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ABSTRACT 

Spatially and temporally detailed measurement of ocean, river and lake 

chemistry is key to fully understanding the biogeochemical processes at work 

within them. To obtain these valuable data, miniaturised in situ chemical 

analysers have recently become an attractive alternative to traditional manual 

sampling, with microfluidic technology at the forefront of recent advances. In 

this short critical review we discuss the role, operation and application of in 

situ microfluidic analysers to measure biogeochemical parameters in natural 

waters. We describe recent technical developments, most notably how 

pumping technology has evolved to allow long-term deployments, and 

describe how they have been deployed in real-world situations to yield 

detailed, scientifically useful data. Finally, we discuss the technical challenges 

that still remain and the key obstacles that must be negotiated if these 

promising systems are to be widely adopted and used, for example, in large 

environmental sensor networks and on low-power underwater vehicles. 
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1. INTRODUCTION 

Determining the variation and distribution of aqueous chemical species within 

oceans, lakes and rivers (natural waters) is fundamental in studying the 

biogeochemical cycles that underpin elemental transport and biological 

productivity around the globe. Measurements of nutrients (e.g. nitrate, 

phosphate and silicate), trace metals (e.g. dissolved iron and manganese), 

carbonate system parameters (pH, dissolved inorganic carbon, total alkalinity 

and pCO2) and other dissolved gases (e.g. oxygen and methane) are all 

required together with contextual measurements of physics and biology to 

characterise the state of our aquatic ecosystems.[1–5]   

Traditionally most chemical parameters are measured by sampling: water is 

collected at known locations and times, preserved and then transported to a 

laboratory for analysis using standard methods such as colorimetry, 

fluorescence or atomic absorption spectroscopy.[6] In situ analytical devices 

operate differently. By analysing the water in the environment the risk of 

sample degradation or contamination is obviated and sample preservation and 

transportation logistics are removed - allowing higher measurement frequency 

and uninterrupted continuous measurement in remote locations. Furthermore, 

if the device can be deployed on a mobile platform such as a submersible 

vehicle, we can obtain a spatially detailed map of chemical composition. 

Consequently, in situ chemical sensors have a unique and important role to 

play in environmental measurement and monitoring.  

While some chemical parameters can be addressed using solid state sensors 

(e.g. pH,[7,8]  oxygen,[9,10] pCO2[11,12]and nitrate[13–16]) many cannot be 

measured with sufficient accuracy. As a result many in situ analysers are based 

around a flow system which can draw a sample from the environment, 

chemically treat it (typically by adding one or more reagents to produce an 

optical response proportional to the concentration of the analyte), measure 

the response and then expel the waste. Consequently the operational lifetime 

of such sensors in-the-field is limited by stores of of reagents and power. To 

address this problem, in situ chemical sensors can use microfluidics (i.e. 

channel dimensions of 100s of microns) to minimise the amount of sample and 

reagent and, accordingly, minimise the energy expended on pumping. 
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Consequently there has been much recent interest in using microfluidics for in 

situ analytical systems.[17–20] 

In this brief review we highlight the state of the art of field-deployable 

microfluidic systems for in situ chemical analysis. Using suitable examples we 

will describe general modes of operation; data that can be obtained; design 

factors that determine effectiveness; and challenges to wider adoption.  

2. IN SITU CHEMICAL SENSORS 

Many different chemical analytical techniques have been adapted for use in 

field-deployable systems including colorimetry,[21–44] electrochemistry,[45–

47] ultraviolet absorption spectroscopy[15] and chemiluminescence.[48–50] Of 

these, colorimetry - in which the sample is mixed with an analyte-specific 

reagent to produce a measurable colour - has proved to be by far the most 

popular method and has been used for in situ analysis of a range of chemical 

parameters including nitrate and nitrite,[21,22,24,29,31,34,35,38] 

phosphate,[27,38] iron,[23,26,28,36,39,42–44] manganese,[25,26,28,37,40] 

sulfide[32,33,35,39,41] silicate[30,32,33,38]  and pH.[51–55] Colorimetry lends 

itself well to microfluidic in situ analysers as it is chemically robust, offers 

excellent analytical performance (limits of detection typically in the order of 

10 nM[21,25,36]) and requires relatively small, cheap and easily-sourced 

components. 

