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Abstract (208 words) 21 

Big data, high-performance computing, and (deep) machine learning are increasingly noted as key to 22 

precision medicine –from identifying disease risks and taking preventive measures, to making 23 

diagnoses and personalising treatment for individuals. Precision medicine, however, is not only 24 
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about predicting risks and outcomes, but also about weighing interventions. Interventional clinical 25 

predictive models require the correct specification of cause and effect, and the calculation of so-26 

called counterfactuals, i.e. alternative scenarios. In biomedical research, observational studies are 27 

commonly affected by confounding and selection bias. Without robust assumptions, often requiring 28 

a priori domain knowledge, causal inference is not feasible. Data-driven prediction models are often 29 

mistakenly used to draw causal effects, but neither their parameters nor their predictions necessarily 30 

have a causal interpretation. Therefore, the premise that data-driven prediction models lead to 31 

trustable decisions/interventions for precision medicine is questionable. When pursuing intervention 32 

modelling, the bio-health informatics community needs to employ causal approaches and learn 33 

causal structures. Here we discuss how target trials (algorithmic emulation of randomized studies), 34 

transportability (the license to transfer causal effects from one population to another) and prediction 35 

invariance (where a true causal model is contained in the set of all prediction models whose accuracy 36 

does not vary across different settings) are linchpins to developing and testing intervention models. 37 
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Main text (4,270 manuscript) 42 

Introduction 43 

Advances in computing and machine learning have opened unprecedented paths to processing and 44 

inferring knowledge from big data. Deep learning has been game-changing for many analytics 45 

challenges, beating humans and other machine learning approaches in decision/action tasks, such as 46 

playing games, and aiding/augmenting tasks such as driving or recognising manipulated images. 47 

Deep learning’s potential applications in healthcare have been widely speculated 1, especially in 48 
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precision medicine –the timely and tailored prevention, identification, diagnosis, and treatment of 49 

disease. However, the use of data-driven machine learning approaches to model causality, for 50 

instance, to uncover new causes of disease or assess treatment effects, carries dangers of unintended 51 

consequences. Therefore the Hippocratic principle of ‘first do no harm’ is being adopted 2 alongside 52 

rigorous study design, validation, and implementation, with attention to ethics and bias avoidance. 53 

Precision medicine models are not only descriptive or predictive, e.g. assessing the mortality risk for 54 

a patient undergoing a surgical procedure, but also decision-supporting/interventional, e.g. choosing 55 

and personalising the procedure with the highest probability of favourable outcome. Predicting risks 56 

and outcomes differs from weighing interventions and intervening. Prediction calculates a future 57 

event in the absence of any action or change; intervention presumes an enacted choice that may 58 

influence the future, which requires consideration of the underlying causal structure. 59 

Intervention imagines how the world would be if we made different choices, e.g. “would the patient be 60 

cured if we administered amoxicillin instead of a cephalosporin for their upper respiratory tract infection?” or “if that 61 

pre-hypertensive patient had accomplished ten to fifteen minutes of moderate physical activity per day instead of being 62 

prescribed a diuretic, would they have become hypertensive five years later?” By asking ourselves what would 63 

have been the effect of something if we had not taken an action, or vice versa, we are computing so-64 

called ‘counterfactuals’. Among different counterfactual options, we choose the ones that minimise 65 

harm while maximising patient benefit. A similar cognitive process happens when a deep learning 66 

machine plays a game and must decide on the next move. Such artificial neural network architecture 67 

has been fed the game ruleset, millions of game scenarios, and has learned through trial and error by 68 

playing against other human players, networks or even against itself. In each move of the game, the 69 

machine chooses the best counterfactual move based on its domain knowledge 3,4. 70 

With domain knowledge of the variables involved in a hypothesised cause-effect route and enough 71 

data generated at random to cover all possible path configurations, it is possible to deduce causal 72 
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effects and calculate counterfactuals. Randomisation and domain knowledge are key: when either is 73 

not met, causal inference may be flawed 5. 74 

In clinical research, randomised controlled trials (RCTs) permit direct testing of causal hypotheses 75 

since randomisation is guaranteed a priori by design even with limited domain knowledge. On the 76 

other hand, observational data collected retrospectively usually does not fulfil such requirements, 77 

thus limiting what secondary data analyses can discover. For instance, databases collating electronic 78 

medical records do not explicitly record domain/contextual knowledge (e.g. why one drug was 79 

prescribed over another) and are littered with many types of bias, including protopathic bias (when a 80 

therapy is given based on symptoms, yet the disease is undiagnosed), indication bias (when a risk 81 

factor appears to be associated with a health outcome, but the outcome may be caused by the reason 82 

for which the risk factor initially appeared), or selection bias (when a study population does not 83 

represent the target population, e.g. insured people or hospitalised patients). 84 

Therefore, the development of health intervention models from observational data (no matter how 85 

big) is problematic, regardless of the method used (no matter how deep) because of the nature of 86 

the data. Fitting a machine learning model to observational data and using it for counterfactual 87 

prediction may lead to harmful consequences. One famous example is that of prediction tools for 88 

crime recidivism that convey racial discriminatory bias 6. Any instrument inferred from existing 89 

population data may be biased by gender, sexual orientation, race, or ethnicity discrimination, and 90 

carry forward such bias when employed to aid decisions 7. 91 

The health and biomedical informatics community, charged with maximising the utility of healthcare 92 

information, needs to be attuned to the limitations of data-driven inference of intervention models, 93 

and needs safeguards for counterfactual prediction modelling. These topics are addressed here as 94 

follows: first, we give a brief outline of causality, counterfactuals, and the problem of inferring 95 

cause-effect relations from observational data; second, we provide examples where automated 96 
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learning has failed to infer a trustworthy counterfactual model for precision medicine; third, we offer 97 

insights on methodologies for automated causal inference; finally, we describe potential approaches 98 

to validate automated causal inference methods, including transportability and prediction invariance. 99 

