gas cell while
harmonics above 70 are only phase-matched off axis. Our goal is to use the THz field to
restore the single-atom cutoff in the near field by QPM.

First of all, we estimate the wavelength of the field to be used, that should correspond
to the coherence length of the harmonic to be enhanced. As in free focusing there is
no general description of phase matching, we cannot estimate the coherence length just
from the intensity and gas pressure, and we rely on other methods in finding it. By
plotting the intensity of the harmonic along the propagation axis, a good estimate can
be given: the coherence length is twice the modulation period of the harmonic intensity.
In Figure II1.32.a we can also see that harmonic 111 is generated only close to the axis
(r < 7 nm) and the periodicity of its intensity modulation stays constant over the radial
coordinate.

For the THz field to cover the whole cell while the IR is passing through, we assume a
beam with 4 mm waist size focused to the beginning of the cell (z = -1mm). The duration
of the pulse is 8 ps, and is synchronised with the IR to reach its maximum when the IR
is entering the cell.

Finally, we used the saddle-point approximation to find the optimal amplitude of
the assisting field, but the approximations described in the previous section would have
worked equally well. For our case the optimal value was found to be around 4 MV /cm,
but due to temporal and spatial variations of amplitude in the focused pulse, we chose a

peak amplitude of 5 MV /cm to be used in our model.
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Figure II1.32: (a) Intensity map of harmonic 111 showing that the harmonic
emission is confined to a small region around the axis, and the periodicity stays
the same along the radial coordinate. Plotting the harmonic intensity along the
propagation axis (b) the coherence length (indicated in pm) can be estimated.

I11.5.3 Enhancement of generation efficiency

In Figure II1.32 it is obvious that the coherence length varies along propagation, and
tuning the central wavelength of the pulse to match one region is not going to enhance
the emission in the whole cell.

Nonetheless, illuminating the cell with a THz pulse having 120 pm wavelength still a
significant increase in harmonic yield can be obtained (blue dotted line in Figure I11.33).
In this case the intensities at the end of the cell is 670 times higher than in the IR only
case. Considering the peak harmonic intensity along the propagation axis, we get a 100
fold enhancement. Not surprisingly the region where the highest enhancement is produced
corresponds to the region where the wavelength of the field best matches the intensity
modulation of the harmonic in the IR-only case.

To match the spatially varying coherence length chirped pulses could be used. Using

a pulse with 110 pm central wavelength and —9 x 1077 fs—2

chirp rate to better match
the varying coherence length a further increase in efficiency can be obtained, reaching 300
fold gain in the peak intensity of the radiation over the IR-only case (Figure I11.33).

To show that the increased cutoff is indeed the result of QPM caused mainly by mod-
ulating the phase and not the emission rate, we use trajectory calculation to analyse the
phases and intensity of the harmonic in question. The phase and intensity of the propa-
gated IR field is used as input in a 1D model that uses the saddle-point approximation to
calculate HOH emission along the propagation axis. Then the emissions are coherently
summed to get the propagated harmonic intensity and phase at each point along the
axis. The results are shown in Figure I11.34. Despite using only one set of short-to-cutoff
trajectories the main features of harmonic intensity increase are well reproduced by the
1D model. It can be seen that the phase difference stays in the constructive zone over

longer regions, the main requirement for QPM by phase modulation.

In Figure II1.35 we compare harmonic spectra on a logarithmic scale, obtained in
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Figure II1.83: (a) Black solid line: THz-free variation of H111 intensity. Green
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Figure II1.34: Variation of the H111 dipole phase and total harmonic phase with-
out (a) and with THz field present (b). In (c) and (d) red/green dots show the phase
difference between propagated and generated harmonics with scale on the left. Black
line: harmonic intensity, scale on the right. (c) IR-only case; (d) THz-assisted case.
Notations as used in section I1.4.

different conditions. The black line indicates the spectrum produced in a very thin (20 pm)
target with the IR pulse alone, which gives us practically the single-atom spectrum, with
the expected cutoff located at harmonic 111. The conversion efficiency is very low due to
the short cell. The red line indicates the spectrum produced by the IR pulse recorded at
the position in cell where we obtained the highest harmonic intensity, i.e., 2 = —40 pm
[cf. Figure II1.33]. We observe that harmonics in the lower plateau (below harmonic 70)

experience an increase (&~ 10? times) with cell length, as more atoms contribute to the
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Figure II1.35: Logarithmic plot of HH spectra. Black (1): harmonic spectrum gen-
erated with IR-only after 20 pm propagation. Red (2): IR-only spectrum at the posi-
tion of mazimum harmonic intensity (z = -40 um). Blue (3): spectrum obtained with
THz-assisted HHG at the position of maximum harmonic intensity (z = +260 pm,).
THz pulse was linearly chirped such to best match the on-axis periodicity of harmonic
111. Vertical line: position of harmonic 111.

HHG process, and apparently phase matching is favourable. For the higher plateau and
cutoff harmonics we observe no significant yield enhancement with increasing cell length,
which is explained by the phase-mismatch discussed in detail for harmonic 111.

The blue line depicts the spectrum obtained with the chirped THz pulse assisting the
HHG process at the position in the cell where the harmonic intensity reaches its maximum
(z = 260 um). Since the THz parameters were chosen to optimize QPM for harmonic
111, the spectrum is enhanced in that range. For this harmonic we obtain ~1060 times
increase in the maximum harmonic yield after ~1200 pm propagation compared to the
yield after 20 pm. With perfect phase matching and constant emission rate the harmonic
yield should have increased quadratically with propagation distance, resulting in a ~3600
times enhancement. Our QPM method reaches almost 30% of this value while the emission
rate is decreasing.

Finally we note that in the geometry sketched in Figure II1.30 for the used THz
field strength, duration and spot size, we would need 70 mJ THz pulse energy which is
more than 2 orders of magnitude larger than available now in one-cycle THz pulses [193,
194]. However this can be significantly reduced by using other geometries, as described
previously. Moreover, as shown in section III1.4, for a specific photon energy the needed
assisting field intensity scales with the wavelength of the generating field as A~2, reducing

the needed assisting pulse energy when using MIR fields for harmonic generation.

I11.5.4 Summary

We analysed the possibilities of using THz pulses to enhance harmonic generation effi-

ciency in a phase-mismatched environment.

e T4.c Using a 1D model I have predicted that HHG can be enhanced by

perpendicularly propagating long-wavelength fields at photon energies
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above the phase-matching limit. I calculated the amplitude of the opti-
mal THz field that was used in 3D numerical calculations which verified
that these fields are able to induce QPM. In a case study, I have found an
increase in efficiency of more than two orders of magnitude around the
region of the single-atom cutoff. A chirped THz field, matching the co-
herence length of the generated harmonics was found to further increase

the generation efficiency.

Legal notes

Parts of the text in this section and some of the figures have been taken over from “K.
Kovacs et al., Phys. Rev. Lett. 108, 193903, Copyright (2012) by the American Physical
Society”.

II1.6 Pressure dependence of XUV group delay

So far we have presented results of numerical calculations proposing new ways to generate
SAPs or enhance the efficiency of HHG and tried to explore the applicability of advanced
laser tools in attosecond pulse generation. In this section we present an experimental
study of macroscopic processes in attosecond pulse generation, by measuring the effect of
generating gas pressure on the delay of attosecond pulse trains.
As described in section I1.5 in RABITT the recorded signal of sideband ¢ 4+ 1 can be
expressed as
S(1,wes1) = C1 + Cocos[2wi (T + 701, + 7411, (I11.12)

where 7 is the delay between the XUV and IR fields, 7,44 is the attosecond group delay and
¢4, is the atomic delay. Because the absolute value of 7 is not known, the absolute value
of 7,41 cannot be extracted from a simple RABITT measurement, only its variation over
the harmonic spectrum. However, if one manages to reproducibly stabilize 7 between
different RABITT measurements, then any variation of T;j_l or 7,41 can be measured
with attosecond accuracy. To obtain the results presented here we used a stabilized
interferometer for RABITT to measure the variation of XUV group delays 7,41 as a

function of gas pressure in the generation cell.

