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ANS: autonomic nervous system 

cNOS: constitutive nitric oxide synthase 

CNS: central nervous system 
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ENS: enteric nervous system 
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ICCs: interstitial cells of Cajal 
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7-NI: 7-nitroindazole 
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NNA: N-ω-nitro-L-arginine 
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NO: nitric oxide 

NOS: nitric oxide synthase 

NOX: plasma nitrite/nitrate 

SMA: superior mesenteric artery 

TPR: total peripheral vascular resistance 

XO: xanthine oxidase 
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XOR: xanthine oxidoreductase 
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1. SUMMARY 

Irrespective of the aetiology or the type of the surgical intervention, gastrointestinal 

(GI) motility disorders are prevailing characteristics in the postoperative period after 

abdominal surgery. The therapeutic possibilities for dysmotility are rather limited, mainly due 

to the still unexplored pathophysiology. Intestinal peristalsis is controlled by a complex 

autonomic neuronal regulation, which is predominantly cholinergic in nature. However, 

several recent reports have suggested that alternative pathways may significantly modulate the 

cholinergic GI motility regulation. The main purpose of our studies was to examine the roles 

of nitrergic and glutaminergic modulation in the colon, in correlation with obstruction-

induced motility alterations. A large animal model of colon obstruction was designed, and we 

performed two series of experiments to investigate the role of nitric oxide (NO) (Study I) and 

glutamate (Study II). Accordingly, in the first series of experiments we compared the 

consequences of selective neuronal and non-selective NO synthase (NOS) inhibition on the 

colonic motility changes during acute experimental ileus. Secondly, we hypothesized that 

glutamate, a major excitatory neurotransmitter in the central nervous system (CNS), is likely 

to play a role as an excitatory neurotransmitter in the enteric nervous system (ENS). 

Consequently, we hypothesized that the inhibition of enteric glutamate receptors by kynurenic 

acid (KYNA) may influence the motility in the GI tract. 

Experiments were performed on inbred mongrel dogs under general anaesthesia. 

Mechanical occlusion of the mid-transverse colon was maintained for 7 h. In Study I, we 

observed the haemodynamic and motility parameters, measured the plasma nitrite/nitrate 

(NOX) levels, and the NOS activities. Large bowel motility indices were determined by 

calculating the area under the motility curve as a function of time by a computerized data-

acquisition system. Constitutive NOS (cNOS) and inducible NOS (iNOS) activities were 

determined in tissue biopsies; plasma NOX levels were measured in the portal blood. 

Following completion of the baseline studies, the animals were treated with either 7-

nitroindazole (7-NI; a selective neuronal NOS (nNOS) inhibitor), or N-nitro-L-arginine 

(NNA; a non-selective NOS inhibitor). In Study II, the aims were to characterize the motility 

and associated inflammatory changes during colon obstruction, and to define the 

consequences of KYNA treatment in this condition. Haemodynamics and motility changes 

were monitored, and the activities of xanthine oxidoreductase (XOR) and myeloperoxidase 

(MPO; a marker of leukocyte accumulation) were determined from tissue biopsies.  

In the sham-operated group, the cNOS activities differed significantly in the oral and 

aboral tissue samples (oral: 102.9; vs aboral: 62.1 fmol (mg protein)-1 min-1). The obstruction 
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induced a hyperdynamic circulatory reaction, which was accompanied by significant increases 

in the plasma NOX level, the tissue iNOS activity, the colon XOR activity and leukocyte 

accumulation, and a rise in the motility index. NNA treatment decreased the motility index in 

both intestinal segments for 60 min, but 120 min later the motility index was significantly 

elevated (a 2.5-fold increase in the oral part, and a 1.8-fold enhancement in the aboral 

segment). 7-NI decreased the cNOS activity in the oral and aboral parts by approximately 

40% and 70%, respectively, and suppressed the motility increase in the aboral colon segment. 

The administration of KYNA prevented the obstruction-caused decrease in total peripheral 

vascular resistance (TPR) and increased the tone of the colonic smooth muscles, but 

permanently decreased the motility index of the characteristic, giant contractions of the colon. 

The KYNA treatment significantly inhibited the obstruction-induced increases in colon XOR 

activity and leukocyte accumulation. 

NO of neuronal origin is a transmitter that stimulates the peristaltic activity; but an 

increased iNOS/nNOS ratio significantly modifies the obstruction-induced motility increase. 

Our results indicate the decisive modulatory role of the glutamate receptors in early colonic 

motility alterations. KYNA treatment could have a cytoprotective effect based on an indirect 

inhibition of the superoxide radical and the consequent leukocyte activation. 
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2. INTRODUCTION 

I started my surgical career as a novice medical doctor at the Department of Surgery at 

the University of Szeged, an institution with long traditions of experimental research on 

bowel paralysis. Professor Gábor Petri had started to study this syndrome almost four decades 

ago, and in the 1960s he and his co-workers published several groundbreaking results on the 

"pathogenesis and a new therapy of paralytic ileus" in leading international journals (Petri et 

al. 1967, 1968, 1971). These important experimental findings were later successfully applied 

at the bedside throughout Hungary∗. These studies motivated me to focus my attention on this 

field, and especially on the observation of motility changes in the large bowel. 

In everyday surgical practice, the problems with large bowel motility anomalies are 

frequent and usually very severe. Different types of mechanical intestinal obstructions are 

commonly diagnosed during consultations or emergency surgical situations, and the morbidity 

and mortality rates of these syndromes are still very high (Bauer et al. 2002, Madl et al. 

2003). Moreover, irrespective of the aetiology or the type of the abdominal surgical 

intervention, GI motility disorders are prevailing characteristics in the postoperative period. In 

general, the essential successful treatment of these clinical entities involves normalization of 

the GI motility. However, the therapeutic possibilities of dysmotility are still rather limited, 

mainly due to the incompletely explored pathophysiology. 

 

2.1. Regulation of bowel motility 

The in vivo colonic motor activity in most species, including humans, dogs and rats, is 

characterized by three distinct types of contractions: 1) rhythmic phasic contractions, 2) giant 

migrating contractions (GMCs), and 3) the tone. The GMCs are large-amplitude and long-

duration contractions that migrate uninterruptedly over long distances and are associated with 

mass movements. 

Intestinal peristalsis is controlled by a complex, autonomic neuronal regulation. 

Neurogenic control and coordination of the GI system is based on a reciprocal connection 

between the GI tract and the CNS through the autonomic nervous system (ANS). Further, 

local reflexes act in the ENS in an intrinsic manner. In fact, the ENS is part of the ANS, 

together with the sympathetic and parasympathetic nervous systems, and it has high priority 

in the regulation and integration of the functions of the GI tract. 

                                                 
∗ In: Petri Gábor: A “paralytikus” ileus kórtana és sympatholytikus kezelése (Doctoral thesis, Szeged, 1972) 
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The ENS consists of interconnected networks of neurons and ganglia which entwine 

the entire GI tract from the oesophagus to the anal sphincter. The exhaustive works of Jabbour 

et al. (1988) showed that the number of neurons in the ENS reaches 107-108 on average in 

several species, similar to the number in the spinal cord. Hence, this complex network of 

enteral autonomic neurons is rightly coined the "intestinal brain". 

The ENS has a relative independence as compared with the rest of the ANS. 

Nevertheless, the ENS, similarly to the CNS, has sensory receptors which generate stimuli to 

the network of interneurons and finally to the effector cells (Furness et al. 1980, Gershon et 

al. 1981, Lundgren et al. 1989). Earlier morphological studies identified varicose swellings 

along the lengths of autonomic motor nerves, including fibres within the ENS (Gabella et al. 

1979), and it is generally accepted that these are the sites of release for most 

neurotransmitters. Many neurophysiologists who study the ENS envisage the release of 

neurotransmitters as an en passage process, occurring as action potentials conducted down 

nerve fibres into nerve varicosities, functional innervation being defined as the volume 

through which a neurotransmitter can diffuse from the varicosity and reach postjunctional 

receptors in sufficient concentrations to produce a physiological response in the neuroeffector 

cell (Burnstock et al. 1981).  

