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Abstract

The carbonate clumped isotope thermometer is a promising tool for determining past ocean temperatures. It is based on
the temperature dependence of rare isotopes ‘clumping’ into the same carbonate ion group in the carbonate mineral lattice.
The extent of this clumping effect is independent of the isotope composition of the water from which carbonate precipitates,
providing unique advantages over many other paleotemperature proxies. Existing calibrations of this thermometer in cold-
water and warm-water corals suggest clumped isotope ‘vital effects’ are negligible in cold-water corals but may be significant
in warm-water corals. Here, we test the calibration of the carbonate clumped isotope thermometer in cold-water corals with a
recently collected and well characterised sample set spanning a range of coral genera (Balanophyllia, Caryophyllia, Dasmos-

milia, Desmophyllum, Enallopsammia and Javania). The clumped isotope compositions (D47) of these corals exhibit systematic
dependences on their growth temperatures, confirming the basis of the carbonate clumped isotope thermometer. However,
some cold-water coral genera show D47 values that are higher than the expected equilibrium values by up to 0.05‰ (equivalent
to underestimating temperature by �9 �C) similar to previous findings for some warm-water corals. This finding suggests that
the vital effects affecting corals D47 are common to both warm- and cold-water corals. By comparison with models of the coral
calcification process we suggest that the clumped isotope offsets in these genera are related to the kinetic isotope effects asso-
ciated with CO2 hydration/hydroxylation reactions in the corals’ calcifying fluid. Our findings complicate the use of the car-
bonate clumped isotope thermometer in corals, but suggest that species- or genus-specific calibrations could be useful for the
future application of this paleotemperature proxy.
� 2016 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/
licenses/by/4.0/).
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1. INTRODUCTION

Scleractinia or ‘stony corals’ precipitate aragonite skele-
tons and range from small, solitary corals to hermatypic or
‘reef-building’ colonial corals that can support extremely
biodiverse ecosystems. Many species living in shallow seas
host photosynthesising algae, which provide the corals with
carbon for metabolisation (Falkowski et al., 1984; Porter
et al., 1984). Such corals are known as zooxanthellate,
ons.org/licenses/by/4.0/).
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whereas corals that lack algal symbionts are known as
azooxanthellate. Around 90% of azooxanthellate sclerac-
tinian corals live in cold/dark water and as such are often
referred to as cold-water or deep-water corals (Roberts
et al., 2009). The term ‘cold-water coral’ is also used to refer
to animals from two further orders (Gorgonacea and
Anthoathecata) that can have differing skeletal mineralogy.
In this study we use the term ‘cold-water coral’ to refer
specifically to azooxanthellate scleractinian corals
(Roberts et al., 2006; Roberts and Cairns, 2014).

Cold-water corals are found in all major ocean basins at
depths from the surface to deeper than 4000 m (Stanley
and Cairns, 1988; Roberts et al., 2006; Cairns, 2007). Their
skeletons can be collected from the seafloor and precisely
dated using uranium-series techniques (Cheng et al., 2000).
As such, they are a promising target as an archive of past
ocean dynamics and properties, particularly for regions lack-
ing sediment-core climate records (Robinson et al., 2014).

Given the important role of temperature in governing
seawater density, circulation and heat transport, numerous
geochemical proxy-methods have been developed and
applied to reconstruct past ocean temperature (eg.
McCrea, 1950; Alibert and McCulloch, 1997; Barker
et al., 2005; Rueggeberg et al., 2008; Thiagarajan et al.,
2014). However, many paleotemperature proxies used
successfully in other archives (eg. d18O and Mg/Ca in
foraminiferal tests) cannot be straightforwardly applied in
cold-water corals (eg. Smith et al., 2000; Adkins et al.,
2003; Gagnon et al., 2007; Case et al., 2010). This compli-
cation is due to the presence of ‘vital effects’, i.e. biological
processes that cause deviations of coral geochemical com-
positions from thermodynamic equilibrium values. For
example, the stable isotope compositions (d18O and d13C)
of cold-water coral skeletons are known to be depleted rel-
ative to the expected carbonate-seawater equilibrium values
by up to 6–12‰ (Adkins et al., 2003; Lopez Correa et al.,
2010; Lutringer et al., 2005; Mortensen and Rapp, 1998;
Smith et al., 2000; Spiro et al., 2000; Rollion-Bard et al.,
2003, 2010; Marali et al., 2013). The magnitude of these
stable isotope vital effects varies even within a coral
skeleton and is thought to be related to kinetic and/or
pH-driven processes during coral calcification (eg.
McConnaughey, 1989; Adkins et al., 2003). A proxy that
is neither affected by biological mediation nor requires
knowledge of the seawater isotopic composition would be
a valuable tool for the paleoceanographic community.

A promising paleotemperature proxy in this regard is
the clumped isotope composition of coral skeletal carbon-
ate (Ghosh et al., 2006; Thiagarajan et al., 2011; Saenger
et al., 2012). It is based on the homogeneous isotope equi-
librium within the carbonate lattice, and thus can constrain
carbonate formation temperature without knowledge of the
isotopic composition of the water from which the carbonate
grew. An example of such an isotope equilibrium is:

Ca13C16O3 þ Ca12C18O16O2 () Ca13C18O16O2 þ Ca12C16O3

Under thermodynamic equilibrium, 13C and 18O in the
carbonate lattice have a tendency to clump into the same
carbonate ion group, leading to a relative enrichment in
the abundance of the 13C18O16O2

2� isotopologue over that
which would be expected if all isotopes were randomly dis-
tributed. The magnitude of this enrichment varies as a func-
tion of the carbonate formation temperature and can thus
be used as a geothermometer.

In practice this enrichment is quantified by measuring
the abundance anomalies of the mass 47 isotopologues
(mostly 13C18O16O) in CO2 derived from phosphoric acid
digestion of carbonates, which is proportional to the enrich-
ment of the 13C18O16O2

2� isotopologue in the carbonate
mineral (Ghosh et al., 2006; Guo et al., 2009b):

D47 ¼ R47

R�
47

� 1

� �
� R46

R�
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� 1

� �
� R45

R�
45

� 1

� �� �
� 1000;

where R47, R46, and R45 are the measured abundance ratios
of masses 47, 46 and 45 relative to mass 44, and the denom-
inator terms R* are the expected ratios if all isotopes were
randomly distributed (i.e. if the sample had the stochastic
distribution of isotopologues based on its measured d18O
and d13C values) (Eiler and Schauble, 2004; Huntington
et al., 2009).

Ghosh et al. (2006) first calibrated the carbonate
clumped isotope thermometer by precipitating synthetic
calcites in the lab, yielding a temperature relationship of
D47 = 0.0592 � 106/T2 � 0.02 (T in kelvin). Subsequently,
Dennis and Schrag (2010) precipitated calcites and found
a D47 temperature dependence of D47 = 0.0337 � 106/
T2 + 0.247, significantly different from that of Ghosh
et al. (2006). We refer to these contrasting calibrations as
the Ghosh calibration line and the Dennis calibration line
throughout this study. The discrepancies between these cal-
ibration lines are not resolved by converting the measured
D47 values to the absolute reference frame (ARF) (Dennis
et al., 2011). Recently Zaarur et al. (2013) repeated similar
precipitation experiments to Ghosh et al. (2006) and found
a temperature dependence close to the Ghosh calibration
line for calcite and aragonite. In contrast, weaker tempera-
ture dependences of the clumped isotope thermometer in
aragonite similar to the Dennis calibration line have also
since been reported (Kim et al., 2010; Defliese et al.,
2015). The causes of the different calibration slopes – which
also exist in the calibration of some biogenic carbonates,
e.g. brachiopods (Henkes et al., 2013; Came et al., 2014;
Petrizzo et al., 2014) – are a matter of current debate within
the clumped isotope community. It has been postulated that
these inter-laboratory differences are related to differences
in the analytical protocols in different labs, e.g. the extent
of equilibration between the produced CO2 and the water
associated with the digestion acid (Came et al., 2014;
Defliese et al., 2015).