A good example is the Mn analyser reported by Statham et al.[37,40] described 

schematically in Fig 1a and shown in Fig 1b. Built in-house using commercially 

available components, the system operates by continuously pulling water from 

the environment using a peristaltic pump. The water is then propelled into 

800 µm diameter polytetrafluoroethylene (PTFE) tubing along with a flow of 

reagent consisting of a solution of 1-(2-pyridylazo-)-2-napthol (PAN) mixed 

with an iron-specific chelating agent to remove any iron interference. The 

sample and the reagent solution mix in the delay channel (see Fig 1b) and the 

PAN co-ordinates to the Mn in the sample to produce a coloured product. The 

reagent solution is formulated such that the PAN is in excess - hence the more 

Mn in the sample, the more coloured product will form. Having mixed and 

complexed in the delay channel the solution flows through a 

spectrophotometer comprising a high-intensity green LED light source and a 
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silicon photodiode separated by a fluid-filled channel. The spectrophotometer 

measures the strength of the colour of the solution by the amount of green 

light that has been absorbed and consequently the amount of Mn present in 

the sample. In order to accurately calibrate the measurement, the sensor also 

periodically analyses a blank solution and a standard which are deployed with 

the sensor. In testing, the sensor showed excellent analytical performance, 

with a limit of detection (LOD) of 25 nM (as determined from two standard 

deviations of a series of low concentration measurements).[40] 

To demonstrate the utility of the sensor, it was deployed in-the-field to 

ascertain the distribution of Mn within Loch Etive - a fjord-like deep water 

basin on the west coast of Scotland (Fig 1c).[37] The sensor was fitted to the 

autonomous underwater vehicle (AUV) “Autosub” which systematically 

transected the loch at either fixed depth or fixed height above the seafloor. In 

doing so, the sensor was able to map the spatial distribution of Mn across 

depth and location.  A plan view of the results obtained from a transect at 

80 m depth (Fig 1d) shows how the Mn concentration varied widely from 

below the detection limit to approximately 700 nM. The highest 

concentrations were coincident with the entry points of rivers into the loch - 

suggesting they were the main routes of Mn influx into the local environment. 

This study demonstrates how even a relatively simple in situ sensor, built in-

house from commonly available off-the-shelf components, can deliver high 

quality, spatially detailed and scientifically useful data that would be 

impossible to obtain using traditional sampling techniques. 

3. ENERGY-EFFICIENT SENSORS 

A fundamental feature of field-deployed in situ sensors is that they will have a 

finite reserve of electrical power (unless deployed in close proximity to a 

suitable exterior power source) and so must be designed to be as energy-

efficient as possible whilst still maintaining analytical performance. The pump 

is the major consumer of power within a flow system, and consequently is 

critical to energy efficiency. Early devices, such as the Mn analyser discussed 

earlier, all employed peristaltic pumps (in which an electrical rotary motor 

drives a series of rollers which push fluid along elastic tubing via peristalsis, see 

Fig 2a) to drive the sample and reagents through the device. Small sized 

peristaltic pumps are easily commercially sourced, relatively cheap and easy to 
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use and consequently have proved consistently popular.[25,26,28–30,32–

35,37,39–43] Nonetheless, peristaltic pumps can suffer from drifting flow rates 

due to variation in the elasticity and plasticity of the pump tubing with changes 

in temperatures[35] and, crucially, are relatively power hungry.[56] 

Consequently, reported deployments of peristaltic pumped sensors have been 

limited to a day or less, except where power could be externally supplied via 

cabling.[42,43] 

In 1994, osmotic pumping was suggested as a solution to reduce power 

consumption and boost operational longevity. As illustrated in Fig 2b, osmotic 

pumps utilise the osmotic pressure difference between  low and high-salinity 

reservoirs within the sensor to passively drive very slow flows (typically single 