It was subsequently recognized that the motility of the GI tract is automated by the 

"pacemaker" cells of the ENS. Specialized cells known as interstitial cells of Cajal (ICCs) are 

distributed in specific locations within the tunica muscularis of the GI tract. ICCs serve as 

electrical pacemakers, providing pathways for the active propagation of slow waves, and are 

mediators of enteric motor neurotransmission and play a role in afferent neural signalling. 

Ultrastructural studies have demonstrated that, within the GI tract, the neuroeffector junctions 

are much more complicated than enteric nerve terminals lying closely apposed to smooth 

muscle cells. They rather involve specialized synapses that exist between enteric nerve 

terminals and intramuscular ICCs or ICCs-IM. The ICCs-IM are coupled to smooth muscle 

cells via gap junctions, and postjunctional responses elicited in the ICCs-IM are conducted to 

neighbouring smooth muscle cells (Ward et al. 2006). In the colon, ICCs located along the 

submucosal surface of the circular muscle layer (ICCs-SM) also provide a pacemaker function 

in this organ (Smith et al. 1987). A special population of ICCs is distributed over the surface 

of muscle bundles and within septae that separate muscle bundles and are termed ICCs-SEP 

(Lee et al. 2007). The investigation by Horiguchi et al. (2001) demonstrated that these cells 

may behave much like Purkinje fibres in the heart, conveying and coordinating the spread of 

pacemaker activity deep into and between muscle bundles and may also be involved in enteric 
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motor neurotransmission. Functional neurotransmission cannot occur in the absence of these 

cells (Burns et al. 1996, Ward et al. 2000). Surgical manipulations of the GI tract, including 

intestinal resection and anastomosis, lead to dysmotility, which is associated with the 

disruption of ICC networks (Yanagida et al. 2004). 

The ICCs possess a variety of receptors for neurotransmitters. Classical excitatory and 

inhibitory neurotransmitters are concentrated and released from neurovesicles located in 

enteric nerve terminals or varicose regions of motor nerves. 

The motility regulation is predominantly cholinergic in nature (Salzman et al. 1995). 

However, several data suggest that alternative pathways may significantly modulate the 

cholinergic GI motility regulation. Ward et al. (2006) have demonstrated that the ICCs-IM 

may play a critical role in the reception and transduction of cholinergic and nitrergic 

neurotransmission. Thus, the local production of NO messenger molecules could be of 

importance in the regulation of motility and the pathophysiology of dysmotility. 

 

2.2. Nitric oxide 

Biological activity for NO was first proposed in 1987 (Monaca et al. 1991). NO is a 

soluble gas and can maintain the connection between cell membranes without synapses. It is a 

short-lived mediator, formed by the sequential oxidation of the substrate L-arginine by the 

NOS family of enzymes, leading to the formation of L-citrulline and NO. 

There are two main types of NOS: cNOS, which is Ca2+/calmodulin dependent, and 

iNOS which is Ca2+-independent. cNOS is responsible for the production of NO in a 

physiological context. In contrast, iNOS produces NO under pathophysiological 

circumstances. It has been clarified that cNOS has two subtypes: nNOS and endothelial NOS 

(eNOS). nNOS was first described in the neurons of the CNS and peripheral nervous system, 

while eNOS is generally found in the endothelium of blood vessels, where it is responsible for 

vasodilatation. iNOS is mainly located in the cytosol of cells in the immune system. 

The link between constitutive NO production and the GI nervous system is now well 

established, as the bulk of the NO is synthesized by nNOS in the submucous and myenteric 

plexus of the intestinal wall (Qu et al. 1999). Moreover, previous studies have shown that NO 

produced by the iNOS isoform during inflammatory cascade reactions directly inhibits the 

intestinal smooth muscle contractility (Qu et al. 1999, Kalff et al. 2000, Türler et al. 2002). 

Although this line of reasoning suggests that an altered NO production may lead to 

dysmotility or more serious GI complications, the exact role of NO in the pathomechanism of 

obstruction-induced motility changes is still unclear. The peristalsis of the colon is controlled 
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by a complex autonomic neuronal regulation in which sensory neurons, interneurons and 

ascending excitatory and descending inhibitory (motor) neurons take part (Sarna et al. 1991). 

In this process, NO relaxes the smooth muscles directly, but it may also act as a cotransmitter 

of non-adrenergic non-cholinergic (NANC) inhibitory and descending interneurons (Bult et 

al. 1990, Dalziel et al. 1991, Ward et al. 1992, Boeckstaens et al. 1993, Shuttleworth et al. 

1993). NO may also contribute to intestinal propulsion by inducing neurogenic contractions 

(Bartho et al. 1995, Holzer et al. 1997). In vitro observations suggest that non-selective NOS 

inhibitors enhance the intestinal motility, which indicates the inhibitory neurotransmitter 

character of NO (Dalziel et al. 1991, Ward et al. 1992, Boeckstaens et al. 1993, Shuttleworth 

et al. 1993). In contrast with these observations, Heinemann et al. have demonstrated the 

suppressed contractile activity of the intestinal musculature after the selective inhibition of 

nNOS (Heinemann et al. 1999). 

 

2.3. Glutamate 

Several studies in the 1940s suggested that the oral administration of glutamate could 

have a beneficial effect on both normal and retarded intelligence. Later, the neurotoxic nature 

of glutamate emerged in excitotoxic lesions (neuronal death), and it is thought to underlie the 

pathophysiology of several neurological diseases, including Huntington's disease, status 

epilepticus, Alzheimer's dementia and olivopontocerebellar atrophy. In 1959, Curtis et al. 

showed that microiontophoretically-applied glutamate could excite spinal neurons. During the 

subsequent years, this result was confirmed and extended. By the early 1980s, many agreed 

that some glutamate-like chemical must act as neurotransmitter. A key advance was the 

introduction of selective antibodies with which to study the immunocytochemical distribution 

of glutamate.  

In the last decade, glutamate was one of the most studied excitatory amino acids in the 

CNS (Weinberg et al. 1999), and it may be widely presumed that the glutaminergic 

neuorotransmission plays a role in the ENS too. Glutamate is synthesized from gamma-

aminobutyric acid. Two types of receptors for glutamate have been identified: ionotropic and 

metabotropic. The former includes three different types, one of which is the N-methyl-D-

aspartate (NMDA)-sensitive receptor, which is coupled to a Na+ and Ca2+ channel.  

The kynurenine pathway is the major route of the tryptophan metabolism. It may be 

activated by free radicals and cytokines which modulate the activity of the enzymes 

converting tryptophan to kynurenine (Mackay et al. 2006). The components of the kynurenine 

pathway have marked effects on the neurons in the CNS (Stone et al. 2003). One of the main 
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end-products is quinolinic acid, an agonist of the NMDA-sensitive glutamate receptors. A 

second kynurenine metabolite, 3-hydroxykynurenine, can generate free radicals and also 

exacerbate or contribute to neuronal damage. However, another arm of the pathway leads to 

the production of KYNA, which is an antagonist of the strychnine-insensitive glycine 

allosteric site of the NMDA glutamate receptor subtypes on neurons (Perkins et al. 1982, 

Stone et al. 2001, Klivényi et al. 2004). Consequently, quinolinic acid can act as a neurotoxin, 

while KYNA is neuroprotective in the CNS (Vécsei et al. 1992, Kiss et al. 2005).  

Far fewer data are available on the role of kynurenine metabolites in the ENS. Several 

recent studies have suggested that glutamate-mediated facilitatory pathways may modulate 

the cholinergic transmission in the ENS (Liu et al. 1997, Kirchgessner et al. 2001). Glutamate 

is a major excitatory neurotransmitter in the CNS, and thus it is likely to play a role as an 

excitatory neurotransmitter in the ENS too. Indeed, glutamate immunoreactivity has been 

detected in subsets of submucosal and myenteric neurons in the guinea-pig ileum. At this 

level, glutamate is selectively concentrated in terminal axonal vesicles and can be released 

after application of an appropriate stimulus (Wiley et al. 1986, Liu et al. 1997). Moreover, 

ionotropic NMDA-sensitive glutamate receptors are present and abundantly expressed on 

enteric cholinergic neurons (Moroni et al. 1986, Liu et al. 1997).  