Despite the complications described above, calibrations
of the clumped isotope thermometer in many (although not
all) biogenic carbonates appear to agree closely with the
Ghosh calibration line (Came et al., 2007; Tripati et al.,
2010; Thiagarajan et al., 2011; Zaarur et al., 2011; Eagle
et al., 2013). However, with the exception of Eagle et al.
(2013), these studies used the same analytical methods as
Ghosh et al. (2006). Confidence in the application of the
carbonate clumped isotope thermometer in cold-water cor-
als increased with the finding that the relationship between
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their clumped isotope compositions and growth tempera-
ture was indistinguishable from the Ghosh calibration line
(Thiagarajan et al., 2011). This result highlighted the possi-
bility that the processes generating large vital effects in coral
d18O and d13C did not affect clumped isotope fractionations
in cold-water corals. The carbonate clumped isotope ther-
mometer has since then been applied to the cold-water coral
Desmophyllum dianthus, to explore past ocean temperatures
(Thiagarajan et al., 2014). In contrast, the clumped isotope
compositions of some warm-water scleractinian corals were
shown to be systematically offset from the Ghosh calibra-
tion line by �0.04‰ (Saenger et al., 2012). Such clumped
isotope vital effects in warm-water corals did not seem to
be related to the presence or absence of algal symbionts
(Saenger et al., 2012). In this study we increase the sample
density of the calibration of the clumped isotope thermome-
ter in cold-water corals with a new, recently-collected and
well- characterised sample set spanning a range of coral
genera. We test and correct for inter-laboratory differences
in clumped isotope measurements, allowing direct compar-
ison of our results with results from previous studies, and
we further evaluate the possible causes of clumped isotope
vital effects in scleractinian corals.

2. MATERIALS AND METHODS

2.1. Coral samples

Corals analysed in this study were either collected dur-
ing recent cruises to the Atlantic and Southern Oceans
(Table S1), or have been measured before (Thiagarajan
et al., 2011). Samples from the tropical Atlantic Ocean
were collected during the JC094 cruise (Oct–Nov 2013,
Robinson, 2014) by Remote Operated Vehicle (ROV)
from the flanks of seamounts or fracture zone escarp-
ments, with the depth of collection ranging from 200 m
to 2500 m. These samples were all living immediately prior
to collection. Coral samples from the Southern Ocean
were collected during three cruises to the Drake Passage
(NBP-0805, NBP-1103 and LMG-0605) (Burke et al.,
2010; Margolin et al., 2014). These samples were collected
using dredge or trawl deployments, on the flanks of sea-
mounts, fracture zones and the continental margin
between 330 m and 1879 m. The corals were not alive
when collected, but were determined to be less than
1000 years old using uranium-series and/or reconnaissance
radiocarbon dating (Burke and Robinson, 2012; Margolin
et al., 2014). If necessary, coral samples were bleached
and then rinsed with fresh water while on board ship to
remove organic tissue and were stored at room
temperature.

We analysed a total of six genera of corals from these
recent collections, with four of them from the Atlantic
Ocean collection: Caryophyllia (solitary); Dasmosmilia

(solitary); Enallopsammia (colonial); Javania (solitary),
and two from the Southern Ocean collection: Balanophyllia
(solitary) and Desmophyllum (solitary) (Tables 1, S1). We
also analysed new subsamples from five coral specimens
previously measured by Thiagarajan et al. (2011) (Tables 1,
S1).
2.2. Seawater properties

2.2.1. Temperature

Temperature estimates at each sample site were derived
from at least two (up to three) different sources: (1) annual
average temperature data from the Levitus94 (Levitus and
Boyer, 1994) database from within 0.5� latitude and longi-
tude, and extrapolated to the depth of sample collection; (2)
ROV CTD data at the sample collection site (JC094 cruise
only, including the maximum and minimum ROV CTD
temperature recorded within ±3 m depth of the collection
site) and (3) rosette CTD data taken near the sample site
and extrapolated to the depth of sample collection (in some
cases two rosette casts were available from different
cruises). For most cases, data from the available sources
agreed to within ±0.4 �C and we take this to be the uncer-
tainty on our estimates of coral growth temperature
(Table S1). The exceptions were for samples JC094-
B0457-Daslm-001 and JC094-B0468-Daslm-001 collected
from within the Atlantic thermocline. The rosette CTD
measured temperatures were 1 �C and 2 �C warmer than
those measured using the ROV for the two samples respec-
tively, while the Levitus94 temperatures agreed with the
ROV data to within 0.2 �C. The differing temperature esti-
mates here are likely due to changes in the thermocline
depth with proximity to the seamount and/or diurnal
changes. It is also possible that seasonal variation in the
thermocline is important for this site. This uncertainty does
not alter our conclusions. In all figures and tables we report
the temperatures measured by the CTD mounted on the
ROV or rosettes.

2.2.2. Carbon and oxygen isotopic compositions of seawater

The isotopic compositions of seawater were determined
based on waters collected in Niskin bottles during all
cruises, which were attached to either the rosette system
(12 collections per deployment) or the ROV (JC094 cruise
only, up to 5 collections per deployment).

For d13C measurements, unfiltered seawater samples
were collected in 250 ml acid-cleaned and ashed glass bot-
tles from the Niskin bottles using acid-cleaned silicone tub-
ing, first rinsing and then overfilling the bottle by at least
50%. The sample, leaving head-space, was poisoned with
50 ll of saturated mercuric chloride solution, and the bottle
was then sealed with a plastic screwcap lid and o-ring. The
d13C of dissolved inorganic carbon (DIC, 1 standard
deviation S.D. = 0.1‰) was analysed at the University of
California (Irvine) for tropical Atlantic samples (Gao et al.,
2014), and at the National Ocean Sciences Accelerator
Mass Spectrometry facility (NOSAMS) of Woods Hole
Oceanographic Institution for Southern Ocean samples.
The speciation of DIC in the seawater was calculated based
on the seawater alkalinity and total DIC concentration esti-
mated from the GLODAP database and measured temper-
atures, using the CO2SYS program (van Heuven et al.,
2011). The d13C of the dissolved HCO3

� was then calculated
based on the measured d13CDIC and published carbon iso-
tope fractionation factors (Mook et al., 1974). The calcu-
lated d13CHCO�

3
is typically 0.1–0.2‰ greater than the



Table 1
Stable isotope compositions of seawater and cold-water coral samples analysed in this study.

Sample info. Seawater properties Sample isotope data

Sample label and genus T (�C) d18O VSMOW (‰) d13C VPDB HCO�
3 (‰) n D47 (‰) Err. (‰) d18O VPDB (‰) Err. (‰) d13C VPDB (‰) Err. (‰)

