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ABSTRACT

Lanthanum (La) modified bentonite is being increghi used as a geo-engineering tool for
the control of phosphorus (P) release from lakedsetiments to overlying waters. However,
little is known about its effectiveness in contirmdl P across a wide range of lake conditions
or of its potential to promote rapid ecologicalaeery. We combined data from 18 treated
lakes to examine the lake population responsefien2d months following La-bentonite
application (range of La-bentonite loads: 1.4 b ®nnes hd) in concentrations of surface
water total phosphorus (TP; data available fronlak®s), soluble reactive phosphorus (SRP;
14 lakes), and chlorophylh (15 lakes), and in Secchi disk depths (15 lakag)atic
macrophyte species numbers (6 lakes) and aquatioptayte maximum colonisation depths
(4 lakes) across the treated lakes. Data avatiabitiried across the lakes and variables, and
in general monitoring was more frequent closerh® application dates. Median annual TP
concentrations decreased significantly across takesl following the La-bentonite
applications (from 0.08 mg'tin the 24 months pre-application to 0.03 mgih the 24
months post-application), particularly in autumnO® mg L* to 0.03 mg [}) and winter
(0.08 mg L* to 0.02 mg [). Significant decreases in SRP concentrations ameual (0.019
mg L™ to 0.005 mg ), summer (0.018 mgtto 0.004 mg [}), autumn (0.019 mgtto
0.005 mg [*) and winter (0.033 mg tto 0.005 mg [) periods were also reported. P
concentrations following La-bentonite applicaticaried across the lakes and were correlated
positively with dissolved organic carbon concemtrag. Relatively weak, but significant
responses were reported for summer chloropaybncentrations and Secchi disk depths
following La-bentonite applications, the"7$ercentile values decreasing from 119 [fgtd

74 ng L*and increasing from 398 cm to 506 cm, respectivifyuatic macrophyte species
numbers and maximum colonisation depths increas#ddwing La-bentonite application

from a median of 5.5 species to 7.0 species anddiam of 1.8 m to 2.5 m, respectively. The



56

57

58

59

60

61

aquatic macrophyte responses varied significangyvben lakes. La-bentonite application
resulted in a general improvement in water quaéiading to an improvement in the aquatic
macrophyte community within 24 months. However,duse, the responses were highly site-
specific, we stress the need for comprehensive @ng post-application assessments of
processes driving ecological structure and funcdtmocandidate lakes to inform future use of

this and similar products.
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INTRODUCTION

Nutrient (i.e. mainly phosphorus (P) and nitrogét))(pollution of freshwater lakes has
resulted in widespread degradation of ecologicalctire and function at a global scale
(Smith, 2003). To address this issue, environmeptdicies have been implemented to
reduce nutrient loads to lakes. Such policies ofeguire management actions to improve
water quality to support ecological recovery witlargiven timeframe (e.g. by 2027 in the
case of the EU Water Framework Directive; Europ&ammmission, 2000). In many
catchments large-scale reductions in P loadingeshf waters have been achieved (Withers
and Haygarth, 2007). However, after P loading ftbecatchment is reduced, lake recovery
can take several decades (Jeppesen et al., 2085l&het al., 2013). This is because P,
accumulated in lake bed sediments when catchmgnttanwere high, continues to be
released during the recovery process (“‘internatlifg), maintaining poor water quality
conditions (Sgndergaard et al., 2012; Spears e2@L2). The effective control of internal
loading may accelerate ecological recovery oncereat inputs have been reduced (Mehner

et al., 2008).

There are few methods available to control intetoatling (Hickey and Gibbs, et al., 2009).
Sediment dredging has been demonstrated as anahteading control measure (e.g. Van
Wichelen et al., 2007) but may have limited appicca when habitat destruction, waste
disposal and cost are taken into account. In additiike other restoration measures,
sediment dredging has not always been successguidégaard, et al., 2007). P-sorbing
materials (e.g. modified clays, industrial by-proth) flocculants and physical barriers;
Hickey and Gibbs, 2009; Zamparas et al., 2012; Spetaal., 2013a) have also been used to
strip P from the water column and, after settliegluce P release from the sediments (Hickey

and Gibbs, 2009; Meis et al., 2012). Lanthanum (bajdified bentonite, is being



87 increasingly used in lakes for P control (Douglaale 2000; Robb et al., 2003; Haghseresht
88 et al., 2009). However, there has been limitedwatan of its effectiveness in controlling P
89 across diverse lake conditions, or of its potentiglromote rapid ecological recovery.