We aim not to criticise the use of machine learning for the development of clinical prediction 100 

models 8,9, but rather clarify that prediction and intervention models have different developmental 101 

paths and intended uses 10. We recognise the promising applications of machine learning in 102 

healthcare for descriptive/predictive tasks rather than interventional tasks, e.g. screening images for 103 

diabetic retinopathy 11, even when diagnostic models have been shown to be susceptible to errors 104 

when applied to different population 12. Yet, it is important to distinguish prediction works from 105 

others that seek to optimise treatment decisions and are clearly interventional 13, where validating 106 

counterfactuals becomes necessary. 107 

Causal inference and counterfactuals 108 

Causality has been described in various ways. For the purpose of this work, it is useful to recall the 109 

deterministic (yet can be made probabilistic) definitions by means of counterfactual conditionals –110 

e.g. the original 1748 proposition by Hume or the 1973 formalisation by Lewis 14– paraphrased as: 111 

an event E causally depends on C if, and only if, E always follows after C and E does not occur 112 

when C has not occurred (unless something else caused E). The counterfactual-based definition 113 

contains an implicit time component and works in a chained manner, where effects can become 114 

causes of other subsequent effects. Causes can be regarded as necessary, sufficient, contributory, or 115 

non-redundant 15. 116 

Causal inference addresses the problem of ascertaining causes and effects from data. Causes can be 117 

determined through prospective experiments to observe E after C is tried or withheld, by keeping 118 

constant all other possible factors that can influence either the choice of C or the happening of E, or 119 

–what is easier and more often done– randomising the choice of C. Formally, we acknowledge that 120 
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the conditional probability P(E|C) of observing E after observing C can be different from the 121 

interventional probability P(E|do(C)) of observing E after doing C. In RCTs –when C is 122 

randomised– the ‘do’ is guaranteed and unconditioned, while with observational data, it is not. 123 

Causal calculus helps resolve interventional from conditional probabilities when a causal structure is 124 

assumed 16. Figure 1 illustrates the difference between observing and doing using biomedical target 125 

examples. 126 

In a nutshell, the major hurdles to ascertaining causal effects from observational data include: the 127 

failure to disambiguate interventional from conditional distributions, to identify all potential sources 128 

of bias 17 and to select an appropriate functional form for all variables, i.e. model misspecification 18–129 

20. 130 

Two well-known types of bias are confounding and collider bias (Figure 2). Given an outcome, i.e. 131 

the objective of a (counterfactual) prediction, confounding occurs when there exists a variable that 132 

causes the outcome and the effect, leading to the conclusion that an exposure is associated with the 133 

outcome even though it does not cause it. For instance, cigarette smoking causes both nicotine-134 

stained, yellow fingers and lung cancer. Yellow fingers, as the exposure or independent variable, can 135 

be spuriously associated with lung cancer if smoking, the underlying confounding variable, is 136 

unaccounted. Yellow fingers alone could be used to predict lung cancer but cleaning the skin would 137 

not reduce the risk of lung cancer. Therefore, an intervention model that used yellow fingers as the 138 

actionable item would be futile, while a model that actioned upon smoking (the cause) would be 139 

effective in reducing lung cancer risk. 140 

A collider is a variable that is caused by both the exposure (or causes of the exposure) and the 141 

outcome (or causes of the outcome). Conditioning on a collider biases the estimate of the causal 142 

effect of exposure on outcome. A classic example involves the association between locomotor and 143 

respiratory diseases. Originally observed in hospitalised patients and thought biologically plausible, 144 
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this association could not be established in the general population 21. In this case, hospitalisation 145 

status functions as a collider because it introduces selection bias, as people with locomotor disease 146 

or respiratory disease have higher risk of being admitted to hospital. 147 

Another example of collider bias is the obesity paradox 22. This paradox refers to the 148 

counterintuitive evidence of lower mortality among people who are obese within certain clinical 149 

subpopulations, e.g. in patients with heart failure. A more careful consideration of the covariate-150 

outcome relationship in this case reveals heart failure is a collider. Had an intervention been 151 

developed by means of such model, treating obesity would not have been suggested as an actionable 152 

feature to reduce the risk of mortality. 153 

Causal inference can become more complex when a variable may be mistaken for a confounder but 154 

actually functions as a collider. This phenomenon is called M-bias since the associated causal 155 

diagram is usually drawn in an M-shaped form 23,24. A classic M-bias example is the effect of 156 

education on diabetes, controlled through family history of diabetes and income. In a hypothetical 157 

study, it could be reasonable to regard mother’s (or father’s) history of diabetes as a confounder, 158 

because it is associated with both education level and diabetes status, and it is not caused by either. 159 

However, family history of diabetes’ associations with the education and diabetes are not causal but 160 

are in turn confounded by family income and family genetic risk for diabetes, respectively, that 161 

might not be measured as input (Figure 3). At this point, mother’s diabetes becomes a collider, and 162 

including it would induce a biased association between education and diabetes through the links 163 

from family income and genetic risk. Specifically, the estimate of the causal effect of education on 164 

diabetes would be biased. In general, including mother’s diabetes in the input covariate would lead 165 

to bias both if there was a zero or non-zero causal effect 25; however, if the unmeasured covariates 166 

were included, the bias would be resolved (by a so-called backdoor path blocking) 26. The M-bias 167 



8 
 

example shows how the causal structure choice (which could be machine learned) can influence the 168 

causal effect inference; we will discuss the two more in detail later a specific section. 169 

