

BRITISH GEOLOGICAL SURVEY Natural Environment Research Council

TECHNICAL REPORT WD/98/2C Hydrogeology Series

Technical Report WD/98/2C

Final Report on Application of Collector Well Well Systems to Sand Rivers Pilot Project

J Davies, P Rastall and R Herbert

This report was prepared for the Department of Water Affairs, Republic of Botswana

Bibliographic Reference

0

0

0

0

0

0

.0

0

 \bigcirc

0

 \bigcirc

0

)

Davies J, Rastall P and Herbert R 1998 Final Report on Application of Collector Well Systems to Sand Rivers Pilot Project British Geological Survey Report WD/98/2C

©NERC copyright 1998

Keyworth, Nottinghamshire

British Geological Survey 1998

BRITISH GEOLOGICAL SURVEY

The full range of Survey publications is available from the BGS Sales Desk at the Survey headquarters, Keyworth, Nottingham. The more popular maps and books may be purchased from BGS-approved stockists and agents and over the counter at the Bookshop, Gallery 37, Natural History Museum, Cromwell Road, (Earth Galleries), London. Sales Desks are also located at the BGS London Information Office, and at Murchison House, Edinburgh. The London Information Office maintains a reference collection of BGS publications including maps for consultation. Some BGS books and reports may also be obtained from HMSO Publications Centre or from HMSO bookshops and agents.

The Survey publishes an annual catalogue of maps, which lists published material and contains index maps for several of the BGS series.

The British Geological Survey carries out the geological survey of Great Britain and Northern Ireland (the latter as an agency service for the government of Northern Ireland), and of the surrounding continental shelf, as well as its basic research projects. It also undertakes programmes of British technical aid in geology in developing countries as arranged by the Overseas Development Administration.

The British Geological Survey is a component body of the Natural Environment Research Council.

Keyworth, Nottingham NG12 5GG **a** 0115-936 3100 Telex 378173 BGSKEY G Fax 0115-936 3200 Murchison House, West Mains Road, Edinburgh, EH9 3LA **a** 0131-667 1000 Telex 727343 SEISED G Fax 0131-668 2683 London Information Office at the Natural History Museum, Earth Galleries, Exhibition Road, South Kensington, London SW7 2DE **a** 0171-589 4090 Fax 0171-584 8270 **a** 0171-938 9056/57 St Just, 30 Pennsylvania Road, Exeter EX4 6BX **a** 01392-78312 Fax 01392-437505 Geological Survey of Northern Ireland, 20 College Gardens, Belfast BT9 6BS **a** 01232-666595 Fax 01232-662835 Maclean Building, Crowmarsh Gifford, Wallingford, Oxfordshire **OX10 8BB a** 01491-838800 Fax 01491-692345

Parent Body Natural Environment Research Council Polaris House, North Star Avenue, Swindon, Wiltshire SN2 1EU • 01793-411500 Fax 01793-411501

Contents

PREFACE

EXECUTIVE SUMMARY

1. INTRODUCTION

- 1.1 Situation and Visit Objectives
- 1.2 Summary of Work Programme during Recent Visit
 - 1.2.1 Works undertaken at Gulubane
 - 1.2.2 Works undertaken at Matshelagabedi
 - 1.2.3 Works undertaken at Tobane I
 - 1.2.4 Reporting to DWA

2. STUDIES UNDERTAKEN

- 2.1 Sand-river Channel and Sediment Infill Survey
- 2.2 Excavation of Well-shaft
- 2.3 Test Pumping of Well-shaft Pre-installation of Laterals
- 2.4 Ancillary Studies
 - 2.4.1 Sediment grain size analysis
 - 2.4.2 Salt dilution flow test
 - 2.4.3 Falling head permeameter test
 - 2.4.4 Hammer seismic survey
 - 2.4.5 Dewatering exercise
 - 2.4.6 Sedimentology of sand-river alluvium
 - 2.4.7 Other studies
- 2.5 Drilling and Construction of Laterals
- 2.6 Test Pumping of Completed Collector Well
- 2.7 Completion Studies
 - 2.7.1 Additional test pumping
 - 2.7.2 Hydrochemical sampling