90

91 When considering the effectiveness of any lake mament approach it is important to
92 consider responses across multiple lakes (Jepmtsan 2005; Spears et al., 2013b). Long-
93 term catchment nutrient load reduction studiesciaigi that a range of responses characterise
94 the recovery period in lakes. In temperate lakebowing catchment management, a rapid
95 decline in winter P concentration occurs followeg & gradual decline in summer P
96 concentrations as the intensity of internal P logdidiminishes with time (Phillips et al.,
97 2005; Sgndergaard et al., 2012). Whereas wintementrations are generally driven more
98 Dby catchment inputs, sediment P release is mommipent in the warmer summer months
99 when redox conditions of bed sediments can becechécing (i.e. liberating soluble reactive
100 phosphorus (SRP) from Fe-P sediment complexesh@idtemperatures increase sediment-
101 water SRP concentration gradients and diffusiveeftufrom the sediment to the water
102 column (Spears et al., 2007). The period over whidse responses occur is lake-specific
103 and regulated by various factors including hydauliesidence time, sediment P
104 concentrations and depth (Sas, 1989). Where theoplaykton community is primarily P
105 limited, reductions in annual average total phosphdTP) concentrations should elicit a
106 reduction in phytoplankton biomass (commonly meag@s chlorophyla concentration), an
107 increase in water clarity, and an increase in ttterg and diversity of aquatic macrophytes
108 (Jeppesen et al., 2000). Where La-bentonite has kaecessful in controlling internal
109 loading these responses should occur relativelgktyi at least within the recovery time
110 scales known to occur following catchment nutriesdd reduction alone (i.e. >5 years;

111 Jeppesen et al., 2005; Sharpley et al., 2013).
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We assessed these responses following La-bentgpplecation (two years post-application),
relative to pre-application conditions (i.e. twoaye pre-application), in 18 lakes and
addressed the following specific questions: (1) evdre responses in water quality (i.e.
concentrations of TP; SRP; and chlorophglland Secchi disk depth) statistically and
ecologically significant and did these responsay saasonally?; (2) were the responses in
water column TP and SRP concentrations regulateghlygico-chemical conditions of the
receiving lake water?; (3) did aquatic macrophyteeidity and extent increase in treated
lakes?; and (4) what are the implications of theseillts for the use of La-bentonite as an

eutrophication management tool in other lakes?
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METHODS

Data collation, assessment and processing

The following analyses are based on collated in&tiom from 18 lake case studies where
La-bentonite has been applied. Information on wemepiled for each of the study lakes.
Surface water TP, SRP, and chloroplayltoncentrations and Secchi disk depth data, in the
years preceding and following an application ofdemtonite, were compiled to allow an
assessment of general responses across the populstilakes. All available aquatic
macrophyte community data, including species liastel maximum colonisation depth
estimates, were compiled. The product applicatimtedures for 14 of the study lakes are
described by Spears et al., (2013b), with the dimemwf Mere Mere, Hatchmere, Cromes
Broad and Swan Lake to which La-bentonite was addelde absence of a flocculant and as
a slurry. In four of the lakes it was reported tregieat applications had been conducted but
only data following the first application and pritar the second were included in this study.
The number of lakes for which data were availableT®, SRP, chlorophy#l concentrations
and Secchi disk depth, in the months preceding falldwing Phoslock application, are
reported. Supporting data for location, maximungHeimean depth, maximum depth, surface
area, alkalinity, dissolved organic carbon (DOChaantration, La-bentonite dosage and pH
were requested for the pre- and post-applicatisioge with which the general chemical and

physical conditions of the treated lakes are dbedri

Determination of TP, SRP, Chlorophylla concentrations and Secchi disk depths
TP was determined following persulfate (or peroXidlieGerman lakes; ISO6878) digestion
of unfiltered samples in an autoclave followed bylodmetric analysis to determine

concentration. SRP analysis for all lakes was aeliieising spectrophotometric methods, as
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outlined generally by Wetzel and Likens (1991). @Zbphyll a concentrations were

determined for all lakes using acetone extractimiodwed by spectrophotometric pigment
analysis. Various sized filters were used for SRE ehlorophylla analysis. Water from

Clatto Reservoir and Loch Flemington were filtetelbugh Whatman GF/C filters (1.2 pm),
and for all other lakes water samples were filtatedugh 0.45um pore size filters. Secchi
disk depths were measured at the water depth wherdisk (25 cm diameter quadrat) was
no longer seen from the surface for all lakes Witk exception of Lake Rauwbraken, for
which the mean of the depths at which the disk lssseen lowering and first seen during

rising was recorded.

Assessing water quality responses

All available data for TP, SRP, chlorophglconcentrations and Secchi disk depths were
combined across the treated lakes. The samplendetenodified to become day relative to
the La-bentonite application date (i.e. the last dathe application period) for all data.
Responses following La-bentonite application wetaneined by comparing all data from all
lakes for which data were available both 24 momtexeding the first application and 24
months following the first application. Pre- andspapplication data were available for
Secchi disk depth, TP, and chlorophgltoncentrations in 15 lakes and SRP concentrations
in 14 lakes. Surface water values for TP, SRP &hataphyll a were used in our analysis to
reflect the most comparable sampling points actbeslakes, each lake having different
bottom water depths and therefore environmentatiitions. Where more than one surface
sample was taken on a particular date in a lalkey#iues were averaged. This ensured the
greatest likelihood that lakes would not be exctlfftem the analysis on grounds of lack of
data and we acknowledge the implications on vaedaftdelsel and Hirsch, 1992). The

number of surface water observations ranged frotwdsn 571 to 760 per variable. This
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analysis of the difference in pre- and post-apglcavalues for each variable was carried out
using linear mixed effects models, with pre- andtgeeatment included as a fixed effect
factor and a random intercept term for each laéspectively. This allows for the calculation
of an average effect for all lakes whilst still itadg account of between-lake variability and

the average value.