For brevity, we do not describe moderators, mediators, and other important concepts in causality 170 

modelling. Nonetheless, it is useful to mention instrumental variables, which determine variation in 171 

an explanatory variable, e.g. a treatment, but have no independent effect on the outcome of interest. 172 

Instrumental variables, therefore, can be used to resolve unmeasured confounding in absence of 173 

prospective randomisation. 174 

An old neural network fiasco and a new possible paradox 175 

In 1997, Cooper et al. 27 investigated several machine learning models, including rule-based and 176 

neural networks, for predicting mortality of hospital patients admitted with pneumonia. The neural 177 

network greatly outperformed logistic regression; however, the authors discouraged using black box 178 

models in clinical practice. They showed how the rule-based method learned that ‘IF patient 179 

admitted (with pneumonia) has history of asthma THEN patient has lower risk of death from 180 

pneumonia’ 28. This counterintuitive association was also later confirmed using generalised additive 181 

models 29. The physicians explained that patients admitted with pneumonia and known history of 182 

asthma would likely be transferred to intensive care and treated aggressively, thus having higher odds 183 

of survival than the general population admitted with pneumonia. The authors recommended to 184 

employ interpretable models instead of black boxes, to identify counterintuitive, surprising patterns 185 

and remove them. At this point, the model development is no longer automated and requires 186 

domain knowledge. Upon reflection, those models inferred without modifications, either 187 

interpretable or black box, would have worked well at predicting mortality but they could not have 188 

been used to test new interventions to reduce mortality, as the recommended actions would have 189 

consequentially led to ‘less care’ for asthmatic patients. 190 
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More recently, a possible data-driven improvement in the evaluation of fall risk in hospitals was 191 

investigated 30. Standard practice involves a nurse-led evaluation of patients’ history of falls, 192 

comorbidities, mental health, gait, ambulatory aids, and intravenous therapy summarised with the 193 

Morse scale. To assess the predictive ability of the Morse scale (standard practice), its individual 194 

components, and new expert-based predictors (e.g. extended clinical profiles and information on 195 

hospital staffing levels), a matched study was performed including patients with and without a fall. 196 

Logistic regression and decision trees were used. The additional variables hypothesised by the 197 

experts were associated with the outcome and all new models yielded higher discrimination than the 198 

Morse scale, but a surprising finding was observed: in all configurations, older patients were at a 199 

lower risk of falls. This is contrary to current expert’s knowledge, which associates older age with 200 

increased frailty and therefore fall risk. If such model were used for intervention, it would not 201 

prioritise the elderly for fall prevention –a potentially devastating consequence of data-driven 202 

inference. It is uncertain if this old age paradox is due to a bias. One possible explanation is that 203 

older patients are usually monitored and aided more frequently because they are indeed at higher 204 

risk, while younger people may be more independent and less prone to accept assistance. Other 205 

issues at play could be survivorship bias, selectively unreported falls, and study design. One possible 206 

approach to bias reduction is to design the study and extract the data by simulating an RCT, where 207 

causal effects on “randomised” interventions can be estimated directly, as we discuss in the next 208 

section. 209 

The target trial 210 

Target trials refer to RCTs that can be emulated using data from large, observational databases to 211 

answer causal questions of comparative treatment effect 31. Although RCTs are the gold standard for 212 

discerning causal effects, there exists many scenarios in which they are neither feasible nor ethical to 213 

conduct. Alternatively, observational data appropriately adjusted for measured confounding bias –214 
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for instance, via propensity score matching– can be used to emulate randomised treatment 215 

assignment; this may be feasible with electronic medical records where many individual-level 216 

attributes can be linked to resolve bias. The target trial protocol requires prospective enrolment-like 217 

eligibility criteria, a description of treatment strategies and assignment procedures, the identification 218 

of time course from a baseline to the outcome, a causal query (e.g. treatment effect), and an analysis 219 

plan (e.g. a regression model), as shown in Table 1.   220 

As an example of the target trial framework, data from public surveillance and clinical claims 221 

repositories were used to replicate two RCTs, one investigating treatment effects on colorectal 222 

cancer and the other on pancreatic adenocarcinoma 32. Each study explicitly adhered to the target 223 

trial framework, deviating from the RCT design only in the assignment procedures, justifiably due to 224 

lack of randomisation. The results were consistent with the target trials –all of which reported a null 225 

effect. In contrast, when the authors modelled the treatment effects using a non-RCT-like study 226 

design with the same variables, the mortality estimates were both inconsistent with the target trials. 227 

These examples demonstrate the need to uphold target trial design in the investigation of treatment 228 

effects using observational data. Moreover, coupled with machine learning methods equipped to 229 

extrapolate more useful information from big data sources, the target trial framework has the 230 

potential to serve as the foundation for exploring causal processes currently unknown. 231 

Causal effect inference and automated learning of causal structures 232 

Prediction models inferred automatically using data without any domain knowledge –from linear 233 

regression to deep learning– only approximate a function, and do not necessarily hold a causal 234 

meaning. Instead, by estimating interventional in place of conditional probabilities, models can 235 

reproduce causal mechanisms. Through counterfactual predictions, models become interventional, 236 

actionable, and avoid the pitfalls such as those described in the pneumonia and fall risk examples. In 237 

the previous sections we showed that it is possible to directly estimate causal effects by generating 238 
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data through RCTs or by simulating RCTs with observational data. Here, we delve further into the 239 

approaches to unveiling and disambiguating causality from observational data, including the 240 

assumptions to be made. We can categorise two main tasks: (i) estimating causal effects, and (ii) 241 

learning causal structures. In the first one, a causal structure, or a set of cause-effect relationships 242 

and pathways, is defined a priori, input variables are fixed, and causal effects are estimated for a 243 

specific input-output pair, e.g. causal effect of  diabetes on glaucoma. Directed acyclic graphs 244 

