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Purity in compactly generated derivators and t-structures with

Grothendieck hearts

Rosanna Laking

Abstract

We study t-structures with Grothendieck hearts on compactly generated triangulated
categories T that are underlying categories of strong and stable derivators. This setting
includes all algebraic compactly generated triangulated categories. We give an intrinsic
characterisation of pure triangles and the definable subcategories of T in terms of directed
homotopy colimits. For a left nondegenerate t-structure t = (U ,V) on T , we show that
V is definable if and only if t is smashing and has a Grothendieck heart. Moreover, these
conditions are equivalent to t being homotopically smashing and to t being cogenerated by
a pure-injective partial cosilting object. Finally, we show that finiteness conditions on the
heart of t are determined by purity conditions on the associated partial cosilting object.

1 Introduction.

Triangulated categories arising in representation theory, algebraic geometry and topology often
come with the additional structure of a t-structure [6], allowing one to carry out homological
algebra with respect to this t-structure. A t-structure t on a triangulated category T is a torsion
pair satisfying additional properties ensuring that there exists an abelian subcategory G of T ,
called the heart, and a cohomological functor from T to G.

The question of when the heart of a t-structure is a Grothendieck category is a natural one
and has been pursued by many authors using a variety of techniques. Given the scarcity of limits
and colimits in T , a necessary ingredient in solving this problem is a method for understanding
how direct limits might look in G. The various approaches to this problem tend to follow one
of two general strategies:

Strategy 1: Consider T as a subcategory of a Grothendieck category A(T ) and understand
direct limits in G in terms of direct limits in A(T ) ([3], [4], [25] and [35]).

Strategy 2: Consider T as the underlying category of some higher categorical structure and
understand direct limits in G in terms of directed homotopy colimits ([24], [33]).

Strategy 1 is most effective in the setting where T is generated by its subcategory of compact
objects T c. In this case A(T ) is the category Mod-T c and we have the well-developed theory
of purity available to us (see, for example, [21, 5]).

In this paper we combine Strategies 1 and 2: we consider the case where T is compactly
generated and is also the underlying category of a strong and stable derivator. By [12, Thm. 1.36]
and [17], this includes all algebraic compactly generated triangulated categories. We observe
that, in this setting, the strategies above are completely compatible: the image in Mod-T c

of each directed homotopy colimit corresponds to an appropriate direct limit in Mod-T c (see
Remark 3.5).

From this starting point, we are able to characterise important notions from the theory
of purity in terms of certain homotopy colimits, which we call coherent ultrapowers, inspired
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by their use in model theory; see Section 2.2 for details. These results are analogous to well-
known characterisations of purity in module categories (see, for example, [30, Thm. 4.2.18,
Thm. 16.1.16] and [10, Sec. 2.3]) and generalise [22, Thm. 7.5].

Theorem (Proposition 3.7, Theorem 3.11). Let T be a compactly generated triangulated cate-
gory and suppose that T is the underlying category of a strong and stable derivator. Then the
following statements hold.

1. A triangle δ : X → Y → Z → X[1] is a pure triangle if and only if there is some coherent
ultrapower of δ that is a split triangle.

2. A full subcategory of T is definable if and only if it is closed under direct products, directed
homotopy colimits and pure subobjects.

Using the interaction between purity and homotopy colimits, we are able to show that
the natural class of (left nondegenerate) t-structures with Grothendieck hearts considered via
Strategy 1 (those cogenerated by pure-injective cosilting objects) coincides with the class con-
sidered via Strategy 2 (homotopically smashing t-structures). That is, we introduce the notion
of partial cosilting t-structures and prove the following theorem (which specialises to the case
of nondegenerate and cosilting t-structures).

Theorem (Theorem 4.6). Let T be a compactly generated triangulated category and suppose
that T is the underlying category of a strong and stable derivator. Let t = (U ,V) be a left
nondegenerate t-structure on T . Then the following statements are equivalent:

1. t is a partial cosilting t-structure with a pure-injective partial cosilting object C.

2. V is definable.

3. t is homotopically smashing.

4. t is smashing and the heart G is a Grothendieck category.

In order to place this work in context, let us give a brief summary of the preceding results
concerning Grothendieck hearts. In [27, 28] the authors consider t-structures in the derived
category D(H) of a Grothendieck category H induced by torsion pairs in H i.e. Happel-Reiten-
Smalø (HRS) t-structures [14]. They show that the heart of a HRS t-structure t is Grothendieck
if and only if the torsion-free class in H is closed under direct limits. When H is a module
category, these are exactly the torsion-free classes of the form Cogen(C) for cosilting modules
C (see [1, Cor. 3.9]).

The question of when the heart of a t-structure is a Grothendieck category has also been
considered in the context of silting theory. The t-structure induced by a large tilting module T
has a Grothendieck heart exactly when T is pure-projective [4, Thm. 7.5] and the t-structure in-
duced by a large cotilting module always has a Grothendieck heart [35]. A more general version
of these results can be found in [3, Thm. 3.6, Thm. 3.7] in the context of compactly gener-
ated triangulated categories: the authors show that a nondegenerate cosmashing (respectively
smashing) t-structure has a Grothendieck heart if and only if it is (co)generated by a pure-
projective (respectively pure-injective) silting (respectively cosilting) object. The result related
to cosilting can also be found in [26, Prop. 2] in the case where the t-structure is assumed to be
smashing and cosmashing. Related to the silting t-structures is the case of compactly generated
t-structures; these have been shown to have Grothendieck hearts in various settings, for example
the homotopy category of a combinatorial stable model category [33, Cor. D] [7, Thm. 0.2].
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Finally, in both [33] and [24], the authors consider t-structures such that the coaisle is
closed under homotopy colimits, we shall refer to such t-structures as homotopically smashing.
In [33, Thm. B], it is shown that for any (strong and stable) derivator this assumption is
enough to ensure the heart has exact direct limits. When, in addition, the t-structure is on the
homotopy category of a stable combinatorial model category, the authors prove that the heart is
a Grothendieck category. In a similar vein, Lurie considers homotopically smashing t-structures
with accessible aisles in the context of presentable stable ∞-categories [24, Rem. 1.3.5.23] and
observes that also this implies that the heart is a Grothendieck category.

The question of when hearts satisfy various finiteness conditions has also been considered
in the literature. For example in [32] HRS t-structures with locally coherent hearts are charac-
terised and in [9] locally noetherian 1-cotilting t-structures are shown to be induced by Σ-pure-
injective 1-cotilting modules. In the final section we consider the case where the heart G has an
internal notion of purity and we investigate how the purity in T interacts with the purity in G.
As an application, we generalise the above results by characterising finiteness conditions on G
in terms of purity assumptions on the corresponding partial cosilting object.

Theorem (Proposition 5.6, Proposition 5.10, Theorem 5.12). Let T be a compactly generated
triangulated category and let t = (U ,V) be a partial cosilting t-structure on T with partial
cosilting object C. Then the following statements hold:

1. The heart G is locally noetherian if and only if C is Σ-pure-injective.

2. If C is an elementary cogenerator, then the heart G is locally coherent.

The converse of (2) holds when T is the underlying category of a strong and stable derivator
and C is contained in G.

We end this introduction with a summary of the content of the paper. In Section 2, we
introduce the basic definitions and notation related to the theory of derivators, as well as the
definition of the coherent reduced products and coherent ultraproducts (see Section 2.2). The
construction and proof that coherent reduced products exist is contained in Appendix B. In
Section 3 we consider purity in strong and stable derivators whose underlying category is com-
pactly generated; we prove that pure triangles can be detected using coherent ultraproducts and
that definable subcategories can be characterised via closure conditions. Section 4 is concerned
with t-structures whose hearts are Grothendieck categories. We introduce partial cosilting t-
structures and homotopically smashing t-structures and in Theorem 4.6 we show that the left
nondegenerate t-structures with these properties coincide. We end the section with an exam-
ple of a t-structure satisfying the equivalent statements of Theorem 4.6. The final section is
dedicated to understanding how purity in the triangulated category relates to purity in the
heart. We use this to characterise finiteness conditions on the heart in terms of properties of
the cosilting object.

Acknowledgements. The author would like to thank Moritz Groth and Gustavo Jasso for
many interesting and helpful conversations about derivators and other higher categorical struc-
tures. She would like to thank Lidia Angeleri Hügel, Frederik Marks and Jorge Vitória for
discussions regarding the definition of partial cosilting, which also led to the contents of Ex-
ample 4.4. Particular thanks are extended to Prof. Angeleri Hügel for her ongoing support of
this project. During the time that the content of this article was developed, the author was
supported by the DFG SFB / Transregio 45 and by the Max Planck Institute for Mathematics.
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2 Derivators.