NBP1103-DH07-Bc-02 (B) 4.8 �0.76 1.59 3 0.862 0.002 1.50 0.02 �4.57 0.04
NBP1103-DH14-Bn-282 (B) 3.9 �0.66 1.21 3 0.866 0.010 1.13 0.02 �6.15 0.06
NBP1103-DH16-Bn-11 (B) 2.6 �0.52 0.76 3 0.875 0.010 2.12 0.02 �5.33 0.01
LMG06-05-3-2 (B) 5.2 �0.57 1.65 3 0.857 0.021 1.18 0.02 �5.49 0.08
49020 (C) 17.4 0.91 – 4 0.773 0.011 1.64 0.01 0.17 0.01
JC094-B0040-Carlm-001 (C) 3.0 0.23 1.14 8 0.823 0.003 3.82 0.01 �0.09 0.04
JC094-B0244-Carls-001 (C) 7.9 0.18 0.61 8 0.814 0.005 2.39 0.04 �2.19 0.05
JC094-B0561-Carlm-001 (C) 4.3 0.24 0.56 8 0.806 0.003 3.41 0.04 �0.93 0.15
JC094-B0579-Carlm-001 (C) 4.4 0.24 0.56 5 0.145 0.013 2.99 0.23 �1.46 0.40
JC094-B0579-Carlm-002 (C) 4.4 0.24 0.56 5 0.818 0.011 3.73 0.02 0.16 0.02
JC094-B0597-Carls-001 (C) 6.1 0.11 0.6 8 0.819 0.007 2.68 0.01 �2.27 0.01
JC094-B2242-Carlm-001 (C) 4.4 0.26 0.84 19 0.800 0.005 4.09 0.02 1.38 0.02
JC094-B0457-Daslm-001 (Da) 10.6 0.35 0.37 8 0.815 0.005 �0.52 0.02 �8.37 0.02
JC094-B0468-Daslm-001 (Da) 12.2 0.40 0.35 8 0.798 0.005 0.14 0.02 �5.85 0.02
47413 (De) 7.9 �0.44 – 4 0.802 0.006 0.80 0.01 �5.49 0.03
80404 (De) 13.1 0.25 – 4 0.797 0.003 0.14 0.02 �6.24 0.03
NBP1103-DH22-Dc(f)6 (De) 2.3 �0.57 0.65 3 0.833 0.010 2.90 0.05 �2.71 0.08
NBP1103-DH97-Dp-1 (De) 2.7 �0.47 0.89 3 0.821 0.010 2.61 0.03 �3.64 0.05
NBP0805-TB04-DpA-003 (De) 3.7 �0.66 1.21 3 0.820 0.004 1.42 0.03 �5.73 0.06
NBP1103-TB10-Dp-1 (De) 3.9 �0.66 1.21 3 0.832 0.006 1.57 0.02 �4.97 0.04
JC094-B0141-Enall-001 (E) 4.3 0.24 0.56 6 0.842 0.004 0.89 0.05 �5.06 0.03
JC094-B1030-Enall-001 (E) 7.3 0.14 0.89 4 0.837 0.011 2.47 0.02 �1.52 0.03
JC094-B1054-Enall-001 (E) 3.7 0.26 1.14 4 0.846 0.009 2.84 0.04 �1.69 0.09
47531 (E) 7.5 �0.14 – 4 0.832 0.004 1.28 0.001 �2.22 0.03
77019 (E) 14.3 0.95 – 4 0.806 0.005 1.13 0.03 �6.01 0.03
JC094-B0023JaA-lm-001 (J) 4.4 0.24 0.56 5 0.815 0.005 3.79 0.02 0.09 0.02
JC094-B0030-JaCls-001 (J) 3.1 0.23 1.14 3 0.805 0.007 4.02 0.03 0.31 0.09
JC094-B0561-JaClm-001 (J) 4.3 0.24 0.56 8 0.834 0.006 2.83 0.02 �1.38 0.04
JC094-B2245-JaClm-001 (J) 5.5 0.20 1.16 4 0.827 0.002 2.98 0.03 �1.06 0.01
JC094-B1866-Javls-001 (J) 4.4 0.25 0.95 4 0.826 0.006 3.65 0.03 0.24 0.01
JC094-B2067-Javls(f)-001 (J) 7.4 0.20 0.79 4 0.821 0.003 3.34 0.01 0.33 0.03
JC094-B2095-Javlm-001 (J) 6.0 0.12 0.89 4 0.817 0.005 3.24 0.005 �0.23 0.05

Genera are labelled according to the following abbreviations: Balanophyllia (B), Caryophyllia (C), Dasmosmilia (Da), Desmophyllum (De), Enallopsammia (E) and Javania (J). n indicates the
number of replicate measurements for each sample, excluding cleaned aliquots. Data presented are the averages of all measurements for each coral which in some cases are from more than one
subsample (i.e. theca and septa), excluding cleaned aliquots. Corals 49,020, 47,413, 80,404, 47,531 and 77,019 were also measured by Thiagarajan et al. (2011). Errors are ±1 S.E.
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corresponding d13CDIC. All d13C values are reported rela-
tive to Vienna Pee-Dee Belemnite (VPDB).

For d18O measurements, unfiltered 60 ml subsamples
were sealed using rubber stoppers and aluminium crimp
seals in glass bottles and stored in cool (�4 �C), dark con-
ditions for transportation. For the tropical Atlantic sam-
ples, the d18O measurements were conducted using the
IsoPrime100 with Aquaprep system at the NERC Isotope
Geosciences Laboratory, with typical precisions of
±0.02‰ (1 S.D.). For Southern Ocean samples, the d18O
measurements were conducted using the Isoprime Mul-
tiprep system at Tulane University, with precisions of
±0.24‰ (1 S.D.). In the tropical Atlantic, measurements
of d18O had poorer spatial coverage than measurements
of d13C. We therefore elected to calculate the ocean atlas-
derived seawater d18O for sample sites from this cruise, fol-
lowing the methods in Thiagarajan et al. (2011). A regional
relationship between d18O and salinity was established
using the NASA Global Seawater Oxygen-18 Database –
v1.21 (Schmidt et al., 1999). The more finely gridded Levi-
tus94 salinity database was then used to estimate d18O near
the sample site. Where possible, the calculated d18O values
were compared with the values derived from measurements
of water samples at the respective sites. The maximum off-
set between the ocean atlas estimate and in-situ measured
d18O was 0.1‰, about equal to the error on the ocean atlas
estimate (Thiagarajan et al., 2011) and small compared to
the range of d18O variability we observed amongst different
corals (�4‰). Such small uncertainties in seawater d18O
shall not affect our conclusions. The d18O of the seawater
samples are reported relative to Vienna Standard Mean
Ocean Water (VSMOW).
2.3. Stable isotope measurements of coral skeletons

The surfaces of each coral sample were scraped with a
dremel tool to remove residual organic material
(Thiagarajan et al., 2011). Aliquots of approximately
30 mg were cut from each specimen with a diamond blade,
rinsed with 18 MX cm water and ground to powders/fine
grains with a pestle and mortar. For seven solitary corals,
subsamples were taken from both the theca and septa of
the skeleton to assess any systematic differences in the
clumped isotope composition between these two important
skeletal architectures (Table 2). We also carried out an
experiment on NBS-19 and two coral samples to evaluate
the impact of oxidative cleaning on the measured D47

(Table 3). For this experiment, crushed samples were sub-
jected to water rinses, a 15 min wash in 30% H2O2 + 1 M
NaOH (mixed in the ratio 1:1) at 40 �C, and a rinse lasting
1–2 min in (0.1 M) perchloric acid, similar to methods
designed to vigorously remove organic material in prepara-
tion for uranium-series dating of cold-water coral skeletons
(Cheng et al., 2000). Both cleaned and uncleaned powders
of these samples were analysed. Except for samples
employed in this experiment, all other samples in this study
were not chemically cleaned prior to analysis, consistent
with the procedure of previous clumped isotope studies of
corals (Thiagarajan et al., 2011; Saenger et al., 2012).
Multiple aliquots (�4 mg each) of each coral sample
were weighed into silver capsules and added to an autosam-
pler in a random order. This randomising procedure was
used in order to reduce the possibility of systematic instru-
mental effects affecting repeat measurements of a single
sample. Each aliquot of a single powdered sample was gen-
erally analysed within a single measurement session, over
the course of 3–4 days. An aliquot of one of two in-house
carbonate standards (NBS-19 or 102-GC-AZ01) was anal-
ysed after every �7 coral aliquots. Between 3 and 5 aliquots
were analysed for the majority of coral subsamples, result-
ing in 8 or more replicate measurements of many coral
specimens (where the theca and septa of the same specimen
were sampled).

Clumped isotope analyses were performed at Woods
Hole Oceanographic Institution (WHOI), within two mea-
surement sessions (May–July 2014 and September 2014), on
a Thermo Scientific MAT-253 mass spectrometer coupled
to a custom-built automated acid reaction and gas purifica-
tion line. The purification line is similar to the one described
by Henkes et al. (2013), except both heated gases and equi-
librated gases were introduced by first freezing them in liq-
uid nitrogen (LN2) as opposed to directly injecting them
into a helium stream.

Aliquots of carbonate samples and standards were
digested in 103% H3PO4 (q = 1.92 g/cm3) at 90 �C and
evolved CO2 was purified by passing through several cryo-
genic traps (�78 �C dry ice/ethanol slush, and liquid nitro-
gen trap) and a custom-built packed 60 cm-long gas
chromatograph column (Porapak Q, 50–80 mesh) held at
�20 �C. Purified CO2 gases were then expanded into the
sample bellow of the mass spectrometer and analysed at a
bellow gas pressure corresponding to a signal of 12 V on
the Faraday cup measuring mass 44 of CO2. A bottle of
Oztech CO2 (d13CVPDB = �3.63‰, d18OVSMOW =
+25.04‰) was used as the working reference gas during iso-
tope measurements. Each measurement sequence consisted
of six acquisitions, and each acquisition consisted of 9
cycles of sample-reference comparison with 20 or 26 s of
integration time.