3. FIELD RESULTS

- 3.1 Gulubane
 - 3.1.1 Sand-river channel and sediment infill survey
 - 3.1.2 Excavation of well-shaft
 - 3.1.3 Test pumping of well-shaft pre-installation of laterals
 - 3.1.4 Ancillary studies
 - 3.1.4.1 Sediment grain size analysis
 - 3.1.4.2 Salt dilution flow test
 - 3.1.4.3 Falling head permeameter test
 - 3.1.4.4 Dewatering exercise
 - 3.1.4.5 Sedimentology of sand-river alluvium
 - 3.1.4.6 Other studies
 - 3.1.5 Drilling and construction of laterals
 - 3.1.6 Test pumping of completed collector well
 - 3.1.7 Completion studies

3.2 Matshelagabedi

- 3.2.1 Sand-river channel and sediment infill survey
- 3.2.2 Excavation of well-shaft
- 3.2.3 Test pumping of well-shaft pre-installation of laterals
- 3.2.4 Ancillary studies
 - 3.2.4.1 Salt dilution flow test
 - 3.2.4.2 Falling head permeameter test
 - 3.2.4.3 Sedimentology of sand-river alluvium
- 3.2.5 Drilling and construction of laterals
- 3.2.6 Test pumping of completed collector well
- 3.2.7 Completion studies

3.3 Tobane I

- 3.2.1 Drilling and construction of laterals
- 3.2.2 Test pumping of completed collector well
- 4. DISCUSSION

5. CONCLUSIONS AND RECOMMENDATIONS

REFERENCES

APPENDICES [These are contained in a separate volume to this report]

Appendix A - Itinerary

Appendix B - Quotation for a New Horizontal Drilling Rig

Appendix C - The Design of a 'Rolling' Groundwater Control System, R Herbert (1985)

Appendix D - Test Pumping and Recovery Data

Appendix E - Sediment Grain Size Analyses

Appendix F - Salt Dilution Flow Test Results and Conductance Profiles

List of Tables

- Table 1. Village water demand projections and consumption figures.
- Table 2. BGS programme of activities 6 July 23 August 1997.
- Table 3. Sand-river channel dimensions determined at collector well sites.
- Table 4. Well-shaft dimensions and condition on excavation at test sites.
- Table 5.The ranges of sieve sizes used during the 1995 studies and during the recent 1997
visit.
- Table 6. Summary of channel flow rates calculated from salt dilution flow tests at test sites.
- Table 7.
 Typical seismic velocities of lithological formations and media met in NE Botswana.
- Table 8. Laterals drilled and constructed at test sites during the pilot project.
- Table 9. Determination of sample uniformity coefficients and suitable screen slot sizes .
- Table 10a.Basic data derived from cumulative % weight distribution curves of samples 1a-7a as
required for Kovaks analysis.
- Table 10b. Results of Kovaks analysis on samples 1a-7a.
- Table 11a.
 Basic data derived from cumulative % weight distribution curves of samples 1a-7a required for Kovaks analysis.
- Table 11b. Results of Kovaks analysis on samples 1a-7a.
- Table 12a. Details of observation boreholes installed at the Gulubane test site.
- Table 12b. Results of analysis of salt dilution flow test data from the Gulubane test site.
- Table 13.
 Results of falling head permeability determinations on sediments from the Gulubane test site.
- Table 14. Details of laterals drill from the Gulubane collector well.
- Table 15. Observation borehole details at the Matshelagabedi Collector Well site.
- Table 16.Result of salt dilution flow test undertaken at the Matshelagabedi collector well obs
bh No. 1.
- Table 17. Falling head permeameter test results from the Matshelagabedi collector well site.
- Table 18.
 Details of laterals drilled from the Matshelagabedi collector well.
- Table 19.
 Additional laterals drilled and constructed at Tobane 1 collector well.