(DAGs) 33 –also known as Bayesian networks– and structural equation models 34,35 are often used to 245 

model such structures. While with RCT data the estimation of causal effects can be done directly, 246 

the estimation of causal effects from observational data requires thoughtful handling of potential 247 

biases and confounding. Methods like inverse probability weighting attempt to weigh single 248 

observations to mimic the effects of randomisation with respect to one variable of interest (e.g. an 249 

exposure or a treatment) 36. Other techniques include targeted maximum likelihood estimation 37–39, 250 

g-methods 40,41, and propensity score matching 42. Often, these estimators can be coupled with 251 

machine learning, e.g. causal decision trees 43, Bayesian regression trees 44, and random forests for 252 

estimating individual treatment effects 45. As previously mentioned, model misspecification –i.e. 253 

defining the wrong causal structure and the choice of variables to handle confounding and bias– can 254 

lead to wrong estimation of causal effects. With big data, especially datasets with numerous features, 255 

choosing adjustments and even over-adjusting using all variables, is problematic. Feature selection 256 

algorithms based on conditional independence scoring have been proposed 46. 257 

Automated causal structure learning uses conditional independence tests and structure search 258 

algorithms over given DAGs subject to certain assumptions, e.g. ‘causal sufficiency’ that is no 259 

unmeasured common causes and no selection bias. In 1990, an important result on independence 260 

and conditional independence constraints –the d-separation equivalence theorem 47– led to the 261 

development of automated search and ambiguity resolution of causal structures from data, through 262 
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so-called patterns and partial ancestral graphs. When assumptions are met (Markov/causal 263 

faithfulness 48), there are asymptotically correct procedures that can predict an effect or raise an 264 

ambiguity, and determine graph equivalence 49. However, the probability of an effect cannot be 265 

obtained without deciding on a prior distribution of the graphs and parameters. Also, the number of 266 

graphs is super-exponential in the number of observed variables and may even be infinite with 267 

hidden variables 50, making an exhaustive search computationally unfeasible 51. Today, several 268 

heuristic methods for causal structure search are available, from the PC algorithm that assumes 269 

causal sufficiency, to others like FCI or RFCI that extend to latent variables 52,53. 270 

The enrichment of deep learning with causal methods also provides interesting new insights to 271 

address bias. For instance, a theoretical analysis for identification of individual treatment effect 272 

under strong ignorability has been derived 54, and an approach to exploit instrumental variables for 273 

counterfactual prediction within deep learning is also available 55.  274 

Model transportability and prediction invariance 275 

Validation of causal effects under determined causal structures is especially needed when such 276 

effects are estimated in limited settings, e.g. RCTs. Transportability is a data fusion framework for 277 

external validation of intervention models and counterfactual queries. As defined by Pearl and 278 

Bareinboim 56, transportability is a “license to transfer causal effects learned in experimental studies 279 

to a new population, in which only observational studies can be conducted.” By combining datasets 280 

generated under heterogeneous conditions, transportability provides formal mathematical tools to (i) 281 

evaluate whether results from one study (e.g. a causal relationship identified in an RCT) could be 282 

used to generate valid estimates of the same causal effect in another study of different setting (e.g. an 283 

observational study of the same causal effect in a different population); and (ii) estimate what the 284 

causal effect would have been if the study had been conducted in the new setting 57,58. The 285 

framework utilises selection diagrams 59, encoding the causal relationships of variables of interest in a 286 
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study population, and about the characteristics in which the target and study populations differ. If 287 

the structural constraints among variables in the selection diagrams are resolvable through the do-288 

calculus, a valid estimate of the causal effect in the target population can be calculated using the 289 

extant causal effect from the original study, which means that the observed causal effect is 290 

transportable. 291 

One of Pearl’s transportability examples is shown in Figure 4. In this example, a RCT is conducted 292 

in city A (original environment) and a causal effect of treatment x on outcome y, ܲ((ݔ)݋݀|ݕ), is 293 

determined. We wish to generalise if the treatment works also in the population of city B (target 294 

environment) where only observational data is available, since it happens that the age distribution in 295 

city A, ܲ(ݖ), is different than that ܲ∗(ݖ) in city B. The city B specific x-to-y causal effect 296 ܲ∗൫ݕห݀(ݔ)݋൯ is estimated as:        297 

ܲ∗൫ݕห݀(ݔ)݋൯ =෍ܲ((ݔ)݋݀|ݕ, ௭(ݖ)∗ܲ(ݖ  

In this transport formula, the age-specific causal effects estimated in the RCT, ܲ((ݔ)݋݀|ݕ,  is 298 ,(ݖ

combined with the observed age distribution in the target population, ܲ∗(ݖ), to obtain the causal 299 

effect ܲ∗൫ݕห݀(ݔ)݋൯ in city B.  300 

On the other hand, a causal effect is not always transportable. Following the example above, the x-301 

to-y causal effect is not transportable from City A to City B if only the overall causal effect 302 ܲ((ݔ)݋݀|ݕ) is known whereas the age-specific causal effect ܲ((ݔ)݋݀|ݕ,  is unknown.  303 (ݖ

Transportability theory is being extended to a variety of more complex causal relationships, e.g. 304 

sample selection bias 58, leaping forward from toy examples to real-world problems 60. Therefore –305 

linking back with the problematic examples we discussed in the previous sections– one could use 306 

transportability to determine how the asthma or old age effects are/are not transportable from one 307 

population to another. It is also worth noting how transportability evokes the field of domain 308 
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adaptation, which aims to learn a model in one source population that can be used in a different 309 

target distribution. In fact, domain adaptation has been employed to address sample selection bias 61. 310 