The main concept we will use from the theory of derivators is that of homotopy limits and
colimits. Their definition is a generalisation of limits and colimits in a category C. That is, for
a small category A, the functors limA and colimA arise as right and left adjoints to the constant
diagram functor ∆A : C → CA. The diagram categories CA are the values of the contravariant
2-functor yC from the 2-category Cat of small categories to the 2-category CAT of all categories
defined on objects by A 7→ CA. Accordingly, we define a prederivator to be a 2-functor
D : Catop → CAT , the values of which will be referred to as coherent diagram categories.
Moreover, the functors ∆A are the values yC(πA) where πA is the unique functor from A to
the category 1 with a single object and only the identity morphism. A derivator is then a
prederivator D : Catop → CAT satisfying the axioms (Der1)-(Der4) (see Section A.1). Crucially,
the axiom (Der3) implies that the functors D(πA) always have a right adjoint holimA and a left
adjoint hocolimA.

2.1 A brief introduction to derivators.

In this section we will give an overview of the definitions related to derivators that we will
need in later sections. In order to make the definitions more concrete, we will use the derivator
associated to the unbounded derived category of a ring (described below in Example 2.1) to
illustrate each one. The axioms (Der1)-(Der4) and an explanation of shifted derivators are
contained in Appendix A.

2.1.1 Basic terminology.

Throughout the paper we will use the following basic terminology and notation for a prederivator
D : Catop → CAT :

• The categories D(A) for each object A in Cat will be referred to as coherent diagram
categories and the objects of D(A) will be referred to as coherent diagrams of shape
A. The objects of the category D(1)A will be referred to as the incoherent diagrams
of shape A.

• Let [1] denote the free category generated by the poset {0 < 1}. The category D(1)[1]

consists of the morphisms in D(1) and shall be referred to as the category of incoher-
ent morphisms. The category D(1) will be referred to as the category of coherent
morphisms.

• The functors D(u) for each u : A → B in Cat will be referred to as restriction functors
and will be denoted by u∗. Similarly, the natural transformations D(α) will be denoted
by α∗.

• Let 1 denote the category with a single object and its identity morphism. This is a
terminal object in Cat and, for each small category A, we will denote the unique arrow
A → 1 by πA (or π if it is unambiguous). The category D(1) will be referred to as the
underlying category of D.

Example 2.1. Let R be a ring and let A denote the category Mod-R of right R modules. There
is a prederivator DR : Catop → CAT such that:

1. For each small category A, this category DR(A) is the unbounded derived category D(AA).
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2. For each functor u : A → B, the functor u∗ : D(AB) → D(AA) is induced from the exact
functor AB → AA.

This is a 2-functor since every natural transformation α : u ⇒ v induces a natural transformation
α∗ : DR(u) ⇒ DR(v). The underlying category DR(1) of DR is equivalent to D(Mod-R).

For each functor u : A → B, if the restriction functor u∗ : D(B) → D(A) has a right adjoint,
then it will be denoted u∗ : D(A) → D(B). Similarly, if it has a left adjoint, then it will be
denoted u! : D(A) → D(B). These are referred to as right and left Kan extensions.

2.1.2 Underlying diagram functors.

Next we will describe some distinguished restriction functors that will be used frequently in the
subsequent sections:

• Let a be an object in a small category A and let a : 1 → A denote the unique functor
mapping the object in 1 to a. Then the restriction functor a∗ : D(A) → D(1) is called the
evaluation functor at a. For an object X in D(A), the image of X under a∗ is called
the value of X at a and will be denoted by Xa.

• For every morphism f : a → b in A, let f : a ⇒ b denote the natural transformation from
a to b with the unique component given by f . For each object X in D(A) we will denote
the component of f∗ : a∗ ⇒ b∗ at X by Xf : Xa → Xb; this is called the value of X at f .

We define the underlying diagram functor diaA : D(A) → D(1)A for each small category
A in the following way:

• For each object X in D(A) we assign the object diaA(X) : A → D(1) of D(1)A such that
a 7→ Xa and f 7→ Xf .

• For each morphism g : X → Y in D(A) we assign the morphism diaA(g) : diaA(X) →
diaA(Y ) in D(1)A given by diaA(g)a := ga : Xa → Ya for each object a in A.

Example 2.2. Let X be an object of DR(A) for a small category A. We may consider an
object X ′ in Ch(AA) ≃ Ch(A)A that maps to X under the localisation functor. Consider
X ′ as an A-shaped diagram in Ch(A)A, we may postcompose with the localisation functor
to obtain an object of DR(1)

A. This assignment is well-defined and extends to the functor
diaA : DR(A) → DR(1)

A.
In general, the category DR(1)

A of incoherent diagrams is not equivalent to the category
DR(A) of coherent diagrams. For example, if k is a field then Dk(1) is abelian and hence
Dk(1)

A is abelian for any A. Let [1] denote the totally ordered set {0 < 1} considered as a
small category. In contrast, Dk([1]) is the derived category of k-representations of the quiver
• → •, which is clearly not abelian.

2.1.3 Homotopy limits and homotopy colimits.

For every small category A consider the unique functor π = πA : A → 1. We will denote the left
adjoint π! of π

∗ by hocolimA : D(A) → D(1) and refer to it as the homotopy colimit functor.
Similarly, we will denote the right adjoint π∗ of π∗ by holimA : D(A) → D(1) and refer to it as
the homotopy limit functor. For an object X in D(A), we will refer to hocolimA(X) as the
homotopy colimit of X and to holimA(X) as the homotopy limit of X.
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Example 2.3. Consider a directed category I and the unique functor π : I → 1. Following [35,
Prop. 6.6], we can describe the left Kan extension (πI)! with respect to DR explicitly. The colimit
functor lim

−→
: Ch(R)I → Ch(R) and the constant diagram functor ∆I : Ch(R) → Ch(R)I form an

adjoint pair of exact functors. Hence they induce a pair of adjoint functors lim
−→

: DR(I) → DR(1)
and π∗ : DR(1) → DR(I). Left adjoint functors are unique up to equivalence and so we conclude
that lim−→I

∼= hocolimI .
As products are exact in Mod-R, similar reasoning may be applied to the direct product

functor on Ch(R) to obtain an example of a homotopy limit functor.

2.1.4 Strong and stable derivators.

For small categories A and B, we define the partial underlying diagram functor

diaB,A : D(A×B) → D(A)B

to be the underlying diagram functor diaD
A

B : DA(B) → D
A(1)B with respect to the shifted

derivator D
A. A derivator is called strong if the partial underlying diagram functor diaF,A is

full and essentially surjective for every small category A and every finite free category F .
For the purposes of this paper we will be concerned with the following consequences of the

definition of a stable derivator rather than the definition itself. For a full definition we refer
the reader to [12, Def. 4.1] (note that we do not include strong in the definition of stable).

Example 2.4. The derivator DR is strong and so the functor dia[1] : DR([1]) → DR(1)
[1],

described in Example 2.2, is full and essentially surjective. We may therefore replace any
incoherent morphism with the underlying diagram of a coherent morphism.

Another important property of DR is that for every small category A, the category DR(A)
is a triangulated category. This is a consequence of DR being a strong and stable derivator.

We call an additive functor F : T → T ′ between triangulated categories exact if there exists

a natural isomorphism η : F ◦ [1] → [1] ◦ F and for every triangle X
f
→ Y

g
→ Z

h
→ X[1] in T we

have that
FX

Ff
−→ FY

Fg
−→ FZ

ηX◦Fh
−→ (FX)[1]

is a triangle in T ′. The following statements may be found in [12, Thm. 4.16, Cor. 4.19], or in
more detail in [13].

Proposition 2.5. Let D be a strong and stable derivator. Then the following statements hold.

1. For any small category A, the category of coherent diagrams D(A) is triangulated.

2. For any functor u : A → B in Cat, the functors u∗, u∗ and u! are exact functors.

2.2 Coherent reduced products.

In Section 3 we give intrinsic characterisations of both pure-exact triangles and definable sub-
categories in the underlying category D(1) of a derivator D (assuming that D(1) is compactly
generated). These characterisations mimic those given for a locally finitely presented category
C in [30, Thm. 16.1.16] and [20, Cor. 4.6]. A key tool in both of these cases is the reduced
product with respect to a proper filter (see Construction 2.6). In this section we will show that,
for any derivator D and any proper filter, there is a coherent diagram whose underlying diagram
is isomorphic to the direct system described in Construction 2.6.