i

List of Figures

Figure 1.	A typical sub-minor sand-river, the Tati at Masunga.						
Figure 2.	Water abstraction for rural road construction from a mechanically dug hole in the bed of the Ntshe sand-river.						
Figure 3.	Collector well site location map.						
Figure 4.	Flow chart of activities undertaken.						
Figure 5.	Compressed air operated pumps used for dewatering and test pumping well -shafts and collector wells. (a) Air-operated centrifugal pump (b) Air operated diaphragm pump						
Figure 6.	 Methods of observation borehole installation. (a) Using a jack hammer at Tobane I (b) using the back bucket of a JCB at Gulubane 						
Figure 7.	 Salt dilution flow test equipment. (a) Basic equipment (b) Equipment in use at Gulubane 						
Figure 8.	Falling head permeameter apparatus.						
Figure 9.	 Hammer seismic equipment. (a) Seismic system components (b) Equipment in use at Masunga 						
Figure 10a.	Section through sand infill within the Tati sand-river at Masunga.						
Figure 10b.	Interpretation of section in Figure 10a showing main sedimentary structures and decimetre scale.						
Figure 11.	Levelling sand river surface gradient and water table along the Tati sand-river between Masunga I and Masunga II collector wells.						
Figure 12.	Blue thermoplastic and black pvc slotted 2" diameter screens above steel adductor pipe connected to a 2" diameter disposable point via a left hand threaded connector. The 2" screen slides over the adductor pipe and is screwed onto the rear thread of the point.						
Figure 13.	Steel 2" diameter vertically slotted screens with steel disposable wash-down points.						
Figure 14.	Horizontally mounted Hydroquest 2 rig on circular base plate with jacks for mounting within a 2 m diameter well-shaft. Note cradle with drill rods and drilling bits to left of rig.						

• }

.

- Figure 15. Rear of 4x4 Bedford crane truck with hydraulic power pack for the rig mounted on the rear of the truck. Note winch mounted on extendible hoist arm, and 4" diameter temporary steel pipe on back of truck.
- Figure 16. Large capacity Atlas Copco 350 l/sec, 20 bar compressor, used to supply compressed air for drilling and jetting in pipe.
- Figure 17. Small capacity 110 lb/in², 125 cfm compressor, used to supply air for dewatering pump operation.
- Figure 18. Clearing out debris from base of well-shaft with a kibble prior to erection of the drilling rig. Not the Shashe minor size sand-river at Gulubane.
- Figure 19. Lowering the rig down the Masunga well-shaft. Note the position of the winch operator and the truck. The operator is able to observe what is happening down hole whilst operating the winch controls.
- Figure 20. Initial drilling through the well-shaft casing using a U100 core bit faced with tungsten carbide clusterite chips. Note rig positioned upon a stack of timbers.
- Figure 21. Drilling lateral into water bearing unconsolidated materials. Note drilling crew must wear water proofs and safety glasses during this operation.
- Figure 22. Installation of 2" screens and pipes.
- Figure 23. 1:50 000 scale location map of the Gulubane collector well site.
- Figure 24. Probed cross section across Shashe River at Gulubane site showing location of laterals, observation boreholes and collector well.
- Figure 25. Quartz-feldspar dyke cropping out upstream of the Gulubane test site.
- Figure 26. Pre-installation of laterals test pumping data, Gulubane well-shaft.
- Figure 27. Pre-installation of laterals recovery data, Gulubane well-shaft.
- Figure 28. Grain size cumulative % weight curves, Gulubane. Samples 1a-7a from 1.75 m depth.
- Figure 29 Grain size cumulative % weight curves, Gulubane. Samples 1b-7b from 1.00 m depth.
- Figure 30. Salt dilution flow tests, Gulubane, graphs of the results.
- Figure 31. Excavation of main dewatering trench to water table at Gulubane.
- Figure 32. Initial attempt at dewatering the trench at Gulubane using dewatering pumps located within perforated 200 l drums. Using JCB rear bucket to dig in the drum.
- Figure 33. Second attempt at dewatering the trench at Gulubane using dewatering pumps in perforated 200 l drums located in the central part of the trench.
- Figure 34. Excavation of geological inspection trench to water table at Gulubane.