Seasonal analyses were performed using lakes wdaee were available in a particular
season both before and after treatment. Seasoesclessified as winter (December, January
and February), spring (March, April and May), sumitidine, July and August) and autumn

(September, October and November).

Prior to fitting the linear mixed effects modelsietdata were standardised through the
calculation of Z scores to allow lake responsebdacompared on a common scale. As the
focus of the study is on the overall response aciases, the Z score transformation is used
to centre each lake’s data around its mean, themathycing the influence of any individual
lake which may have high average raw values ofqdatr variable from unduly affecting the
statistical analysis. A strong positive skew in ¢, SRP and chlorophydl concentration
data necessitated log transformation of these bl@saprior to Z score calculations. Z scores
were calculated for each observation as the diffexebetween the observed value and the
mean value for that variable across the 48 monthitaxing period for each lake, divided by
the standard deviation of all observations of tlatable, giving units of standard deviations
(Fowler et al., 1998). To address patterns in thsiduals resulting from temporal
autocorrelation seen in some models, a lag-1 aulation structure was also added to the

model and models with and without this structurenpared by using Akaike Information

10
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Criterion (AIC) values. All analyses were carriegt in R (Ihaka and Gentleman 1996; R

Core team, 2011) using the nime package (Pinheld3ates, 2000).

Assessing the drivers of water quality responses

Principal components analysis (PCA) using correfatvas used to produce the two synthetic
axes that best captured the variation in log t@nséd annual mean data from before and
after the application including TN, SRP, TP, chfggll a and DOC concentrations, pH,
mean depth and Secchi disk depth (included in Hmgfore’ and ‘after’ analysis) and La-
bentonite dose and the change in TP concentratitowing application (included only in the
‘after’ analysis). Mean values of the 24 month prd post-application monitoring periods
were calculated and log transformed prior to anslypH co-varied strongly with
conductivity and alkalinity and so pH only was usedhis analysis. Similarly, maximum
depth co-varied strongly with mean depth and so/ ankan depth was included in the
analysis. Data were available for 9 lakes in thefdbe’ analysis and for 10 lakes in the ‘after’
analysis. Person’s correlation analyses were cdaduo confirm the apparent correlations
indicated by PCA between log transformed DOC, T& emlorophylla concentrations and
between La-bentonite dose and TP change (i.e. mBdmefore — mean TP after / mean TP
before) following the La-bentonite applications.A@&nd correlation analyses were carried

out using Minitab statistical software, version(Minitab Ltd., Coventry, UK).

Assessing responses in aquatic macrophyte commueti
Aquatic macrophyte community compositional dataevavailable for five lakes, pre- and
post- application. These were Loch Flemington, G¥enBroad, Hatchmere, MereMere and

Lake Rauwbraken (Table 1), although data were agggravailable for the two basins of

11
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Crome’s Broad and were included in the analysisesarate lakes. Aquatic macrophyte

maximum colonisation depth estimates were alsdahaifor four of these treated lakes.

Annual aquatic macrophyte surveys of Loch Flemingtdatchmere and Mere Mere were
carried out using the standardised approach addpteaissessing the condition of standing
waters of conservation importance in the UK (JNQGOQ5). This approach is based on
sampling representative sectors of a lake ancessgded to be practical and efficient, with
the aim of producing quantitative data that is bstiitable for characterising the aquatic
macrophyte community while being statistically rebenough to detect real changes over
time (Gunnet al., 2010). There are three key elements to this aguadcrophyte survey
method: perimeter strandline searches, shore-wddpth transects and boat-based depth
transects surveys (JNCC, 2005). Annual pre- and- pamgplication aquatic macrophyte
surveys of Cromes Broad (north and south basinsk warried out using a rake-trawl
sampling method along previously defined transestgyloying the methodology outlined by
Kennison et al. (1998). The Lake Rauwbraken aquatcrophyte surveys were based on
the “standard” Dutch approach of using a rake. Truslved 6-10 sampling transects located
around the lake. Each sampling transect was caaougdoerpendicular to the shore, from
above the water line (to take into account fluchgatvater levels) to several metres depth
and continued by scuba diving to ensure more atzudi@ermination of aquatic macrophyte

coverage, growing depths and species richness.

Annual aquatic macrophyte survey data were coll&beproduce post-application estimates
of the number of species recorded and the maximulonisation depths for post-application
years 1 and 2 in all five lakes. Pre-applicatioplioate year values for each variable were

selected from within pre-application years 1 an(de for Lake Rauwbraken, Crome’s Broad

12
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North and South basins), where available. Whera datre not available for both pre-
application years 1 and 2, the missing year (alwags 2) was supplemented using data from
previous years (i.e. pre-application years 4, 5@&mere combined with pre-application year
1 for Mere Mere, Hatchmere and Loch Flemingtonpeesively). These data were log
transformed and two-way Analysis of Variance (ANOM#&as used to test for the effects of
lake, La-bentonite treatment, and interactions betwthe two, on the aquatic macrophyte
community structure and extent. Two-way ANOVAs werarried out using Minitab

statistical software, version 16 (Minitab Ltd., @onry, UK).
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RESULTS

Description of case study lakes and available data

The 18 lakes varied in physical conditions (TableAlkalinity and DOC in the 24 months
preceding application ranged, respectively, fro@ ftheq L* to 2.7 meq [* (median
alkalinity of 1.82 meq L) and 4.15 mg t to 20.9 mg [* (median DOC of 9.95 mg1). TN
ranged from 0.72 mgtto 3.58 mg [* (median 1.5 mg t) and pH from 7.27 to 8.65
(median of pH 7.72). The lakes were generally srtrakdian surface area of 6 ha) and

shallow (median of mean depth 2.6 m).