An interesting next of kin to transportability is prediction invariance 62. Among all models that show 311 

invariance in their predictive accuracy across different experimental settings and interventions, there 312 

is a high probability that the causal model will be a member of that set. For example, Schulam and 313 

Saria 72 introduced the counterfactual Gaussian process to predict continuous-time trajectories under 314 

irregular sampling, handling biases arising from clinical protocols. In another work, aimed at 315 

addressing issues of supervised learning when training and target distributions differ (i.e. dataset 316 

shift), Saria et al. 63 proposed the ‘surgery estimator’, defined as an interventional distribution 16 that 317 

is invariant to differences across environments. The surgery estimator works by learning a 318 

relationship in the training data that is generalisable to the target population, by incorporating prior 319 

knowledge about the data generating process that are expected to differ between the original and 320 

target populations. It was applied in real-world cases where causal structures were unknown. 321 

Conclusions 322 

We explored common pitfalls of data-driven developments in machine learning for healthcare, 323 

distinguishing between prediction and intervention models that are actionable in support of clinical 324 

decision-making. Importantly, the development of intervention models requires careful 325 

consideration of causality. Hernan et al. 64 commented that “a recent influx of data analysts, many 326 

not formally trained in statistical theory, bring a fresh attitude that does not a priori exclude causal 327 

questions” yet called –and we strongly endorse such call– for training curricula in data science that 328 

well-differentiate descriptive, prediction, and intervention modelling.  329 

Undertaking causal machine learning is key to ethical artificial intelligence for healthcare, equivalent 330 

to a doctor’s oath to “first do no harm” 65. Healthcare intervention models involve actionable inputs 331 

and need –implicitly or explicitly– to model causal pathways to compute the correct counterfactuals. 332 
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There are ongoing discussions in the machine learning community about model explainability for 333 

bias avoidance and fairness in decisions 66. Bias is a core topic in causal theory. Explainability may be 334 

a ‘weaker’ model property than causality. Explaining the role of input variables in changing the 335 

output of a black box neither assures a correct interpretation of the input-output mechanism nor 336 

unveils the cause-effect relationships. For instance, in a deep learning system that predicts the risk of 337 

heart attack, a subsequent analysis could be able to explain that the input variables ‘race’ and ‘blood 338 

pressure’ affect the risk, but could not say if these findings are causal, since they may be biased by 339 

stratification, unmeasured confounders, or mediated by other factors in the causal pathway. Fairness 340 

in machine learning aims at developing models that avoid social discrimination due to historically 341 

biased data and  involves the same conceptual hurdles as learning from observational data. In fact, 342 

the usage of causal models has been advocated to identify and mitigate discriminatory relationships 343 

in data 67. Recently, a study in cancer prognostics presented a causal structure coupled to deep 344 

learning to eliminate collider bias and provide unbiased individual predictions 68, although it did not 345 

explicitly test for transportability.  346 

For context-specific intervention models, where a causal structure is available or a target trial design 347 

can be devised, we then recommend evaluation of model transportability for a given set of action 348 

queries, e.g. treatment options or risk modifiers. For broader exploratory analyses where causal 349 

structures need to be identified or clarified, prediction invariance could be used. Transportability and 350 

prediction invariance could become core tools to reporting protocols for intervention models, in line 351 

with the current standards for prognostic and diagnostic models 69. A transportable model can be 352 

integrated into clinical guidelines to augment healthcare with action-savvy predictions, in pursuit of 353 

better precision medicine.  354 

 355 

Acknowledgments 356 



16 
 

Dr. Bian’s, Guo’s and Prosperi’s research for this work was in part supported by University of 357 

Florida’s Creating the Healthiest Generation - Moonshot initiative, supported by the UF Office of 358 

the Provost, UF Office of Research, UF Health, UF College of Medicine and UF Clinical and 359 

Translational Science Institute. Dr. Wang’s work on this research was supported in part by the 360 

Lanzillotti-McKethan Eminent Scholar Endowment. 361 

 362 

Author Contributions 363 

MP, YG, MS, JB: conceived and designed the experiments, contributed materials/analysis tools, 364 

wrote the paper. 365 

JK, IB: conceived and designed the experiments, wrote the paper. 366 

JM XE, SR, MW: contributed materials/analysis tools, wrote the paper. 367 

 368 

Competing Interests Statement 369 

The authors have no competing interests as defined by Nature Research, or other interests that 370 

might be perceived to influence the results and/or discussion reported in this paper. 371 

 372 

References 373 

1. Norgeot, B., Glicksberg, B. S. & Butte, A. J. A call for deep-learning healthcare. Nature 374 

Medicine (2019). doi:10.1038/s41591-018-0320-3 375 

2. Wiens, J. et al. Do no harm: a roadmap for responsible machine learning for health care. Nat. 376 

Med. (2019). doi:10.1038/s41591-019-0548-6 377 

3. Silver, D. et al. Mastering the game of Go without human knowledge. Nature (2017). 378 

doi:10.1038/nature24270 379 

4. Jin, P., Keutzer, K. & Levine, S. Regret minimization for partially observable deep 380 



17 
 

reinforcement learning. in 35th International Conference on Machine Learning, ICML 2018 (2018). 381 

5. Pearl, J. & Mackenzie, D. The Book of Why: The New Science of Cause and Effect. (Basic Books, 382 

Inc., 2018). 383 

6. Chouldechova, A. Fair Prediction with Disparate Impact: A Study of Bias in Recidivism 384 

Prediction Instruments. Big Data (2017). doi:10.1089/big.2016.0047 385 

7. Kusner, M., Loftus, J., Russell, C. & Silva, R. Counterfactual fairness. in Advances in Neural 386 

Information Processing Systems (2017). 387 

8. Christodoulou, E. et al. A systematic review shows no performance benefit of machine 388 

learning over logistic regression for clinical prediction models. Journal of Clinical Epidemiology 389 