II1.6.1 Experimental setup

These measurements were done at the Atomic Physics department of Lund Universitet.
For harmonic generation we used 800 nm 30 fs long, 3 mJ laser pulses at 1 kHz repetition
rate from a Titan:Sapphire laser with a two-stage amplifier system.

In the RABITT measurement the 800 nm pump beam is focused by a parabolic mirror
(f=45 cm) into a 6 mm long cell, synchronously pumped with Argon gas at 1 kHz. The

generated harmonic beam passes through a 200 nm thick aluminium filter to eliminate
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the IR and low-order harmonics. Then it passes through a hole in the curved mirror
which is used to recombine the XUV and probe IR beams. Both beams are refocused
with a grazing incidence toroidal mirror (f=30 cm) into the target area of a magnetic
bottle electron spectrometer, which redirects photoelectrons to micro-channel plate am-
plifying the signal. The detector of the MBES is also synchronized with the laser pulse,
and the photoelectrons’ time of flight from the target area to the detector (which fall
into the several hundred ns time scale) can be used to separate electrons with different
kinetic momentum. This allows the determination of the corresponding harmonic photon
energies, as we have seen in subsection I1.5.1. The delay between the pump and probe
pulses can be varied using a piezoelectric translation stage.

To achieve attosecond stability of 7 between consequent RABITT scans, we used an
actively stabilized Mach—Zehnder interferometer as a basis for the RABITT setup as
depicted in Figure I11.36. In the pump arm of the interferometer, after the IR pulse
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Figure II1.36: Scheme of the experimental setup. Details in the text.

passes through the generation cell, a D-type mirror is used to redirect a small portion of
the beam. In the probe arm we made use of the leak through the holey recombination
mirror: the part of the probe beam that passes through this mirror is recombined with the
redirected pump beam. With a slight angle between the two beams these produce spatial
interference fringes along their cross-section, which move depending on the phase-delay
between the fields. These fringes are recorded with a CCD camera for further analysis.
Selecting a part of the recorded image with clear interference structure and determin-
ing the phase by Fourier-transforming the modulation we were able to trace the slight
fluctuations in the length of the interferometer. With active feedback these fluctuations

could be compensated for in the delay stage of the probe arm. Tracing the movement of
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the fringes during the RABITT scans, the delay between the two fields can be readjusted
before a new RABITT scan, allowing the consequent recording of RABITT traces with
the same 7, and the measurement of any variation of the other delays (7% or 7,.1).

Using this method we assumed that the stabilization part of the interferometer, after
the D-shaped and recombination mirror, is not a source of instability. To test this we
did consequent RABITT scans with the same generating pressure and detection gas (i.e.
keeping both 7% and 7,.; the same) and compared the measured sideband phases. We
found that the sideband phases were slowly moving for about 1.5 hour after aligning the
system, however good stability is achieved after this. The slow shifts in delay between
the two arms were traced back to the heating of the recombination mirror by the laser
beam, which stopped after the thermalisation of the system.

After stability has been achieved we did alternate scans with different gas pressures in
the generation cell. We had no direct access to the gas pressure present in the generation
cell, just to the background pressure in the vacuum chamber, therefore we could only
estimate the real pressure in the cell, and we shall refer to the measured background
values in the following. These values are of the order of a few pbar, while in the cell we
estimate pressures around several tens of mbar.

It should be noted that the active stabilization locked the phase of the probe to the
pump beam, after the latter passed through the gas cell, therefore compensating for
any phase delay appearing in the generating chamber due to the changing propagation
conditions. As a result the group delays we are measuring are relative to the generating

IR pulse after the gas cell.

II1.6.2 Measurement results

We have optimized the gas pressure for the highest XUV intensity (achieved at
2.5 x 1073 mbar) and used RABITT scans taken at this pressure for reference. We
have taken RABITT scans alternating the pressure between the reference value and
other target values to analyse the effect of macroscopic processes on the group delay of
attosecond pulses. As apparent in Figure I11.37, a slow drift between pump and probe
beams was still observable in the measurements, however it is much smaller than the
targeted effect, and it is close to linear. To increase the accuracy we averaged the delays
calculated from the two reference measurements, done before and after the measurement
at the target pressure.

Since the absolute value of the delay between the XUV pump and IR probe beams in
the measurement is still not known, we have chosen an arbitrary sideband delay as 0, and
we present averaged group delay variations in Figure II1.38. It is apparent that higher-
order harmonics are delayed compared to lower orders, as expected from short-trajectory
radiation (although these delays already incorporate the effect of the metallic foil and
atomic delays). As seen in Figure I11.38, when increasing the pressure in the generation

cell, two things become apparent: 1) we reduce the GDD of the generated pulse (which

99



1.4 — T T T T T T T T T T

—_ I —=—2%10° mbar
g 16k —e— 4+10° mbar ./ |
9 / _
g S
§ 8 / |
-c - <4
‘D
S 20t .
g | _— |
c _/'

-22 C | . | . | . | . | . | i

1 2 3 4 5 6

Reference measurement number

Figure II1.37: Phase of sidebands 18 in consecutive measurements done with al-
ternating pressure.

= 1.5¢10°mbar
300 -—e— 2.5¢10°mbar
| —=— 3.5510°mbar

o 200 F—e— 4.5*10°mbar 8
56 100 ' .
0 L 4
-100+ .
14 16 18 20 22
Pressure

Figure IT11.38: Measured sideband delays at different generating pressures.

has already been discussed in [69] for example) and 2) we introduce a negative GD for
the harmonic pairs.
Apart from constant factors, we can write the oscillations in the RABITT measurement

as

S(T, qu) = Cl + OQCOS [Tp — Tq+1] s (11113)

where 7,41 = (¢g12 — ¢4)/(2w1) is related to the group delay of harmonic pairs and 7, is
the delay of the probe pulse.

Since in our stabilized interferometer the phase of the probe field is locked to the phase
of the generating driver field which passed through the cell, 7, can be related to the phase
delay of this generating field. As a result, apart from a constant factor we can write that:
T, = ¢1/w, where ¢, is the phase of the fundamental field at the end of the cell. The GD
of attosecond pulses can be related to the phases of the generated harmonics at the end of
the cell. Again, apart from a constant factor we can write that 7,41 = (g2 — @)/ (2w).
Thus the variations of the measured group delays represent the temporal walk-off of the
generated attosecond pulse with respect to the generating driver field.

The cause of this walk-off can be interpreted using the one-dimensional model pre-
sented earlier. As shown in section II.4 and in particular in Equation I1.26, the phase

of a harmonic at the end of the cell depends on the wavevector mismatch. This results
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in a phase mismatch between the generated and propagated fields ¢, — ¢,. At the end
of the cell — if the atomic phase is negligible — this can be written as: Ag, = ¢, — q¢1.
Introducing this quantity into Equation II1.13, the variations of the measured sideband
delays with pressure can be written as:

_ Agyyr — Agy

ATy = =121 (111.14)

In a similar manner as in case of Equation I1.26, in an absorbing medium the phase
mismatch can be written in terms of wavevector mismatch Ak,, medium length L and

absorption coefficient kg = - 27/A. In a compact form this reads [69, 8]:

tan (Ak,L/2)

L
A¢y = Ak, = —
¢ = Ak — arctan Lﬁanh (ksL/2)

} + arctan [%} ) (II1.15)
ks

This shows that the temporal walk-off appears simultaneously with phase mismatch, that
— in most cases — is not the same for different harmonics. Absorption also ameliorates
this temporal walk-off, as it effectively limits the length of the useful generating medium.
Because the absolute pressure in the gas cell is not known, the calibration of a theoretical
model that would reproduce the results, is not straightforward. From the dependence of
harmonic intensities on the background pressure, the generation pressure can be approx-
imated using for example Equation I1.38, (assuming a linear relation between the two
pressure values). And, in fact, a similar method has been used in the theoretical model
presented in [8] to interpret the results.