Data availability for TP, SRP chlorophylconcentrations and Secchi disk depth varied with
time relative to the La-bentonite application (). In general, as time increased from

application date, the number of lakes for whichadaére available, decreased.

Responses in TP, SRP chlorophyla and Secchi disk depth following La-bentonite
application

Prior to La-bentonite application, TP and SRP catregions were high in summer and
autumn relative to other seasons apparently comfgrine general hypothesis that internal P
loading was high relative to catchment loadinghase lakes (Figure 2). However, Secchi
disk depth values across the lakes did not vargasedly prior to La-bentonite application.
Following the applications, significant decreasesinual (median of 0.08 mg'lin the 24
month pre-application to median of 0.03 mg ib the 24 months post-application), spring
(0.05 mg L* to 0.03 mg [}), summer (0.09 mgtto 0.04 mg [}), autumn (0.08 mg L to
0.03 mg ') and winter (0.07 mgLto 0.02 mg [}) TP concentrations were confirmed using

linear mixed model analysis on transformed datadexribed earlier. The largest relative

14
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303

response as indicated by the difference betweengme post-application values (standard
deviations) of the model (Table 2) occurred in wintor TP. A significant decrease was
reported for median SRP concentrations at annu@l@mg L* to 0.005 mg ), summer
(largest relative response; 0.018 migtb 0.004 mg [!), autumn (0.019 mgtto 0.005 mg
LY and winter (0.033 mgtto 0.005 mg [}) periods and in chlorophyd concentrations in
annual (10.1 pgtto 10.0 pug %) and spring (largest relative response; 14.0 Ji¢goL6.2 pg
L™ periods, although the reduction in annual chlbsdipa concentrations was only apparent

in the Z score transformed data.

Although not tested statistically, responses in 8" percentile of the range of
untransformed Secchi disk depth and chloropaybncentrations were larger in spring and
summer. For Secchi disk depth and chlorophytioncentrations, the ¥5percentile values
increased from 398 cm to 506 cm in summer and dserefrom 119 pgtto 74 pg Hin

summer, respectively.

Assessing the drivers of TP and SRP concentratiofigllowing La-bentonite application
Following the application, the PCA results indicatgeneral positive correlation in product
dose and surface water TP, DOC, TN and chloroghgtincentrations with PC 1 (Figure 3).
Secchi disk depth, pH, mean depth, and the chan@® iconcentration following application
all varied negatively with PC1. Secchi disk deptid alose varied positively and chlorophyll
a, TP, SRP, and DOC varied negatively with PC2.Rodhe application, only chlorophyal
concentration appeared to correlate (negativelyh WP and SRP concentrations, although
this correlation was not significant when testethgiPerson’s correlation analysis of log
transformed data. A positive correlation, as ingidaby PCA, between DOC, TP and

chlorophyll a concentration was only observed following the aggpion. These positive

15
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326

correlations were tested using Person’s correlasinalysis of log transformed data (TP-
DOC: correlation coefficient (c.c.) 0.63; p valu®®, TP-chlorophylla: c.c. 0.68; p <0.01),
although no positive correlation was reported betwBOC and chlorophykh and/or SRP
concentrations. The apparent negative correlatindgated by PCA between Secchi disk
depth, chlorophyll, TP, and DOC concentrations were also confirmest¢Bi-chlorophyll

a c.c. - 0.67; p <0.01; Secchi-TP: c.c. -0.74; p0dQ Secchi-DOC: c.c -0.69; p 0.01).

Responses in aquatic macrophyte species numbers anthximum colonisation depths
following La-bentonite application

Aquatic macrophyte species numbers generally isecafollowing the La-bentonite
application from a median of 5.5 species in then®&hths pre-application to 7.0 species in
the 24 months post-application (Figure 4). On ayeran increase in species number of 1.6
species (individual lake responses varied betwesamd species) was reported across the six
data sets. Aquatic macrophyte maximum colonisatigpths also generally increased across
the four lakes, for which data were available, frarmedian of 1.8 m pre-application to a
median of 2.5 m post-application (Figure 4). Twoyw&NOVA of log transformed data
indicated that the responses in aquatic macropspeeies numbers were lake specific and
only weakly significant following La-bentonite apgdtion with no significant interaction
between lake and La-bentonite effects (Table 3wéiler, in the case of aquatic macrophyte
colonisation depths, significant responses to taééntonite application were detected and
these were also lake specific as indicated by mifgignt effect of lake and La-bentonite x

lake interactions term (Table 3).
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DISCUSSION

Responses in water quality following La-bentonite pplications

If phytoplankton biomass in our lakes had beenngiy P limited and water clarity
constrained by phytoplankton we would have expetdeste a strong correlation between TP
and chlorophylia concentration, and a negative correlation betwkese two variables with
Secchi disk depth, prior to application. This wad the case. Only after the La-bentonite
applications did these correlations become sigmfic indicating a strengthening of the
importance of P limitation across these lakes. Thisupported by the general reduction in
SRP concentrations to very low levels following #ggplication, and across all lakes. The
reduction in SRP concentrations was dramatic, wtdian concentrations in all seasons,
except spring, being maintained at or below 0.0@5LM following application, conditions

which should sustain P limitation of the phytoplaotkcommunity in lakes (Reynolds, 2006).