(2019). doi:10.1016/j.jclinepi.2019.02.004 390 

9. Bian, J., Buchan, I., Guo, Y. & Prosperi, M. Statistical thinking, machine learning. J. Clin. 391 

Epidemiol. (2019). doi:10.1016/j.jclinepi.2019.08.003 392 

10. Baker, R. E., Peña, J. M., Jayamohan, J. & Jérusalem, A. Mechanistic models versus machine 393 

learning, a fight worth fighting for the biological community? Biol. Lett. (2018). 394 

doi:10.1098/rsbl.2017.0660 395 

11. Gulshan, V. et al. Development and validation of a deep learning algorithm for detection of 396 

diabetic retinopathy in retinal fundus photographs. JAMA - J. Am. Med. Assoc. (2016). 397 

doi:10.1001/jama.2016.17216 398 

12. Winkler, J. K. et al. Association between Surgical Skin Markings in Dermoscopic Images and 399 

Diagnostic Performance of a Deep Learning Convolutional Neural Network for Melanoma 400 

Recognition. JAMA Dermatology (2019). doi:10.1001/jamadermatol.2019.1735 401 

13. Komorowski, M., Celi, L. A., Badawi, O., Gordon, A. C. & Faisal, A. A. The Artificial 402 

Intelligence Clinician learns optimal treatment strategies for sepsis in intensive care. Nat. Med. 403 

(2018). doi:10.1038/s41591-018-0213-5 404 



18 
 

14. Lewis, D. K. Causation. J. Philos. 70, (1973). 405 

15. Mackie, J. L. The Cement of the Universe. (Oxford, Clarendon Press, 1974). 406 

16. Pearl, J. Causality: Models, Reasoning and Inference. (Cambridge University Press, 2009). 407 

17. Rothman, K. J., Greenland, S. & Lash, T. Modern Epidemiology, 3rd Revised Edition. Lippincott 408 

Williams & Williams (2012). doi:10.1017/CBO9781107415324.004 409 

18. Lehmann, E. L. Model Specification: The views of Fisher and Neyman, and later 410 

developments. Stat. Sci. (1990). doi:10.1214/ss/1177012164 411 

19. Vansteelandt, S., Bekaert, M. & Claeskens, G. On model selection and model misspecification 412 

in causal inference. Stat. Methods Med. Res. (2012). doi:10.1177/0962280210387717 413 

20. Asteriou, D., Hall, S. G., Asteriou, D. & Hall, S. G. Misspecification: Wrong Regressors, 414 

Measurement Errors and Wrong Functional Forms. in Applied Econometrics (2016). 415 

doi:10.1057/978-1-137-41547-9_8 416 

21. Sackett, D. L. Bias in analytic research. J. Chronic Dis. (1979). doi:10.1016/0021-417 

9681(79)90012-2 418 

22. Banack, H. R. & Kaufman, J. S. The ‘obesity paradox’ explained. Epidemiology (2013). 419 

doi:10.1097/EDE.0b013e31828c776c 420 

23. Pearl, J. Causal diagrams for empirical research. Biometrika (1995). 421 

doi:10.1093/biomet/82.4.669 422 

24. Greenland, S., Pearl, J. & Robins, J. M. Causal diagrams for epidemiologic research. 423 

Epidemiology (1999). doi:10.1097/00001648-199901000-00008 424 

25. Westreich, D. & Greenland, S. The table 2 fallacy: Presenting and interpreting confounder 425 

and modifier coefficients. American Journal of Epidemiology (2013). doi:10.1093/aje/kws412 426 

26. Wei, L., Brookhart, M. A., Schneeweiss, S., Mi, X. & Setoguchi, S. Implications of m bias in 427 

epidemiologic studies: A simulation study. Am. J. Epidemiol. (2012). doi:10.1093/aje/kws165 428 



19 
 

27. Cooper, G. F. et al. An evaluation of machine-learning methods for predicting pneumonia 429 

mortality. Artif. Intell. Med. (1997). doi:10.1016/S0933-3657(96)00367-3 430 

28. Ambrosino, R., Buchanan, B. G., Cooper, G. F. & Fine, M. J. The use of misclassification 431 

costs to learn rule-based decision support models for cost-effective hospital admission 432 

strategies. Proc. Annu. Symp. Comput. Appl. Med. Care (1995). 433 

29. Caruana, R. et al. Intelligible models for healthcare: Predicting pneumonia risk and hospital 434 

30-day readmission. in Proceedings of the ACM SIGKDD International Conference on Knowledge 435 

Discovery and Data Mining (2015). doi:10.1145/2783258.2788613 436 

30. Lucero, R. J. et al. A data-driven and practice-based approach to identify risk factors 437 

associated with hospital-acquired falls: Applying manual and semi- and fully-automated 438 

methods. Int. J. Med. Inform. (2019). doi:10.1016/j.ijmedinf.2018.11.006 439 

31. Hernán, M. A. & Robins, J. M. Using Big Data to Emulate a Target Trial When a 440 

Randomized Trial Is Not Available. Am. J. Epidemiol. (2016). doi:10.1093/aje/kwv254 441 

32. Petito, L. C. et al. Estimates of Overall Survival in Patients With Cancer Receiving Different 442 

Treatment Regimens: Emulating Hypothetical Target Trials in the Surveillance, 443 