Inflammation is also an important component of the pathophysiology of bowel 

obstruction (Madl et al. 2003, Törnblom et al. 2005), characterized by an altered permeability 

of the gut mucosa and the activation of inflammatory cells (Törnblom et al. 2005). The local 

production of purine and kynurenine metabolites may be involved in the regulation of 

neuronal activity in inflammatory intestinal disorders (Forrest et al. 2002, 2003). 

 

2.4. Aims of the dissertation 

The main purpose of our studies was to investigate and clarify the roles of NO and 

glutamate in the colon obstruction-induced early-phase motility changes. Our experimental 

series were designed to follow the pathophysiological changes over a period of 420 min in a 

large animal model of acute mechanical ileus. 

The aims of Study I were to determine the in vivo role of NO in the development of 

motility changes, and to identify the mechanism by which NO might be produced. 

Accordingly, we compared the effects of selective and non-selective nNOS inhibition on the 

colonic motility, and investigated the changes in NOS isoenzyme activity in relation to the 

occlusion-induced haemodynamic patterns. Our results indicated the decisive role of nNOS in 
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early colonic motility alterations, and the significant modifying potential of the late release of 

NO derived from the inflammatory iNOS isoform. 

The ensuing Study II was designed to determine the in vivo role of KYNA in the 

development of motility changes, and to identify the mechanism by which KYNA might 

influence the accompanying inflammatory process. Accordingly, we compared the 

consequences of exogenous activation of all subtypes of ionotropic glutamate receptors by 

KYNA on the colonic motility under physiological (normal) and pathophysiological 

(obstruction) circumstances. Changes in the inflammatory parameters, the local leukocyte 

accumulation and the activity of XOR the predominant source of superoxide radical 

production, were also investigated in relation to occlusion-induced haemodynamic patterns. 

The results indicated that the glutamate receptors decisively modulate the early colonic 

motility alterations, and demonstrate a significant potential for KYNA to decrease the 

facilitatory pathways of colonic motility disorders. 

 

3. MATERIALS AND METHODS 

 

3.1. Animals 

The experiments were performed on healthy, inbred mongrel dogs of both sexes (body 

weight range: 12-18 kg) from the Animal House of the University of Szeged in adherence to 

the NIH guidelines for the use of experimental animals ("Principles of laboratory animal care" 

NIH publication No. 86-23, revised 1985). The study was approved by the Ethical Committee 

for the Protection of Animals in Scientific Research at the University of Szeged. 

 

3.2. Surgical procedures 

Surgery was performed under sodium pentobarbital (30 mg kg-1 iv) anaesthesia. Small 

supplementary doses of pentobarbital were administered when necessary. During the 

experiment, the animals were ventilated with room air through an endotracheal tube, using a 

Harvard respirator. The left femoral artery and vein were cannulated for the recording of 

mean arterial pressure (MAP) and for fluid and drug administration, respectively. The animals 

were placed in a supine position on a heating pad for maintenance of the body temperature 

between 36 and 37 oC, and received an infusion of Ringer's lactate at a rate of 10 ml kg-1 h-1 

during the experiments. A Swan-Ganz thermodilution catheter (Corodyn TD-E-N, 5011-110-

7Fr; Braun Melsungen AG, Melsungen, Germany) was positioned into the pulmonary artery 

via the right femoral vein to measure the cardiac output (CO). 



 14 

After a midline abdominal incision, the portal vein was catheterized through the splenic 

vein for blood sampling. The level of the obstruction was marked by placing a silicone 

tourniquet catheter around the mid-transverse colon, keeping the neurovascular connections 

intact. 

In Study I, strain gauge transducers (Experimetria Ltd., Budapest, Hungary) were sutured 

with an atraumatic technique onto the antimesenteric side of the bowel wall to measure the 

oral and aboral colonic motility at 10 cm distances from the occlusion point. In Study II, the 

transducers were sutured onto the bowel wall, parallel to the circular muscle layer, to measure 

the colonic motility at a distance of 10 cm proximally from the occlusion point. The root of 

the superior mesenteric artery (SMA) was dissected free and an ultrasonic flow-probe 

(Transonic Systems Inc., Ithaca, NY, U.S.A.) was placed around the exposed SMA to 

measure the mesenteric blood flow. 

 

3.3. Measurements 

 

3.3.1. Haemodynamic measurements 

 The MAP, portal venous pressure and SMA blood flow were monitored continuously 

and registered with a computerized data-acquisition system (Haemosys 1.17; Experimetria 

Ltd., Budapest, Hungary). The CO was determined by thermodilution, using a Cardiostar CO-

100 computer (Study I) and a SPEL Advanced Cardiosys 1.4 computer (Study II) (both from 

Experimetria Ltd., Budapest, Hungary). The TPR was calculated via the standard formula. 

 

3.3.2. Colonic motility measurements 

The motility index was calculated to estimate the neurogenic function of the intestine 

(Cowles et al. 1978). Briefly, two strain gauge transducers (FSG-02 type; size: 6x15 mm; 

Experimetria Ltd, Budapest, Hungary) were sutured with 5/0 silk (Braun-Dexon, Melsungen, 

Germany) onto the appropriate part of the colon. The transducers were connected to an SG-M 

bridge amplifier and the signals were continuously recorded by a computerized data-

acquisition system (HAEMOSYS 1.17; Experimetria Ltd, Budapest, Hungary). The sampling 

time was 10 min each, with a sampling frequency of 500 Hz; the signal analysis was 

performed off-line. Large bowel motility indices were determined by calculating the area 

under the motility curve as a function of time (Huge et al. 1998). The amplitude and 

frequency of the GMCs were calculated, and the tone of the colon was given by the mean 

value of the minima in the motility curve.  
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3.3.3. Plasma nitrite/nitrate level measurements 

Plasma NOx levels were measured in the portal blood via the Griess reaction (Green et 

al. 1982). The assay depends on the enzymatic reduction of nitrate to nitrite, which is then 

converted into a coloured azo compound, detected spectrophotometrically at 540 nm 

(Moshage et al. 1995). 

 

3.3.4. NOS activity measurements 

NO formation in the intestinal tissues was measured via the conversion of [3H]L-

citrulline from [3H]L-arginine according to the method of Szabo et al (1993). Briefly, large 

bowel biopsies kept on ice were homogenized in phosphate buffer (pH 7.4) containing 50 mM 

Tris-HCl (Reanal, Budapest, Hungary), 0.1 mM EDTA (Serva Feinbiochemica GmbH, 

Heidelberg, Germany), 0.5 mM dithiotreitol, 1 mM phenylmethylsulfonyl fluoride, 10 µg ml-1 

soybean trypsin inhibitor and 10 µg ml-1 leupeptin. The homogenate was centrifuged at 4 oC 

for 20 min at 24 000g and the supernatant was loaded into centrifugal concentrator tubes 

(Amicon Centricon-100; 100 000 MW cut-off ultrafilter). The tubes were centrifuged at 900g 

for 150 min and the concentrated supernatant was washed out from the ultrafilter with 250 µl 

homogenizing buffer. The samples were incubated with a cation-exchange resin (Dowex AG 

50W-X8, Na+ form) for 5 min to deplete endogenous L-arginine. The resin was separated by 

centrifugation (1500g for 10 min) and the supernatant containing the enzyme was assayed for 

NOS activity. 