Figure 35.	Geological section at 29-33 m along geological trench, Gulubane.
Figure 36.	Flowing laterals within the completed Gulubane collector well.
Figure 37.	Post-installation of laterals test pumping data, Gulubane collector well.
Figure 38.	Post-installation of laterals recovery data, Gulubane collector well.
Figure 39.	Comparative plots of pre and post lateral installation drawdown/recovery test pumping data, Gulubane collector well.
Figure 40.	1:50 000 scale location map of the Matshelagabedi collector well site.
Figure 41.	Probed cross section across Ramokgwebana River at Matshelagabedi site showing location of laterals, observation boreholes and collector well.
Figure 42.	River bank well-shaft location, Matshelagabedi.
Figure 43.	Pre-installation of laterals test pumping data, Matshelagabedi well-shaft.
Figure 44.	Pre-installation of laterals recovery data, Matshelagabedi well-shaft.
Figure 45.	Salt dilution flow test graphs, Matshelagabedi observation borehole.
Figure 46	Section through top 1 m of sand-river infill of the Ramokgwebana river adjacent to the Matshelagabedi collector well site.
Figure 47.	Semi-consolidated, older alluvial sediments cropping out along Ramokgwebana River 1 km upstream of collector well site.
Figure 48.	Core of sandy siltstone obtained from the weathered bank of the Ramokgwebana River at Matshelagabedi.
Figure 49.	Water flow from second lateral heavily charged with silt, Matshelagabedi.
Figure 50.	Post-installation of laterals test pumping data, Matshelagabedi collector well.
Figure 51.	Post-installation of laterals recovery data, Matshelagabedi collector well.
Figure 52.	Comparative plots of pre and post lateral installation drawdown/recovery test pumping data, Matshelagabedi collector well.
Figure 53.	A typical major sand-river, the Motloutse sand-river at Tobane I collector well.
Figure 54.	Post-installation of laterals test pumping data, Tobane I collector well.
Figure 55.	Post-installation of laterals recovery data, Tobane I collector well.
Figure 56.	Comparative plots of drawdown/discharge test pumping data, Tobane I collector well.
Figure 57.	Comparative plots of recovery test data, Tobane I collector well.

iv

.

ACKNOWLEDGEMENTS

Mr Katai, Mr Alfred Masedi and Mr Carlson are thanked for their stimulating discussions and kind assistance. The DWA drilling crews in north east Botswana and the DWA staff at Francistown proved to be most helpful to the progress of the project.

The advice of Dr John Barker on problems related to step test analysis and groundwater flow determination within sand rivers is acknowledged. The advice of Mr P J Chilton and other members of BGS staff at Wallingford is appreciated.

EXECUTIVE SUMMARY

Aims of the Study

This pilot study was undertaken with the primary aim of assessing the application of collector well systems to abstraction of groundwater from sand-rivers in Botswana. Such a study is required to understand:

- 1. the drilling and construction techniques required for installation of collector well systems into sand river deposits,
- 2. the geological and hydrogeological nature of sand river deposits.

Study Inputs

Some 45 laterals were constructed within 10 well shafts excavated at riverside locations in northeastern Botswana. The well shafts were excavated at suitable sites by the Department of Water Affairs. The collector well laterals were drilled using BGS drilling equipment with the assistance of DWA staff and equipment. The hydrogeological and geological aspects of the sand river and collector well, at each site were evaluated by BGS and DWA staff, using a series of techniques developed by BGS for evaluation of alluvial sediments and large diameter wells elsewhere in the world.

Results

This pilot study, which was primarily of an engineering nature, successfully investigated application of the collector well system to abstraction of groundwater from sand rivers. The criteria used as a basis for this study were based upon the conclusions drawn about the physical characteristics of sandrivers from earlier, much more extensive studies. Laterals were drilling through the weathered basement rocks of the sand river bank into sand river alluvial sediments using air hammer or rotary drilling with mixed results. Drilling using the telescoped jetting method was successful within coarse sands, where laterals were installed to 20 m from the well shaft, but not in fine sands and silts. Drilling methods appropriate for specific sediment lithologies may need and/or a new approach involving dewatered trench systems used to ensure installation of appropriately screened and gravel packed laterals.

The DWA/BGS study also demonstrated that the geological and hydrogeological characteristics of sand-rivers are more complex than previously thought. Novel techniques were employed to recognise and quantify groundwater flow through sand river sediments at the end of the dry season, sediment permeabilities and susceptibility of screen slots to blockage - the latter being determined from formation grain size distributions. Test pumping indicated rates of flow along laterals to the collector wells. Some indication of potential short to long term sustainable discharge rates were obtained from these data, although abstraction rates and water levels have to be monitored for at least one year if reasonable estimates of the sustainability of such systems are to be made. Detailed investigations need to be made of sand rivers, including weathering of the underlying basement strata and the nature of channel sediments to ensure that laterals are constructed within water-productive sand layers. Geophysical methods such as ground penetrating radar used with the penetration probe and sampling device can be used to local suitable target zones.