Epidemiology, and End Results (SEER)–Medicare Linked Database. JAMA Netw. Open 3, 444 

e200452–e200452 (2020). 445 

33. Pearl, J. Causal diagrams for empirical research. Biometrika (1995). 446 

doi:10.1093/biomet/82.4.669 447 

34. Westland, J. C. An introduction to structural equation models. in Studies in Systems, Decision and 448 

Control (2019). doi:10.1007/978-3-030-12508-0_1 449 

35. Bollen, K. A. & Pearl, J. Eight Myths About Causality and Structural Equation Models. in 450 

(2013). doi:10.1007/978-94-007-6094-3_15 451 

36. Hernán, M. A. & Robins, J. M. Estimating causal effects from epidemiological data. Journal of 452 



20 
 

Epidemiology and Community Health (2006). doi:10.1136/jech.2004.029496 453 

37. van der Laan, M. J. & Rubin, D. Targeted maximum likelihood learning. Int. J. Biostat. (2006). 454 

doi:10.2202/1557-4679.1043 455 

38. Schuler, M. S. & Rose, S. Targeted maximum likelihood estimation for causal inference in 456 

observational studies. Am. J. Epidemiol. (2017). doi:10.1093/aje/kww165 457 

39. Rose, S. & van der Laan, M. J. Targeted Learning: Causal Inference for Observational and 458 

Experimental Data. Target. Learn. Causal Inference Obs. Exp. Data (2011). doi:10.1007/978-1-459 

4419-9782-1 460 

40. Naimi, A. I., Cole, S. R. & Kennedy, E. H. An introduction to g methods. Int. J. Epidemiol. 461 

(2017). doi:10.1093/ije/dyw323 462 

41. Robins, J. M. & Hernán, M. A. Estimation of the causal effects of time-varying exposures. in 463 

Longitudinal Data Analysis (2008). 464 

42. Rosenbaum, P. R. & Rubin, D. B. The central role of the propensity score in observational 465 

studies for causal effects. Biometrika (1983). doi:10.1093/biomet/70.1.41 466 

43. Li, J., Ma, S., Le, T., Liu, L. & Liu, J. Causal Decision Trees. IEEE Trans. Knowl. Data Eng. 467 

(2017). doi:10.1109/TKDE.2016.2619350 468 

44. Hahn, P. R., Murray, J. & Carvalho, C. M. Bayesian Regression Tree Models for Causal Inference: 469 

Regularization, Confounding, and Heterogeneous Effects. SSRN (2017). doi:10.2139/ssrn.3048177 470 

45. Lu, M., Sadiq, S., Feaster, D. J. & Ishwaran, H. Estimating Individual Treatment Effect in 471 

Observational Data Using Random Forest Methods. J. Comput. Graph. Stat. (2018). 472 

doi:10.1080/10618600.2017.1356325 473 

46. Schneeweiss, S. et al. High-dimensional propensity score adjustment in studies of treatment 474 

effects using health care claims data. Epidemiology (2009). 475 

doi:10.1097/EDE.0b013e3181a663cc 476 



21 
 

47. Verma, T. & Pearl, J. Causal Networks: Semantics and Expressiveness. in Machine Intelligence 477 

and Pattern Recognition (1990). doi:10.1016/B978-0-444-88650-7.50011-1 478 

48. Jaber, A., Zhang, J. & Bareinboim, E. Causal identification under Markov equivalence. in 34th 479 

Conference on Uncertainty in Artificial Intelligence 2018, UAI 2018 (2018). 480 

49. Richardson, T. Equivalence in Non-Recursive Structural Equation Models. in Compstat (1994). 481 

doi:10.1007/978-3-642-52463-9_59 482 

50. Heckerman, D., Meek, C. & Cooper, G. F. A Bayesian approach to causal discovery. Studies in 483 

Fuzziness and Soft Computing (2006). doi:10.1007/10985687_1 484 

51. Peter Spirtes, C. G. and R. S. Causation, Prediction, and Search. 2nd edn. MIT Press. Stat. 485 

Med. (2003). doi:10.1002/sim.1415 486 

52. Glymour, C., Zhang, K. & Spirtes, P. Review of causal discovery methods based on graphical 487 

models. Front. Genet. (2019). doi:10.3389/fgene.2019.00524 488 

53. Colombo, D. & Maathuis, M. H. Order-independent constraint-based causal structure 489 

learning. J. Mach. Learn. Res. (2015). 490 

54. Shalit, U., Johansson, F. D. & Sontag, D. Estimating individual treatment effect: 491 

Generalization bounds and algorithms. in 34th International Conference on Machine Learning, 492 

ICML 2017 (2017). 493 

55. Hartford, J., Lewis, G., Leyton-Brown, K. & Taddy, M. Deep {IV}: A Flexible Approach for 494 

Counterfactual Prediction. in Proceedings of the 34th International Conference on Machine Learning 495 

(eds. Precup, D. & Teh, Y. W.) 70, 1414–1423 (PMLR, 2017). 496 

56. Pearl, J. & Bareinboim, E. External validity: From do-calculus to transportability across 497 

populations. Stat. Sci. (2014). doi:10.1214/14-STS486 498 

57. Dahabreh, I. J., Robertson, S. E., Tchetgen, E. J., Stuart, E. A. & Hernán, M. A. Generalizing 499 

causal inferences from individuals in randomized trials to all trial�eligible individuals. 500 



22 
 

Biometrics (2019). doi:10.1111/biom.13009 501 

58. Bareinboim, E. & Pearl, J. Causal inference and the data-fusion problem. Proceedings of the 502 

National Academy of Sciences of the United States of America (2016). doi:10.1073/pnas.1510507113 503 