The d18O and d13C values of carbonates were calculated
using the working reference gas and then normalised by ref-
erence to the NBS-19 standard analysed in the same mea-
surement session. CO2 gases equilibrated at 1000 �C and
25 �C (i.e. ‘heated gases’ and ‘equilibrated gases’) were pro-
cessed using the same purification line and analysed regu-
larly to convert all clumped isotope values to the absolute
reference frame (Dennis et al., 2011). An acid digestion
fractionation of 0.092‰ was applied to normalise the
clumped isotope composition of all carbonate standards
and samples to acid extractions at 25 �C (Henkes et al.,
2013). The analytical precision of each measurement session
was ±0.016‰, ±0.13‰ and ±0.06‰ (1 S.D.) for D47, d

18O
and d13C respectively, based on repeated measurements of
the two in-house carbonate standards. Where n subsamples
of a coral were measured, standard errors (1 S.E.) on iso-
tope ratios were calculated by dividing the 1 S.D. of those
measurements by

p
n.

In addition to isotope measurements made at WHOI,
homogenised powders of five coral specimens were shared



Table 2
Stable isotope compositions of separate subsamples taken from individual coral specimens (eg. septa or theca).

Sample info. Sample isotope data

Sample label and genus Skeletal region n D47 (‰) Err. (‰) d18O VPDB (‰) Err. (‰) d13C VPDB (‰) Err. (‰)

JC094-B0040-Carlm-001 (s1) (C) Septa 5 0.822 0.003 3.99 0.01 0.47 0.02
JC094-B0040-Carlm-001 (th1) (C) Theca 3 0.826 0.008 3.54 0.01 �1.01 0.07
JC094-B0244-Carls-001 (s1) (C) Septa 5 0.811 0.008 2.58 0.04 �1.67 0.07
JC094-B0244-Carls-001 (th1) (C) Theca 3 0.820 0.003 2.08 0.08 �3.05 0.07
JC094-B0597-Carls-001 (s1) (C) Septa 5 0.823 0.011 2.60 0.01 �2.42 0.02
JC094-B0597-Carls-001 (th1) (C) Theca 3 0.812 0.012 2.81 0.02 �2.03 0.02
JC094-B2242-Carlm-001 (s1) (C) Septa 7 0.786 0.006 4.20 0.03 1.89 0.05
JC094-B2242-Carlm-001 (th1) (C) Theca 8 0.800 0.005 4.00 0.02 1.03 0.02
JC094-B2242-Carlm-001 (b) (C) Mix 4 0.825 0.009 4.08 0.03 1.17 0.01
JC094-B0457-Daslm-001 (s1) (Da) Septa 5 0.812 0.009 �0.85 0.02 �9.07 0.01
JC094-B0457-Daslm-001 (th1) (Da) Theca 3 0.821 0.003 0.01 0.03 �7.20 0.03
JC094-B0468-Daslm-001 (s1) (Da) Septa 5 0.802 0.008 0.67 0.03 �4.52 0.03
JC094-B0468-Daslm-001 (th1) (Da) Theca 3 0.792 0.005 �0.74 0.01 �8.08 0.03
JC094-B0141-Enall-001 (1) (E) Mix 5 0.839 0.005 0.78 0.03 �5.21 0.02
JC094-B0141-Enall-001 (2) (E) Mix 1 0.855 0.016 1.45 0.09 �4.32 0.05
JC094-B0561-JaClm-001 (s1) (J) Septa 5 0.827 0.007 3.18 0.01 �0.51 0.02
JC094-B0561-JaClm-001 (th1) (J) Theca 3 0.846 0.011 2.25 0.03 �2.82 0.08

Genera are labelled according to the following abbreviations: Balanophyllia (B), Caryophyllia (C), Dasmosmilia (Da), Desmophyllum (De), Enallopsammia (E) and Javania (J). n indicates the
number of replicate measurements for each subsample, excluding cleaned aliquots. Errors are ±1 S.E.
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Table 3
Effects of oxidative cleaning on the measured clumped isotope composition of carbonates.

Cleaning protocol Sample D47 (‰) References

Uncleaned Cleaned Diff.

15 min 1:1 NaOH (1 M) + H2O2 (30%),
followed by 1–2 min HClO4 (0.1 M)

NBS-19 0.442 ± 0.004 0.430 ± 0.003 �0.012 This study
JC094-B0561-JaClm-001(th1) 0.846 ± 0.010 0.830 ± 0.006 �0.016
JC094-B0561-Carlm-001 0.813 ± 0.005 0.815 ± 0.004 0.002

30 min H2O2 (3%) JR-126 0.716 ± 0.005 0.716 ± 0.012 0.000 Eagle et al. (2013)
JR-131 0.714 ± 0.005 0.709 ± 0.002 �0.005

4 h H2O2 (10%) RIB-B54 0.732 ± 0.011 0.750 ± 0.015 0.018 Saenger et al. (2012)

D47 values are reported in the absolute reference frame. ±Values are 1 S.E.
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between WHOI and the California Institute of Technology
(Caltech) to evaluate potential inter-laboratory differences
in clumped isotope measurements. These samples were
from four different coral genera (Table 4).

2.4. Processing of coral clumped isotope data from previous

studies

Clumped isotope compositions of coral skeletons have
been reported in previous studies, e.g. Thiagarajan et al.
(2011) and Saenger et al. (2012). Saenger et al. (2012) pre-
sented their data in the ARF based on a secondary transfer
function constructed from three in-house standards (a
Carrara marble, corn CO2, and CO2 equilibrated with
water at 25 �C). The data from Thiagarajan et al. (2011)
were not originally reported in the ARF. Previous attempts
to convert the Thiagarajan et al. (2011) data were based on
measurements of heated gases and NBS-19 made around
the time of the study, and used the ‘tertiary reference frame’
approach in Dennis et al. (2011), also often used to convert
the original Ghosh et al. (2006) data (Dennis et al., 2011;
Saenger et al., 2012; Eagle et al., 2013).

Recently, four of the corals measured in Thiagarajan
et al. (2011) have been re-sampled and analysed at Caltech
in the ARF. Together with another cold-water coral that
has previously been measured in the ARF (Dennis et al.,
2011), these data enable us to provide an updated conver-
sion of the Thiagarajan et al. (2011) data to the ARF.
Our approach is the same as the ‘tertiary reference frame’
approach above, with the exception that we use the
re-analysed corals as additional carbonate standards to
better-constrain the conversion. In addition, rather than a
single conversion for data generated during multiple ses-
sions, we use a session-by-session conversion for each of
the seven sessions in 2008 in which cold-water corals were
measured for Thiagarajan et al. (2011). For each session,
we constructed an empirical transfer function based on
the known ARF D47 values for heated gases, NBS-19
and/or re-analysed corals run during that session. If a coral
was not re-analysed in the ARF, this function was used to
convert the clumped isotope data reported in Thiagarajan
et al. (2011) to the ARF. For corals that were re-analysed
in the ARF, we use the measured ARF value. The updated
coral data, including the standards/corals used for the con-
versions, are presented in Table S4.
3. RESULTS

3.1. Oxygen and carbon isotope compositions

Coral d18OVPDB ranged from �0.85‰ to 4.2‰, and
d13CVPDB ranged from �9.07‰ to 1.89‰ (sample averages,
Tables 1 and 2). The coral genera Caryophyllia and Javania

typically contained the most enriched isotopic compositions
(d18OVPDB �2‰ to 4‰, d13CVPDB � �3‰ to 2‰) and the
genus Dasmosmilia contained the most depleted composi-
tions (d18OVPDB � �1‰ to 1‰, d13CVPDB � �9‰ to
�4‰). The maximum difference in d18OVPDB between two
subsamples of a single specimen was 1.5‰ in the coral
JC094-B0468-Daslm-001 (Dasmosmilia sp.), accompanied
by a difference in d13CVPDB of 3.5‰. Differences within
other coral specimens ranged from 0.2‰ to 1‰ for
d18OVPDB and 0.4‰ to 2.5‰ for d13CVPDB.