Although significant reductions in SRP and TP caoricgions were achieved (i.e. reduced to
within ecologically relevant concentration rangeSp pg TP ['; Jeppesen et al., 2000) the
expected ecological responses were less pronouAcextiuction in summer and autumn TP
and SRP concentrations is expected where intert@ding has been controlled (Ntrnberg,
1998; Sondergaard et al. 2012) and this was cemsigtith our results. However, reductions
in winter and spring TP concentrations were alseeoled across the treated lakes. The
mechanisms behind these TP reductions are not whvib is unlikely that a significant
reduction in catchment P loading will have occuraedoss all lakes within 24 months of La-
bentonite application. It is possible that changednternal loading caused by the La-

bentonite application resulted in a reduction imter and spring TP concentrations, perhaps
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through the control of P release during anoxic @omts in winter (Penn et al., 1999) or
through the removal of catchment derived SRP tdolek within La-bentonite-P complexes.
However, it is also likely that TP concentrationerev reduced in general as a result of
reduced internal loading. The processes responfablde winter TP reduction may be lake

specific and should be analysed at this scaletiaildelsewhere.

Jeppesen et al. (2000) defined five ecologicalselasn 71 Danish lakes according to surface
water annual mean TP concentrations and indicatedstgnificant decreases in chlorophyli
concentrations, and increases in water clarity,adqumacrophyte community species
numbers and maximum growing depths would occurRitc@ncentrations <50 pg'LThe
reduction in TP concentrations reported here woetgmble a shift in the study lakes from
class 2 or 3 (i.e. 0.05 -0.10 mg TP)Lbefore treatment to class 1 (i.e. < 0.05 g &fter
treatment. However, in the case of chloroplaytioncentrations, where reductions in median
values were ecologically insignificant, pre-appfica concentrations were already low
(corresponding to Jeppesen et al. (2000) lake dlasscomparison to TP concentrations (i.e.
low ChI:TP ratios) in the study lakes, suggestirgtdrs other than P were limiting
phytoplankton biomass across the majority of tHakes prior to La-bentonite application.
These factors may include nitrogen limitation (Mat al., 2010), light limitation from
shading caused by suspended inorganic matter iy ghaellow lakes as a result of
bioturbation (Breukelaar et al., 1994) or wind indd bed sediment disturbance (Hilton et
al., 1986; Spears and Jones, 2010), and an unbkdlamophic structure leading to an

increased grazing pressure of phytoplankton by lamégon (Horppila et al., 2003).

Our study lakes do not represent the full rangeutfophication conditions that occur across

lakes. As such, our results cannot be used to aw@nelusions on the capacity for La-
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bentonite to be used to control TP concentrationkyiper-eutrophic lakes (i.e. reductions
from milligrams per litre to micrograms per litréY. However, for our study lakes and when
the summer responses are considered usifigp@tentile values (i.e. occurrence of extreme
poor conditions for macrophytes) for chlorophgltoncentration and Secchi disk depth, it is
apparent that water quality has improved and th@ukl support increases in macrophyte

species number and colonisation depth.

Explaining the variation in TP and SRP responses flowing La-bentonite applications

Significant decreases in TP, SRP and chloropaytloncentrations after the La-bentonite
application supports the conclusion that the watelity responses reported across the lakes
were the direct result of the La-bentonite appiore. In addition, changes to catchment
nutrient load were not apparent across these ttdakes for the duration of the monitoring
periods. Further, these lakes were unlikely to Hasen affected by common weather events
given their application dates varied temporallye.(iacross a 7 year period) and

geographically (i.e. across 4 countries and 2 oents).

Although significant reductions in SRP and TP cornicgions were observed across the
treated lakes, site-specific variation in respon$efowing La-bentonite application, were

apparent. No significant positive correlation wasrfd between La-bentonite dose and the
change in TP concentration suggesting that simgtirg a higher dose may not result in
more effective P control in these lakes. The olestizorrelation between DOC, chlorophyll

a and TP concentrations after the applications até& the importance of DOC as a potential
driver of La-bentonite operational performance. ldger, DOC and TP concentrations are