The sustainable yield of a sand river system depends upon:

- the recharge it receives and its distribution with time
- the geometry of the sand river deposits
- the geometry of the collector well, shaft and adits
- the hydraulic properties of the sand river
- the upstream use of the sand river groundwater resources

A generalised digital model should be produced of the groundwater system of a sand river. A subroutine for simulating different patterns of recharge should be developed. The model could be used to examine long term sustainable yield and design of collector well laterals. Data acquired from the long term monitoring of sites located on each of the three classes of sand rivers identified will be required to prove such a model.

Scope for Additional Work

This type of study produces information of relevance not only to hydrogeologists but also to those concerned with water supply in semi-arid environments. The study has highlighted the need for detailed understanding of the sedimentology of sand rivers and the main factors controlling the modes of sediment deposition and diagenesis. The installation of production collector well systems should now be undertaken, with BGS involvement, within a process type project. This will ensure the further development of collector well abstraction systems appropriate for each class of sand river.

1. INTRODUCTION

1.1 Situation and Visit Objectives

The British Geological Survey (BGS) was contracted by the Department of Water Affairs (DWA), Botswana, within the "Application of Collector Wells to Sand-rivers Pilot Project, Botswana", to evaluate methods of collector well construction for abstraction of groundwater from sand-river systems in north-eastern Botswana. Geological and hydrogeological aspects of sand-river deposits were also studied.

In sparsely vegetated semi-arid environments erosion of colluvium by storm-water surface runoff is accelerated by climate change, deforestation and overgrazing (Owen, 1989). In such environments ephemeral river channels become choked with ribbon like sand and gravel deposits, derived from land-surface erosion (Bond, 1967). Crowley (1983) and Graf (1988), among others, describe alluvial sediment accumulations along ephemeral river channels in semi-arid environments. Referred to as sand-rivers in north-eastern Botswana, these ephemeral streams occupy steep-sided channels with flat floors that are underlain by alluvial sands up to 10 m thick (Figure 1). According to Lister (1987) such channels were eroded into basement rocks during pluvial periods; to be latterly infilled with alluvium derived from the erosion of surrounding basement rocks during drier periods (Nord, 1985).

The geology of north-eastern Botswana, as described by Bennett (1971), Crockett et al (1974), Litherland (1975), and Key (1976) is dominated by rocks of the Precambrian Basement Complex. These include rocks of the Tati Schist belt and the Limpopo Mobile Belt, all intruded by numerous Karroo age WNW trending dolerite dykes. Weathered Precambrian granites and high grade metamorphic granitic gneisses and amphibolites are the main sources of the sand, gravel and clay deposits that infill the sand-rivers. The trends of river courses within north-eastern Botswana are affected by geological features such as joints, faults and outcrops of harder rocks such as dolerite dykes.

The ephemeral sand-rivers of north-eastern Botswana are major sources of groundwater, in an area that receives 450-1210 mm of rainfall per annum. These elongate alluvial deposits are recharged by short lived flash floods, the result of isolated storm rainfall events. Annual maximum temperatures range from 24°C to 35°C resulting in high surface evaporation losses. Since capillary rise through the surface sands is only effective to about 1.1 m below the sand-river surface, sands below that level can remain saturated throughout the year, with water continuing to flow downstream through this saturated zone. Such sand-river aquifers are important sources of water for village use and stock watering in an area underlain by basement rocks with poor aquifer properties.

Wikner (1980) and Nord (1985) recognised major, intermediate and minor sand-river systems in north eastern Botswana. They assessed the groundwater development potential of these systems, based on river gradient, river cross section area, aquifer permeabilities and formation transmissivities. Unfortunately they did not study the impact of palaeo-environmental and anthropogenic processes upon patterns of sand-river alluvial sediment deposition.