For the Ca2+-dependent eNOS activity, 50 µl enzyme extract and 100 µl reaction 

mixture (pH 7.4, containing 50 mM Tris-HCl buffer, 1 mM NADPH, 10 µM 

tetrahydrobiopterin, 1.5 mM CaCl2, 100 U ml-1 calmodulin and 0.5 µCi [3H]L-arginine 

(Amersham U.K., specific activity 63 Ci mmol-1)) were incubated together for 60 min at 37 
oC. The reaction was stopped by the addition of 1 ml ice-cold HEPES buffer (pH 5.5) 

containing 2 mM EGTA and 2 mM EDTA. Measurements were performed with the non-

selective NOS inhibitor NNA, (Sigma Chem. USA, 3.2 mM) to determine the extent of 

[3H]L-citrulline formation independent of the NOS activity. iNOS was measured without 

Ca2+-calmodulin and with EGTA (8 mM). 

1 ml reaction mixture was applied to Dowex cation-exchange resin (AG 50W-X8, Na+ 

form) and eluted with 2 ml distilled water. The eluted [3H]L-citrulline activity was measured 

with a scintillation counter (Tri-Carb Liquid Scintillation Analyzer 2100TR/2300TR, Packard 
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Instrument Co, Meriden, CT, U.S.A.). Protein contents of samples were determined by the 

Lowry method. 

 

2.3.5. Xanthine oxidase activity 

Colon biopsies kept on ice were homogenized in phosphate buffer (pH 7.4) containing 

50 mM Tris-HCl (Reanal, Budapest, Hungary), 0.1 mM EDTA (Serva Feinbiochemica 

GmbH, Heidelberg, Germany), 0.5 mM dithiotreitol, 1 mM phenylmethylsulfonyl fluoride, 10 

µg ml-1 soybean trypsin inhibitor and 10 µg ml-1 leupeptin. The homogenate was centrifuged 

at 4 oC for 20 min at 24 000g and the supernatant was loaded into centrifugal concentrator 

tubes (Amicon Centricon-100; 100 000 MW cut-off ultrafilter). The tubes were centrifuged at 

1000g for 90 min and the concentrated supernatant was washed out from the ultrafilter with 

250 µl homogenizing buffer. The activity of XOR (xanthine oxidase (XO) and xanthine 

dehydrogenase (XDH)), a major source of superoxide radicals in the intestinal tissue, was 

determined in this ultrafiltered, concentrated supernatant by a fluorometric kinetic assay based 

on the conversion of pterine to isoxanthopterine in the presence (total XOR) and absence (XO 

activity) of the electron acceptor methylene blue (Beckman et al. 1989). 

 

2.3.6. Tissue MPO activity 

The activity of MPO, a marker of tissue leukocyte infiltration, was measured in the 

colon biopsies (Kuebler et al. 1995). Briefly, the tissue was homogenized with Tris-HCl 

buffer (0.1 M, pH 7.4) containing 0.1 mM polymethylsulfonyl fluoride to block tissue 

proteases, and then centrifuged at 4 oC for 20 min at 24000g. The MPO activities of the 

samples were measured at 450 nm (UV-1601 spectrophotometer, Shimadzu, Japan), and the 

data were referred to the protein content. 

 

2.4. Experimental protocols and groups 

 Our experiments were performed in two series. The numbers of animals in the 

individual groups and the administered agents are shown in Table I.  
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Table I. Summary of studies, groups, treatments and numbers of animals. 

 

Study Group Treatment n 

Study I Group 1 Sham-operated 6 

Study I Group 2 Obstruction 8 

Study I Group 3 Obstruction + NNA 6 

Study I Group 4 Obstruction + 7-NI 6 

Study II Group 1 Sham-operated 5 

Study II Group 2 Sham-operated + KYNA 5 

Study II Group 3 Obstruction 6 

Study II Group 4 Obstruction + KYNA 5 

 

Study I: 

The animals were randomly allocated to one or other of four groups. Surgery was 

followed by a recovery period for cardiovascular stabilization, and the baseline variables were 

then determined during a 30-min control period. Group 1 (n=6) served as sham-operated 

control, while in groups 2 (n=8), 3 (n=6) and 4 (n=6) complete large bowel obstruction was 

induced by tightening the tourniquet. The animals in group 3 were treated with NNA (4 mg 

kg-1 intravenously in 20 ml saline) 180 min after the induction of colon obstruction. In group 

4, the selective nNOS inhibitor 7-NI (Sigma Chem. USA, 5 mg kg-1 in 0.3 ml min-1 

intravenous infusion for 10 min) was administered 180 min after the onset of obstruction. The 

animals were observed for 420 min, the beginning of obstruction being taken as 0 min of the 

experiments. Changes in colonic motility and haemodynamic parameters were registered 

hourly; blood samples were taken from the portal vein for the measurement of plasma NOx 

levels at 0, 60, 180, 300 and 420 min in the postocclusion period. At the end of the 

experiment, tissue samples were taken from the oral and aboral parts of the large bowel (close 

to the hepatic and splenic flexures, respectively) for the determination of NOS isoenzyme 

activities. 

 

Study II: 

The protocol was essentially the same as in Study I; only the administered drugs were 

different. The animals were randomly allocated to one or other of four groups. Surgery was 

followed by a recovery period for cardiovascular stabilization, and the baseline variables were 
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then determined during a 30-min control period. Group 1 (n=5) served as sham-operated 

control, while in group 2 (n=5) the animals were treated with the non-specific glutamate 

receptor antagonist KYNA (Sigma Chem. USA; 50 mg kg-1 in 0.7 ml min-1 intravenous 

infusion for 30 min in 20 ml 0.1 M NaOH with the pH adjusted to 7.2-7.4) at 180 min. Dose-

response effects were investigated in pilot rat studies. In groups 3 (n=6), and 4 (n=5), 

complete large bowel obstruction was induced by tightening the tourniquet. The animals in 

groups 1 and 3 were treated with the vehicle for KYNA, while in group 4, KYNA was 

administered 180 min after the onset of obstruction. The animals were observed for 420 min, 

the beginning of obstruction denoting 0 min. Changes in colonic motility and haemodynamic 

parameters were registered hourly; blood samples were taken from the portal vein for the 

measurement of plasma NOx levels at 0, 60, 180, 300 and 420 min in the postocclusion 

period. At the end of the experiment, tissue samples were taken from the proximal part of the 

large bowel (close to the hepatic flexure) for the determination of inflammatory enzyme 

activities. 

 

2.5. Statistical analysis 

Data analysis was performed with a statistical software package (SigmaStat for 

Windows, Jandel Scientific, Erkrath, Germany). Non-parametric methods were used. 

Friedman repeated measures analysis of variance on ranks was applied within the groups. 

Time-dependent differences from the baseline (0 min) for each group were assessed by 

Bonferroni's method, and differences between groups were analysed with Kruskal-Wallis one-

way analysis of variance on ranks, followed by Bonferroni correction for pairwise multiple 

comparison. In the Figures, median values and 75th and 25th percentiles are given. p values 

<0.05 were considered significant. 

 

4. RESULTS 

4.1. Haemodynamics 

The baseline values of MAP and other macrohaemodynamic variables were not 

significantly different in the various groups. In the animals with colon obstruction, MAP 

displayed a slightly decreasing tendency during the observation period. NNA treatment 

increased MAP significantly during the later stages of the experiments, but MAP did not 

change significantly in the 7-NI-treated animals as compared with the non-treated group with 

colon obstruction. The administration of KYNA did not significantly change the values of 

MAP in either the sham-operated or the colon-obstructed groups (data not shown). 
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In parallel, the obstruction caused a significant CO elevation after 300 min. NNA 

significantly decreased the obstruction-caused CO elevation, whereas 7-NI did not influence 

this change, and the CO was not significantly different from that in the control group with 

large bowel obstruction. KYNA treatment caused a significant, slight increase in CO in the 

sham-operated animals, as compared with the non-treated sham-operated group. However, 

KYNA treatment did not influence the obstruction-induced CO elevation (data not shown). 