For each coral analysed, we estimated the expected d18O
and d13C values if they had formed in isotope equilibrium
with seawater, based on seawater data for the sample site
(T, d18Osw, d13CHCO�

3
) and published equilibrium isotope

fractionation factors (Grossman and Ku, 1986; Romanek
et al., 1992). The d18O and d13C of the majority of samples
were depleted with respect to the expected equilibrium val-
ues, consistent with findings from previous studies (Fig. 1,
Table 1, Table S1) (Adkins et al., 2003; Lutringer et al.,
2005; Mortensen and Rapp, 1998; Smith et al., 2000;
Rollion-Bard et al., 2003, 2010). Oxygen and carbon iso-
tope depletions (i.e. Dd18O and Dd13C) are known to be lin-
early correlated across most parts of a cold-water coral
skeleton, with Dd13C/Dd18O slopes typically around 2.3
and intercepts ranging from �5‰ to �1‰ (Adkins et al.,
2003; Lutringer et al., 2005; Mortensen and Rapp, 1998;
Smith et al., 2000; Rollion-Bard et al., 2003, 2010). The iso-
topic compositions of corals measured in this study fall
within the region covered by these previously-determined
slopes and intercepts, with the magnitude of the disequilib-
rium effects varying amongst different coral genera (Fig. 1).
For example, the majority of data for the genera
Caryophyllia and Javania fall within 1‰ of the expected
equilibrium d18O values, whereas the majority of data for
Balanophyllia, Dasmosmilia and Enallopsammia are more
than 1‰ from the expected equilibrium values, with the
species D. dianthus straddling these two extremes. However,
previous micro-sampling measurements of Caryophyllia
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and Desmophyllum corals show that both genera can con-
tain the entire range of isotopic depletion observed for
cold-water corals (Smith et al., 2000; Adkins et al., 2003).
It therefore seems probable that the differences we observe
between genera are due to sampling biases, rather than the
true extent of d18O and d13C disequilibrium.

3.2. Clumped isotope compositions

3.2.1. Effect of oxidative cleaning

We compared measurements of both cleaned and
uncleaned powders from one carbonate standard (NBS-
19) and two coral samples (Table 3). Each powder was mea-
sured 3 times, with the exception of the uncleaned NBS-19,
which was measured 12 times. The maximum difference in
D47 between cleaned and uncleaned powders was 0.016‰
for the coral JC094-B0561-JaClm-001 (Javania) and the
minimum was 0.002‰ for the coral JC094-B0561-Carlm-
001 (Caryophyllia). T-tests indicated that there was no sig-
nificant difference between the D47 of cleaned and uncleaned
powders for any of the samples (p = 0.10 for NBS-19,
p = 0.20 for JC094-B0561-JaClm-001 and p = 0.63 for
JC094-B0561-Carlm-001). Two previous studies of biogenic
aragonites, employing only H2O2 treatment, also indicated
that oxidative cleaning does not have a statistically signifi-
cant effect on measured D47 values (Table 3, Saenger
et al., 2012; Eagle et al., 2013). Therefore coral samples in
this study were not cleaned prior to isotope analysis with
the exception of shipboard bleaching, water rinses and
physical scraping, consistent with the procedure of
Thiagarajan et al. (2011) and Saenger et al. (2012).

3.2.2. Inter-laboratory comparison

Measurements of two carbonate standards at WHOI
(NBS19 and 102-GC-AZ01) yielded consistent D47 values
between the two measurement sessions, with averages of
Table 4
Results of the inter-laboratory comparison of clumped isotope measurem

Sample info. Sample isotope data

Sample label Measurement n

NBP1103-DH14-Bn-282 WHOI1 3
WHOI2 3
Caltech 5

LMG06-05-3-2 WHOI1 3
WHOI2 3
Caltech 4

JC094-B2242-Carlm-001 (b) WHOI1 4
WHOI2 4
Caltech 4

NBP1103-DH97-Dp-1 WHOI1 3
WHOI2 3
Caltech 5

JC094-B1054-Enall-001 WHOI1 4
WHOI2 4
Caltech 5

Measurements were made on aliquots of the same coral powders. D47 valu
of Dennis et al. (2011). D47 values from the WHOI lab are corrected base
standards into agreement with either the inter-lab average value (0.713‰
WHOI2) reported in Dennis et al. (2011). Errors are ±1 S.E. See details
0.438 ± 0.011‰ (1 S.D., n = 12) and 0.749 ± 0.016‰
(n = 13) during the first measurement session (May–July,
2014), and 0.432 ± 0.023‰ (n = 10) and 0.740 ± 0.013‰
(n = 9) during the second measurement session (September,
2014). These values are however systematically higher than
the mean values reported in recent studies, i.e. 0.392
± 0.017‰ and 0.713 ± 0.012‰ for NBS-19 (a Carrara mar-
ble) and 102-GC-AZ01 respectively (Dennis et al., 2011;
Zaarur et al., 2013).

The magnitudes of our observed offsets (0.027–0.046‰)
relative to the mean values reported in previous studies are
close to the range of inter-laboratory difference observed in
previous studies, which are up to 0.031‰ for NBS19
(0.057‰ for Carrara marble) and 0.023‰ for 102-GC-
AZ01 (Dennis et al., 2011; Rosenheim et al., 2013; Zaarur
et al., 2013; Tang et al., 2014). The exact cause of these off-
sets could be related to the differences in our analytical pro-
cedure and/or the phosphoric acid digestion fractionation
factor (0.092‰) we adopted, and warrants further investi-
gation. In this study, we corrected our clumped isotope
data based on the linear function required to bring the val-
ues of these in-house standards measured at WHOI into
agreement with their previously reported values (see details
below). This linear function is a D47-dependent empirical
transfer function, equivalent to that described in Dennis
et al. (2011), but applied after the ‘heated gas’, ‘equilibrated
gas’ and acid digestion corrections that transfer data into
the ARF. Therefore, this additional correction means that
our reported clumped isotope data are no longer strictly
in the ARF.

Note that the clumped isotope value of the 102-GC-
AZ01 standard reported by the Caltech laboratory in
Dennis et al. (2011) was greater than the inter-lab average
value (0.724‰ vs. 0.713‰). We therefore corrected our
inter-laboratory comparison dataset in two ways, by
assuming two different values for the 102-GC-AZ01
ents between WHOI and Caltech.

D47 (‰) Err. (‰) Offset from Caltech value

0.850 0.009 �0.016
0.866 0.010 0.000
0.866 0.009 –
0.841 0.020 �0.010
0.857 0.021 0.006
0.851 0.007 –
0.0811 0.008 �0.011
0.825 0.009 0.003
0.822 0.004 –
0.806 0.009 �0.023
0.821 0.010 �0.008
0.829 0.008 –
0.831 0.009 �0.001
0.846 0.009 0.014
0.832 0.005 –

es from the Caltech lab are reported in the absolute reference frame
d on linear functions required to bring the values of the carbonate
) for 102-GC-AZ01 (WHOI1) or with the Caltech value (0.724‰,
in Section 3.2.2.
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standard, i.e. 0.713‰ and 0.724‰. We evaluated the
robustness of these corrections based on comparisons with
measurements made at both WHOI and Caltech on five
homogenised coral powders (Section 2.3.).

Excellent agreement was observed between the WHOI
and Caltech measurements of these five coral powders, when
we corrected our data using the 0.724‰ value for 102-GC-
AZ01, i.e. the value specifically from the Caltech laboratory
(Dennis et al., 2011) (Fig. 2, Table 4). Such agreement high-
lights the usefulness of using carbonate standards to remove
inter-lab bias, which can exist despite converting all mea-
surements into the ARF. Given these results, and our aim
of comparing our values with previous measurements made
at Caltech (Thiagarajan et al., 2011), all data measured at
WHOI presented in this study were corrected using the
0.724‰ value for 102-GC-AZ01 (Table S2). Data corrected
using the inter-lab average value (0.713‰) are presented in
the Supplementary data (Table S3).

To compare our results with previous results of warm-
water corals reported by Saenger et al. (2012) from the Yale
laboratory, we used their results reported in the ARF
(Saenger et al., 2012). These authors also shared samples
with Caltech, achieving consistent results between the two
labs. Therefore, the warm-water coral results in that study
should also be comparable to our corrected results.
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Fig. 1. Deviations of coral d13C and d18O from the expected equilibrium
d13CHCO�

3
and d18O values determined for each sample site and the isoto

d13C) and Grossman and Ku (1986) (for d18O). Shown as symbols are the
(2011) and Saenger et al. (2012). Also shown as lines are selections of
represents the best fit through multiple measurements on a single coral s
d18O measured in the specimen. Zero offsets from the expected equilibr
simplicity, errors bars for the stable isotope measurements are not shown
error in Romanek et al., 1992) and ±0.2‰ 2 S.E. for d18O for the data
3.2.3. Clumped isotope compositions of cold-water corals

Our measured D47 values ranged from 0.797‰ to
0.875‰ for corals covering a temperature range of 2.2–
17.4 �C (Tables 1 and 2, Fig. 3). We include detailed sample
provenance and the temperature and seawater chemistry
estimates from each different source in the Supplementary
material (Table S1). Raw data of clumped isotope analyses,
including all carbonate and gas standards’ values, are also
presented in the Supplementary material (Tables S2 and
S3).