Attempts have been made to develop the groundwater resources of these deposits using boreholes, well point systems and large diameter wells sunk into the river-sands and boreholes located within bank side fissure zones that intersect sand-river courses. Temporary abstraction points include hand excavated shallow pits for abstraction of small quantities for cattle watering purposes, mechanically excavated large pits for abstraction of large quantities of water for road construction purposes, as from the Ntshe River (Fig 2), and well points for village domestic supply. These abstraction systems are vulnerable to damage during large flood events. Therefore a cheap reliable system, safe from the

Figure 1. A typical sub-minor sand-river, the Tati at Masunga

Figure 2. Water abstraction for rural road construction from a mechanically dug hole in the bed of the Ntshe sand-river

.

effects of flooding but with sufficient storage capacity to satisfy the increasing requirements of a village supply system is required. The present and projected water demands for the main villages in the North Eastern Botswana are listed in Table 1.

Village	Pop 91	Рор 97	Yield 97 m ³ /day	Demand 97 m ³ /day	Рор 2007	Demand 2007 m ³ /day	Shortage	Remarks 1:50 000 sheet number	
Botalaote	344	428	57	64	616	92	yes	Supplies Makaleng and Sebina	
Butale	531	661	53	99	951	142	yes	2027D1	
Gambule	947	1178	20	176	1695	254	yes	2027C2	
Gulubane	805	1002	44	150	1441	216	yes	2027C4	
Jackalasi 1	1207	1501	12	224	2159	323	yes	2027D1	
Ditladi	334	416	106	62	599	90	ok		
Jackalasi 2	1039	1293	23	193	1860	278	yes	2027D3	
Kalakamati	678	844	35	126	1214	182	yes	2027C2	
Kgari	688	856	44	128	1232	184	yes	Connected to Ramokgwebana	
Letsholathebe	718	893	38	134	1285	192	yes	2027C2	
Makaleng	1071	1334		199	1919	287		2027C4 fed from Mambo, Butale	
Malambakwena	742	923	95	138	1328	199	yes	2027C2	
Mambo	578	719	134	108	1033	155	ok	2027C4	
Mapoka	1583	1969	90	295	2832	414	yes	2027D1	
Masingwaneng	558	694		104	999	150		2027C4 fed from Mambo	
Masukwane	788	980	40	147	1410	211	yes		
Masunga	1554	1933	216	475	2780	683	yes	2027C2	
Tshesebe	1145	1422	88	350	2048	503	yes	2027D1	
Matshelagabedi	1293	1608	546	241	2313	346	yes	2127B1	
Matsiloje	841	1046	80	157	1505	225	yes	2127B4	
Mbalambi	466	580	60	87	835	125	yes	Bh 3195	
Moroka	1138	1416		212	2037	305		2027D1 supplied by WUC	
Mosojane	1245	1545	44	231	222	332	yes	2027D1	
Nlapkwane	1920	2388	140	357	3435	514	yes	2027D1	
Pole	319	397	11	60	571	85	yes	2027D1	
Ramokgwebane	1353	1683	42	414	2421	595	yes	2027D1	

2

Village	Рор 91	Рор 97	Yield 97 m³/day	Demand 97 m ³ /day	Pop 2007	Demand 2007 m ³ /day	Shortage	Remarks 1:50 000 sheet number	
Sechele	606	754		113	1085	162		2027C4 connected with Mambo	
Sekakangwe	948	1179	23	176	1696	254	yes		
Senyawe	1318	1640	52	245	2359	353	yes	2027D3	
Shashe Bridge	601	748		112	1076	161		2127A4 supplied from Tonota	
Tati Siding	2420	2988		447	4298	643		2127A4 supplied by WUC	
Temashanga	1683	2093	43	313	3010	450	yes	2027C4	
Nzwenshambe	1274	1585	54	237	2280	341	yes	2027C2	
Matenge	432	538	53	81	774	116	yes	2027C4	
Siviya	1231	1531	220	229	2202	329	yes	2027D3	
Kachane	350	436		65	628	94		RVN	
Tsamaya	1563	1944	72	291	2796	418	yes	2027D3	

Table 1. Village water demand projections and consumption figures.