Let S be a non-empty set and let P(S) denote the power set of S. Then a (proper) filter
on S is a non-empty collection F ⊂ P(S) of subsets of S (not containing ∅) such that if P,Q ∈ F
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then P ∩Q ∈ F and if P ∈ F and P ⊆ Q then Q ∈ F . Moreover, a proper filter F is called an
ultrafilter if, for every P ∈ P(S), either P ∈ F or S \ P ∈ F .

Construction 2.6. Let C be a complete category with direct limits and let X = {Xs}s∈S be a
set of objects in C. Given a proper filter F on S, we may define a directed system in C consisting
of objects {

∏

p∈P Xp | P ∈ F} and morphisms {φPQ | Q ⊆ P} where φPQ :
∏

p∈P Xp →
∏

q∈QXq denotes the canonical projection. The reduced product of X (with respect to F)
is the direct limit

∏

s∈S

Xs/F := lim
−→
P∈F





∏

p∈P

Xp



 .

If F is an ultrafilter, then
∏

s∈S Xs/F is called the ultraproduct of X (with respect to F).
If F is an ultrafilter and Y I is the I-indexed product of copies of Y , then Y I/F is called the
ultrapower of Y (with respect to F).

If F is a proper filter on a set S, then we can consider F as a poset with the relation P ≤ Q
if and only if Q ⊂ P . We will identify F with the free category generated by this poset and we
will denote the morphisms corresponding to Q ⊆ P by fPQ : P → Q. We will also identify the
set S with the discrete category with objects S. Note that we have an equivalence of categories
D(S) ≃ D(1)S by (Der1).

Proposition 2.7. Let D be a derivator and let F be a proper filter on a set S. Then there
exists a functor

RedF : D(S) → D(F)

such that, for each diagram X in D(S), the following statements hold:

1. The value of RedF (X) at P is isomorphic to
∏

p∈P Xp for each P ∈ F .

2. The value of RedF (X) at fPQ is isomorphic to the canonical projection φPQ for each
Q ⊆ P in F .

Since the proof of Proposition 2.7 is reasonably long and technical, we will postpone it until
Appendix B. We will refer to RedF (X) as the coherent reduced product diagram of X
and we define the coherent reduced product of X to be XF := hocolimF (RedF (X)). If F is
an ultrafilter then we will use the terms coherent ultraproduct and coherent ultrapower
where appropriate.

Example 2.8. Let DR be the derivator described in Example 2.1. Let F be a filter on a set
S and let X be in DR(S). Using the same notation for X when considering it as an object of
Ch(R)S , it follows from Example 2.3 that XF

∼=
∏

s∈S Xs/F , where the reduced product on
the right is taken in Ch(R) and then considered as an object in DR(1).

Corollary 2.9. If D is a strong and stable derivator, then the functors RedF and (−)F are
exact functors.

Proof. This is immediate from the proof of Proposition 2.7, as well as Proposition 2.5.

Remark 2.10. For any small category A, we may define the shifted derivator DA : Catop → CAT
(see Appendix A.2). So, for any proper filter F on a set S and any X in D(A)S , we may define
the coherent reduced product of X by considering it as an object of DA(S).

7



Moreover, for each object a in A, the value of the coherent reduced product of X at a is given
by the coherent reduced product of the value of X at a. That is, by applying [12, Prop. 2.5],
we have natural isomorphisms

D
A(S)

∼=

RedF //

(a×idS)
∗

��

D
A(F)

∼=

hocolimF //

(a×idF )∗

��

D
A(1)

a∗

��
D(S)

RedF
// D(F)

hocolimF

// D(1)

where the coherent reduced product and homotopy colimit on the top row take place with
respect to D

A and the coherent reduced product and homotopy colimit on the bottom row take
place with respect to D.

For the sake of clarity, we note that this means that for each X in D
A(S) we have isomor-

phisms
(RedD

A

F (X))D
F

a
∼= RedDF (X

D
S

a ) and (XD
A

F )Da
∼= (XD

S

a )DF

where the superscripts indicate which derivator each evaluation, reduced product and homotopy
colimit is taken with respect to. Note that we may consider X as an object {Xs}s∈S of D(A)S

and XD
S

a corresponds to the object {(Xs)
D
a }s∈S in D(1)S.

3 Purity in a compactly generated derivator.

In this section we will use the construction of coherent reduced products in Section 2.2 to
characterise purity in the underlying category of a compactly generated derivator.

3.1 Purity in compactly generated triangulated categories.

We will focus on strong and stable derivators D for which D(1) is a compactly generated
triangulated category. Let T be a triangulated category with arbitrary coproducts. An object
X in T is called compact if the Hom-functor HomT (X,−) : T → Ab commutes with arbitrary
coproducts. Then T is compactly generated if the full subcategory T c of compact objects
in T is skeletally small and T c generates T i.e. for every non-zero object Y in T there exists
some X in T c such that HomT (X,Y ) 6= 0.

Next we will summarise some of the basic notions of purity in a compactly generated category
T . Consider the category Mod-T c of contravariant additive functors from T c to the category
Ab of abelian groups. We will denote the full subcategory of finitely presented functors by
mod-T c.

Let y : T → Mod-T c denote the restricted Yoneda functor which is defined to be

yX := HomT (−,X)|T c and yf := HomT (−, f)|T c

for objects X and morphisms f in T . The functor y is not always fully faithful but it enables
us to consider triangles in T in terms of exact sequences in Mod-T c:

• A triangle δ : X
f
→ Y

g
→ Z → X[1] is called a pure triangle if the sequence

yδ : 0 −→ yX
yf
−→ yY

yg
−→ yZ −→ 0

is exact in Mod-T c. In this case we refer to f as a pure monomorphism and to g as a
pure epimorphism.
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• An object E is called pure-injective if every pure monomorphism of the form E → X
is split. An object P is called pure-projective if every pure epimorphism of the form
X → P is split.

In fact, the following proposition shows that there is a strong relationship between the injective
objects in Mod-T c and pure-injective objects in T .

Proposition 3.1 ([21, Thm. 1.8]). Let T be a compactly generated triangulated category. The
following statements are equivalent for an object E in T :

1. E is pure-injective.

2. yE is an injective object of Mod-T c.

3. The map HomT (X,E) → HomMod-T c(yX,yE) induced by the functor y is an isomorphism
for all objects X in T .

Similarly, the following statements are equivalent for an object P in T :

1. P is pure-projective.

2. yP is a projective object of Mod-T c.

3. The map HomT (P,X) → HomMod-T c(yP,yX) induced by the functor y is an isomorphism
for all objects X in T .

3.2 Pure triangles in terms of coherent reduced products.

We will call a strong and stable derivator D compactly generated if D(1) is a compactly
generated triangulated category. In this section we give an intrinsic characterisation of pure
triangles (and hence of pure injective objects) in the underlying category D(1) of a compactly
generated derivator D.

Lemma 3.2. Let D be a compactly generated derivator. For any small category A, the category
D(A) of coherent diagrams is compactly generated.

Proof. It suffices to show that D(A) has a set of compact generators. We prove that the set

Y := {Y | Y ∼= a!C for some a in A and C in D(1)c}

is such a set.
To see that Y is a generating set, let Z be an object of D(A) such that HomD(A)(Y,Z) = 0

for all Y ∈ Y . Then we have that HomD(1)(C,Za) ∼= HomD(A)(a!C,Z) = 0 for all a in A and
C in D(1)c. Since D(1) is compactly generated, we have that Za

∼= 0 for all a in A. It follows
from (Der2) that Z is a zero object in D(A).

Next we show that the objects in Y are compact. For an object a in A and C in D(1)c, we
have HomD(1)(C,

(
⊕

s∈S Xs

)

a
) ∼= HomD(1)(C,

⊕

s∈S(Xs)a) ∼=
⊕

s∈S HomD(1)(C, (Xs)a) because
a∗ is a left adjoint. Thus HomD(A)(a!C,

⊕

s∈S Xs) ∼=
⊕

s∈S HomD(A)(a!C,Xs) as required.

Corollary 3.3. Let D be a compactly generated derivator. For any small category A, the shifted
derivator D

A is compactly generated.