µL/hour).[23,31,57] These consume no electrical power during routine 

sampling and hence increase the longevity of power-critical deployments up to 

a year.[23] (It should be noted however that traditional, mechanically-driven 

pumps are still required for administering blank and standard solutions during 

calibration). While well suited to long stationary deployments in remote 

locations where the sensor cannot be routinely serviced,[23] osmotic pumping 

suffers from several key drawbacks: the flow rates drift over time, cannot be 

arbitrarily set by the user and calibrations can take a very long time 

(approximately 6 hours) due to the slow flow.[23] Rapid temperature and 

pressure changes may also cause significant flow rate variation,[31] and even 

reversal of flow. As a result, reports of osmotically pumped sensors have been 

rare.[23,31]  

An alternative low-power pumping solution was proposed by Weeks et al. in 

1996[58] and has since been widely used:[24,36,38,56,59] Solenoid pumps use 

an electromechanically actuated linear piston along with a pair of check valves 

(Fig 2c) to propel the fluid as a series of discrete pulses (typically tens of µL in 

volume[38,58,59]). Whilst there are several drawbacks to this method of 

pumping - the back pressure of the fluidic system needs to be low,[58] and 

flow rates can drift over time[38] - these are outweighed by the highly 

significant power savings: Weeks et al. showed that four typical solenoid 

pumps (the minimum number required for a colorimetric sensor) nominally 

consume ~0.5 W when pumping at the flow rates typically used in a finished 

device- approximately 1/20 of the power used by the equivalent peristaltic 
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pumping.[58]  In 2004, Okamura et al.[56] reported even more pronounced 

power savings. Replacing peristaltic pumps with solenoid pumps on their in situ 

manganese analyser, they reduced the pumping power consumption to 

0.25 W, 1/200[56] of that used before.[49] 

4. LOW-POWER SENSORS IN-THE-FIELD 

The advent of solenoid pumping, and the associated reduction in sensor power 

demand, has been important in permitting long-term sensor deployments. A 

good example of an extended deployment of a standalone solenoid-pumped 

sensor - and the rich, temporally-detailed data that can be obtained - is the 

estuarine deployment of an ammonium sensor, “NH4-Digiscan,” reported by 

Plant et al.[59] The sensor is shown schematically in Fig 3a. Although it uses a 

different analytical method (electrical conductivity detection rather than 

colorimetry) it operates on very similar principles to the Mn analyser described 

previously: The sensor withdraws a continuous stream of water from the 

environment via the solenoid pumps and then injects it into 800 µm diameter 

tubing along with a buffered basic solution (50 mM sodium hydroxide, 200 mM 

sodium citrate). The solutions mix in a delay line, raising the pH of the sample. 

This deprotonates the ammonium ions (NH4
+) to produce ammonia gas (NH3) 

which, once in the diffusion cell, readily diffuses across a teflon membrane into 

a neighbouring stream of dilute acid (20 µM HCl). The acidic conditions 

reprotonate the ammonia, converting it to ammonium and trapping it in the 

acidic stream. The acidic stream then enters a conductivity measurement cell 

which measures the change in conductivity caused by the change in ionic 

composition. The ammonium concentration of sampled water is then 

calculated by comparison with on-board blank and standard solutions. The 

sensor was found to be highly sensitive with a minimum reported limit of 

detection of 14 nM.[59] 

The NH4-Digiscan was trialled in several fresh and seawater environments,[59] 

one of which being Elkhorn slough, a shallow estuary that feeds into Monterey 

Bay on the coast of California. The sensor was left for four weeks, taking a 

measurement every hour. As shown in Fig 3b, the high frequency of the in situ 

measurements meant that it could easily resolve the shape and amplitude of 

the daily NH4 oscillations that resulted from the composition of the water 

shifting between nutrient-rich freshwater and nutrient-poor seawater over the 
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tidal cycle. The daily peak value was seen to rise and fall during the 

deployment period, attributed to rainfall towards the end of the deployment 

which caused an increase of nutrient rich freshwater.  