We find that, while an overall temperature dependence is
observed, variations in D47 at any single temperature are
greater than found by Thiagarajan et al. (2011), probably
due to the larger number of individual specimens and gen-
era analysed here. For example, the D47 of 15 corals col-
lected from temperatures between 3 and 5 �C vary by
0.06‰, equivalent to a 12 �C range in estimated tempera-
ture using the calibration line of Ghosh et al. (2006). If data
from Saenger et al. (2012) are included, this range increases
to 0.08‰. This range of D47 is significantly greater than our
measurement uncertainties (�0.006–0.008‰ 1 S.E. for
samples with multiple replicates, Section 2.3.). In contrast,
we found no significant difference in D47 (<0.02‰)
between the septa and theca for any of the 7 corals studied
(Table 2).
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4. DISCUSSION

4.1. Inter-genus variations in cold-water coral D47

The combined coral D47 data from WHOI, Caltech and
Yale highlights the previously observed first-order depen-
dence of corals’ clumped isotope compositions on their
growth temperatures (Fig. 3). In accordance with previous
clumped isotope studies of coral skeletal carbonates, the
absolute values of our data lie more closely to the Ghosh
calibration line than calibrations with shallower slopes,
such as the Dennis calibration line (Fig. 3). We therefore
discuss our results by reference to the Ghosh calibration
line in the following sections, assuming it represents the car-
bonate clumped isotope equilibrium, consistent with previ-
ous clumped isotope studies of coral skeletal carbonates
(Thiagarajan et al., 2011; Saenger et al., 2012).

Note: two versions of the Ghosh line have been derived
in the ARF (Fig. 3. Dennis et al., 2011; Eagle et al., 2013).
Although both of these were based solely on the original
data reported by Ghosh et al. (2006), they are offset by
�0.01‰ due to differences in the ways in which clumped
isotope measurement uncertainties were incorporated into
the regression analyses. Specifically, Dennis et al. (2011)
weighted their regression model based on the analytical
uncertainties of each measurement, while Eagle et al.
(2013) did not. In addition, Zaarur et al. (2013) recently
performed additional carbonate precipitation experiments
and derived a new calibration line by combining their
new data with the original Ghosh et al. (2006) data.
Zaarur et al. (2013) used residual-based iterative weighting
to include the analytical uncertainties in their regression,
resulting in a calibration line similar to that reported by
Eagle et al. (2013). Although these different calibration lines
lie within each other’s confidence envelopes, the exact ver-
sion of the calibration line we adopt may slightly alter
our conclusions. Here, in the absence of a clear community
agreed ‘best practice’, we adopt the Dennis et al. (2011) ver-
sion of the Ghosh line in our following discussion, since it
lies closest to the coral data.

In the absence of clumped isotope vital effects, we would
expect our measured coral clumped isotope compositions to
cluster evenly around the Ghosh calibration line, the
assumed clumped isotope equilibrium line. In this ideal
case, the offsets of measured coral D47 from the Ghosh cal-
ibration line would follow a normal distribution of mean
zero, with a standard deviation equal to the long-term stan-
dard deviation for our carbonate standards representing the
analytical uncertainty (Fig. 4, solid red curve). In the fol-
lowing analyses comparing our results to this ideal case
we use only data from this study, for which all values of
individual replicate measurements were available.

The distributions of offsets within each genus were
indeed consistent with normal distributions, but did not
have mean values of zero. Instead, with the exception of
Caryophyllia, they tended to be offset towards higher
values, with mean offsets ranging from �0‰ to 0.04‰
(Table 5). The genera Balanophyllia, Enallopsammia and
Dasmosmilia had higher offsets (0.03–0.04‰) than the
genera Desmophyllum, Caryophyllia and Javania

(�0.005–0.005‰).
With the exception of Caryophyllia, chi-squared (v2)

tests for variance suggested that the variances of the offset
distributions for each genus were not distinguishable from
that of multiple measurements on the carbonate standard
102-GC-AZ01 (Kanji, 2006) (Table 5). This result suggests
that the spread in results for most genera can be attributed
to analytical uncertainties. Samples from the genus
Caryophyllia had a significantly greater variance than
would be expected from analytical uncertainties (Table 5),
which we suspect arises from the greater variety of species
and morphologies sampled for this genus. Note also that,
considering data from all genera, the measurement data
have a broader, flatter distribution than the idealised case.

We used Kolmogorov–Smirnov (K–S) tests to evaluate
the significance of the difference between the observed offset
distributions for each genus and the idealised case – in this
case the expected offset distribution around the Ghosh line
given our measurement uncertainty (Kanji, 2006). Samples
with greater numbers of replicates are likely to better reflect
their true D47. We therefore weighted the statistical analysis
according to the total number of measurements on each
genus, i.e. by considering each replicate measurement as
an individual sample. Such a procedure means that samples
with more replicates are weighted more highly. The number
of measurements on any one genus ranged from 12 (for
Balanophyllia) to 65 (for Caryophyllia). For the genera
Balanophyllia, Enallopsammia and Dasmosmilia, the mea-
sured coral clumped isotope compositions did not agree
with the distribution of the idealised case, instead forming
distributions that were significantly offset above it (>99%
likelihood of a difference, Table 5). The same results were
obtained using T-tests, confirming that the mean offsets
for each of these three genera are significantly greater than
zero. It should be noted that if other versions of the
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inorganic Ghosh calibration are used (eg. Eagle et al., 2013;
Zaarur et al., 2013), all the genera studied here have mean
positive offsets that are significant according to the K–S and
T-tests, but that the genera Desmophyllum, Caryophyllia

and Javania remain close to the lines.
Further Kolmogorov–Smirnov tests were carried out to

evaluate differences between different coral genera. These
tests showed that there was no significant difference in the
distributions of offsets between the genera Desmophyllum

and Javania, and between Dasmosmilia and Enallopsammia.
However, with the exception of these two pairs of genera,
every coral genus had distributions of offsets that were sig-
nificantly different to those of every other genus (Fig. 4b).

As described above, uncertainties in the Ghosh calibra-
tion line make it difficult to establish how close any partic-
ular genus lies to the inorganic equilibrium, or how large
the mean offsets are for each genus. The existence of other
inorganic carbonate calibration lines in the literature fur-
ther complicates the interpretation of our results (Dennis
and Schrag, 2010; Kim et al., 2010; Zaarur et al., 2013;
Tang et al., 2014; Defliese et al., 2015; Kluge et al., 2015).
For example, had we assumed that the Dennis calibration
line represents the clumped isotope equilibrium, the calcu-
lated clumped isotope offsets would have been greater for
all genera (e.g. �0.1‰ for Balanophyllia). However, the
finding that different genera have different offsets from the
equilibrium values is not dependent on the assumed
clumped isotope equilibrium line (Fig. S1).

Our results thus provide robust evidence of inter-genus
variations in clumped isotope vital effects in cold-water cor-
als. Inter-genus differences in clumped isotope compositions
similar to those that we report here for cold-water corals
have also been observed in warm-water corals. For exam-
ple, the genus Porites was found to have D47 values system-
atically offset above the Ghosh calibration line, whereas the
genus Astrangia was not (Saenger et al., 2012).

The presence of clumped isotope vital effects in certain
cold-water coral genera provides further evidence that the
presence or absence of symbionts is not the driver of such
effects. In addition, the suggestion of Saenger et al. (2012)
that corals exhibiting clumped isotope vital effects could
be identified by the relationship between d18O and d13C in
the skeleton does not appear to be true for cold-water cor-
als, because all cold-water corals exhibit very similar slopes
in their depletions of d18O and d13C (Fig. 1). Given our new
data, it appears that the mechanism causing clumped iso-
tope vital effects may be common to all scleractinian corals
– regardless of whether they grow in cold-water or warm-
water – and may act to different degrees within different
genera.