The most important consequence of the results presented here is the fact that the delay
between attosecond pulses and probe fields is changing with pressure. This emphasises the

importance of a stable generation pressure during attosecond pump-probe experiments.

I11.6.3 Summary

e T5 1 participated in an experimental campaign measuring the variation of
attosecond group delays with the pressure present inside the generation
cell. We found that by increasing the pressure the group delay of the
attosecond pulse train decreases, in agreement with a one-dimensional
propagation model. Due to this, for the stability of attosecond pump-
probe measurements to be maintained, not just the optical path lengths,

but the generation gas pressure also has to be kept constant.
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IV  Final summary

In this thesis an introduction was given to the theory of attosecond pulse synthesis by high-
order harmonic generation in gases. The advantages of the HHG technique in attosecond
pulse generation was discussed. The basic physics of HHG was presented by an intuitive,
classical model, and a few ways to calculate the atomic response to the strong generating
laser field were summarized.

The basic physics of macroscopic processes behind HHG were discussed in more detail,
like phase-matching, quasi-phase-matching. Both one and three-dimensional models were
introduced that can be used to study these important macroscopic effects.

Using these models:

T1.a I have analysed high-order harmonic generation in the presence of strong THz
fields, and I have shown that: THz pulses can cause a large extension of the cutoff with
reduced GDD, and they can redistribute the amplitude of electron trajectories, making
the shorter trajectory class more dominant. Besides the different trajectory lengths, the
increased field strength at the moment of ionization (due to the shifted ionization times)
also contributes to the stronger yield from short trajectory radiation.

T1.b I have studied how in a macroscopic environment the generation process differs
significantly from the single-atom results, and shown that, even in cases when longer
laser pulses are used (8, 10 or 12 fs) and the single atom response would yield multiple
attosecond pulses, propagation effects can eliminate the contribution from certain sets of
trajectories, yielding an isolated attosecond pulse at the exit of the gas cell. The large
bandwidth of these pulses greatly decreases their transform limit. I have also shown
that the long-trajectory components are also cleaned from the surviving pulse during
propagation, resulting in an effective decrease of pulse duration, making the technique
promising for obtaining a reliable source of short, isolated attosecond pulses with good
contrast and low divergence. By careful adjustment of the parameters, such as gas pressure
and peak intensity of the laser pulse, and by adequate spectral filtering short SAPs can
be produced in a straightforward manner (without post-compression).

T2.a I have analysed the importance of focusing geometry on phase matching and
harmonic yield in HHG when the IR pulse is assisted by a THz pulse, using experimen-
tally verified parameters. I have shown that, despite the limited THz pulse energy, the
most powerful SAP can be produced by relatively loose focusing. 1 attributed this to
the deteriorated phase-matching conditions under strong focusing of the long-wavelength
fields.

T2.b I have shown that the assisting field can be used to compensate phase mismatch
that arises during harmonic generation and the selection of the short or long trajectory

components (defining the sign of the resulting SAP’s chirp) can be achieved by varying
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the delay between the THz and IR pulses.

T3.a I have worked out a model suitable for further optimization, which is based on
the single atom response calculation with limited temporal integration. I have shown
with macroscopic HHG modelling that the Lewenstein integral is able to partially predict
a good approximation of the macroscopic behaviour of the attosecond pulse generation
process. I have interpreted the two distinct ways (consecutive half-cycle or short and
long trajectory radiation in a single half-cycle generation) of the double attosecond pulse
generation.

T3.b I have modelled attosecond pulse generation by the selected driver waveforms
with a 3D macroscopic model and shown that the pulse shortening achieved by the op-
timization remains robust in a macroscopic environment. I have also shown that in case
of Gaussian generating beams, tight spatial filtering of the harmonic beam is required for
the pulse duration to come close to the ones obtained in the optimization. Moreover, I
predict that double attosecond pulses generated from short and long trajectories are only
reproducible macroscopically in very inefficient generating conditions.

T4.a I have described a method to calculate the phase-modulation of harmonics by
a weak assisting field in terms of the generating laser pulse’s parameters, depending on
the two fields’ relative wavelength and the length of the electron trajectory in question. I
have discussed the relationship between the simplest case of a counter-propagating, same
wavelength assisting field (analytical treatment), to the case when a different wavelength
assisting field is used, and showed that the two can be related through a wavelength-
dependent correction factor.

T4.b I have analysed the bandwidth of QPM methods and formulated an approximate
expression to calculate it. I have shown that the dependence of phase-modulation ampli-
tude on the harmonic order is not limiting the QPM bandwidth significantly when the
method is applied to a large number of coherence periods. Therefore, in these cases the
bandwidth does not depend on the shape of the applied assisting field. On the other hand,
I have shown that trajectory interferences can significantly change the fine-structure of the
QPM efficiency. I have also discussed the optimal field profile of assisting fields for short
and long trajectory components for efficient QPM, and I have found that short trajectories
have the advantage of requiring the same profile for driver and assisting beams.

T4.c Using a 1D model I have predicted that HHG can be enhanced by perpendic-
ularly propagating long-wavelength fields at photon energies above the phase-matching
limit. I calculated the amplitude of the optimal THz field that was used in 3D numerical
calculations which verified that these fields are able to induce QPM. In a case study, I
have found an increase in efficiency of more than two orders of magnitude around the
region of the single-atom cutoff. A chirped THz field, matching the coherence length of
the generated harmonics was found to further increase the generation efficiency.

T5 I participated in an experimental campaign measuring the variation of attosecond

group delays with the pressure present inside the generation cell. We found that by in-
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creasing the pressure the group delay of the attosecond pulse train decreases, in agreement
with a one-dimensional propagation model. Due to this, for the stability of attosecond
pump-probe measurements to be maintained, not just the optical path lengths, but the

generation gas pressure also has to be kept constant.
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V Magyar nyelvi osszefoglald

V.1 Bevezeto

A tudomaéany fejlédésében kiemelkedO szerepet jatszik a természet alaptorvényeinek
feltarasa és minél pontosabb megismerése. A legelsd torvények, amelyeket az ember
felismert olyan jelenségeket magyaraztak, melyeket érzékszerveinkkel kozvetlentil észlelni
tudunk. A kozvetlen érzékeléshez tobbek kozott az sziikséges, hogy a folyamatra jellemzé
idoskala az érzékszerveink sebességénél lassabb legyen: maéasodpercek, percek vagy akar
évek alatt jatszodjon le. A tudomany egyik legfobb hajtéeleme az emberi kivancsisag,
ami oda vezetett, hogy megprobaljunk olyan jelenségeket is megmagyarazni, melyek az
emberi szem altal kozvetleniil nem észlelhetd idotartamok alatt mennek végbe.

A gyors folyamatok tanulmanyozasahoz olyan érzékel6 berendezéseket kell gyartanunk,
amelyek egyrészt képesek érzékelni és idoben felbontani ezeket a folyamatokat, valamint
képesek informaciot (pl. fényképet) rogziteni a folyamat idébeli lefolydsdnak kiillonbozé
fazisairél. A fényképezés alapjait képezd tudas mar a 19-edik szdzad végén az ember
rendelkezésére allt, és hamar kifejlesztették azokat az eszkozoket, amelyek segitségével
az emberi szem szaméara tul gyors jelenségekrol pillanatképeket lehet késziteni. Gyors,
egymas utani pillanatképeket készitve és ezeket lejatszva végiil elemezni lehet ezen je-
lenségek idobeli lefolyasat. A pillanatkép készitésekor nagyon fontos, hogy a fényképet
rogzité érzékelot csak nagyon rovid ideig érje fény, kiilonben a gyors folyamat részletei
elmosddnak.