The TPR did not change in the sham-operated group, while it gradually decreased after 

colon obstruction. KYNA treatment did not cause an alteration in the sham-operated group, 

but inhibited the obstruction-induced decrease in TPR. The changes 360 min after obstruction 

were statistically significant (Figure 1).  

 

 

Figure 1. Changes in TPR in the sham-operated (empty squares), KYNA-treated sham-

operated (full circles with dashed line), colon obstruction (empty diamonds), and KYNA-

treated obstruction (empty circles with dashed line) groups. The plots demonstrate the median 

values and the 25th (lower whisker) and 75th (upper whisker) percentiles, * p<0.05 within 

groups vs baseline values, x p<0.05 between groups vs sham-operated group values, # p<0.05 

between KYNA-treated group vs obstructed group values. 
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A continuous TPR increase was observed after non-selective NOS inhibition by NNA; 

the change was statistically significant 300 min after obstruction. In contrast, the 

administration of 7-NI did not alter the obstruction-induced TPR decrease (Figure 2).  

 

Figure 2. Changes in TPR in colon obstruction and non-selective NOS inhibitor NNA 

treatment (empty triangles), or selective nNOS inhibitor 7-NI treatment (full triangles). The 

plots demonstrate the median values and the 25th (lower whisker) and 75th (upper whisker) 

percentiles * p<0.05 within groups vs baseline values, x p<0.05 between groups vs sham-

operated group values, # p<0.05 between NOS inhibitor-treated groups vs obstructed group 

values. 

 

 In the sham-operated animals, KYNA administration caused a transient, significant 

increase in SMA blood flow. However, there were no significant differences in the SMA 

blood flow changes in the colon-obstructed animals with or without KYNA treatment (Figure 

3). 
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Figure 3. Changes in SMA blood flow in the sham-operated (empty squares), KYNA-treated 

sham-operated (full circles with dashed line), colon obstruction (empty diamonds), and 

KYNA-treated obstruction (empty circles with dashed line) groups. The plots demonstrate the 

median values and the 25th (lower whisker) and 75th (upper whisker) percentiles, * p<0.05 

within groups vs baseline values, x p<0.05 between groups vs sham-operated group values, # 

p<0.05 between KYNA-treated group vs obstructed group values. 

 

4.2. Plasma NOx levels 

 In the sham-operated groups with or without KYNA treatment, the plasma NOx level 

in the portal blood did not change significantly. The obstruction of the colon elicited a 

gradual, statistically significant increase in plasma NOX level. KYNA treatment significantly 

suppressed the increase in plasma NOX level as compared with the baseline and the 

obstruction-treated control group (Figure 4). 
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Figure 4. Changes in plasma NOX levels in the sham-operated (empty squares), KYNA-

treated sham-operated (full circles with dashed line), colon obstruction (empty diamonds), 

and KYNA-treated obstruction (empty circles with dashed line) groups. The plots demonstrate 

the median values and the 25th (lower whisker) and 75th (upper whisker) percentiles, * p<0.05 

within groups vs baseline values, x p<0.05 between groups vs sham-operated group values, # 

p<0.05 between KYNA-treated group vs obstructed group values. 

 

Both specific and non-specific NOS inhibitors significantly depressed the increase in 

plasma NOX level as compared with the baseline and the obstruction-treated control group 

(Figure 5). 
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Figure 5. Changes in plasma NOX levels in colon obstruction and non-selective NOS inhibitor 

NNA treatment (empty triangles), or selective nNOS inhibitor 7-NI treatment (full triangles) 

groups. The plots demonstrate the median values and the 25th (lower whisker) and 75th (upper 

whisker) percentiles * p<0.05 within groups vs baseline values, x p<0.05 between groups vs 

sham-operated group values, # p<0.05 between NOS inhibitor-treated groups vs obstructed 

group values. 

 

4.3. Changes in NOS isoenzyme activity 

 In the sham-operated group, the cNOS activities differed significantly in the oral and 

aboral tissue samples (oral cNOS: M=102.9; p75=123.5; p25=69.3; vs aboral cNOS: M=62.1; 

p75=88.2; p25=37.8 fmol (mg protein) -1 min-1; p=0.0423). Similarly, the activity of cNOS 

was significantly higher in the oral bowel segment in the obstructed group (oral cNOS: 

M=112.6; p75=128; p25=90.4; vs aboral cNOS: M=67.1; p75=78.5; p25=62.9 fmol (mg 

protein) -1 min-1; p=0.0143). 

 The nNOS inhibitor therapy decreased the cNOS activity in the oral and aboral parts 

of the large bowel by approximately 40% and 70%, respectively, the difference between the 

cNOS activities remaining significant (p=0.0317). NNA significantly decreased the cNOS 

activity, by approximately 70%, in both segments of the large bowel (Figure 6). 
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Figure 6. Changes in cNOS activities orally (white boxes) and aborally (grey boxes) (fmol 

(mg protein)-1 min-1) in colonic tissue from saline-treated sham-operated (empty box), 

obstruction-treated (checked box), obstruction + 7-NI-treated (left striped box) and 

obstruction + NNA-treated (right striped box) animals. The plots demonstrate the median 

(horizontal line in the box) and the 25th (lower whisker), and 75th (upper whisker) percentiles. 
# p<0.05 between NOS inhibitor-treated groups vs obstructed group values. 

 

 The iNOS activity was 5.8 fmol (mg protein)-1min-1 (p25=3.2; p75=11) in the oral 

biopsies from the sham-operated animals, and an activity of 15.6 fmol (mg protein)-1 min-1 

(p25=3; p75=18.1) was measured aborally (Figure 7).  
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Figure 7. Changes in iNOS activities orally (white boxes) and aborally (grey boxes) (fmol 

(mg protein)-1 min-1) in colonic tissue from saline-treated sham-operated (empty box), 

obstruction-treated (checked box), obstruction + 7-NI-treated (left striped box) and 

obstruction + NNA-treated (right striped box) animals. The plots demonstrate the median 

(horizontal line in the box) and the 25th (lower whisker), and 75th (upper whisker) percentiles. 
x p<0.05 between groups vs sham-operated group values, # p<0.05 between NOS inhibitor-

treated groups vs obstructed group values. 

 

After obstruction induction, the iNOS activity increased 10-fold in the oral segment 

and a 4-fold elevation was demonstrated in the aboral segment. The non-selective and the 

selective NOS inhibitor treatment likewise induced significant decreases in iNOS activity in 

both parts of the large bowel as compared with the non-treated obstructed group (Figure 7).  

 

4.4. Changes in XOR and MPO activities 

 In the treated and non-treated sham-operated groups the XO and XDH activities did 

not differ significantly. The activity of the superoxide anion-producing XO was significantly 

increased after the obstruction (M=3.74; p75=4.612; p25=3.32; vs the sham-operated M=0.84; 

p75=1.22; p25=0.5 µmol (mg protein)-1 min-1). The activity of XDH was also elevated 
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significantly in the obstructed group (M=14.9; p75=19.7; p25=13.5; vs the sham-operated 

M=1.48; p75=6.69; p25=0.95 µmol (mg protein)-1 min-1), indirectly indicating an 

accumulation of hypoxanthine as an end-product of ATP degradation. The nonselective 

NMDA receptor antagonist treatment therapy significantly inhibited the obstruction-induced 

increases in the XO and XDH activities (Figure 8). 

Figure 8. Changes in activity of XO (white boxes) and XDH (grey boxes) (µmol (mg protein)-1 

min-1) in colonic tissue from sham-operated (empty box), sham-operated + KYNA-treated (left 

striped box), obstruction-treated (checked box), and obstruction + KYNA-treated (right 

striped box) animals. The plots demonstrate the median (horizontal line in the box) and the 

25th (lower whisker), and 75th (upper whisker) percentiles. x p<0.05 between groups vs sham-

operated group values, # p<0.05 between KYNA-treated groups vs obstructed group values. 