Dam construction on sand-rivers is an expensive option. The Shashe River has been dammed for provision of water supply to Francistown and Selebi Phikwe, and the Motloutse River has recently been dammed at Letsibogo near Mmadinare, to supply water into the north-south pipe line that will transmit water to Gaborone. Further dam construction for the north-south pipeline is planned at sites on the Limpopo and Lower Shashe rivers. Such major works can not be economically undertaken for rural water supply. The impact of dams upon down-stream flow and village water supply systems has still to be assessed.

BGS developed the collector well system as a cheap but sustainable method of abstracting groundwater from weathered basement rocks and alluvial sediments. Drilling systems were developed for the installation of laterals within collapsing alluvial formations. The results of these studies have been applied to the water bearing sand-rivers of north-eastern Botswana, where well-shafts have been sunk into stream banks located above normal flood level. Essentially, a 2.2 m diameter, corrugated steel sheet lined well-shaft is excavated into basement rock adjacent to a sand filled incised sand-river channel, to a depth below the base of the channel, as defined by sand probing. Boreholes are drilled horizontally from this well-shaft, at depths designed to intercept water bearing sands within the sand-river. As originally conceived, laterals were to be drilled to intercept permeable coarse grained sediments thought to be located along the base of a sand-river channel. The well-shaft then acts as a reservoir from which water can be abstracted continuously, or during several periods of pumping, to supply the requirements of local communities.

A pilot study undertaken to assess the application of collector well systems to abstraction of groundwater from sand-rivers in Botswana has recently been completed. As part of an on-going village water supply project of the Government of Botswana, ten 2.2 m diameter well-shafts have been sunk by the DWA, one each at Chadibe, Borolong, Mathangwane, Matshelagabedi, Gulubane and Francistown Prison, and two at both Tobane and Masunga (Figure 3). An aim of the pilot project was the conversion of these large diameter well-shafts into collector well systems.

The pilot project included four short visits undertaken by BGS personnel to drill laterals and test newly completed collector wells, as well as assess the hydrogeological nature of sand rivers, between 1991 and 1997. The results and analysis of data collected during these periods of field work are presented within the following BGS reports:-

- Herbert, R (1992)
- Davies J, Herbert R and Rastall P (1995a)
- Davies J, Herbert R and Rastall P (1995b)

The main results of this project have been summarised and presented as a paper at the 30th International Geological Congress, China (Herbert R, Barker J A, Davies J and Katai O T 1997).

The drilling and test-pumping methods used were modified during the pilot study to take into account of the complex nature of sand-river sedimentation. Methods were also devised to better assess the hydraulic properties of sand-river alluviums, permitting determination of stream flow towards the end of the dry season, permeability of sediments, and recognition of 1 in 100 year major flood event depth of channel scour.

During the 13 July to 3 August 1997 a BGS hydrogeologist based at Francistown visited collector well sites at Gulubane and Matshelagabedi. During 6 July to 23 August a BGS contract driller undertook works at Gulubane, Matshelagabedi and Tobane. The objectives of this visit were:

- To drill and test a series of laterals at the Gulubane and Matshelagabedi collector well sites (additional drilling of laterals was undertaken at Tobane 1).
- Attempt dewatering of a trench part-way across the Shashe River to extend a shallow lateral, by installation of screen sections by hand, across the river at shallow depth.
- Assess the nature of the BGS research programme using additional data acquired.

This report describes work undertaken, data collection and analysis during this field visit; present the results of the recent studies, and describe the field methodologies and analytical methods developed during the pilot project. Recommendations for future work are listed and briefly discussed.

1.2 Summary of Works Undertaken During Recent Visit

The BGS programme of activities undertaken during the period 6th July to 23rd August 1997 are summarised in bar chart form (Table 2); works undertaken by BGS at the Gulubane, Matshelagabedi and Tobane 1 collector well sites are summarised below; detailed movements of BGS staff are described in an itinerary (Appendix A).

- 1.2.1 Works Undertaken at Gulubane
- (a) A drawdown/recovery pumping test was undertaken on the Gulubane well-shaft. Within the 9.85 m deep well-shaft the rest water level was 6.71 (mbtoc) before pumping. The well-shaft was emptied in 82 mins at a discharge rate of 2.8 l/sec. Average inflow into the well-shaft during drawdown was 0.04 l/sec. The water level recovered to 8.72 m after 1246 mins, at an average inflow rate of 0.045 l/sec.