known to correlate across lakes naturally (Nurnkenrd Shaw, 1998). That DOC was not
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correlated with these variables before the applinatsupports the hypothesis that
physicochemical interactions between DOC, La-bateand SRP can drive post-application
responses across lakes. This is in agreement witlng et al. (2014) who used laboratory
experiments and chemical speciation modelling tplae the relationships between DOC,
La and SRP and concluded that the concentratidiftexble La in solution increased above
DOC concentrations of about 10 md.[The rate of SRP uptake of La-bentonite was |aater
DOC concentrations of 10 mg*Llcompared to controls with 0 mg'lDOC. Finally, the end
point SRP concentrations in solution following a d&y incubation in the presence and
absence of 10 mgLDOC were about 250 pug'iand 100 pg L, respectively, indicating
reduced SRP removal by La-bentonite in the presexic®OC. Lirling et al. (2014)
hypothesised that extraction of La from the La-baite matrix may be one possible
mechanism confounding SRP uptake and that humigoands may act as ligand donors in
the complexation of bentonite, forming particles séveral micrometers in diameter
(Bilanovic et al., 2007). However, the quality (i.&igh molecular weight, high colour,
allochthonous versus low molecular weight, low coJcautochthonous DOC compounds;
Spears and Lesack, 2006) and quantity of DOC véaeéseen lakes and so the strength and
forms of physicochemical interactions between Latbeite and DOC are also likely to vary,
and should be considered further. Similar intecangtihave been reported for aluminium (De
Vicente et al., 2008). It is likely that interaati®between La-DOC-P (and other constituents)
are important in determining the magnitude of thdeBline, and these interactions should be

studied experimentally and using chemical modeléipgroaches.

Interactions between in-lake P, C and Fe specie® ladso been reported where redox
conditions in surface sediments can be controlieceduced water clarity, elevated DOC and

phytoplankton biomass. Under these conditionsedldack loop may establish where DOC
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427 and P are continually and rapidly cycled betweed bediments and the water column,
428 resulting in negative effects on water quality (BBeys et al., 2014). This example of DOC as
429 a confounding factor serves to demonstrate thatsideration of in-lake management
430 measures designed for P control, alone, is insaffic Copetti et al. (this issue) reviewed a
431 wide range of factors known to confound the operati performance of La-bentonite
432 including bioturbation of surface sediments by maavertebrates and fish, pH, salinity and
433 DOC concentrations. These factors should be corepstely considered, and preferably
434 their effects quantified, prior to an applicatioh loa-bentonite and other similar geo-
435 engineering materials to lakes.

436

437 These insights into the importance of DOC as afdoniting the operational performance of
438 La-bentonite can be placed into the context ofreutuater quality changes likely to occur in
439 a changing climate. An increase in DOC concentnatiand changes in DOC quality may
440 occur as a result of changes in atmospheric deposit lake catchments (Monteith et al.,
441 2007), interactions with redox conditions and icmmplexes in inflowing rivers (Kritzberg
442 and Ekstrém, 2012), and local weather anomaliesitreg in wash out of terrestrial DOC
443 into receiving lakes (Brothers et al., 2014).

444

445 Responses in aquatic macrophyte community composit and maximum colonisation
446 depth following La-bentonite applications

447 The increase in aquatic macrophyte species numdails maximum colonisation depths
448 reported here indicate the onset of ecological vego within 24 months of La-bentonite
449 application. However, it should be noted that mphyte data were only available from five
450 treated lakes and so these results do not refésgonses across all lakes. The responses

451 (especially in aquatic macrophyte species numheesg weak relative to reductions in TP
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and SRP concentrations (Jeppesen et al.,, 2000varel lake specific. Secchi disk depth
prior to the La-bentonite applications (24 monthdraa of 257 cm) was sufficient to support
relatively diverse communities (median of five 9psey; at least in comparison to lakes where
macrophyte communities have collapsed. Jeppesah @000) indicated that an increase in
Secchi disk depth from about 1.5 m to about 3.0 eold/ support a significant increase in
species numbers (from about eight to about tegispeand maximum colonisation depth
(i.e. from about 2 m to about 6 m water depth)olm study lakes, an increase in species
numbers from five to seven species was observéalriolg the applications and colonisation
depths increased from 1.8 m to 2.5 m. It is likéat the significant reduction in TP
concentrations across the lakes has resulted inorements in water clarity, especially in
summer, and a moderate improvement in the aquasicrophyte species numbers and
colonisation depths. However, the observed respoveséed across the lakes with some lakes

exhibiting very limited, if any, response.

Responses in the aquatic macrophyte communitikes$ to reductions in TP concentrations
can be highly variable, as was seen in our analy$is may be due to a range of additional
factors including habitat type, and disturbancenfnwaves and waterfowl (Jupp and Spence,
1977), isolated seed banks in deeper sedimentsdd@Bpeet al., 2003), lack of a distribution
network to support ingress of new species (Van Catesl., 2003), the presence of chemical
components of the water column shaping specie®lmsation (e.g. humic substances;
Steinberg et al.,, 2008), and insufficient water tdefgading to constrained macrophyte
growth under conditions of high physical disturban&eabloom et al., 2001; maximum
depth range of the study lakes: 1.3 m to 16.0 nbjera). It is also possible that the aquatic
macrophyte community responses have not yet beempleted. Mitsch et al. (2005)

conducted a comprehensive analysis of aquatic mphagte community ingress into created
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wetlands (<1 m water depth) and reported stablenwomity development only after about
five years. Where aquatic macrophyte ingress wasaged through planting, the rate of

colonisation was faster and the end point communitye diverse (Mitsch et al., 2005).