 

MPO is a marker enzyme of neutrophilic leukocyte accumulation in tissues. Its 

activity was 373.8 mU (mg protein)-1 (p25=255; p75=437) and 426 mU (mg protein)-1 

(p25=391; p75=502) in the non-treated and KYNA-treated, sham-operated animals, 

respectively. After obstruction induction, the MPO activity increased significantly in the 

proximal colon (M=782; p25=615; p75=939). The KYNA treatment induced a significant 
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decrease in the MPO activity (M=572; p=468; p75=686) of the large bowel as compared with 

the non-treated obstructed group (Figure 9). 

Figure 9. Changes in activity of MPO (mU (mg protein)-1) in colonic tissue from sham-

operated (empty box), sham-operated + KYNA-treated (left striped box), obstruction-treated 

(checked box), and obstruction + KYNA-treated (right striped box) animals. The plots 

demonstrate the median (horizontal line in the box) and the 25th (lower whisker), and 75th 

(upper whisker) percentiles. x p<0.05 between groups vs sham-operated group values, # p<0.05 

between KYNA-treated groups vs obstructed group values. 

 

4.5. Colonic motility changes 

 The colonic motility index and the amplitude of the GMCs did not change in the 

sham-operated group during the time course of the experiments. The motility of the colon 

segments orally and aborally to the obstruction was only slightly elevated until 300 min 

following obstruction induction; a gradual, approximately 1.5-fold increase was observed in 

both segments by 420 min (Figures 10 and 11).  
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Figure 10. Changes in motility index of the proximal colon segment, in the sham-operated 

group (full circles) and during colon obstruction (empty squares). The plots demonstrate the 

median values and the 25th (lower whisker) and 75th (upper whisker) percentiles * p<0.05 

within groups vs baseline values, x p<0.05 between groups vs sham-operated group values, # 

p<0.05 between NOS inhibitor-treated groups vs obstructed group values. 
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Figure 11. Changes in motility index of the distal colon segment in the sham-operated group 

(full circles) and during colon obstruction (empty squares). The plots demonstrate the median 

values and the 25th (lower whisker) and 75th (upper whisker) percentiles * p<0.05 within 

groups vs baseline values, x p<0.05 between groups vs sham-operated group values, # p<0.05 

between NOS inhibitor-treated groups vs obstructed group values. 

 

This change was significant by the end of the observation period. The NNA treatment 

caused a transient motility decrease at 60 min after administration, but 120 min later the 

motility index was significantly elevated. This motility change was greater in the oral part 

than in the aboral colon segment. Treatment with 7-NI slightly decreased the motility of the 

colon in the oral segment, while a prolonged, significant motility inhibition was observed in 

the colon segment aborally to the obstruction (Figures 12 and 13).  
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Figure 12. Changes in motility index of the proximal colon segment, in colon obstruction 

(empty squares) and non-selective NOS inhibitor NNA treatment (empty triangles), or 

selective nNOS inhibitor 7-NI treatment (full triangles). The plots demonstrate the median 

values and the 25th (lower whisker) and 75th (upper whisker) percentiles * p<0.05 within 

groups vs baseline values, x p<0.05 between groups vs sham-operated group values, # p<0.05 

between NOS inhibitor-treated groups vs obstructed group values. 
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Figure 13. Changes in motility index of the distal colon segment, in colon obstruction (empty 

squares), and nonselective NOS inhibitor NNA treatment (empty triangles), or selective nNOS 

inhibitor 7-NI treatment (full triangles). The plots demonstrate the median values and the 25th 

(lower whisker) and 75th (upper whisker) percentiles * p<0.05 within groups vs baseline 

values, x p<0.05 between groups vs sham-operated group values, # p<0.05 between NOS 

inhibitor-treated groups vs obstructed group values. 

 

The KYNA treatment significantly inhibited the obstruction-induced increase in the 

motility index and decreased the amplitude of the GMCs as compared with the non-treated 

obstruction group, while in the sham-operated group the treatment caused significant 

decreases in the motility index and the amplitude of the GMCs at 300 min and 360 min 

(Figures 14 and 15). 
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Figure 14. Changes in motility index of the proximal colon in the sham-operated (empty 

squares), KYNA-treated sham-operated (full circles with dashed line), colon obstruction 

(empty diamonds), and KYNA-treated obstruction (empty circles with dashed line) groups. 

The plots demonstrate the median values and the 25th (lower whisker) and 75th (upper 

whisker) percentiles, * p<0.05 within groups vs baseline values, x p<0.05 between groups vs 

sham-operated group values, # p<0.05 between KYNA-treated group vs obstructed group values. 
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Figure 15. Changes in amplitude of GMCs of the proximal colon in the sham-operated 

(empty squares), KYNA-treated sham-operated (full circles with dashed line), colon 

obstruction (empty diamonds), and KYNA-treated obstruction (empty circles with dashed line) 

groups. The plots demonstrate the median values and the 25th (lower whisker) and 75th (upper 

whisker) percentiles, * p<0.05 within groups vs baseline values, x p<0.05 between groups vs 

sham-operated group values, # p<0.05 between KYNA-treated group vs obstructed group values. 

 

The tone of the proximal colon, defined as the mean value of the minimum points in 

the motility curve, was significantly decreased after the obstruction, and this change was 

significantly inhibited by KYNA treatment after 360 min. In the sham-operated animals, the 

non-selective NMDA receptor antagonist treatment caused a 2-fold increase in the tone of the 

proximal colon as compared with the baseline and the control value (Figure 16). 
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Figure 16. Changes in tone of the proximal colon in the sham-operated (empty squares), 

KYNA-treated sham-operated (full circles with dashed line), colon obstruction (empty 

diamonds), and KYNA-treated obstruction (empty circles with dashed line) groups. The plots 

demonstrate the median values and the 25th (lower whisker) and 75th (upper whisker) 

percentiles, * p<0.05 within groups vs baseline values, x p<0.05 between groups vs sham-

operated group values, # p<0.05 between KYNA-treated group vs obstructed group values. 

 

 The frequency of contractions did not differ in the sham-operated and obstructed 

groups during the observation period. However, the administration of KYNA caused 

significant, 1.4 and 1.6-fold elevations, respectively, in the frequency of the GMCs, which 

were characterized by a decreased amplitude, irrespectively of the obstruction (Figure 17). 
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Figure 17. Changes in frequency of GMCs of the proximal colon in the sham-operated (empty 

squares), KYNA-treated sham-operated (full circles with dashed line), colon obstruction 

(empty diamonds), and KYNA-treated obstruction (empty circles with dashed line) groups. 

The plots demonstrate the median values and the 25th (lower whisker) and 75th (upper 

whisker) percentiles, * p<0.05 within groups vs baseline values, x p<0.05 between groups vs 

sham-operated group values, # p<0.05 between KYNA-treated group vs obstructed group values. 

 

5. DISCUSSION 

Inflammation can be a significant factor in the development of motility changes in 

functional bowel disorders (Madl et al. 2003, Törnblom et al. 2005), but the connection 

between alterations in intestinal motor function and local inflammatory activation is still 

unclear. Abdominal surgery causes postoperative GI dysmotility, which can progress to 

paralytic ileus. Surgery causes inflammatory responses leading to a loss of ICCs, which 

generate intestinal pacemaker activity (Yanagida et al. 2007). In the early phase of bowel 

obstruction, similarly as mentioned above, an inflammatory process is generated. Our study 

design allowed us to follow the time course of the obstruction-induced inflammatory and 

motility changes in the large intestine in the acute phase of mechanical ileus, and to 

investigate the roles of nitrergic and glutaminergic neurotransmission in this scenario. 
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In this canine model, experimental blockade of the intestinal passage increased the 

large bowel motility, and triggered a hyperdynamic circulatory reaction 5 h after obstruction, 

accompanied by a significant NOX level elevation in the plasma, increased iNOS and XO 

activation and leukocyte accumulation in the proximal colon.  

The colon obstruction-induced haemodynamic changes were characterized by an 

increased CO and a reduced TPR, similarly as observed in early human sepsis. This 

hyperdynamic cardiovascular response may be regarded as a compensatory reaction through 

which the organism tries to accommodate to the evolving septic metabolic changes (Bone et 

al. 1991).  