Importantly, these results highlight the advantage of in situ sampling over a 

traditional manual sampling program which, in practice, would have a 

maximum sampling frequency of one measurement per day.[59] As shown in 

Fig 3b, the choice of sample time would have a huge effect on perceived 

ammonia variation, for example a maximum of ~5 µM would be seen for 

samples taken at 0630 (round markers) as opposed to ~15 µM for samples 

taken at 1230 (triangular markers). Moreover, manual sampling would yield 

results lacking any information about the range, shape and frequency of the 

daily oscillations. With high frequency in situ sensing however, we are able to 

get a highly detailed and accurate picture of the chemical dynamics of the 

environment. 

More recently, syringe pumps have been proposed as an attractive alternative 

for in situ pumping.[21,22]  In contrast to solenoid pumps, syringe pumps can 

deliver pulse-free, stable low-volume flow (down to µL/min) by using a high-

torque rotary stepper-motor which linearly drives syringes via a screwthread 

(see Fig 2d). The high torque motor means they can tolerate the elevated 

backpressures associated with small channels (allowing channel dimensions to 

be decreased to a couple of hundred µm[21,22,60]) whilst still offering a 

significant power saving compared to peristaltic pumping. For example the 

syringe pump used in the example discussed below typically uses 1.5 W during 

sensor deployment.[22] Consequently they offer optimum flexibility, allowing 

long term deployments with excellent analytical performance. 

An example of an in situ sensor that utilises syringe pumping is the colorimetric 

nitrate/nitrite sensor reported by Beaton et al. in 2012,[22] shown in Fig 4a.  In 

contrast to the systems described earlier which used off-the-shelf capillary 

tubing, microfluidic channels were milled into a plastic substrate and 

sealed[61] to form a compact monolithic microfluidic chip (“lab on a chip”).The 

use of syringe pumping meant that small (150 x 300 µm) channels could be 

used to minimise fluid volume. The pump was directly mounted onto the chip 

(see Fig 4a) and, importantly, the chip also hosted all optical measurement 

components.[62] Lab-on-a-chip devices such as this that incorporate multiple 
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functions into the chip  economise on space and as such lend themselves 

particularly well to miniaturised in situ devices. The sensor had a limit of 

detection of 25 nM, and a linear range up to 350 µM, making it suitable for 

operation in a wide range of natural waters. 

The sensor was evaluated in-the-field by a twenty six day deployment in 

Southampton Water, an estuary on the south coast of England that feeds into 

the English Channel, performing a calibrated measurement (i.e. a sample 

measurement plus blank and standard) every 20 minutes. A multi-parameter 

sonde was deployed alongside to record water salinity, pH, and temperature. 

The nitrate concentration varied from approximately 5 to 190 µM during the 

deployment and daily oscillations of up to 40 µM were observed (see Fig 4b). 

The daily oscillations are consistent with water composition constantly shifting 

between (nutrient rich) freshwater and (nutrient poor) seawater during the 

daily tidal cycle. This is confirmed by comparison with salinity data, where a 

strong negative correlation was observed (Fig 4c). Of particular interest is how 

this relationship changed during the deployment. Fig 4c shows for example the 

nitrate - salinity relation during the four days immediately preceding (blue 

round markers) and following (red cross markers) a heavy rainfall on day 17 

(these time periods are also highlighted in Fig 4b). Following the rainfall, the 

upper range of the nitrate concentration increased and the salinity notably 

dropped - consistent with a shift in the freshwater/seawater balance of the 

estuary caused by an increase in river discharge.  At the same time, the 

gradient of the nitrate-salinity correlation decreased (Fig 4c), consistent with 

the dilution of the rivers and a corresponding reduction in the nitrate 

concentration of the freshwater influx.  

The highly detailed data obtained during this several-week deployment 

demonstrates the effectiveness of syringe-pumped sensors. Moreover, the 

clearly observed shift in nutrient dynamics in response to local weather shows 

the power of using in situ microfluidic sensors to accurately characterise 

transient perturbations to the local chemical environment.  