Note that despite certain genera (Balanophyllia, Dasmos-

milia, Enallopsammia and Porites) showing significant
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Fig. 4. Distributions of the deviations of measured coral D47 from the inorganic calibration line of Ghosh et al. (2006) recalculated by Dennis
et al. (2011). (a) Stacked histogram of D47 deviations for single analyses from this study. The solid red curve represents a normal distribution
centred on zero (i.e. no offset from the Ghosh calibration line) with a standard deviation equal to the long-term standard deviation of our in-
house carbonate standard 102-GC-AZ01 (0.016‰). The dashed red line is the equivalent normal distribution but with a mean equal to the
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figure legend, the reader is referred to the web version of this article.)
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clumped isotope vital effects, a relationship between D47

and temperature can still be observed within each of these
genera. We suggest that with more work, species- or
genus-specific temperature calibrations could be a useful
approach for application of the carbonate clumped isotope
thermometer in coral skeletons. However, before attempt-
ing to use such an approach, it is important to determine
the causes of the observed clumped isotope vital effects.
We examine possible mechanisms below, beginning with
an outline of the coral calcification process that will inform
further evaluations of the existing d18O, d13C and D47 data.
Table 5
Statistical analysis of the differences in the distributions of measured coral
around the inorganic calibration line determined by Ghosh et al. (2006).

Coral genus Number of analyses Mean offset (‰)

Balanophyllia 12 0.042 ± 0.015
Enallopsammia 14 0.028 ± 0.014
Dasmosmilia 16 0.026 ± 0.014
Javania 32 0.005 ± 0.016
Desmophyllum 12 0.005 ± 0.015
Caryophyllia 61 �0.0051 ± 0.022
4.2. Origins of clumped isotope vital effects in cold-water

corals

4.2.1. Mechanisms of coral calcification and stable isotope

vital effects

Corals are thought to precipitate carbonate from an
extracellular calcifying fluid (ECF), separated from the sur-
rounding seawater by the calicoblastic cell membrane
(Fig. 5, Saenger et al., 2012). An enzymatic alkalinity
pump, e.g. CaATPase, is thought to operate across the cell
membrane. It removes two protons from the ECF for every
D47 values for each coral genus, relative to an idealised distribution
±Values are 1 S.D. See details in Section 4.1.

K–S test
p-value

T-test
p-value

v2 test
p-value

3.0 � 10�9 1.1 � 10�6 0.9
1.1 � 10�8 5.4 � 10�9 0.4
5.9 � 10�7 3.0 � 10�6 0.6
7.6 � 10�2 6.9 � 10�2 0.9
0.36 0.20 0.7
1.2 � 10�2 6.7 � 10�2 6.5 � 10�5
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Ca2+ pumped into it (Ip et al., 1991). This ionic exchange
increases the pH and alkalinity of the ECF, causing DIC
to speciate towards CO3

2�. Accordingly the aragonite satu-
ration state in the ECF increases, leading to enhanced arag-
onite precipitation. Two sources of carbon contribute to the
calcification within the ECF; the CO2(aq) diffused across the
cell membrane, and seawater DIC from seawater leakage
(Fig. 5, eg. Erez, 1978; Furla et al., 2000).

Within this framework of coral calcification, several
mechanisms have been proposed to explain the stable
isotope (d18O and d13C) vital effects observed in corals.
For example, McConnaughey (1989) attributed the
co-depletion of d18O and d13C in coral skeletons (Fig. 2)
to kinetic isotope effects associated with CO2 hydration/
hydroxylation reactions. The kinetic isotope effects associ-
ated with these reactions can be transferred from the result-
ing HCO3

� to the carbonate mineral because the rate of
coral calcification (i.e. carbonate precipitation) is usually
fast.

In comparison, Adkins et al. (2003) showed that the
depletions of d18O and d13C in coral skeletons are actually
decoupled in the dense and rapidly precipitated centres of
calcification (COCs), and therefore argued that both these
decoupled depletions, and the coupled depletions in the rest
of the skeleton could rather be explained by changes in the
pH of the ECF and the extent of CO2 diffusion across the
cell membrane. Speciation of DIC in the coral ECF varies
as a function of its pH, with higher pH leading to larger
fractions of CO3

2� relative to HCO3
�. Under isotope equilib-

rium, CO3
2� has a d18O that is depleted relative to HCO3

�

(McCrea, 1950; Usdowski et al., 1991; Usdowski and
Hoefs, 1993). Therefore, if coral calcification makes use
of both CO3

2� and HCO3
� to form CaCO3, as suggested

for other carbonates (Zeebe, 1999), the higher proportion
of CO3

2� at high pH should lead to more depleted skeletal
d18O than at lower pH (Adkins et al., 2003). Higher pH
of the ECF would also promote CO2 diffusion through
the cell membrane, the depleted d13C of which would cause
depleted skeletal d13C. These effects could thus result in the
co-variance in d18O and d13C observed in the majority of
the skeleton, while allowing for the observed limit to d13C
depletion in the rapidly precipitated COCs caused by a limit
in the capacity for CO2 diffusion. However, this pH-based
vital effect model requires the COCs to be precipitated at
the highest pH of any part of the coral, which appears to
be at odds with boron isotope data (Blamart et al., 2007;
Rollion-Bard et al., 2011).

4.2.2. Possible causes of observed intra- and inter-genus

variations

Recent studies of coral clumped isotope compositions
have examined the potential correlations between the
clumped isotope and oxygen isotope variations, focusing
on several key processes involved in coral calcification,
e.g. diffusion, CO2 hydration/hydroxylation and equilib-
rium isotope fractionation amongst different DIC species
(Guo et al., 2009a; Thiagarajan et al., 2011; Saenger
et al., 2012; Tripati et al., 2015). Guo et al. (2009a) made
first-order estimates about the effects of CO2 hydration/
hydroxylation reactions on the carbonate clumped isotope
composition and suggested that they could result in nega-
tive slopes of D(D47)/D(d

18O) on the order of �0.05 to
�0.01 respectively, where D(D47) = D47–D47(eq) and
D(d18O) = d18O–d18O(eq) are defined as the deviations of
the coral clumped isotope and oxygen isotope compositions
from their expected equilibrium values. An estimate for
the effect of CO2 diffusion through the lipid-bilayer (based
on Knudson diffusion) predicted a similar slope of �0.023
(Thiagarajan et al., 2011), although this diffusion model
predicts smaller than observed depletions in d13C for a unit
depletion in d18O (Thiagarajan et al., 2011; Saenger et al.,
2012). Importantly, both of the above processes apply only
to DIC derived from the CO2 diffused across the cell mem-
brane and not to DIC from the leaked seawater (ambient
DIC). In the absence of other processes, pH-driven changes
in the ratio of CO3

2� to HCO3
� in the ECF, and thus that

incorporated into the skeleton, are not thought to have a
large effect on the resulting D47, because the difference in
the 13C–18O clumping effects between these species is quite
small; (D63HCO�

3
)–(D63CO�

32
) = 0.018‰ (Guo et al., 2008) or

0.033‰ (Hill et al., 2014) at �300 K. Calculating the effect
of changing pH results in a positive D(D47)/D(d

18O) slope of
�0.002 (Guo et al., 2009a; Thiagarajan et al., 2011; Saenger
et al., 2012), �0.004 if the (D63HCO�

3
)–(D63CO�

32
) value from Hill

et al. (2014) is used, and up to �0.01 based on experimental
data (Guo et al., 2012; Tripati et al., 2015). We refer to the
pH effect modelled in Hill et al. (2014) for the remainder of
the study, noting that it represents an intermediate estimate
of the impact of pH change on carbonate D47.

We compare our coral isotope data with these prelimi-
nary theoretically predicted D(D47)/D(d

18O) slopes to deter-
mine the likely processes governing the clumped isotope
vital effects in scleractinian corals. Again we assume that
the Ghosh calibration line, as recalculated in Dennis et al.
(2011), represents the carbonate clumped isotope equilib-
rium in the following discussion. Our broad conclusions
are not affected by this choice of calibration line, but we
acknowledge that our detailed interpretations may change
should a different calibration line prove more realistic
(e.g. Figs. S2, S3).

As described above (Section 3.2.), the intra-coral varia-
tion of d18O and D47, e.g. septa vs. theca, are small in all
the coral specimens examined (<1.5‰ for d18O, <0.02‰
for D47 respectively). This result suggests that the D47 ranges
observed amongst our corals are not simply related to dif-
ferences between these two macroscopic skeletal architec-
tures. The coral JC094-B0468-Daslm-001 (Dasmosmilia

sp.) showed the maximum difference in d18O between the
septa and theca, and was associated with a positive D
(D47)/D(d

18O) slope of 0.006 ± 0.016. This slope is very sim-
ilar to the slope predicted for pH-driven isotope fractiona-
tion (0.002–0.01), although both septal and thecal D47 were
offset significantly above the expected equilibrium values
(by �0.016–0.026‰), lying at least partially within the
region predicted for kinetic effects associated with CO2

hydration and hydroxylation reactions (Fig. 6a). Given esti-
mated slopes of �0.05, �0.01 and �0.02 for the CO2 hydra-
tion and CO2 hydroxylation reactions and diffusive
processes respectively, and the uncertainties on the



Fig. 5. Schematic diagram of coral calcification, modified after Saenger et al. (2012). Labels and equations indicate the processes involved
during coral calcification. Descriptions of each process are given in the text.