Conflicting data have been reported on inflammation-induced motility alterations. It 

was recently suggested that, in proinflammatory conditions, the activation of resident 

macrophages in the tunica muscularis and the upregulation of cytokines may affect the 

smooth muscle contractility (Won et al. 2006). There is now good evidence that postoperative 

ileus initiates the activation of transcription factors, upregulates proinflammatory cytokines, 

and increases the release of kinetically active mediators (inducible NO and prostaglandins), 

important factors in the recruitment of leukocytes and the suppression of motility (Kalff et al. 

2003). On the other hand, Hellström et al. have demonstrated that low doses of endotoxin 

cause marked changes in myoelectric activity in the small intestine, with repetitive bursts of 

spike potentials and a simultaneous increase in the transit of the intestinal contents (Hellström 

et al. 1997). Indeed, the obstruction-induced motility alterations are time-dependent, 

characteristically changing in parallel with the development of inflammation. This 

phenomenon was observed in our earlier study too, when the mechanical intestinal 

obstruction-induced time-dependent changes in motility patterns were examined in a 36-h 

period. The motility of the proximal segment increased during the first 8 h, and then gradually 

decreased in the next 16 h, while the motility of the distal segment increased later. This 

process was accompanied by a parallel significant increase in cholinergic activation (and an 

elevated release of acetylcholine) (Kaszaki et al. 1987). 

In the intact, conscious state, the predominant motor activity of the colon is 

characterized by the GMCs, which are stimulated by acetylcholine release from cholinergic 

excitatory neurons (Sethi et al. 1991). It has been suggested that the excitatory transmission to 

the intestinal smooth muscle is predominantly cholinergic in nature (Starke et al. 1989), and 

could be modulated by nonadrenergic noncholinergic (NANC) inhibitory or other facilitatory 

pathways. 
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5.1. Role of nitric oxide: Study I 

NO is a universal chemical mediator of GI intercellular communication (Salzman et al. 

1995) and its pathogenic role has been also verified in sepsis and mucosal permeability 

changes (Moncada et al. 1991, Sun et al. 2004). Further, it has been demonstrated that the 

overproduction of NO caused by the iNOS isoform contributes significantly to the 

cardiovascular and intestinal motility failure during this condition (Hellström et al. 1997, 

Kalff et al. 2000). Yanagida et al. observed that the activity of ICCs and pacemaking was 

greatly attenuated in the absence of NO derived from iNOS (Yanagida et al. 2007). Non-

selective NOS inhibitors (such as arginine analogues) reduce both constitutive and inductive 

NO production; thus, in parallel with the increased blood pressure, they also lead to a drastic 

decrease in the CO (Klabunde et al. 1991, Kilbourn et al. 1992). Indeed, this haemodynamic 

pattern evolved in the early phase of bowel obstruction after non-selective NOS inhibition. 

Selective nNOS inhibition, however, efficiently decreased the obstruction-caused plasma NOx 

level elevation, and did not influence the hyperdynamic circulatory response. This indicates 

that NO produced by both eNOS and iNOS isoforms accounts for the obstruction-induced 

haemodynamic changes. 

The relative weight of NOS in the obstruction-induced motility dysfunction is less 

clear. In our study, there was significant difference between the activities of the cNOS 

isoenzymes in the different large bowel segments in the sham-operated group. The continuous 

or constitutive synthesis of NO in the intestinal tract is mainly ensured by nNOS (Qu et al. 

1999), but both known cNOS isoforms are present in the myenteric neurons of the colon. 

Determination of their exact activity is limited by the fact that both eNOS and nNOS are 

Ca2+-dependent, and at present these isoenzymes can not be differentiated by conventional 

biochemical means. The in vivo specificity of 7-NI towards nNOS is due to a higher neuronal 

uptake as compared with endothelial cells (Moore et al. 1996). The significant decrease in 

cNOS activity after nNOS inhibition allowed the conclusion that nNOS is responsible for at 

least 40% of the basal NO production of the canine colon. Nevertheless, the 7-h colonic 

obstruction was followed by an enhanced iNOS activity. 

Here, we have reported the first observations on the intestinal NOS isoenzyme activity 

in correlation with obstruction-induced motility alterations. The results revealed that NO is 

crucially involved in the mechanism of motility alterations through iNOS activation. Under 

physiological conditions, the inhibition of NO production leads to a significantly increased 

luminal pressure (Sun et al. 2004) and intestinal motility in both the small and large intestines 

(Mizuta et al.1999). On the basis of this observation, the inhibitory role of NO in the 
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regulation of intestinal motility is anticipated. Indeed, it is now generally accepted that NO is 

a neurotransmitter which mediates relaxation (Bult et al.1990, Dalziel et al. 1991, Ward et al. 

1992, Boeckstaens et al. 1993, Shuttleworth et al. 1993). Our results partially support this 

notion, since non-selective NOS inhibition transiently decreased the motility index in both 

intestinal segments for approximately 60 min. However, after this period, the intestinal 

motility increased dramatically. We may assume that this event was not triggered by the lack 

of relaxation-mediating NO only, but also by a mediator predominance that enhanced smooth 

muscle constriction. Indeed, this phenomenon was earlier described as a side-effect of NOS 

inhibition (Richard et al. 1995). Similarly, when Ohta et al. compared the in vivo effects of 

different routes of NNA administration, intravenous NNA infusion resulted in increased 

peristalsis, while intra-cerebroventricularly administered NOS-inhibitor therapy suppressed 

the motility of the colon (Ohta et al. 1996). These findings are in accord with the report by 

Bartho and Lefebvre of Ca2+-dependent contraction enhancement effects on a longitudinal 

muscle specimen after NO-agonist administration (Bartho et al. 1995). The explanation for 

this apparent contradiction may be that the NO-related regulation of the intestinal motility 

comprises two different parts, separated in time: an initial excitatory period is followed by an 

inhibitory relaxation (Holzer et al.1997). Our results confirm that this process mainly involves 

nNOS-derived NO, as decreased colon motility was demonstrated after selective nNOS 

inhibition (Heinemann et al.1999). 

However, it is noteworthy that the 7-NI-induced inhibition of the motility was less 

strong in the oral segment than in the aboral part of the colon. The cause of this disparity may 

be the different NANC innervation of the intestinal segments. It has been shown that the 

number of nitrergic neurons is significantly higher in the myenteric plexus of the proximal 

colon than in the distal part of the large intestine (Takahashi et al. 1998). Our results confirm 

this observation, because the cNOS activity was significantly higher orally in the sham-

operated group and in the animals with colon obstruction, too. Moreover, the rich oral 

nitrergic innervation can not be inhibited by a given amount of nNOS inhibitor as effectively 

as the distal part with its poorer innervation. The administration of an equipotent 7-NI dose 

therefore elicited a higher rate of inhibition, and thus decreased the motility more effectively 

distally. 

In our experiments, the activation of iNOS and the overproduction of NO reached a 

level characteristic of early sepsis, but these biochemical changes did not correlate with the 

moderately increasing motility index in the oral and aboral colon segments. Our results 

indicated that the NO originating from iNOS modifies the excitatory profile of the regulatory 
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process in the examined time frame. This is supported by the finding that selective iNOS 

inhibition therapy positively influenced the conditions under which motility inhibition had 

been attained (Mancinelli et al. 2001). 

These data suggest that NO may play a rather complex role in the regulation of the 

motility of the obstructed colon.  

• NO of neuronal origin is a transmitter that stimulates the peristaltic activity of the colon, 

since non-selective NOS inhibition transiently inhibits the motility, while the 

administration of a selective nNOS inhibitor elicits long-lasting motility inhibition.  

• In parallel, the non-specific inhibition of NO leads in the long run to a significant 

motility increase. This delayed effect could indicate suppression of the 

neurotransmission of an inhibitory motor neuron, inhibition of the motility-decreasing 

effect of iNOS, or the predominance of constrictor mediators that act on the smooth 

muscle elements of the intestinal wall. 