We acknowledge the limitations associated withube of the available data to draw general
conclusions on aquatic macrophyte responses attress treated lakes. To substantiate these
results we recommend site specific assessmentssatneated lakes in the context of long-
term community variability (e.g. Gunn et al., 201#Jpwever, the responses reported here
represent the first examples of aquatic macroplegiemunity responses following La-
bentonite applications in the literature and oualgsis raises clear issues that need to be
considered when attempting to use La-bentonitectoese rapid (i.e. within two years of

application) ecological recovery of aquatic macngph.

Implications of the results for use of La-bentoniteas an eutrophication management
tool in other lakes

It is clearly important to focus efforts on quawitiig responses in water quality,
phytoplankton biomass and aquatic macrophyte contgnstmucture following changes in P
concentrations at the field scale (Schindler, 198&)d scale observations have been used to
identify reasons of successes and failures in wagtality improvement programmes
following the application of lake restoration me@susuch as catchment P load reduction
(Sondergaard et al., 2007; 2012), biomanipulati@mppesen et al., 2007; Gulati et al., 2008),
hypolimnetic withdrawal (Nirnberg, 2007) and sedinéredging (Peterson, 1982). In
addition, considerations on the use of geo-engingenaterials, including La-bentonite, in

lakes is also provided by Hickey and Gibbs, (20&8) for aluminium based materials by
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Huser et al. (2011) and Huser et al. (this issHeye, we present the first meta-analysis of

water quality responses following La-bentonite &gtlon in many lakes.

Collectively, one conclusion can be drawn from tiasly of evidence: responses to common
management measures can be highly variable bet\akes and over time, and can be driven
by a myriad of interacting and potentially confoungdfactors. In addition, most reports on
lake restoration successes and failures cite a ¢ddufficient understanding of the target
system and its catchment basin as the main issaintpto perceived failure of a restoration
project (Sgndergaard et al., 2012). To supportuhierstanding it is important to combine
high quality monitoring data, both prior to andlé@éing a management intervention, with
expertise in lake functioning. In the present stumyd others (Spears et al.,, 2013b),
monitoring frequency and duration within lakes thieh La-bentonite has been applied has
been highly variable, with intensive monitoring oging only after application and for a
relatively short period of time (e.g. Figure 1)isltclearly important that estimates of recovery
time are considered and, as before (Spears et2@l3a), we recommend a standard
monitoring protocol as have others, previously Keicand Gibbs, 2009; Gibbs et al., 2011).
Further, site specific recovery analyses are recena®d to determine time scales and end

points for a range of chemical and ecological coneds.

Our results indicate variable chemical and ecokllgiesponses following La-bentonite
application, with some lakes exhibiting very litttesponse in the 24 months following
application. Given the economic burden of lake aiedion it is important that the cost of
proposed management measures be assessed relatiiiers and in relation to confidence in
their effectiveness (Mackay et al., 2014). Givea tlost estimates for P control with La-

bentonite are around €0.8 million per kake surface area (Spears et al., 2013c) it is
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important that information on potential impacts tpade available. This evidence should
include assessments of both successes and failamesespecially the causes of failure

(Sgndergaard et al., 2007; Lurling and Van Oostgrt012).
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CONCLUSIONS

General reductions in surface water TP (data asailirom n=15 lakes) and SRP
(n=14 lakes) concentrations were reported followliagbentonite application to the
study lakes, within a 24 month monitoring period.

Chlorophyll a concentrations (n=15 lakes) decreased and Secshidépth (n=15
lakes) increased and these responses were mosuoiced in summer.

The median values of TP, SRP and chlorophytloncentrations across the lakes in
the 24 months following application were correlatgasitively with DOC
concentration, suggesting DOC as a factor potépnt@infounding the operational
performance of La-bentonite.

Increases in aquatic macrophyte community specietbers (average increase of 1.6
species; n = 6 lakes) and maximum colonisationtdefrhean increase of 0.7 m; n =4
lakes) were reported.

Available data across 18 lakes varied considerabhglation to monitoring period.
Macrophyte data, in particular, were sparse. lrasommended that a standard
monitoring protocol be developed to support futaress-lake comparative analyses
of responses in water quality and biological comities

Our results indicate variable water quality resgsnacross multiple treated lakes,
most likely due to multiple and interacting confdimg processes operating within
the treated lakes and their catchments. We sttessi¢ed for comprehensive site-
specific understanding to support the applicatibrsimilar management measures

more generally.
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TABLE LEGENDS

Table 1. Summary of data reported for each of the 18 la&eshich La-bentonite has been
applied and for which water quality and macrophgitga were available. UK — United
Kingdom, NL — The Netherlands, DE— Germany, CA n&#a. M - indicates lakes for which

aquatic macrophyte data were available.

Table 2. Results of linear mixed models run on Z score di@mations testing the
significance of the responses in the 24 monthsydotlg La-bentonite applications relative to
the 24 months preceding the applications in surfaeger seasonal and annual total
phosphorus (TP) soluble reactive phosphorus (S&#)rophylla concentration (Cll) and
Secchi disk depth. SE — standard error; DF — degreeedom; n — number of observations;

t — t statistic; P ¢ value.

Table 3 Results of two-way analysis of variance to tefeots of lake, La-bentonite

treatment and interactions between the two, ontdagsformed aquatic macrophyte species
numbers and aquatic macrophyte maximum colonisatepths in the two years before and
after application. DF- degrees of freedom; SS — Qguare; MS; Mean Square; F- F value;

P -p value.
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FIGURE LEGENDS
Figure 1. Summary of available data for total phosphorus (EBluble reactive phosphorus
(SRP), and chlorophyla (Chla) concentrations, and Secchi disk depths in themdth

periods preceding and following La-bentonite apailan.