Proof. By Proposition 2.5, the derivator DA is strong and stable and so the statement is imme-
diate from Lemma 3.2.
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Let D : Catop → CAT be a derivator. An object X in D(1) is called homotopically finitely
presented if the canonical morphism

lim
−→
i∈I

HomD(1)(X,Yi) → HomD(1)(X,hocolimI(Y ))

is an isomorphism for every small directed category I and every object Y in D(I).

Proposition 3.4 ([33, Prop. 5.4]). Let D be a strong and stable derivator. Then an object C
in D(1) is compact if and only if it is homotopically finitely presented.

Remark 3.5. The preceding result can be summarised following observation: Let T ≃ D(1)
be the underlying category of a compactly generated derivator D. Then, for any small directed
category I and any X in D(I), we have that

lim
−→
i∈I

yXi
∼= yhocolimI(X).

Combining this with the construction described in Section 2.2, we have that any reduced
product of representable functors in Mod-T c is representable. That is, for any proper filter F
on a set S and any X in D(S) ≃ T S, we have that

∏

s∈S

yXs/F ∼= yXF .

Remark 3.6. Reduced products and ultraproducts are ubiquitous in model theory, see for
example [8, Chap. 4]. In [11], the authors introduce a language LT for a compactly generated
triangulated category T such that the models of LT coincide with the objects of Mod-T c.
Moreover, the reduced product in the sense of [8, Prop. 4.1.6] coincides with the reduced product
in Mod-T c. We may consider the objects of T as models of LT via the functor y. Remark
3.5 says that the collection of objects of T (considered as models of LT ) is closed under taking
reduced products.

Proposition 3.7. Let T be the underlying category of a compactly generated derivator D. Let
X → Y → Z → X[1] be a triangle in T . Then the following statements are equivalent:

1. The sequence X → Y → Z → X[1] is a pure triangle.

2. There exists an ultrafilter F on a set S such that the coherent ultrapower

(XS)F → (Y S)F → (ZS)F → (XS)F [1]

is a split triangle.

Proof. By definition, the statement (1) is equivalent to the sequence 0 → yX → yY → yZ → 0
being an exact sequence in Mod-T c. As yX is fp-injective [21, Lem. 1.6], every exact sequence
in Mod-T c starting with yX is pure-exact (see Section 5.3 for the definition of fp-injective).
By [30, Thm. 16.1.16], this is equivalent to there existing an ultrafilter F on a set S such that
0 → (yX)S/F → (yY )S/F → (yZ)S/F → 0 is a split exact sequence in Mod-T c. Moreover,
the terms in the split exact sequence can be taken to be (pure-)injective and so, by Remark 3.5,
this is equivalent to (2).

Corollary 3.8. Let A be a small category. If X → Y → Z → X[1] is a pure triangle in D(A)
then Xa → Ya → Za → Xa[1] is a pure triangle in T for each a ∈ A.
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Proof. Note that, by Proposition 2.5, the evaluation functor a∗ : D(A) → D(1) is an exact
functor. Combining this with Remark 2.10, the statement is an immediate consequence of
Proposition 3.7.

Remark 3.9. A similar approach was taken in [22] without requiring the presence of a derivator
by using the notion of a homology colimit instead of homotopy colimit; pure triangles are
characterised as homology colimits of split triangles.

3.3 Definable subcategories in terms of coherent reduced products.

A full subcategory D of a compactly generated triangulated category T is called definable if
it is of the form

D = {X ∈ T | HomMod-T c(Fi,yX) = 0 for all i ∈ I}

where {Fi}i∈I is a family of functors in mod-T c. For a class of objects E in T we will denote
by DefT (E) the smallest definable subcategory containing E . The subcategory DefT (E)
always exists and is given by

DefT (E) = {X ∈ T | HomMod-T c(F,yX) = 0 for all F ∈ YE}

where YE = {F ∈ mod-T c | HomMod-T c(F,yM) = 0 for all M ∈ E}. If E = {M} then we
denote the definable subcategory generated by E by DefT (M).

We will need the following lemma, which summarises close relationship between the definable
subcategories of T and the definable subcategories of Mod-T c (see [20] for the definition of
definable subcategories of Mod-T c).

Lemma 3.10 ([3, Cor. 4.4]). Let T be a compactly generated triangulated category and let E be
a class of objects in T . Then DefT (E) = {M ∈ T | yM ∈ DefMod-T c(yE)}.

Let X be a class of objects in D(1). We will say that X is closed under directed homotopy
colimits if, for all directed categories I and all objects X in D(I) such that Xi ∈ X for every i in
I, we have hocolimI(X) ∈ X . The following theorem is a triangulated version of [20, Cor. 4.6]:

Theorem 3.11. Let T be the underlying category of a compactly generated derivator D. Then,
for a full subcategory D of T , the following statements are equivalent:

1. D is definable;

2. D is closed under products, pure subobjects and directed homotopy colimits;

3. D is closed under pure subobjects and coherent reduced products.

Proof. First note that if D is a definable subcategory, then D is closed under products and pure
subobjects (this is immediate from [22, Thm. A]).

(1) ⇒ (2): Let I be a small directed category and let X be an object in D(I) with Xi

contained in D for all objects i in I. By Lemma 3.10, we have that hocolimI(X) is contained
in D if and only if yhocolimI(X) is contained in DefMod-T c(yD). But the latter holds because
yhocolimI(X) ∼= lim−→i∈I

yXi and DefMod-T c(yD) is closed under direct limits.

(2) ⇒ (3): Follows immediately from the definition of coherent reduced products.
(3) ⇒ (1): We will show that DefT (D) ⊆ D and hence that D = DefT (D). First let

E ∈ DefT (D) be pure-injective. Then, since yE ∈ DefMod-T c(yD), there exists a proper filter
F on a set S such that there exists a pure monomorphism yE →

∏

s∈S yDs/F for some set
of objects {Ds}s∈S in D (see [20, Cor. 4.10]). By Remark 3.5, we have

∏

s∈S yDs/F ∼= yDF
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where D is the object in D(S) corresponding to {Ds}s∈S . Since yE is injective, this is a split
monomorphism and it follows that there is a pure epimorphism DF → E. By assumption
DF ∈ D and so E ∈ D. Consider an arbitrary object X ∈ DefT (D). Then X is a pure
subobject of a pure-injective object in DefT (D) and so X ∈ D.

The following is a triangulated version of [20, Cor. 4.10] and a generalisation of [22, Thm. 7.5]:

Corollary 3.12. Let S be a set of objects in T . Then DefT (S) consists of the collection of
pure subobjects of coherent reduced products of objects in S.

Proof. It follows from [20, Prop. 4.8] (and the fact that products and direct limits are exact in
Mod-T c) that the collection of pure subobjects of reduced products of objects in S is closed
under pure subobjects and coherent reduced products.

Corollary 3.13. Let V be a definable subcategory of T and let A be a small category. Then

VA := {X | Xa ∈ V for all objects a in A}

is a definable subcategory of D(A).

Proof. By Remark 2.10 and Corollary 3.8, the class VA satisfies the closure conditions (3) in
Theorem 3.11.

4 Smashing t-structures with Grothendieck hearts.

In this section we will consider two kinds of smashing t-structure with Grothendieck hearts: the
homotopically smashing t-structures [33] and the pure-injective cosilting t-structures [3]. We
will follow the style of the definitions given in [3]; in particular, a t-structure will be a torsion
pair in T .

Let T be a triangulated category. A t-structure [6] on T is a pair t = (U ,V) of full
subcategories satisfying the following conditions:

(t1) HomT (U, V ) = 0 for all U ∈ U and V ∈ V;

(t2) U [1] ⊆ U and V ⊆ V[1];

(t3) For each object X in T , there exists a triangle U → X → V → U [1] where U ∈ U and
V ∈ V.

The heart of t is defined to be G := U [−1] ∩ V. By [18], the inclusion U → T (respectively
V → T ) has a right adjoint τU : T → U (respectively has a left adjoint τV : T → V). These are
called the truncation functors and the triangles in (t3) are given by:

τU(X) → X → τV(X) → τU (X)[1].

The associated cohomological functor to the heart H0
t : T → G is defined to be

H0
t := τV(τU (X[1])[−1]) = (τU (τV(X)[1]))[−1].

We say that t = (U ,V) is left nondegenerate (respectively right nondegenerate) if
⋂

i∈Z U [i] = {0} (respective if
⋂

i∈Z V[i] = {0}). If t is both right and left nondegenerate then
we say that t is nondegenerate.

We say that t is smashing if the class V is closed under coproducts. For any smashing
t-structure, the associated cohomological functor H0

t : T → G takes preserves coproducts in T
(see [3, Lem. 3.3]).
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4.1 Homotopically smashing t-structures.