59. Pearl, J. & Bareinboim, E. Transportability of causal and statistical relations: A formal 504 

approach. in Proceedings - IEEE International Conference on Data Mining, ICDM (2011). 505 

doi:10.1109/ICDMW.2011.169 506 

60. Lee, S., Correa, J. D. & Bareinboim, E. General identifiability with arbitrary surrogate 507 

experiments. in 35th Conference on Uncertainty in Artificial Intelligence, UAI 2019 (2019). 508 

61. Huang, J., Smola, A. J., Gretton, A., Borgwardt, K. M. & Schölkopf, B. Correcting sample 509 

selection bias by unlabeled data. in Advances in Neural Information Processing Systems (2007). 510 

doi:10.7551/mitpress/7503.003.0080 511 

62. Peters, J., Bühlmann, P. & Meinshausen, N. Causal inference by using invariant prediction: 512 

identification and confidence intervals. J. R. Stat. Soc. Ser. B Stat. Methodol. (2016). 513 

doi:10.1111/rssb.12167 514 

63. Subbaswamy, A., Schulam, P. & Saria, S. Preventing Failures Due to Dataset Shift: Learning 515 

Predictive Models That Transport. BT  - The 22nd International Conference on Artificial 516 

Intelligence and Statistics, AISTATS 2019, 16-18 April 2019, Naha, Okinawa, Japan. 3118–517 

3127 (2019). 518 

64. Hernán, M. A., Hsu, J. & Healy, B. A Second Chance to Get Causal Inference Right: A 519 

Classification of Data Science Tasks. CHANCE 32, 42–49 (2019). 520 

65. Wiens, J. et al. Do no harm: a roadmap for responsible machine learning for health care. Nat. 521 

Med. (2019). doi:10.1038/s41591-019-0548-6 522 

66. Rudin, C. Stop explaining black box machine learning models for high stakes decisions and 523 

use interpretable models instead. Nat. Mach. Intell. (2019). doi:10.1038/s42256-019-0048-x 524 



23 
 

67. Kusner, M. J. & Loftus, J. R. The long road to fairer algorithms. Nature (2020). 525 

doi:10.1038/d41586-020-00274-3 526 

68. van Amsterdam, W. A. C., Verhoeff, J. J. C., de Jong, P. A., Leiner, T. & Eijkemans, M. J. C. 527 

Eliminating biasing signals in lung cancer images for prognosis predictions with deep 528 

learning. npj Digit. Med. (2019). doi:10.1038/s41746-019-0194-x 529 

69. Moons, K. G. M. et al. Transparent reporting of a multivariable prediction model for 530 

individual prognosis or diagnosis (TRIPOD): Explanation and elaboration. Ann. Intern. Med. 531 

(2015). doi:10.7326/M14-0698 532 

 533 

 534 

Figure Legends 535 

Figure 1. Conditional vs. interventional probabilities. When we observe data, e.g. electronic 536 

medical records, we can learn a model that predicts the probability of a disease D given 537 

certain risk factors R, i.e. P(D|R), or a model that predicts the chance of an health outcome 538 

O for a given treatment T, i.e. P(O|T). However, these models cannot be used to support 539 

decisions, because they assume that variables of the model remain unchanged, people keep 540 

their lifestyles, and the standard of care is followed. When a risk factor is modified or a new 541 

treatment is tested, e.g. in a randomised controlled trial, then we ‘make’ new data, and 542 

compute different probabilities, which are P(D|do(R)) and P(O|do(T)). Conditional and 543 

interventional probabilities are not necessarily the same, e.g. treatments are randomised in 544 

trials, while they are not in clinical practice. 545 

Figure 2. Examples of confounding bias and collider bias. Confounding (panel a) can occur 546 

when there exists a common cause for both exposure and outcome, while a collider (panel b) 547 

is a common effect of both exposure and outcome. Not including a confounder or including 548 
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a collider in a model results in biased associations. 549 

Figure 3. An example of M-bias. When estimating the effect of education level on diabetes risk, 550 

mother’s history of diabetes could be mistaken as a confounder and included in a model, but 551 

it is a collider by the effect of history of family income and genetic risk. 552 

Figure 4. A selection diagram for illustrating transportability. A causal effect of treatment x on 553 

outcome y, ܲ((ݔ)݋݀|ݕ), is found through an RCT, and quantified in the original environment of 554 

city A (panel a). The x-to-y causal effect is transportable from City A to City B as ܲ∗൫ݕห݀(ݔ)݋൯ 555 

(panel b) if both the overall causal effect ܲ((ݔ)݋݀|ݕ) and the age-specific causal effect 556 ܲ((ݔ)݋݀|ݕ,  are known, whilst it is not transportable if the latter is unknown. 557 (ݖ

 558 

Tables 559 

Table 1. The target trial protocol. Emulation of a randomised clinical trial using observational 560 

data and algorithmic randomisation, with the objective to reduce bias and allow more reliable 561 

treatment effects estimates. 562 

 RCT Target Trial 

Data source Prospective Observational 

Sample size Small Large 

Variables Few Many 

Eligibility and time zero 

(baseline) 

Straightforward  Problematic (e.g. multiple 

baseline points, follow up 

requirements) 

Treatment assignment Randomised by design Randomised algorithmically 

(e.g. propensity score 
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matching) 

Outcome evaluation Flexible  Flexible (with some caveats 

for blind outcome studies) 

Analysis plan Relatively straightforward 

(e.g. intention to treat) and 

flexible (e.g. Bayesian 

adaptive), but can further 

require bias correction (e.g. g-

formula) 

More complex (need also to 

model treatment assignment) 

yet can use same techniques 

as for RCT (e.g. g-formula) 

Risk of bias Relatively low Possible (e.g. residual 

confounding, wrong choice 

of time zero) 

Flexibility to assess extra-

protocol causal effects 

Limited High 
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