5. FUTURE 

As illustrated by the examples above, in situ chemical sensors have been 

deployed to obtain highly temporally and spatially detailed data to 
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characterise aquatic environments. Innovations in pumping have increased 

operational longevity and further development of these sensors is set to 

continue - yielding cheaper sensors with increased functionality that can be 

deployed in an expanded range of deployment scenarios.  

A key challenge in realising their wide-spread deployment is reducing the cost 

of each sensor. One way this might happen is through the introduction of high-

throughput methods for manufacturing chip-based microfluidics, with 

embossing or injection moulding being particularly promising routes to 

scalable and cost effective production.[63,64] Furthermore, cost reduction 

could be achieved by further optimisation of sensor pumping and valves. Cost 

analyses show that most of the materials cost of an in situ chemical sensor is in 

its pumps and valves. Significant savings could be made by minimising their use 

and/or moving to on-chip alternatives based on (for example) 

electromechanically-actuated integrated membranes.[65,66] As well as 

encouraging popular uptake, reduction in cost would have the knock-on effect 

of encouraging the development of sensors for less routinely measured, lower-

priority parameters such as heavy metal pollutants (e.g. mercury and arsenic). 

If the challenge of low-cost sensors were met, then we could contemplate 

large scale deployments of networks of in situ sensors. This would feasibly 

allow wide-scale real-time monitoring of rivers and coastal waters for 

anthropogenic pollution. Importantly, it would also help alleviate the chronic 

under-sampling of the oceans. Modelling of the biological, chemical, physical 

and thermodynamic cycles in the ocean depends on experimental 

measurements. Currently, the oceans are highly under-sampled and the 

accuracy and reliability of models could be much enhanced by an increase in 

data supplied by multiple sensors simultaneously deployed in a range of 

locations.[67]  

Any widespread oceanic deployment would likely need to include deployment 

on low-power underwater profiling vehicles such as oceanic gliders or Argo 

floats. There have been several reports of microfluidic in situ chemical sensors 

being deployed on underwater vehicles, however, they have so far been 

limited to deployments on Remotely Operated Vehicles (ROVs)[35,39,50] and 

AUVs[37,40,48] where power is less critical. The advent of low-power precision 

pumping, as previously discussed, makes deployment on low-power mobile 
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platforms feasible and we anticipate that this will be reported in the near 

future.  

Finally we note that low power sensors currently have an optimum temporal 

resolution in the order of minutes. For long term monitoring this is more than 

enough, however certain potential applications (e.g. eddy correlation studies 

or spatially detailed mapping of hydrothermal vents and other geographically 

small sites) require high frequency measurements. The resolution of the flow-

based sensors currently employed are limited by Taylor-Aris dispersion - an 

effect caused by viscous drag at channel walls which effectively smears 

chemical composition down the length of the channel.[68] One strategy to 

address this is to implement multiplexed stop-flow (MSF) architectures.[69] In 

MSF, dispersion is minimised by removing the long delay channels that are 

typically used to allow enough time for the sample and reagents to mix before 

entering the measurement cell. Instead the solutions are inserted into a 

measurement channel and left to diffusively mix (so called stop-flow 

operation). This is then repeated in multiple parallel measurement channels in 

order to increase measurement frequency, with solutions being continuously 

shuttled into each measurement channel in turn - potentially reducing 

measurement times to seconds.[69] 

While MSF can go a long way to reducing the effect of dispersion, it can be 

completely removed and sampling frequency dramatically increased by shifting 

flow regime from continuous phase to droplet flow[70,71] (see Fig 5).  In 

droplet flow microfluidics, an immiscible fluid that preferentially wets the 

channel walls is added alongside the main analyte stream causing it to break 

into a succession of discrete sub-microlitre scale droplets. Each droplet is a 

self-contained, chemically-distinct sample that travels along the fluidic system 

with a uniform linear velocity and can be individually chemically treated and 

analysed. As such, droplet flow is ideally suited to high-throughput analytical 

chemistry, with droplet generation rates routinely at Hz and as high as kHz.[72] 

A characteristic of droplet flow systems is the small optical pathlengths of the 

droplets. This would likely preclude most popular colorimetric analytical 

methods, however numerous fluorescence-based alternatives could be used 

instead.[73] If employed in a suitably robust in situ sensor, the use of droplet 

flow would be a significant step forward, allowing high frequency, highly 
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resolved measurements whilst consuming small quantities of sample, reagent 

and power. 