• As an inherent component of the septic process accompanying acute colon obstruction, 

significant but different quantities of inductively produced NO are present in the 

proximal and distal segments of the colon; this could result in a considerably increased 

iNOS/nNOS ratio, and hence moderate the obstruction-induced motility increase. 

 

5.2. Role of glutamate: Study II 

Glutamate or its endogenous receptor agonists/antagonists may participate in the 

modulation of the enteric cholinergic function, since activation of the NMDA receptors 

enhances acetylcholine release from the myenteric neurons in the ileum and colon (Wiley et 

al. 1991). Besides being one of the main excitatory transmitters in the CNS, glutamate can act 

either as a neurotransmitter in the peripheral nervous system or at least as a modulator of 

classical transmitter systems (Liu et al. 1995, Sinsky et al. 1998, Kirchgessner et al. 2001). In 

particular, there is now evidence for glutamate release from neurons and the presence of 

glutamate receptors in the intestines in non-human species (Ren et al. 1999), and receptors of 

the NMDA subtype in the myenteric plexus (Moroni et al. 1986). This subtype is 

preferentially activated by quinolinic acid and blocked by KYNA (Stone et al. 1982, 2001, 

2003). These data therefore indicated that NMDA subtype receptors play a role in the gut 

motility, and activation by glutamate could increase the contractile activity. Our results have 

revealed that glutamatergic facilitation does indeed take part in an obstruction-induced 

increase in colon motility. 
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The enzymes of the kynurenine pathway are activated by inflammation and immune 

stimulation, leading to large increases in the generation of the NMDA agonist quinolinic acid 

and its antagonist, KYNA (Stone et al. 2001, Mackay et al. 2003). The balance between the 

relative concentrations of these substances during an inflammatory response could therefore 

have a profound influence on the excitability of the enteric neurons and hence on the motility 

of the gut (Forrest et al. 2002, 2003). In pathological conditions (infections, ischaemia or 

traumatic brain injury), dramatic increases in quinolinic acid concentrations have been 

demonstrated (Stone et al. 2001). Although quinolinic acid is a relatively weak agonist at the 

NMDA receptors, its in vivo excitotoxicity is similar to that of NMDA, and several of its 

metabolites, including toxic free radicals, can enhance the neurotoxicity. Moreover, quinolinic 

acid can increase the formation of reactive oxygen species both through a direct Fenton-like 

interaction with iron, and through the NMDA receptor-activated increase in intracellular Ca2+ 

level, which results in a higher XOR activity (Rios et al.1991).  

Glutamate neurotoxicity (necrosis and apoptosis) has been observed in a subset of 

enteric neurons in both intact bowel preparations and cultured myenteric ganglia 

(Kirchgessner et al. 1997). Taken together, these data indicate that excitotoxicity may occur 

in the ENS as well, and overactivation of the enteric glutamate receptors may contribute to the 

intestinal damage produced by obstruction, anoxia or ischaemia. 

Since the glutamate receptors are involved in functional bowel disorders, the 

neuroprotective abilities of KYNA have been tested. KYNA is a broad-spectrum antagonist at 

all subtypes of ionotropic glutamate receptors, but it is preferentially active at the strychnine-

insensitive glycine allosteric site of the NMDA receptor. KYNA itself only poorly penetrates 

the blood-brain barrier, and thus the protective effects of KYNA are limited for the CNS (Kiss 

et al. 2005). It follows that the intravenous administration of KYNA targets only the 

peripheral nervous system. 

The mechanism whereby an elevated KYNA level leads to an increase in SMA blood 

flow or the inhibition of XOR activity has not been elucidated. However, it has been reported 

that the administration of L-kynurenine results in a significant immediate increase in 

corticocerebral blood flow under normal or ischaemic circumstances (Sas et al. 2003), which 

can be blocked by atropine or a NOS inhibitor. The systemic administration of L-kynurenine 

dose-dependently, but not selectively, elevates the level of KYNA in the brain. This raises the 

possibility that KYNA may exert its neuroprotective effect not only by inhibiting excitatory 

neurotransmission, but also by increasing the blood flow. Our results demonstrating decreased 

XO and MPO activities following KYNA treatment confirm this hypothesis. Another possible 
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explanation would be a substrate analogue non-specific inhibitory effect of KYNA on XOR 

activity, since there is structural similarity to hypoxanthine/xanthine, the substrate for XOR. 

There is a close relationship between amelioration of the capillary blood flow and a 

decrease in the leukocyte-endothelial interaction in the intestines (Wolfárd et al. 2002). The 

MPO activity is a quantitative marker of the leukocytes accumulated in the tissue (Kuebler et 

al. 1996). A decreased MPO activity was found in the obstructed colon segment following 

KYNA treatment, and this could be related to the partial elimination of XOR-dependent 

oxygen radical production. 

The relative weight of KYNA treatment in the modification of the obstruction-induced 

motility dysfunction was significant. Our results indicate that glutamate receptors contribute 

to the excitatory profile of the motility pattern in the examined time frame, since non-selective 

NMDA receptor antagonism treatment significantly decreased the motility index and 

amplitude of the GMCs. Our results are consistent with the findings of Tong et al., suggesting 

that mGluR8 agonists increase the motility by inhibiting nitrergic relaxation and possibly by 

facilitating cholinergic contractions (Tong et al. 2003). However, the increases in colon tone 

and frequency of contractions with limited amplitude point to the possible role of some other 

facilitating mechanism. Since KYNA is not only a broad-spectrum antagonist of all subtypes 

of ionotropic glutamate receptors, but also a non-competitive antagonist at the alpha7 

nicotinic receptor, the role of an excitatory cholinergic pathway as concerns the increased 

tone could not be excluded. On this basis, it should be mentioned that an increase in the 

intestinal wall tension could stimulate acetylcholine release (Tong et al. 2003).  

• Our results demonstrate an important role for glutamate receptors in the 

pathophysiology of acute colon obstruction-induced motility changes. 

• These findings reveal that KYNA not only significantly inhibits the contraction of the 

GMCs in the colon, but also exerts a protective, anti-inflammatory effect due to the 

indirect inhibition of oxygen radical production and leukocyte activation. 

To summarize the results of our experiments (Study I and Study II), the data suggest 

that, presumably through the co-functioning of the triple unit of the nerve, the ICCs and the 

smooth muscle cells in the ENS, besides the cholinergic neurotransmission the nitrergic and 

glutaminergic mechanisms play supplementary, important roles in the regulation of colonic 

motility. The function of this triad could probably be that nerves stimulate the NMDA 

receptors of the ICCs through the release of glutamate. The activation of NMDA receptors 

induces Ca2+ influx, and causes constitutive NO production by a Ca2+/calmodulin-dependent 

process (Vizi et al. 2001). The ICCs play a critical role in the reception and transduction of 



 42 

excitatory and inhibitory neurotransmission (Ward et al. 2006). The synthesized NO, as a 

soluble transmitter of the ICCs easily penetrates biological membranes and conducts or 

mediates the stimuli to the neighboring smooth muscle cells. This possible attachment of the 

glutaminergic and nitrergic mechanisms seems to be supported by the result of our Study II. 

KYNA treatment not only significantly inhibited the obstruction-induced increase in the 

motility index of the colon, but also significantly decreased the plasma NOX levels. 

It remains to be established whether the findings in this experimental model are 

applicable to humans. However, together with previous observations, these data strongly 

suggest that medication with an appropriate selective iNOS inhibitor prior to intestinal 

surgery protects against postsurgical dysmotility and reduces the severity of postoperative 

ileus. Furthermore, the suppression of the hypermotility function of the NMDA receptors 

might be beneficial in serving as an incremental tool which can influence the excitotoxicity 

complications after an acute colon obstruction. We hope that these findings will result in the 

near future in a more effective approach via which to reduce the morbidity and mortality rates 

of these still dangerous clinical entities.  
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