Minél gyorsabb a vizsgdlandé folyamat, annal gyorsabb pillanatképet készité beren-
dezésre van sziikség. A mechanikus késziilékek idébeli feloldasat a mozgéd alkatrészek
tehetetlensége néhdny mikroszekundumra korldtozza (1 ps = 107% s). Az elektronikus
késziilékek akar nanoszekundumos vagy nagyon kiilonleges berendezések pikoszekundu-
mos idéskalan jatszodd folyamatokat is fel tudnak oldani.

Az ennél is gyorsabb folyamatok felolddsat viszont csak optikai eszkozokkel lehet
megvaldsitani, ahol a detektor sokaig késziti a képet, viszont a céltargyat csak nagyon
rovid ideig éri fény, igy csak az a pillanat keriil rogzitésre, amikor a céltargy meg
van vilagitva. Az ilyen eszkozok tehat nem gyors detektorokon, hanem nagyon roévid
fényimpulzusokon alapulnak. Ezek idobeli feloldasat a modusszinkronizalt 1ézerek altal
keltett ultrarovid impulzusok jelentésen megnovelték, igy mar az ezredforduld elott le-
hetévé valt a femtoszekundumos skéldn lejétszédé folyamatok vizsgalata (1 fs = 10715 s).
Mivel 1 fs alatt a fény is mindossze 0,3 pm tavolsadgot tesz meg, nyilvanvald, hogy
az ilyen eszkozok ennél aprobb részecskék vizsgalatara alkalmasak. Ebben az ido-

és mérettartomanyban az atomok molekulan beliilli mozgéasa figyelheté6 meg, példaul
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disszociacio, izomerizacié vagy mas kémiai folyamatok soran, igy az ezzel foglalkozo tu-
domanyag a femtokémia nevet kapta.

Ezen tudoményag megalkotéjat, Ahmed Zewailt 1999-ben Nobel-dijjal tiintették ki,
és a dijatadd tinnepségén kifejtette, hogy szerinte minden alkalommal, mikor az elérheto
idofelbontast megnoveljiik legaldbb két vagy harom nagysagrenddel, varhatéan olyan je-
lenségeket fogunk felfedezni, amire elore nem is gondoltunk.

Tovabb novelve az idéfelbontast eljutunk az attoszekundumos tartomanyig
(1 as = 10718 5) és azokig a részecskékig, amelyek ezen a tartomdnyon mozognak: az
elektronokig. Az attoszekundumos skalan lejatszodé folyamatok tehat az elektron
mozgasaval kapcsolatosak, melyeket elsésorban a fény anyaggal valé kolesonhatasa indit
utnak. Ilyenek pl a fotoionizacié, Auger bomlés, stb. Az ilyen folyamatok kozvetlen,
idobontott vizsgalatahoz attoszekundumos impulzusokra van sziikség.

A Fourier tételt alkalmazva kimutathaté, hogy egy 100 as hosszi impulzus
eléallitasahoz majdnem 20 eV savszélességli sugarzas sziikséges. Mivel a hagyomanyos,
lathat6 vagy infravoros sugarzast kibocsatd lézerek kozponti hullamhossza 1-2 eV
fotonenergianak felel meg, egyértelmi, hogy ezek nem alkalmasak attoszekundumos
impulzusok keltésére. Az attoszekundumos tartomany eléréséhez legaldbb ultraibolya
(UV), de lehetéleg extrém ultraibolya (XUV) vagy rontgensugarzés sziikséges. Viszont
a nagy savszélesség onmagaban nem elegendd rovid impulzusok eldallitdsahoz. Ahogy
a lézereknél is, a kiilonbozo frekvenciaju komponensek fazisanak szinkronizaldsaval
érhet6 el, hogy az impulzus a lehet6 legrovidebbre, a spektrum szélessége altal
korlatozottra csokkenjen. Ezek alapjan nyilvanvalé, hogy az attoszekundumos

impulzusok eléallitasahoz szélessavi, koherens XUV vagy rontgen forrasra van sziikség.
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V.2 Tudomanyos el6zmények

Az XUV és rontgen tartomanyban koherens, szélessavi és fazisszinkronizalt sugarzas
forrasa a lézerek altal, szilard feliileten vagy gazokban keltett magasrendii felharmonikus
sugarzas. Mindkét esetben erds, femtoszekundumos, infravoros impulzus kelti a sugarzast,
a szilard feliiletrol visszaverddve, vagy a géazon athaladva.

A szilard feliileten torténo keltésnek az a legfontosabb elonye, hogy a hasznalt 1ézertér
intenzitasanak nincsenek jelenleg ismert elvi korlatai, ezért a keltett sugarzas nagyon
intenziv lehet. A hatranya viszont az, hogy eleve csak igen nagy kontrasztu és nagy inten-
zitasu lézerimpulzussal miikodik, ami tonkreteszi a feliiletet, ezért minden kelt6 impulzust
nfriss” feliiletre kell iranyitani. Ezt altalaban a feliilet mozgatasaval valdsitjak meg, ami
instabilla teszi a visszavert nyalabot és korlatozza az ismétlési frekvenciat.

A gazokban keltett harmonikusok elénye az alacsony divergencia, jél kontrolldlhato
fazis és j6 térbeli koherencia. Ezek az elényok, a kelt6 tér korlatolt intenzitasa és a folya-
mat viszonylag alacsony hatasfoka ellenére, el6térbe helyezik ezt a modszert az attosze-
kundumos impulzusok keltésében és foként az alkalmazasaban, igy manapsag az attosze-
kundumos impulzusok keltésének ez a legelterjedtebb modja. Ennek a disszertacionak a
téméja a magasrendii felharmonikusok (HOH) és attoszekundumos impulzusok keltésének
vizsgalata gazokban, els6sorban numerikus modszerekkel. Az dolgozat elsé részében a fo-
lyamat tudoméanyos hatterét mutatom be kiilonos figyelmet forditva azokra a mdédszerekre,
amelyeket a késébbiek folyaméan hasznalni fogok. A masodik rész az altalam elért 4j tu-

domanyos eredményeket foglalja ossze.

V.2.1 Magasrendi felharmonikusok keltése gazokban

A magasrendii felharmonikus keltés (HHG) gazokban a kovetkezOképpen jatszédik
le: egy intenziv (=10% W/cm? csicsintenzitdsi) ultrarévid impulzust egy, vakuumba
helyezett gazcellaba vagy gaznyaldbba fokuszalunk. A lézerimpulzus altalaban
néhany(tiz)femtoszekundum hosszisdgi és infravords tartomanyba esé kozponti
hullamhosszal rendelkezik, a gaz pedig rendszerint nemesgéz.

A nemesgaz hasznalatdnak elsésorban azért van jelentOsége, mert ezeknek nagy az
ionizdcids energiajuk és alacsony a nemlinearitasuk, igy az erds 1ézertér is képes athaladni
rajta elkeriilve az onfokuszalast és azt is, hogy a gazatomok teljesen ionizaltta valjanak.
A lézertér és a gazatomok kolcsonhatdsa soran paratlan rendi harmonikusok keletkeznek
(az atomi rendszerek inverzids szimmetridval rendelkeznek, igy paros rendi folyamatok
altalaban nem jelennek meg). Az alacsonyrendii harmonikusok (3, 5, 7, stb.) intenzitdsa
perturbativ torvény szerint csokken igy a keltett spektrumot a harmadik harmonikus
dominalja. Emiatt a keltett tér femtoszekundum hosszisagu impulzussorozatbol all.