The notion of a homotopically smashing t-structure was introduced in [33]. Let D be a strong
and stable derivator and let t = (U ,V) be a t-structure on D(1). Then t is called homotopically
smashing with respect to D if V is closed under directed homotopy colimits.

Remark 4.1. Similar t-structures have been considered in the context of presentable stable
∞-categories. See [24, Rem. 1.3.5.23].

Theorem 4.2 ([33, Thm. A]). Let D be a strong and stable derivator and let t = (U ,V) be a
t-structure on D(1). If t is homotopically smashing, then the heart G has exact direct limits.

In fact, it is shown in [33] that a homotopically smashing t-structure on the homotopy
category of a combinatorial model category, then the heart is a Grothendieck category. Next
we show that if the derivator in question is compactly generated, then we do not need these
additional assumptions to obtain the generators.

Lemma 4.3. Let D be a compactly generated derivator and let t = (U ,V) be a t-structure on
D(1). If t is homotopically smashing then the heart G is a Grothendieck category.

Proof. Since D(1) has arbitrary coproducts, it follows that G has arbitrary coproducts. Also,
follows from the previous theorem that G has exact direct limits and so it remains to show that
G has a set of generators. Consider the set

C := {C | C ∼=
⊕

i∈I

H0
t (Ci) where {Ci}i∈I is a set of compact objects }

of objects in G. We will show that C generates G. Let X be an object in G and consider yX in
Mod-T c. Since {yC | C in T c} is a generatoring set for Mod-T c, there exists an epimorphism
γ :
⊕

i∈I yCi → yX → 0 for some set {Ci}i∈I of compact objects. But then
⊕

i∈I yCi
∼=

y
(
⊕

i∈I Ci

)

and
⊕

i∈I Ci is pure-projective so γ = yg for some pure epimorphism g :
⊕

i∈I Ci →
X in D(1). Since G has exact direct limits and H0

t preserves coproducts, we have that H0
t sends

pure epimorphisms to epimorphisms in G [21, Cor. 2.5]. Thus H0
t (g) :

⊕

i∈I H
0
t (Ci) → X is an

epimorphism and we have shown that C generates G.

4.2 Partial cosilting t-structures.

The cosilting t-structures can be described as particular perpendicular classes of an object.
Given an object M in T and a subset I of Z, we define perpendicular classes as follows:

⊥IM := {Y ∈ T | HomT (Y,M [i]) = 0 for all i ∈ I}

and
M⊥I := {Y ∈ T | HomT (M,Y [i]) = 0 for all i ∈ I}.

In what follows we will represent the set {i ∈ Z | i < 0} by the symbol < 0; similarly for ≤ 0,
≥ 0 and > 0. Also, if I = {i} we will simply write ⊥i. This notation also applies to objects in
an abelian category where Hom-spaces should be replaced by Ext-groups in the obvious way.

An object C in T is called cosilting if (⊥≤0C,⊥>0C) defines a t-structure (which implies,
in particular, that C ∈ ⊥>0C). A t-structure of the form (⊥≤0C,⊥>0C) will be referred to as
a cosilting t-structure. We define an object C in T to be partial cosilting if ⊥>0C is a
coaisle and C ∈ ⊥>0C; the corresponding t-structure t = (U ,⊥>0C) is called a partial cosilting
t-structure. Given a (partial) cosilting object C we will denote the heart of the corresponding
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t-structure by GC . A (partial) cosilting object C is called (partial) cotilting if C ∈ GC . We
say that two partial cosilting objects are equivalent if they give rise to the same t-structure.

In [3, Thm. 3.6], the authors show that, the cosilting t-structures with pure-injective cosilt-
ing object parametrise the nondegenerate smashing t-structures with Grothendieck hearts. In
Theorem 4.6, we will make use of the following modification:

Lemma 4.4. Let T be a compactly generated triangulated category and let t = (U ,V) be a left
nondegenerate t-structure on T . If t is smashing and the heart is a Grothendieck category, then
t is partial cosilting for a pure-injective partial cosilting object C.

Proof. Let E be an injective cogenerator of G. By the proof of [3, Thm. 3.6], the functor
HomG(H

0
t (−), E) is naturally isomorphic to the functor HomT (−, C) for a pure-injective object

C. Since t is left nondegenerate, we have that V = {X ∈ T | H0
t (X[i]) = 0 for all p < 0} and

so V = ⊥>0C. To see that C ∈ ⊥>0C, let U ∈ U . Then HomT (U,C) ∼= HomG(H
0
t (U), E). But

H0
t (U) = 0 and so C ∈ U⊥0 = ⊥>0C.

It follows from the next lemma that the coaisle of a partial cosilting t-structure with a pure-
injective partial cosilting object is definable. In [3, Thm. 4.9], this is shown with the additional
assumption that there exists an adjacent co-t-structure.

Lemma 4.5. Let C be a pure-injective object in the underlying category T ≃ D(1) of a compactly
generated derivator D. If V := ⊥>0C is closed under products, then V is a definable subcategory.

Proof. We show that V has the closure properties given in Theorem 3.11. By assumption V is
closed under products.

Next we show that V is closed under pure subobjects. So suppose Y ∈ V and consider a pure
monomorphismX → Y . As C[j] is pure-injective for all j > 0, we have an induced epimorphism
HomT (Y,C[j]) → HomT (X,C[j]) → 0 in Ab. Then, since we have HomT (Y,C[j]) = 0, it
follows that X ∈ ⊥>0C = V.

Finally we must show that V is closed under directed homotopy colimits. Suppose I is
a small directed category and let X be an object in D(I) with Xi ∈ V for all i ∈ I. Then
hocolimI(X) ∈ V if and only if HomT (hocolimI(X), C[j]) = 0 for each j > 0. Note that

HomT (hocolimI(X), C[j]) ∼= HomMod-T c(yhocolimI(X),yC[j])
∼= HomMod-T c(lim−→

i∈I

yXi,yC[j]).

Since we have 0 = HomT (Xi, C[j]) ∼= HomMod-T c(yXi,yC[j]) for all i ∈ I, we also have
HomMod-T c(

∐

i∈I yXi,yC[j]) = 0. Applying the functor HomMod-T c(−,yC[j]) the exact se-
quence

∐

i∈I

yXi → lim
−→
i∈I

yXi → 0

we conclude that

HomT (hocolimI(X), C[j]) ∼= HomMod-T c(lim−→
i∈I

yXi,yC[j]) = 0

as desired.
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4.3 Smashing t-structures with Grothendieck hearts.

Collecting together Lemmas 4.3, 4.4, 4.5 with [3, Thm. 3.6], we have proved the following
theorem:

Theorem 4.6. Let T be the underlying category of a compactly generated derivator D and
consider a (left) nondegenerate t-structure t = (U ,V) on T . Then the following statements are
equivalent:

1. t is a (partial) cosilting t-structure with a pure-injective (partial) cosilting object C.

2. V is definable.

3. t is homotopically smashing.

4. t is smashing and the heart G is a Grothendieck category.

4.4 Example via glued t-structures.

Let H be a locally noetherian Grothendieck category such that D(H) is compactly generated.
Krause proves in [23] that there exists a recollement

Kac(Inj(H))
I // K(Inj(H))

Q //

Iλ

vv

Iρ
hh

D(H)

Qλ

xx

Qρ
ff

where K(Inj(H)) is the homotopy category of the injective objects in H, I is the inclusion of
the full subcategory Kac(Inj(H)) of acyclic complexes in K(H) that are contained in K(Inj(H))
and Q is the composition of the inclusion K(Inj(H)) → K(H) with the canonical localisation
K(H) → D(H).

We will consider a cosilting object C in D(H), e.g. the injective cogenerator of H, and show
that it induces a t-structure on K(Inj(H)) that satisfies the conditions of Theorem 4.6.

Lemma 4.7. Let C be a cosilting object in D(H). Then Kac(Inj(H)) = ⊥ZQρ(C).

Proof. As C cogenerates D(H), we have thatX ∈ ⊥ZQρ(C) if and only if HomD(H)(Q(X), C[i]) =
0 for all i ∈ Z if and only if Q(X) = 0 if and only if X ∈ kerQ = imI = Kac(Inj(H)).

Proposition 4.8. Let C be a cosilting object in D(H) and consider the t-structure (U ,V)
obtained by gluing the trivial t-structure (0,Kac(Inj(H)) on Kac(Inj(H)) with the cosilting t-
structure (⊥≤0C,⊥>0C) on D(H). Then (U ,V) is a partial cosilting t-structure with partial
cosilting object Qρ(C).