Figure 2. Seasonal and annual ranges of raw data (top pamelY score transformed (lower
panel) total phosphorus (TP) (a - e) soluble reagbhosphorus (SRP) (f - j), chlorophwll
concentration (Clal) (k - 0), and Secchi disk depth (p - t) in the rBdnths preceding and
following an application of La-bentonite. The numibé lakes for which data were available
is reported in each case.™&nd %' percentile error bars are shown along with vahtesve

or below these values, where appropriate.

Figure 3. Results of principal components analysis for sigfavater determinands in the 24
months preceding and following the application ahthanum bentonite showing the
weightings and ordination of each environmentaliakde measured along both principal
components. Mean Depth — mean depth of lake; SArface area of lake; DOC — mean
dissolved organic carbon concentration; Alkalinitymean alkalinity; TP — median total
phosphorus concentration; SRP - median solubldiveaghosphorus concentration; Chla —
median chlorophyll a concentration; Secchi — me@eanchi disk depth; dose (t ha) — dose of
lanthanum bentonite. PC — principal component; EAlgenvalue; CV — cumulative variance

explained.

Figure 4. Ranges of aquatic macrophyte species numberscuradia macrophyte maximum
colonisation depths in the two years prior, and tyears following, La-bentonite

applications. The number of lakes for which dataenavailable is reported in each casé" 95
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and %" percentile error bars are shown along with vahlEsve or below these values, where

appropriate.
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Table 1

Lake Name

Country

Max

Fetch Date and mass applie

(km)

(tonnes)

Phoslock® Load
CIEED)

Clatto Reservoir
Loch Flemington M
Crome’s Broad ™
Hatchmere ™!
Mere Mere ™
Lake Rauwbraken ™
Lake De Kuil

Lake Silbersee

Lake Otterstedter See
Lake Behlendorfer See
Lake Blankensee

Lake Baerensee

Lake Kleiner See

Lake Eichbaumsee
Lake Ladillensee

Lake Vollen
Niedersachsen Lake
Swan Lake

]

]

UK
UK
UK
UK
UK
NL
NL
DE
DE
DE
DE
DE
DE
DE
DE
DE
DE
CA

0.4
0.7
0.2
0.3
0.5
0.2
ND
0.3
0.3
2.0
0.5
0.1
0.2
0.9
0.1
0.1
0.1
0.4

04/03/2009 (24.0)
15/03/2010 (25.0)
19/03/2013 (9.75)
13/03/2013 (25.2)
09/03/2013 (79.8)
21/04/2008 (18.0)
18/05/2009 (41.5)
08/11/2006 (21.5)
30/10/2006 (11.0)
02/12/2009 (230.0)
16/11/2009 (66.0)
11/06/2007 (11.5)
25/05/2010 (6.0)
17/11/2010 (148.0)
03/03/2009 (4.7)
19/03/2008 (10.0)
19/03/2008 (6.0)
01/05/2013 (25.2)

2.7
1.6
5.1
5.3
5.1
4.5
5.9
3.1
2.4
3.6
2.9
1.9
6.7
6.8
4.7
5.0
1.4
4.7
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Table 2.

Variable Season Difference
between pre-
and post-
application
values
(standard
deviations)
Total Phosphorus  Annual -0.961 0.113 379 395 <0.001
Soring -0.634 0.177 83 95 <0.001
Summer -1.057 0.170 76 87 <0.001
Autumn -1.142 0.142 81 94 <0.001
Winter -1.276 0.216 47 58 <0.001
SRP Annual -0.794 0.120 285 300 <0.001
Summer -1.043 0.207 49 58 <0.001
Autumn -0.781 0.214 58 70 <0.001
Winter -0.659 0.282 33 43 0.026
Chlorophyll a Annual -0.389 0.107 327 341 <0.001
Soring -0.839 0.189 80 90 <0.001
Secchi disk Annual 0.521 0.099 391 406 <0.001
Summer 0.900 0.265 84 92 0.001
Winter 0.675 0.261 35 44  0.014
Table 3
Macrophyte species DF SS MS
numbers
Lake 5 1.46 0.29 54.58 <0.001
La-bentonite 1 0.04 0.04 8.29 0.014
Lake x La-bentonite 5 0.03 <0.01 0.93 0.496
Error 12 0.06 <0.01
Total 23
R? 95.96 R? (adjusted) 92.26
growing depths
Lake 3 0.27 0.09 135 <0.001
La-bentonite 1 0.12 0.12 183 <0.001
Lake x La-bentonite 3 0.20 0.07 103 <0.001
Error 8 0.01 <0.01
Total 15 0.60
R? 99.11 R?(adjusted) 98.34
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Highlights

1. Water quality and macrophyte community responsese wassessed following
Phoslock treatments

2. Phosphorus concentration and phytoplankton biondesseased and water clarity
increased.

3. Macrophyte species richness and extent increased.

4. Responses were highly site specific and decreaséth wncreasing DOC

concentrations.