A HOH-k intenzitdsa azonban kozel azonos, ezért az alacsony harmonikusok
kisziirésével az effektiv savszélesség jelentosen novelhetd. Ezt a sziirést altalaban egy
vékony (100-200 nm) fémsziir6vel (Al, Zr, stb.) lehet elvégezni. Az igy keletkezett XUV

107



IR

(e}

=
L o

[T g

IS
il

v ol ol sl sl sl sl sl

_—
e <
N

Frekvenciakép
Intenzitas

—
<
o

i
| 11N

1‘ 7”13‘ ‘19‘ ‘25 31 1 7 13 19 25 31 1 7 13 19 25 31
Harmonikus rend Harmonikus rend Harmonikus rend

Intenzitas

00 05 10 15 20 00 05 10 15 2000 05 1.0 1.5 20
1d6 (optikai ciklus) 1d6 (optikai ciklus) 1d6 (optikai ciklus)

V.1. dbra: A magasrendi felharmonikusok keltésének sematikus dbrdzoldsa. A
(1) lézer és (2) keltett tér spektrdlis- és idéképbeli struktirdja a fémszird elétt. (3)
Harmonikus spektrum és attoszekundumos impulzusok a spektrdlis és térbeli szirés
utdn. Az idéképbeli intenzitdsok nem dsszemérhetdk.

nyaldbot attoszekundumos hossziisédgu (60-300 as) impulzusok sorozata alkotja.

V.2.2 Egy-atom modell

A HHG folyamatdnak alapja egyetlen atom szinten koénnyen szemléltethetd egy
félklasszikus modellel. A lézertér a kezdetben alapallapotban 1évo elektront optikai
ionizacio soran a kontinuumba kényszeriti, ahol ez, a lézer elektromos terében gyorsulva
eltavolodik az atomtorzstol. Mikor a tér eléjelet valt, az elektron visszajuthat az iontorzs
kozelébe és rekombinaldodva az energidja kisugarzodik egyetlen nagyenergiaju foton
formajaban.

Az elektron palyajat klasszikus Newtoni mechanika torvényei alapjan kiszamolva
is egyértelmiivé valik, hogy minden optikai félciklusban két elektrontrajektoria-csoport
kiloénboztetheté meg, melyeket rovid illetve hosszu trajektéridknak neveznek. A legma-
gasabb elérhetd fotonenergia pedig a kelto tér intenzitasatél és hullamhosszatdl flige és
az I,+ 3,17U, képlet alapjan szamolhat6 ki (1, az ionizdcids energiat, mig U, a pondero-
motoros energiat jeloli, ldsd a I1.6 egyenletet). Mivel a keletkezett fotonok az elektrontél

oroklik tulajdonsagaikat, az elektronok visszatérési ideje meghatérozza a keltett sugarzas
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csoportkésleltetését. A visszatérési idoket elemezve kidertil, hogy a révid trajektériak po-

zitiv, mig a hossziak negativ csérppel rendelkeznek (a vivéfrekvencia idében né, illetve

csokken).
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V.2. dbra: A klasszikus modell alapjin szdmolt elektron trajektoridk (fent). A
szinskdala az elektronok kinetikus energidjdt illusztrdlja, az atomtorzshéz vald viss-
zatérés pillanatdban. Az dbra alsé részén a rovid és hosszu trajektoridk ionizdcids
(piros vonal) és visszatérési iddpillanatai (kék vonal) vannak illusztrdlva. A révid
szaggatott vonal a révid, a hosszi szaggatott vonal pedig a hossziu trajektoridkhoz
tartozo iddpillanatokat mutatja.

Minél hosszabb az elektron trajektoridja, a keltett sugarzas tulajdonsagai annal
érzékenyebben valtoznak a kelté tér alakjatol fiiggoen. Ez az érzékenység a harmoni-
kusok fazisara is kihat, és az egyik jelentos kovetkezménye, hogy a hosszu trajektéridk
altal keltett sugarzas divergensebb, ezért egy irisszel nagyrészt kiszlirheto.

Egy-atom szinten a keltett HOH sugdarzast a Lewenstein integral segitségével lehet
kiszamolni. Ez a Schrodinger egyenlet analitikus egyszeriisitése olyan esetekre, amikor
a kelto tér erOssége Osszemérhetd az egyetlen alapallapoti elektronra haté Coulomb tér
erdsségével, igy az ionizacié és rekombindcié kozott (mikor az elektron az iontdrzstél
tavol van) az elektronra haté Coulomb tér elhanyagolhat6. Az integral segitségével
kiszamolhatjuk az atom lézertér altal keltett dipél momentuméat barmely pillanatban.
Az id6figgd dipolmomentumbdl ezutdan megbecstilhetjiik a dipolgyorsuldst, ami egyben a
keltett tér forrasa is. Ennek a Fourier transzformaltjabol megkapjuk a keltett harmoni-
kus spektrumot, ami spektralisan sziirés és inverz Fourier transzformalas utan megadja a

keltett attoszekundumos impulzusokat.

V.2.3 A fazisillesztés feltételei

Mivel a HOH keltés folyamata kevesebb mint egy optikai ciklus alatt lejatszédik, és az ato-

mok kozotti tavolsdg jelentosen nagyobb mint az elektron maximalis kitérése, az elektron
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fazisat nem befolydsoljak kiils6 hatasok (pl. iitkozések) csak az iontorzs és a kelté elektro-
mos tér tulajdonsagai. Ennek eredménye, hogy a HHG egy koherens folyamat és a keltett
sugarzas orokli a kelto lézertért tulajdonsagait. A koherens folyamatokra jellemzben a
keltett fotonok szama a kolcsonhato részecskék szamanak négyzetével aranyosan néhet,
amennyiben sikeriil biztositani, hogy a mérési ponton a részecskék altal keltett sugarzasok
er6sitsék egymast, vagy mas szavakkal, hogyha a fazisillesztés feltételei biztositottak.

A fazisillesztést befolyasolja a lézertér és a harmonikus tér fazissebességei kozti
kiilonbség, és a lézertér intenzitasanak térbeli eloszlasa. Mivel a keltett harmonikusok
a keltésre hasznalt gazatomok ionizaciés energiajanal nagyobb fotonenergidval rendelkez-
nek, a fazissebességiik ebben a kozegben nagyobb mint c¢. A kelto IR sugarzas frekvenciaja
viszont a legerdsebb abszorpcids vonalak alatt helyezkedik el, igy a fazissebessége min-
dig alacsonyabb mint ¢. Ennek kovetkeztében a fazisillesztés feltétele alapesetben nem
teljesiil.

A HHG sordn azonban mindenképp keletkeznek szabad elektronok is. A szabad
elektronok alaptulajdonsiga ez erds, negativ polarizdlhatosag, igy ezek jelentésen
novelik az elektromagneses sugarzas fazissebességét. A szabad elektronok okozta
torésmutatévéltozds  (plazma-térésmutaté) —ardanyos a  szabadelektron-siirtiséggel
és négyzetesen noé a sugarzds hulldimhosszaval.  Ennek kovetkeztében az IR tér
fazissebességét jelentOsen befolydsolja a gaz nyomaésa és az ionizacios fok, viszont az
utobbi az XUV fazissebességére alig gyakorol hatast.

Csupan az eddig emlitett hatasokat figyelembe véve az IR és XUV sugarzas
fazissebessége Osszehangolhatd az ionizaciés fok szabalyozasaval, amit a lézerimpulzus
hossza és intenzitasa hataroz meg. Mivel igy a plazma, mint a semleges atomok okozta
torésmutatévaltozas egyenesen aranyos a részecskestriséggel, a megfelelé ionizacié
mellett a fazissebességek megegyeznek, fiiggetleniil a gdz nyomasatol.