Proof. We know that V is (by definition) the collection of objects Y in K(Inj(H)) such that
there exists a triangle

X → Y → Z → X[1]

with X acylic and Z ∼= Qρ(M) for M ∈ ⊥>0C. So consider Y ∈ V. Then, by the above, we have
that X ∈ ⊥ZQρ(C) ⊆ ⊥>0Qρ(C). Moreover, as Qρ is fully faithful, it follows that Z ∈ ⊥>0Qρ(C)
and so Y ∈ ⊥>0Qρ(C). Conversely, for any Y ∈ ⊥>0Qρ(C), there is a triangle of the desired
form given by the counit of (I, Iλ) and the unit of (Qρ, Q). So V = ⊥>0Qρ(C) is a coaisle and
clearly Qρ(C) ∈ V, so Qρ(C) is partial cosilting.
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In [26, Def. 2] the authors give a definition of a partial silting object which dualises to give
a notion of partial cosilting. On the face of it, their definition differs from the definition in this
article, not least because our definition yields left nondegenerate t-structures and the dual of
[26, Def. 2] yields right nondegenerate t-structures. However in the next proposition we show
that, in the setting of this example, the dual of the conditions given in [26, Def. 2] hold for
Qρ(C). Note that the dual of the second condition given in [26, Def. 2] holds for Qρ(C) since
the same condition holds for C in D(H).

Proposition 4.9. Let C be a cosilting object in D(H) and consider the t-structure (U ,V)
obtained by gluing the trivial t-structure (Kac(Inj(H), 0) on Kac(Inj(H)) with the cosilting t-
structure (⊥≤0C,⊥>0C) on D(H). Then the aisle U coincides with ⊥≤0Qρ(C).

Proof. The coaisle V is given by Qρ(
⊥>0C). We will show that Qρ restricts to an equivalence

of full subcategories Qρ :
⊥>0C −→ (⊥≤0Qρ(C))⊥0 . That is, we identify (⊥≤0Qρ(C))⊥0 with V

and it then follows that U = ⊥≤0Qρ(C).
LetM ∈ ⊥>0C and let X ∈ ⊥≤0Qρ(C). By using the adjuction (Q,Qρ), we have that Q(X) ∈

⊥≤0C and so, using the adjunction again, we have that Qρ(M) ∈ (⊥≤0Qρ(C))⊥0 . So Qρ restricts
to a well-defined functor and this restriction is clearly fully faithful. It remains to show that the
restricted Qρ is dense. As Kac(Inj(H)) = ⊥ZQρ(C) ⊆ ⊥≤0Qρ(C), it follows that (⊥≤0Qρ(C))⊥0 ⊆
Kac(Inj(H))⊥0 = imQρ. Therefore, for Y ∈ (⊥≤0Qρ(C))⊥0 , we have that QρQ(Y ) ∼= Y and so it
suffices to prove that Q(Y ) ∈ ⊥>0C. Let X ∈ ⊥≤0C. Then Qρ(X) ∈ Qρ(

⊥≤0C) ⊆ ⊥≤0Qρ(C) and
so HomK(Inj(H))(Qρ(X), Y ) = 0. But then also HomK(Inj(H))(X,Q(Y )) = 0 and Q(Y ) ∈ ⊥>0C
as required.

5 Purity and finiteness conditions on the heart.

Let G denote the heart of a t-structure t. In many interesting examples, the heart G is locally
finitely presented and so has an internal definition of purity (see [20] for more details). Moreover,
the purity in G is intimately linked with finiteness conditions on G. In this section we will
investigate the connection between purity in D(1) and purity in the heart G of a t-structure
satisfying the equivalent conditions of Theorem 4.6.

5.1 Purity in the heart.

Throughout this section let D be a compactly generated derivator and let t = (U ,V) be a
t-structure satisfying the equivalent conditions of Theorem 4.6 with heart G.

Lemma 5.1. For a directed system {Xi}i∈I in the heart G, we have

y

(

lim
−→
i∈I

Xi

)

∼= lim
−→
i∈I

yXi.

Proof. This follows directly from [33, Thm. A] and Remark 3.5.

Proposition 5.2. Suppose that the heart G is locally finitely presented. If a short exact sequence

0 → X
f
→ Y

g
→ Z → 0 in G is pure-exact, then the corresponding triangle X

f
→ Y

g
→ Z → X[1]

is a pure triangle in D(1).

Proof. The sequence 0 → X
f
→ Y

g
→ Z → 0 is the direct limit of a directed system {0 → Xi

fi→

Yi
gi→ Zi → 0}i∈I of split exact sequences in G. There is then a directed system of split (and
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hence pure) triangles {Xi
fi
→ Yi

gi
→ Zi → Xi[1]}i∈I . Direct limits in Mod-T c are exact so

0 → lim
−→
i∈I

yXi → lim
−→
i∈I

yYi → lim
−→
i∈I

yZi → 0

is exact. But this is 0 → yX
yf
→ yY

yg
→ yZ → 0 by Lemma 5.1 and so X

f
→ Y

g
→ Z → X[1] is

pure.

Remark 5.3. The product (in G) of a set {Xs}s∈S of objects in G is given by H0
t (
∏

s∈S Xs)
where the symbol

∏

is denotes the product in D(1). It follows that, in general, the definable
subcategories of G may not be definable subcategories of D(1).

Corollary 5.4. Let D ⊆ G be a definable subcategory of T ≃ D(1). If G is locally finitely
presented, then D is a definable subcategory of G.

Proof. We use the closure conditions (2) of Theorem 3.11 to show that D is closed under pure
subobjects, products and direct limits in G. It follows immediately from Proposition 5.2 that D
is closed under pure subobjects in G. For closure under products in G, let {Xs}s∈S be a set of
objects in D. Then

∏

s∈S Xs ∈ D ⊆ G and so the product taken in G is H0
t (
∏

s∈S Xs) ∼=
∏

s∈S Xs

and hence is contained in D as required. Finally let {Xi}i∈I be a directed system in D. Then
y lim
−→i∈I

Xi
∼= lim

−→i∈I
yXi is contained in DefMod-T c(yD). Thus we have that lim

−→i∈I
Xi ∈ D by

Lemma 3.10.

5.2 Locally noetherian hearts.

In this section, we will work in a compactly generated triangulated category T that we do not
require to be the underlying category of a derivator. An object in a Grothendieck category H
is called noetherian if the set of its subobjects satisfies the ascending chain condition. The
category H is called locally noetherian if there is a set of noetherian generators.

We will need the properties of a partial cosilting object C stated in the next lemma. A
proof for each statement essentially already exists in the literature in some form but we adapt
the statements to fit in the current setting.

Lemma 5.5. Let C be a partial cosilting object in T and let t = (U ,V) denote the associated
t-structure. Then the following statements hold.

1. Prod(C) = V ∩ (V[−1])⊥0 .

2. The cohomological functor H0
t restricts to an equivalence

H0
t : Prod(C)

∼
→ Prod(H0

t (C)).

3. H0
t (C) is an injective cogenerator for GC .

Proof. By definition V = ⊥>0C. (1) This follows by the same argument as in [31, Lem. 4.5]; (2)
This follows by the same argument as in [3, Lem. 2.8]; (3) The fact that the image H0

t (Prod(C))
consists of injective objects is the dual of [26, Lem. 2(1)]. To show that H0

t (C) is a cogenerator,
let M be an object contained in GC such that HomT (M,C) = 0. Then, in fact, M ∈ ⊥≥0C =
V[−1]. So M ∈ U [−1]∩V[−1] = 0. So for all non-zero M in GC , we have HomT (M,C) 6= 0. As
C ∈ V we may consider the following triangle obtained by shifting and rotating the truncation
triangle for C[1]: τV(C[1])[−2] → H0

t (C) → C → τV(C[1])[−1]. Applying HomT (M,−) and
using that M ∈ U [−1] = ⊥0(V[−1]) we obtain that HomT (M,C) ∼= HomGC

(M,H0
t (C)) and so

H0
t (C) is indeed an injective cogenerator for GC .
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A pure-injective object N is Σ-pure-injective if N (I) (i.e. the I-indexed direct sum of
copies of N) is pure-injective for every set I. Similarly, an injective object E is Σ-injective if
E(I) is injective for every set I.

Proposition 5.6. Let C be a pure-injective partial cosilting object. The heart GC is locally
noetherian if and only if C is Σ-pure-injective.