Fig. 6. Intra-coral variations of the measured D47 and d18O and their deviations from the expected equilibrium values. Examples are shown
for two corals: (a) JC094-B0468-Daslm-001 (Dasmosmilia) and (b) JC094-B0561-JaClm-001 (Javania), where samples were taken from both
the theca and septa. Faded and solid symbols represent individual measurements and averages of replicate measurements respectively. The
expected equilibrium values are calculated using the equations in Ghosh et al. (2006) – recalculated by Dennis et al. (2011) – and Grossman
and Ku (1986) respectively. Dashed lines show the modelled trajectories of hydration/hydroxylation kinetic effects, diffusive effects and
equilibrium precipitation at varying pH (Section 4.2.2). Error bars are 1 S.E.
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observed theca-septa D(D47)/D(d
18O) slope, this sample sug-

gests that the more extreme slopes predicted for kinetic
effects may not explain the intra-coral variation here. How-
ever, the large uncertainties on the slope do not preclude
less extreme kinetic isotope effects (i.e. CO2 hydroxylation)
acting within this sample. The sample JC094-B0561-Jav-
001 (Javania) also had a relatively large difference in d18O
between the septa and theca (0.9‰). In this case the slope
between the two data points was negative (�0.020
± 0.024), very similar to the slope for diffusional effects
and lying within the region bound by the slopes of the
CO2 hydration and hydroxylation reactions (Fig. 6b).
However, the large uncertainties do not rule out a slope
equal to that of a pH-driven vital effect. Therefore, our
isotope measurements within single specimens cannot isolate
one mechanism causing intra-coral isotope vital effects at
the macro-scale. Further detailed work could aim to inves-
tigate intra-coral variation further, including the impacts of
micro-scale features, such as centres of calcification.

The greater range in d18O within and between different
coral genera allows us to evaluate the mechanisms of
observed vital effects further. We plot isotope data for those
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genera that exhibit d18O depletions large enough to estab-
lish relationships between D(D47) and D(d18O) in Fig. 7a,
and plot data for the other genera separately in Fig. 7b.
In general, warm-water corals appear to exhibit a larger
depletion in d18O than cold-water corals despite similar
ranges in D(D47). All genera appear to be consistent
with near-zero slopes of D(D47)/D(d

18O), but as previously
(a)

(b)

Fig. 7. Deviations of the measured coral D47 and d18O from the expecte
theca or septa) averages for coral genera with >1‰ depletions in d18O. (b)
depletions in d18O; other genera are shown as faded symbols. Also shown
(2011) and Saenger et al. (2012) after conversion to the absolute reference
using the equations in Ghosh et al. (2006) – recalculated by Dennis et al
show the modelled trajectories of hydration/hydroxylation kinetic effe
(Section 4.2.2). Error bars are 1 S.E.
highlighted, different genera have different offsets from the
expected D47 equilibrium, suggesting differences in the vital
effect mechanisms between them. For example, a line of
best fit through the Desmophyllum data (WHOI and
Caltech) has a slope of �0.0013 ± 0.0024 and an intercept
of 0.0066 ± 0.0045, suggesting variations in the pH of the
ECF are a primary control on the variability of d18O and
d equilibrium values for different coral genera. (a) Subsample (i.e.
Subsample (i.e. theca or septa) averages for coral genera with <1‰
are cold-water and warm-water coral data from Thiagarajan et al.
frame (Section 2.4). The expected equilibrium values are calculated
. (2011) – and Grossman and Ku (1986) respectively. Dashed lines
cts, diffusive effects and equilibrium precipitation at varying pH



138 P.T. Spooner et al. /Geochimica et Cosmochimica Acta 179 (2016) 123–141
D47 amongst the different individuals of this genus. The
warm-water genus Astrangia could also be consistent with
this pattern. However, given the uncertainties associated
with the Ghosh line described previously, it is possible that
the D47 of the genus Desmophyllum may also be systemati-
cally above the clumped isotope equilibrium (Figs. S2, S3).
Better constraints on the inorganic equilibrium line will be
needed to fully address this question.

The cold-water genera Balanophyllia, Dasmosmilia and
Enallopsammia seem to be inconsistentwith pHbeing the sole
driver of isotope variations, lying in the region broadly cov-
ered by the first-order models of the effects of CO2 hydra-
tion/hydroxylation and/or diffusion (Fig. 7a). This
observation is also true for the two data points for the genera
Caryophyllia and Javania that have d18O depletions of >1‰
(Fig. 7b). The warm-water genus Porites exhibits similar
D47 offsets to the cold-water corals in Fig. 7a, ranging from
�0–0.04‰, suggesting that a similar range of D47 vital effects
could be in operation for both groups of corals. As noted
above, the diffusion model predicts smaller than observed
depletions in d13C per unit depletion in d18O (Thiagarajan
et al., 2011; Saenger et al., 2012). Therefore, kinetic effects
associated with CO2 hydration/hydroxylation reactions
would appear to be the more likely candidate for causing
the clumped isotope vital effects observed for these samples.

Of course, it is likely that multiple processes act in con-
cert during coral calcification and simultaneously affect the
isotope composition of coral skeleton, producing the whole
range of isotope signatures observed, including the genus-
specific differences observed here. If true, this may compli-
cate the comparison between the experimental data and the
model predicted D(D47)/D(d

18O) slopes for each individual
process acting independently. Future modelling work
should aim to systematically take into account the effects
of multiple processes in order to more accurately constrain
the role of each process in determining the isotope compo-
sition of coral skeletons, and to test whether species- or
genus-specific calibration of clumped isotope thermometers
would be appropriate.
5. CONCLUSIONS

We have tested the calibration of the carbonate clumped
isotope thermometer in cold-water scleractinian corals,
using a new set of samples that includes six of coral genera.
We validated our clumped isotope data by directly compar-
ing measurements made in two different laboratories
(WHOI and Caltech) on the same sample powders. We
found excellent agreement between laboratories once the
data were normalised with reference to the in-house carbon-
ate standards, suggesting that this normalisation may be a
useful way to remove inter-laboratory biases which were
not removed by converting clumped isotope data into the
absolute reference frame.

We show that some cold-water coral genera exhibit
clumped isotope vital effects, with their D47 values consis-
tently higher than the expected equilibrium values, similar
to findings for some warm-water corals (Saenger et al.,
2012). The similarity between cold-water and warm-water
corals with respect to the ranges of clumped isotope vital
effects observed supports previous suggestions that the
presence or absence of symbiotic algae is not a governing
factor for clumped isotope vital effects in scleractinian
corals. Instead, we suggest that these vital effects are
most likely related to kinetic effects associated with CO2

hydration/hydroxylation reactions within the extracellular
calcifying fluid of the corals and are common to both
warm- and cold-water corals. We found no significant
difference in D47 between the theca and septa of individual
specimens, suggesting that macro-scale skeletal features are
not related to variations in D47. Current uncertainty in the
appropriate clumped isotope equilibrium line complicates
the detailed interpretations of our results. However, the fact
that the magnitudes of the clumped isotope offsets from
expected equilibrium vary between different coral genera
is not dependent on the choice of clumped isotope
equilibrium line, and suggests that clumped isotope vital
effects are present and expressed more in some genera than
others. Further research into the differences between
different inorganic calibration lines will be important in
determining the presence and causes of clumped isotope
vital effects in any given coral genus.

Our data complicate the use of the carbonate clumped
isotope thermometer in corals, suggesting that it cannot
be straightforwardly applied across all species of cold-
water coral without introducing significant uncertainty into
reconstructed temperatures. However, given the apparent
temperature dependence of D47, even in genera exhibiting
significant clumped isotope vital effects, we suggest that
the use of species-specific calibrations could still be a useful
approach. In order to determine the reliability of this ther-
mometer back through time, further work should also test
it in fossil samples by comparison with other, independent
temperature proxies, such as the Li/Mg ratio in corals (Case
et al., 2010; Hathorne et al., 2013; Raddatz et al., 2013;
Montagna et al., 2014).
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