A fékuszalt lézernyalabokndl a tér fazissebességét azonban befolyasolja a fokusz
kozelében fellépd fazisugras is (Gouy fazis). Ez egy nyomastdl fiiggetlen tagot hoz be
a fazisillesztés egyenletébe, igy a fazisillesztés egy adott fokuszalas és ionizaciés fok mel-
lett csak jél meghatarozott nyoméason teljesiilhet. A helyzetet tovabb bonyolitja a tra-
jektéria hosszatol fiiggd atomi fazis is, ami miatt a keltett harmonikus fazisa fliggévé
valik a lézertér intenzitasatol. Ez a tag noveli a keltett nemlinearis polarizacié effektiv
fazissebességét a fokusz elott és csokkenti a fokusz utan. Ennek a hatasa viszonylag kicsi
a rovid trajektoridk esetén, ezért sok féazisillesztési modellben elhanyagoljdk. FEz azzal
indokolhatd, hogy adott fokuszalds mellett altalaban a Gouy fazisugrds sokkal nagyobb
mértéki fazissebesség-valtozast okoz, igy az domindlja a fazisillesztés feltételeit.

A kiilonboz6  komponensek  jellemezhetok a  hozzdajuk  tartozd  effektiv
hullamvektorokkal, és a hatasuk az V.3 dbran van oOsszesitve. A fentiek alapjan
elmondhatjuk, hogy adott fokuszdlas mellett a kelté tér Gouy fazisa okozta
fazissebességnovekedés csak akkor kompenzalhaté, hogyha a  kelté gazban a

torésmutatébol adodéd fazissebesség az IR térre alacsonyabb, mint az XUV-ra. Ez csak
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V.3. dbra: A fdzisillesztés kiilonboz6 komponenseit dOsszefoglalé dbra. A

fazisillesztés teljesiiléséhez, kizegben terjedd XUV tér hullimvektora (kék) meg kell
egyezzen a keltett XUV tér hulldimvektor-komponenseinek az dsszegével (piros). A
vektorok eqy c-vel mozgo koordindtarendszerben vannak dbrazolva és hosszuk nem
méretardnyos.

egy adott ionizacios fok alatt valésithatd meg, ami hatart szab a keltésre hasznélt
impulzus intenzitdsanak. Ez a hatar az impulzus hosszatdl, kozponti frekvenciajatol és
az adott géz tulajdonsagaitdl fiigg. Osszességében elmondhaté, hogy a leggyakrabban
hasznalt 800 nm-es hullamhosszi, néhanyciklusi impulzusokkal, argonban a legnagyobb
megengedett IR intenzitas hozzavetdlegesen 70 eV energiaju fotonok keltésére elegendo,
mig neonban ez a hatar 120 eV kornyékén huzdédik. Ezek az értékek azonban csak gyenge
fokuszalas mellett kozelithetok meg a gyakorlatban hasznalt gaznyomaéasok mellett, az

er0sebb fokuszalas alacsonyabbra viszi a hatarokat.

V.2.4 Kvazi-fazisillesztés

.....

(QPM) segitségével. HOH-k esetén a QPM megvaldsithaté példaul a keltett harmoniku-
sok fazisanak moduldlasaval, amit egy gyenge, a lézertdl fiiggetlen, kiilsé tér hoz létre.
Ez a kovetkezoképpen képzelheto el: a keltett harmonikusok a fazissebességkiilonbségek
miatt csak egy korlatolt tavolsagon beliil interferalnak konstruktivan. FEzutan a hossz
utan a kiilsé tér megvéltoztatja a keltett harmonikusok trajektériajat gy, hogy =
fazisugrast idézzen el6, igy a kovetkezd térrészben ismét konstruktiv interferencia jon
létre. A kovetkezo cellarész végén a tér megsziinik, ismételt 7w fazisugrast okozva a
keltett harmonikusoknadl és a folyamat periodikusan ismétlodik, lehet6vé téve, a részleges
konstruktiv interferenciat hosszu gazcellak esetén is.

Az ilyen tipusi QPM azon a megfigyelésen alapszik, hogy egy gyenge kiilso tér a
térerdsséggel egyenesen aranyosan modulalja a HOH-k fazisat igy a fazismodulacié alakja
koveti az asszisztald tér alakjat. A fentebb leirt QPM megvaldsithaté példaul periodikus
sztatikus elektromos tér jelenlétében, amely négyszogjelszertien modulélja a keltett HOH-
k fazisat. Hasonlé mdédon szinuszos tér is képes QPM-et 1étrehozni. Ez megvaldsithato
példaul egy, a kelto 1ézertérrel szemben, vagy arra merolegesen halado, aranylag gyenge

elektromagneses hullammal.
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V.2.5 Haromdimenzidés, numerikus modell

A HHG folyamén fellépé makroszkopikus hatdsok tanulméanyozasat az eddig
osszegzett, egydimenzios modellek jelentésen megkonnyitik, viszont a pontos leirdshoz
haromdimenziés, numerikus modellek sziikségesek. Az altalunk hasznalt modell, a
hullamegyenlet megoldasan alapszik, paraxialis kozelitésben.

A korabban emlitett Lewenstein integral jol leirja a HOH keltés folyamatat, azon-
ban a levezetésénél alkalmazott kozelitések miatt nem alkalmas a gdzatomok nemlinedris
polarizacidjanak szamoldsara alacsony frekvencidkon. A HOH keltés erGssége viszont na-
gysagrendekkel alacsonyabb a perturbativ folyamatok erdsségénél, ezért a lézertér kozeg-
ben valé terjedése és a HOH keltés szétvalaszthato.

Ezek alapjén a lézertér terjedése perturbativ szinten kezelhetd, amennyiben figyelembe
vessziik a keletkez6 plazma hatésat. Ez megoldhaté az idofiiggd ionizécié és az ehhez
kapcsolodd idofiiggo torésmutatod kiszamolasaval. Mivel ezek a mennyiségek nemlinearisan
fiiggenek a kelto tér erdsségétol, a hullamegyenletet iterativ médon kell megoldani minden
lépésben. A gazcella bemeneténél a teret egy Gaussz nyalabbal kozelitve irjuk le, innen
pedig a hullamegyenlet megoldasaval propagaltatjuk tovabb.

Az igy kapott 1ézertérbdl a cella minden pontjaban kiszamoljuk az egy-atom valaszt a
Lewenstein integralt hasznalva, majd megoldjuk a hullamegyenletet a harmonikus térre,
az 1gy kapott egy-atom valaszt tekintve a sugarzas forrdsanak, valamint az abszorpciét
figyelembe véve. A dolgozat tovabbi részében kapott eredmények eléréséhez, a fentebb

osszefoglalt modelleket és mddszereket alkalmaztam.
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V.3 Eredmények

A fentebb emlitett modelleket hasznélva a kovetkezokben felsorolt, tézispontokba szedett
eredményeket értem el.

Tl.a A THz tér jelenlétében keltett magasrendii felharmonikus tulajdonsdgainak
vizsgalataval kimutattam, hogy a THz impulzus jelenléte jelentésen megnoveli az elérhetd
levagéasi energiat, csokkenti az impulzusok GDD-jét, valamint felerdsiti a rovid tra-
jektéridkbol szarmazo sugarzast a hossziakhoz képest. A trajektéridk hosszanak valtozasa
mellett az ionizacié pillanataban jelen levo - az eltolédott ionizaciés idok miatt - erésebb
elektromos tér is hozzajarul a rovid trajektoridk felerésodéséhez.

T1.b Megvizsgaltam a folyamat soran jelentkez6 makroszkopikus hatésokat és kimu-
tattam, hogy ezek lehet6vé teszik a hosszabb infravords impulzusokkal (8, 10 vagy akar
12 fs) val6 izolalt attoszekundumos impulzusok keltését. Ezekben az esetekben az egy-
atom modellek impulzussorozatot josolnak, viszont a makroszkopikus — fazisillesztési —
hatasok meggatoljak az impulzusok feler6sodését a lézertér egyes félciklusaiban.