Proof. First note that GC is locally noetherian if and only if GC has a Σ-injective cogenerator
(see, for example, [15, Cor. 3]). By Lemma 5.5(2), we have thatH0

t (C) is an injective cogenerator
of GC and it follows from Lemma 5.5(1) that C is Σ-pure-injective in T if and only if H0

t (C) is
Σ-injective in GC .

5.3 Locally coherent hearts.

Let t = (U ,V) be a partial cosilting t-structure with heart GC such that C is pure-injective. In
this section we address the question of when GC is locally coherent. A Grothendieck category
H is called locally coherent if the subcategory Hfp is an abelian exact subcategory of H and
every object is a direct limit of objects in Hfp.

In [3], the authors show that GC is equivalent to a localisation of Mod-T c. Given Lemma
5.5, we observe that the proof of [3, Thm. 3.6] extends to partial cosilting objects. That is, we
have the following equivalence of categories:

GC ≃ Mod-T c/⊥0yC

where ⊥0yC is a hereditary torsion class in Mod-T c with torsion-free class given by Cogen(yC) :=
{F ∈ Mod-T c | F →֒ yCI for some set I}.

The category Mod-T c is locally coherent and so, in order to determine when GC is locally
coherent, we are particularly interested in localisations that preserve finiteness conditions. A
torsion pair (A,B) in a Grothendieck category L is called finite type if B is closed under direct
limits.

Proposition 5.7 ([19, Thm. 2.6], [16, Thm. 2.16]). Let L be a locally coherent Grothendieck
category and suppose (A,B) is a hereditary pair of finite type in L. Then both A and L/A are
locally coherent.

The previous proposition indicates that, if we understand which hereditary torsion pairs in
Mod-T c are of finite type, then we will be closer to understanding when GC is locally coherent.
The following proposition relates this question to definable subcategories of T .

Proposition 5.8 ([22]). Let T be a compactly generated triangulated category. Then there is a
bijective correspondence between the following sets:

• The set of definable subcategories D of T .

• The set of hereditary torsion pairs (A,B) of finite type in Mod-T c.

with mutually inverse bijections given as follows:

D 7→ A = {F ∈ Mod-T c | HomMod-T c(F,yD) = 0 for all D ∈ Pinj(D)}

and A 7→ D = {D ∈ T | HomMod-T c(F,yD) = 0 for all F ∈ A ∩mod-T c}.
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A pure-injective object X in T is called an elementary cogenerator if DefT (X) =
Cogen∗(X) where Cogen∗(X) denotes the class of all pure subobjects of products of copies of
X. Similarly, we will use the notation DefG(E) for the definable subcategory generated by a set
of objects E in a locally finitely presented Grothendieck category G. Moreover, a pure-injective
object X in G is called an elementary cogenerator if DefG(X) = Cogen∗(X).

Remark 5.9. Elementary cogenerators were first considered in the context of model theory
of modules (see, for example, [29, Sec. 9.4]). The condition is equivalent to say that X is an
injective cogenerator in the localisation of Mod-T c at the hereditary torsion pair of finite type
corresponding to DefT (C) via the bijection in Proposition 5.8.

Proposition 5.10. Let T be a compactly generated triangulated category and let (U ,V) be a
partial cosilting t-structure with heart GC . If C is an elementary cogenerator, then GC is locally
coherent.

Proof. If C is an elementary cogenerator, then the hereditary torsion pair (⊥0yC,Cogen(C)) is
the image of DefT (C) under the correspondence in Proposition 5.8. In particular, the torsion
pair (⊥0yC,Cogen(C)) is of finite-type and so GC is locally coherent by Proposition 5.7.

The following example relates elementary cogenerators to the class of fp-injective objects
in G. An object X in locally finitely presented Grothendieck category G is called fp-injective
if Ext1G(F,X) = 0 for all objects F in Gfp. An object X is fp-injective if and only if X is
absolutely pure i.e. every exact sequence of the form 0 → X → Y → Z → 0 is pure-exact.

Example 5.11. Let G be a locally finitely presented category and suppose E is an injective
cogenerator. Then Cogen∗(E) is the class of fp-injective objects in G. By combining [32,
Prop. 3.5] and [34, Thm. 3.2], we have that the category G is locally coherent if and only if
Cogen∗(E) is closed under direct limits if and only if E is an elementary cogenerator in G.

As our final result, we will show that, in the case where C is a partial cotilting object of
D(1) for a compactly generated derivator D, the converse of Proposition 5.10 also holds.

Theorem 5.12. Let T be the underlying category of a compactly generated derivator D and
consider a partial cotilting t-structure t = (U ,V) on T with pure-injective partial cotilting object
C. Then GC is locally coherent if and only if C is an elementary cogenerator.

Proof. One direction is Proposition 5.10, we prove the converse. The composition and product
of pure monomorphisms is a pure monomorphism, so it is clear that Cogen∗(C) is closed under
pure subobjects and products. By Theorem 3.11, it remains to show that Cogen∗(C) is closed
under directed homotopy colimits. Let I be a small directed category and let X ∈ D(I) with

Xi ∈ Cogen∗(C). Then there exists a pure monomorphism Xi
fi→ CIi for each i ∈ I. Denote by

aij : Xi → Xj the morphisms in diaIX. This induces a directed system {yXi}i∈I in Mod-T c,
and since C is pure-injective, we obtain a directed system of monomorphisms

0 // yXi

yaij

��

yfi // yCIi

βij

��
0 // yXj

yfj
// yCIj

and βij ∼= ybij for some CIi
bij
→ CIj in D(1).
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Then 0 → lim−→i∈I
yXi

lim
−→i∈I

yfi
−→ lim−→i∈I

yCIi is a monomorphism. By Lemma 5.1, we have that

y

(

lim−→
i∈I

CIi

)

∼= lim−→
i∈I

yCIi .

Moreover, since GC is locally coherent we may apply Example 5.11, so the object lim
−→i∈I

CIi

is fp-injective. That is, there exists a pure monomorphism lim−→i∈I
CIi h

→ CJ for some set J .

Composing yh with lim
−→i∈I

yfi we obtain a monomorphism yhocolimI(X) ∼= lim
−→i∈I

yXi → yCJ

in Mod-T c. As CJ is pure-injective, this is induced by a pure monomorphism hocolimI(X) →
CJ . That is hocolimI(X) ∈ Cogen∗(C).

Example 5.13. Consider the compactly generated derivator DR from Example 2.1. We may
consider elementary cogenerators in the heart G ≃ Mod-R of the standard t-structure in
DR(1). As this is a definable subcategory of DR(1) ≃ D(Mod-R) (defined by the functors
HomDR(1)(R[i],−) for i 6= 0), a cotilting module (in the sense of [2]) is an elementary cogener-
ator in Mod-R if and only if it is an elementary cogenerator in D(Mod-R).

A Appendix: The axioms (Der1)-(Der4) and shifted derivators.

A.1 The axioms.

We will now state the axioms defining a derivator. In order to state (Der4) we will need the
following definition. Let u : A → B be a morphism in Cat and b be an object in B. Then we may
form the comma category u/b as follows: the objects of u/b are given by pairs (a, f) with a
an object in A and f : u(a) → b. The morphisms (a, f) → (a′, f ′) in u/b are given by morphisms
g : a → a′ in A such that f = f ′ ◦ u(g). Let p : u/b → A be the obvious projection functor. We
may perform the dual construction to obtain the comma category b/u and projection functor
q : b/u → A.

A prederivator D is a derivator if it has the following properties.

(Der1) For every small family {Ai}i∈I of small categories, the canonical functor

D(
∐

i∈I

Ai) →
∏

i∈I

D(Ai)

is an equivalence of categories.

(Der2) For every small category A, a morphisms f : X → Y in D(A) is an isomorphism if and
only if fa : Xa → Ya is an isomorphism for every object a in A.

(Der3) For all functors u : A → B, the restriction functor u∗ : D(B) → D(A) has a left adjoint
u! : D(A) → D(A) and a right adjoint u∗ : D(A) → D(B).

(Der4) For all functors u : A → B and all objects b in B, there are canonical isomorphisms
π!p

∗ → b∗u! and b∗u∗ → π∗q
∗.