6. CONCLUSION 

In summary in situ analytical microfluidic systems can give unique and 

powerful insights into the chemical dynamics of natural waters that would be 

difficult or impossible to obtain using traditional sampling. The evolution of 

economical pumping methods have allowed long-term deployments in which 

daily nutrient fluctuations can be observed with precision and weather-related 

perturbations to the local environment can be quantified. Several key 

challenges still remain, however, most importantly the development of low-

cost sensors which would encourage widespread uptake of the technology. 

With legislators and the general public both becoming increasingly aware of 

the importance of environmental observation, quantification, management 

and modelling, it is clear that in situ sensors have an important role to play in 

the measurement of natural waters that will only become more prominent 

with time.  
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FIGURE CAPTIONS 

 

Figure 1: a) Fluidic schematic of the Mn analyser developed by Statham et 

al.[40] b) Annotated photograph of the analyser out of its housing.[40] c) Map 

of Scotland with the location of Loch Etive, where the analyser was deployed 

on an AUV,[37] highlighted by a red square. d) Plan showing the transect path 

across the loch and the corresponding measured Mn concentrations.[37] The 

entry points of rivers (the Awe, the Noe and the Liver) into the loch are also 

shown. Reprinted with permission from P. Statham et al., Environ. Sci. Technol. 

39 (2005) 9440–9445. Copyright 2005 American Chemical Society. 

 

Figure 2: Cartoons illustrating different methods of pumping for microfluidic 

systems: a) Peristaltic pumping. b) Osmotic pumping, with pumps for both 

infusion and withdrawal shown. c) Solenoid pumping. d) Syringe pumping. 

 

Figure 3: a) Schematic of the “NH4-Digiscan” ammonium sensor developed by 

Plant et al.[59] b) Ammonium levels recorded by NH4-Digiscan during a one 

month deployment in Elkhorn Slough, a shallow estuary on the coast of 

California.[59] Measurements are shown as grey round markers, while the 

black round and black triangular markers highlight the perceived change in 

ammonium if measurements were restricted to one sample per day (as might 

be expected for traditional sampling) at 06:30 or 12:00 respectively. Adapted 

with permission from J.N. Plant et al., Limnol. Oceanogr. Methods. 7 (2009) 

144–156. Copyright 2009 Association for the Sciences of Limnology and 

Oceanography, Inc. 

 

Figure 4: a) Annotated photograph showing the nitrate sensor developed by 

Beaton et al.[22] b) Nutrient data obtained in situ by the nitrate sensor during 

deployment in Southampton Water, an estuary on the south coast of England, 

over the course of 26 days. Manually obtained and analysed samples (“bottle 
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samples”) are shown by red crosses. The four day periods immediately 

preceding (blue) and after (red) a heavy rain event are highlighted.[22] c) 

Mixing diagram showing the relationship between nitrate and salinity in the 

estuary. A negative correlation between nitrate and salinity was observed 

(consistent with the shift between nutrient-rich freshwater and nutrient-poor 

seawater) and a notable shift is seen when comparing data obtained in the 

four days before (blue round markers) and after (red cross markers) a heavy 

rain event. The data corresponds to the coloured areas highlighted in (b). 

 

Figure 5: Cartoons showing a) Laminar flow of a single continuous phase. The 

arrows indicate the fluid’s linear velocity, with viscous drag slowing flow at the 

channel walls. b) Droplet flow caused by the introduction of an immiscible fluid 

that preferentially wets the channel walls. Each droplet flows with a uniform 

velocity.  
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