Kimutattam tovabba, hogy a keltés soran a sugarzas megtisztul a hosszi
trajektoridkbdl szarmazé komponensektol, aminek hatdsara a keltett attoszekun-
dumos impulzus hossza is lerovidil. Ez igéretessé teszi a vizsgalt moddszert izolalt
attoszekundumos impulzusok hatékony keltéséhez. Igazoltam, hogy a paraméterek
(mint pl. gdznyomds, lézer intenzitds) megfelel6 megvalasztéasdval és a spektralis
sziirés hangolasaval rovid izolalt attoszekundumos impulzusok kelthetéek utodlagos
impulzuskompresszio nélkiil is.

T2.a Vizsgaltam a fokuszalasi hatasok szerepét a THz tér jelenlétében keltett HOH-k
fazisillesztésére, valos, kisérletileg igazolt THz impulzusok paramétereit hasznalva. Kimu-
tattam, hogy a limitalt THz impulzusenergia ellenére, a legintenzivebb izolalt attoszekun-
dumos impulzus relativ gyenge fokuszalas mellett hozhato 1étre. Ezt a hatast elsosorban
a hosszi hulldmhosszu tér erds fokuszdlasa altal okozott fazisillesztés-romlasnak tulaj-
donitottam.

T2.b Kimutattam, hogy az asszisztald tér alkalmas arra, hogy a fazisillesztést sze-
lektiven javitsa rovid vagy hosszu trajektoriak esetén. A szelekcidt a lézer és asszisztald
tér kozotti idokésleltetés valtoztatasaval lehet elérni és ezzel a keltett impulzus GDD-jének
el6jele is valtoztathatd.

T3.a El6terjesztettem egy — tovabbi optimalizalasban alkalmazhaté — modellt, amely
a Lewenstein integral korlatolt idétartomanyon val6 alkalmazésan alapul. Makroszkopikus
szamolasokat alkalmazva kimutattam, hogy ez a modell részben alkalmas az attoszekundu-
mos impulzusok keltésénél jelentkez6 makroszkopikus hatasok elorejelzésére. Ertelmeztem
a duplaimpulzus-keltés két kiillonb6zé mechanizmusét (egymas utani félciklusokbdl, vala-
mint révid-hosszu trajektériaparokbol keletkezhetnek duplaimpulzusok).

T3.b Makroszkopikus szamolasokkal modelleztem az optimalizalt lézerterek altal

keltett attoszekundumos impulzusok tulajdonsigait és kimutattam, hogy az egy-atom
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szinten elért impulzusrovidiilés makroszkopikus kornyezetben is megmarad. Kimutattam
tovabba, hogy Gausszos kelt6 nyaldb hasznalatakor a harmonikus nyaldb térbeli
sziirése elengedhetetlen a rovid attoszekundumos impulzusok elééllitdsahoz.  Ezen
feliil, a szamolasaim azt mutatjak, hogy a rovid és hosszu trajektoriaparokbdl keltett
duplaimpulzusok megvaldsitasa, a hatékonysag szempontjabol elonytelen makroszkopikus
paraméterek megvalasztasa mellett lehetséges.

T4.a Kidolgoztam egy moddszert, amely segitségével a gyenge asszisztald tér altal
okozott fazismodulacié amplitiddja meghatarozhatd a kelto és asszisztald tér valamint az
elektron-trajektériak paramétereinek fliggvényében. Targyaltam az Osszefiiggéseket azon
esetek kozott, mikor az asszisztdld és kelto tér hullaimhossza megegyezik, és mikor ezek
kiilonbozoek és kimutattam, hogy a fazismodulacié amplitidéja a két esetben hasonld
modszerrel szamolhato ki, mindossze egy korrekcids faktor bevezetése sziikséges, mely a
két tér relativ hulldmhosszaval jellemezheto.

T4.b Elemeztem a kvazi-fazisillesztési modszerek hatékonysaganak savszélességét, és
kidolgoztam egy kozelito, analitikus képletet ennek a meghatarozasara. Kimutattam,
hogy fazismodulacio trajektériafiiggése nem korlatozza jelentOsen a savszélességet, olyan
esetekben, mikor a QPM mddszer nagyszamu periédusra alkalmazott. Ezekben az esetek-
ben a savszélesség fiiggetlen az asszisztalo tér alakjatol. Kimutattam , hogy a trajektériak
kozti interferencia jelentosen befolyasolja a kvazi-fazisillesztés hatékonysaganak finomszer-
kezetét. Targyaltam az asszisztald tér optimédlis nyaldbkeresztmetszetét és ramutattam,
hogy ez kiilonbozik rovid és hosszi trajektéridk esetén. A rovid trajektoriak kvazi-
fazisillesztésénél elony, hogy a keltés abban az esetben optimélis, mikor az asszisztalo
és kelt6 tér nyalabkeresztmetszete kozel azonos.

T4.c Egy-dimenziés modellt hasznalva kiszamoltam, hogy a lézertérre merolegesen ter-
jedo tér alkalmas a harmonikuskeltés hatékonysdganak novelésére, a fazisillesztési hatarnal
magasabb fotonenergidju harmonikusokra is. Kiszamoltam a hasznalandé THz tér op-
timalis amplitudoéjat, mely alapjan 3D modellszamolasok igazoltak a THz terek kvazi-
fazisillesztésének hatékonysagat. Egy esettanulményban tobb mint két nagysagrendnyi
hatékonysagnovekedést mutattunk ki a levagdsi fotonenergia kérnyéki harmonikusokra.
Csorpolt THz-es impulzusok hasznalataval tovabbi novekedést lehet elérni.

T5 Részt vettem egy kisérletsorozatban mely soran attoszekundumos cso-
portkésleltetés valtozasat mértiik a kelté gazcelldban uralkoddé nyomas fliggvényében.
Azt taldltuk, hogy a nyomds novekedésével az attoszekundumos impulzussorozat
csoportkésleltetése csokken, melyet egy egy-dimenzidés modellszamolds is alatamaszt. Ez
alapjan kimutattuk, hogy az attoszekundumos pumpa-préba kisérletekben, a késleltetés
stabilitasanak megorzése érdekében, az optikai uthossz mellett, a keltdé celldban a

gaznyomast is allanddéan kell tartani.
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Abbreviations/Roviditések

ADK

APT
ATI
CEP
CWE
DAP
DC

DFG
FEL
()FT
FTL
FWHM
GA

GD
GDD
HHG
HOH
IR
MIR
NIR
O.C.
PMM
QPM
RABITT

ROM
SAP
SFA
TEM
TOD
uv

x-ray

XUV

Ammosov-Delone-Krainov; a model for
tunneling ionization

attosecond pulse train

above threshold ionization

carrier to envelope phase

coherent wake emission

double attosecond pulse

static electric field (shorthand for direct
current)

difference frequency generation
free-electron laser

(inverse) Fourier transform

Fourier transform limit

full width at half maximum

genetic algorithm

group delay

group delay dispersion

high-order harmonic generation
high-order harmonic

infrared

mid-infrared

near infrared

optical cycle

phase-mismatch

quasi-phase-matching

reconstruction of attosecond beating by

interferometric two-photon transtion

relativistic oscillating mirror

single attosecond pulse

strong field approximation

transverse electric mode

third-order dispersion

ultraviolet

part of the electromagnetic spectrum
characterized by vacuum wavelengths
below 10 nm

extreme ultraviolet; part of the spec-

trum between ultraviolet and x-ray
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Ammosov-Delone-Krainov; alagutas
ionizacié szdmolasara haszndalt modell
attoszekundumos impulzussorozat
kiiszob feletti ionizacid

vivé-burkolé fazis

koherens ébred6 tér keltés

dupla attoszekundumos impulzus

sztatikus elektromos tér

kiilonbség-frekvencia keltés
szabadelektron-1ézer

(inverz) Fourier transzformécié
Fourier korlat

félértékszélesség

genetikus algoritmus

csoportkésleltetés
csoportkésleltetés-diszperzid
magasrendli felharmonikus-keltés
magasrendli felharmonikus

infravoros

ko6zép-infravoros

kozeli infravoros

optikai ciklus

fazisillesztetlenség

kvazi fazisillesztés

interferometrikus, kétfoton-atmeneten
alapulé attoszekundumos impulzus-
sorozat rekonstrudlas

relativisztikus oszcillalé tiikor

izolalt attoszekundumos impulzus
erOs-tér kozelités

transzverzalis médus

harmadrendii diszperzid

ultraibolya

rontgen; sugarzas, melyet 10 nm-nél
rovidebb vikuumbeli hullamhossz jelle-
mez

extrém ultraibolya



Notations/Jelolések

General considerations

Here we list some of the most commonly used variables, and some general rules used in the notations.
Subscript 1 (Oq) refers to quantities at the laser frequency, ¢ (Oy) refers to harmonic order ¢, and a (O,)
refers to a weak assisting field.