The functor π∗ is a homotopy limit functor (see the next subsection) and so (Der4) means
that, for all functors u : A → B, the image of the right Kan extension u∗ can be expressed
point-wise in terms of these simpler right Kan extensions. A similar statement may be made
for left Kan extensions.
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The canonical isomorphisms arising in (Der4) are instances of canonical mate transforma-
tions. Many of the proofs in the later sections of this paper will refer to the calculus of canonical
mates and the existence of homotopy exact squares. For a systematic treatment of these tech-
niques, we refer the reader to [12, Sec. 1.2].

A.2 Shifted derivators.

Let B be a small category and consider the 2-functor B×− : Catop → Catop taking each A to the
product B×A. Then the shifted derivator D

B is defined to be the derivator D precomposed
with B×−. This is clearly a 2-functor and in [12, Thm. 1.25] it is shown that DB is a derivator.

The following definitions describe the restriction functors and Kan extensions in the shifted
derivator. We have added decorations to indicate which derivator they have been taken with
respect to. We will also use this notation in later sections when necessary:

• For each small category A, we have that DB(A) := D(B ×A);

• For each functor u : A → C in Cat, we have that u∗
DB := (idB × u)∗

D
, uD

B

∗ := (idB × u)D∗
and uD

B

! := (idB × u)D! ;

• The evaluation functors and the functors hocolimD
B

A , holimD
B

A and diaD
B

A are all defined
as in Sections 2.1.2 and 2.1.3 using the above definitions.

• By [12, Prop. 2.5] we have that hocolimD

A(X
D
A

b ) ∼= hocolimD
B

A (X)Db and holimD

A(X
D
A

b ) ∼=

holimD
B

A (X)Db for all X in D(B ×A) and b in B.

Proposition A.1 ([12, Prop. 4.3]). Let D be a strong and stable derivator. For any small
category A, the shifted derivator D

A is strong and stable.

Example A.2. Let k be a field and let Q be a finite quiver. Then we can consider the free
category generated by Q and so we can also consider Dk(Q). Unravelling the definitions, we
have that Dk(Q) is equivalent to the derived category D(Mod-kQ) of modules over the path
algebra kQ. Now, for every small category A, we have that (Mod-k)Q×A ∼= (Mod-kQ)A and so
DkQ(A) ∼= Dk(Q×A). The derivator DkQ is therefore the shifted derivator DQ

k .

B Appendix: Proof of Proposition 2.7.

For the proof of Proposition 2.7, we will require the following lemma, which was shared with
the author by Moritz Groth. For a small category A, let A⊳ denote the category obtained from
A by adding a new initial object −∞ and let iA : A → A⊳ be the canonical inclusion. As in [13],
we will call an object X in D(A⊳) a limiting cone if it is in the essential image of (iA)∗.

Lemma B.1. Let D be a derivator and let S be a discrete category. An object X in D(S⊳) is
a limiting cone if and only if the underlying diagram diaS⊳(X) is a product cone i.e. diaS⊳(X)
exhibits X−∞ as the product of the objects {Xs}s∈S in D(1).
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Proof. Consider the diagram

D(1)S
⊳ i∗S // D(1)S

✳✳✳✳
S[

id

holimS

��
✼✼✼✼
W_

∼=

D(S⊳)
i∗S

//

diaS⊳

OO

D(S)

✲✲✲✲
RZ

α∗

diaS

OO

π∗ // D(1)

✻✻✻✻
W_

η

D(S⊳)
∞∗

//

id

OO

D(1)

π∗

OO

id

GG

where the top right triangle is a natural isomorphism by [12, Prop. 1.7]; the natural transfor-
mation in the bottom right triangle is the unit of the adjunction (π∗, π∗) and α∗ is induced by
the square

S⊳

id
��

S

❁❁❁❁
Zb
α

π
��

iSoo

S⊳
1.

−∞
oo

Note that diaS ◦ π∗ is the constant diagram functor ∆S, and so the vertical pasting of the
triangles on the right is the diagonal map Y → holimS(∆S(Y )) =

∏

s∈S Y for each object
Y in D(1). The vertical pasting of the squares on the left yields a natural transformation
∆S(X−∞) → i∗S(diaS⊳(X)) induced by the structure maps of X. The pasting of the entire
diagram therefore gives rise to the map X−∞ →

∏

s∈S Xs produced by the universal property
of the product applied to diaS⊳(X). So diaS⊳(X) is exhibiting X−∞ as the product if and
only if this morphism is an isomorphism. Since the top row is inhabited by invertible natural
transformations, we have that the total pasting is a natural isomorphism whenever the pasting
of the bottow row is a natural isomorphism. By [13, Prop. 2.6], this occurs exactly when X is
a limiting cone.

Proof of Proposition 2.7. We first define a small category P (S) containing each proper filter on
S as a full subcategory and show that there exists X̃ in D(P (S)) satisfying the conditions of
the theorem. Later we will restrict to the filter F in particular.

Let P (S) be the small category with objects ∅ 6= P ∈ P(S) and morphisms fPQ : P → Q if
and only if Q ⊆ P . Consider the functor lS : S → P (S) defined by s 7→ {s} and the right Kan
extension (lS)∗ : D(S) → D(P (S)) along lS . For each X in D(S), define

X̃ := (lS)∗(X).

Step 1: Show that for each P ∈ P (S), the value X̃P of X̃ at P is isomorphic to
∏

p∈P Xp:
Consider the slice square

(P/lS)
q //

��

S

lS
��

1
P

// P (S)

✟✟✟✟
@H

By (Der4), the associated canonical mate transformation P ∗(lS)∗ → holim(P/lS)q
∗ is an isomor-

phism. Note that the comma category (P/lS) is equivalent to the discrete category P and q is
the canonical embedding of P ⊆ S. By [12, Prop. 1.7], we have that

X̃P = (lS)∗(X)P ∼= holim(P/lS)q
∗(X) ∼=

∏

p∈P

Xp.
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Step 2: Show that the value X̃fPQ
: X̃P → X̃Q of X̃ at fPQ is the canonical projection φPQ

where P is in P (S) and Q = {p} for p ∈ P : Consider the fully faithful functor vP : P ⊳ → P (S)
where p 7→ {p} and −∞ 7→ P . By Lemma B.1, it suffices to show that v∗P X̃ is a limiting cone.
Consider the square

P
iP //

jP
��

☎☎☎☎~� id

P ⊳

vP
��

S
lS

// P (S)

where jP is the embedding of P into S. If this square is homotopy exact then v∗P (lS)∗(X) ∼=
(iP )∗j

∗
P (X) as desired. The square can be expressed as the following vertical pasting

P
iP //

id
��

✆✆✆✆~� id

P ⊳

vP
��

P
lP

//

jP
��

☎☎☎☎~� id

P (P )

jP (P )

��
S

lS
// P (S).

By [13, Lem. 2.12], the top square is homotopy exact and so, by [12, Lem. 1.14], it suffices to
show that the bottom square is homotopy exact.

Since jP and jP (P ) are fully faithful, it follows from [13, Lem. 2.12] that it is enough to show
that the canonical mate transformation (jP )!l

∗
P → l∗S(jP (P ))! is an isomorphism for all s ∈ S \P .

Let Y be an object in D(P (P )) and note that l∗S(jP (P ))!(Y )s ∼= (jP (P ))!(Y ){s}. The functors
jP (P ) and jP are both cosieves. Since {s} is not in the image of jP (P )and s is not in the image of
jP , it follows from [12, Prop. 1.23] that both (jP (P ))!(Y ){s} and (jP )!l

∗
P (Y )s are isomorphic to

initial objects in D(1). Thus (jP )!l
∗
P (Y )s → l∗S(jP (P ))!(Y )s is the unique isomorphism between

initial objects. It follows that the bottom square is homotopy exact as required.

Step 3: Show that X̃fPQ
: X̃P → X̃Q is the canonical projection φPQ for each Q ⊆ P in P (S):

Let kQ⊳ : (Q⊳)⊳ → P (S) be the functor defined by q 7→ {q} for all q ∈ Q, −∞ 7→ Q and
−∞ − 1 7→ P . Then, by Step 3, the underlying diagram dia(Q⊳)⊳(k

∗
Q⊳X̃) is isomorphic to the

incoherent diagram consisting of commutative triangles

∏

P Xp
u //

πP{q}
$$❏

❏❏
❏❏

❏❏
❏❏

❏

∏

QXq

πQ{q}

��
Xq

for each q ∈ Q. By the universal property of the product, the morphism u must be the canonical
projection.

Step 4: Restrict to F : Let u : F → P (S) be the fully faithful functor mapping each P ∈ F
to itself. Then let RedF := u∗ ◦ (lS)∗. It follows from the above steps that RedF (X) has the
desired properties.
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