Variables that are used to denote electric field and spectral amplitudes and have a tilde on top (6)
refer to complex quantities, and variables written in bold (O) to vector quantities.

To conform with the generally accepted notations several symbols denote multiple quantities in
different contexts. For example the variable A denotes vector potential, phase-modulation amplitude,
transition probability amplitude and the first element of the ABCD ray-transfer matrix. It should be
clear from the the context to which quantity it refers at any point, because these different quantities

appear in different sections. Therefore the table below is just a guide, it does not list general rules.

Notations
e - Euler’s number, or elementary charge Euler szam, vagy elemi toltés
E - electric field amplitude elektromos tér amplituddja
Env - envelope burkold
H - harmonic field amplitude harmonikusok elektromos terének am-
plitudoja
I - irradiance, optical intensity intenzitas
I, - ionization energy ionizaciés energia
k - wavenumber, wavevector hullamszam, hulldimvektor
Ak - wavevector mismatch fazisillesztetlenség hullamvektora
q — harmonic order harmonikus rend
%) - phase fazis
10) - phase of the propagated field propagalt tér fazisa
A - wavelength hullamhossz
t - time id6
T - time delay idokésleltetés
T - oscillation period periédus
n - refractive index torésmutatd
w - angular frequency korfrekvencia
U, - ponderomotive energy ponderomotoros energia
w - beam radius nyaldbsugar
Zp - Rayleigh range Rayleigh tavolsag
z - distance from the laser focus fékusztol mért tavolsag
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A Calculation of the 1onization rate

Free electron generation by long-wavelength electromagnetic fields in the tunnelling regime
can be calculated in the frame of the Keldysh theory [195], where the instantaneous
rate of ionization is calculated for a DC field. To determine the instantaneous rate, the
Ammosov-Delone-Krainov (ADK) formula can be used [187]. This is a reasonably good
approximation in the limit when the Keldysh parameter is v < 1, although for very short
(=1 cycle) pulses its accuracy worsens [188].

In the ADK model the time-dependent free-electron population is calculated as
t
pe(t) = exp {—/ wADK(t')dt'} : (A.1)

where wypg is the instantaneous DC ionization rate.
Using the formulation presented in [196] for an electron in a state with effective quan-
tum number n* = \/I,,/1,, orbital quantum number [, and magnetic quantum number

m, the ionization rate wpg in atomic units can be calculated as

where I, is the ionization energy of a Hydrogen atom and

wapk (t) = |Chprpr

@+ 1)+ Im))!
i = T = A9)

22n*
nC(n* + I* + 1)I'(n* — 1*)

(A4)

I' is an extension of the factorial to real and complex valued arguments, and called Gamma
function.

In these equations [* = n* — 1 can be used. The ionization rate can be averaged
over different magnetic quantum numbers [196], or m = 0 can also be used, because the
ionization rate for electrons with m = 0 is much higher then for those with m = F1 [187].
The free-electron density in a gas is calculated as N, = N, X p., where N, is the initial

density of neutral atoms.
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B Nonlinear refractive index

The third-order susceptibility causes the induced polarization to scale with the third power
of the electric field amplitude. Due to this, the refractive index of neutral atoms can be

expanded to contain a linear part ng and an intensity-dependent part [30]
n =mng+ nsl. (B.1)

The value of n, is related to x® by the relation

ng = 271%3600)((3). (B.2)

The intensity-dependence cause the refractive index to increase at the leading edge of
the pulse, and decrease at the trailing edge, yielding the phenomenon called self-phase-
modulation (among many others). Because the laser beam also has a spatial intensity
distribution, a positive ny also causes the more intense, central part of the beam to
propagate with slower phase-velocity, thus bending the phase-front and focusing the beam
(self-focusing), it is thus an important effect in propagation The values of ny for noble
gases can be determined from measurement data [197, 198, 199], or can be approximated
by calculation [200]. Measurement data for ny values vary widely, and differences up
to an order of magnitude appear between different results. For different gases no varies
significantly, for Argon it is ~#8x107%° cm? /W, for neon it is about 10 times smaller [200].

In this thesis the values presented in [201] are used.
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C Amplitude of harmonic phase
modulation due to laser field

interference

Here we describe the harmonic phase modulation induced by the interference of the driver
with a weak assisting field, resulting Equation II1.1 and Equation I1I1.2. We take a driver
laser field at an arbitrary point in the HHG medium along the z axis, and describe it as
Eysin(py), where ¢ = wit + ]1212\ is the phase of the laser field at the chosen coordinate,
that is a function of space and time. At the same point the assisting field can be described
as E,sin(p1 +0), where 6 = ¢, — 1 denotes the phase difference between the two fields,
Yo = Wit + ]l;a5| being the phase of the low-intensity assisting field. Thus d becomes a
function of space, when the wavevectors k1 and K, enclose a nonzero angle. The resulting

wave can be calculated as
Eigsin(pr + 0i0r) = Ersin(er) + Egsin(er +9), (C.1)

with E;,; denoting its amplitude and 6;.; its phase.
In the following calculations we assume that F, < F;. The phase of the resulting

wave then can be expressed as

Oior = arctan [ Easin(9) } = arctan —g—‘;sin(é)
ot By + Eycos(8)| 1 4 Zecos(9)
E, E, .
~ arctan [Esm(d)} A Esm(é). (C.2)

This term has its first maximum at § = 7/2, and the magnitude of the phase-modulation
is given by E,/E;.

In HHG the phase of the generated harmonic depends on the phase of the generating
wave multiplied by the harmonic order ¢ [64]. As a result the phase-modulation of the
generating field described by Equation C.2 will translate to a direct modulation of the
harmonic phase with amplitude

Ap, & q%. (C.3)

The harmonic’s phase also depends on the intensity of the generating wave, this con-
tribution is usually referred to as the atomic phase, as it is inherited from the electron
which accumulates it during its travel from ionization to recombination. This is well

approximated with ¢; = —aU,/(hw), where U, = e*FE?/(4m.w?) is the ponderomotive
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energy [63]. As the amplitude of the resulting wave in Equation C.1 is given by

By = \| B} + E2 + 2B, E,cos(6), (C.4)

it is clear that the generating field’s amplitude is also modulated with changing § and
it has its first maximum at 6 = 0. This amplitude modulation thus causes an indirect

modulation of the harmonic phase. In this case the atomic phase being

—ae?

= T [E} + E2 + 2E; E,cos(0)] | (C.5)

Pr

it is modulated with an amplitude given by

(1/62

Ap; = WEIE&. (C.6)

Both of these factors have been described in [115, 65], for the most relevant case, when

the phase difference is calculated for two counterpropagating waves, where p; = wit — k12
and , = wit + kyz, giving 0 = 2k; z.

These two different sources of phase-modulation are comparable in magnitude, but

the description above shows that they always occur with a shift of 7/2 in the value of ¢.

This derivation forms the basis of our discussion in subsection 111.4.1.
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