TABLE 2								
BGS PROGRAMME OF ACTIVITIES 6 July - 23 August 1997	Week1	Week 2	Week 3	Week 4	Week 5	Week 6	Week 7	Week 8
ACTIVITIES								
1. STAFF INPUTS								
1.1. J Davies						11 a.		
1.2. P Rastall	UNITER STATES OF THE STATES OF	(UCHIMINICATION)						
1.3. Travel time				-2654				
2. WORK PROGRAMME								
2.1. Mobilisation of rig and vehicles								
2.2, installation of observation wells					1111			
2.3. Salt dissolution tests								
2.4. Drilling of laterals								
2.5. Pre-drilling pumping tests			ļ					
2.6. Post drilling pumping tests								
2.7. Sediment grain size analyses			43 C					
2.8. Trenching								
2.9. Dewatering								
2.10. Falling head permeameter determinations								
2.11. Demobilisation and storage of rig and vehicles								
3. Analysis of data						digitation a come	an englisher and	
4. Reporting								

- (b) A JCB was used to excavate a dewatering trench 10 m wide, across the Shashe river normal to the bank where the well-shaft is located. The base of the trench was excavated to the water table 1.35 m below the sand-river surface (mbsrs). Three observation wells were installed 14 m, 24 m, and 34 m from the river bank adjacent to the well-shaft, in a line normal to the longitudinal axis of the river.
- (c) The JCB was also used to excavate a geological inspection trench about 3 m wide across the Shashe River downstream of the dewatering trench. A series of photographs were taken of the trench sides and samples taken for grain size determinations.
- (d) Four laterals were drilled from the well-shaft, three at 8.85 m below top of casing (mbtoc) (4.2 mbsrs) and one at 7.09 mbtoc (2.44 mbsrs). All four produced water, the largest flow, 2 l/sec, being recorded from lateral No. 4.
- (e) Grainsize analyses were undertaken of 14 sand samples obtained from the geological inspection trench. These were obtained at 5 m intervals along the trench at depths of 1 m and 1.75 mbtsr. A nest of twenty two sieves, a motorised shaker and an electronic balance were used to undertake the grainsize analyses.
- (f) Falling head permeability tests were undertaken upon 8 sand samples obtained from the dewatering and geological trenches. A simple falling head permeameter tube was manufactured and used for these determinations. This equipment with notes explaining its use was passed on to DWA field staff for their future use.
- (g) Three salt dilution flow tests were undertaken, one at each of three observation boreholes located along the dewatering trench. These observation boreholes were screened to depths of 1.83 m, 2.24 m and 2.17 m below the water table respectively.
- (h) A drawdown/recovery pumping test was undertaken on the Gulubane collector-well. Within the 9.85 m deep collector-well the rest water level was at 6.11 m before pumping. The collector-well was pumped dry in 102 mins at a discharge rate of 6.2 l/sec. Average inflow into the collector-well during drawdown was 3.6 l/sec. The collector-well water level recovered to 6.38 m in 100 mins, an average inflow rate of 2.5 l/sec for the recovery stage.
- (i) An attempt was made to dewater the trench at the end adjacent to the collector-well site using two diaphragm pumps, located within perforated 200 l drums, each producing 6 l/sec. A drawdown of more than 1 m was achieved. A similar attempt to dewater the central part of the trench produced a drawdown of 0.5 m, insufficient to uncover the end of lateral No. 4 located about 1 m below the rest water level.
- (j) The drilling and test-pumping equipment were moved to the Matshelagabedi site on completion of works at the Gulubane site.
- 1.2.2 Works Undertaken at Matshelagabedi
- (a) A drawdown/recovery pumping test was undertaken on the Matshelagabedi well-shaft. Within the 8.7 m deep well-shaft the rest water level was at 2.87 mbtoc before pumping. The wellshaft was emptied in 62 mins at a discharge rate of 6.2 l/sec. The average inflow into the

well-shaft during drawdown was 0.93 l/sec. The water level recovered to 4.06 mbtoc in 310 mins, at an average inflow rate of 0.90 l/sec during recovery.

- (b) Four laterals were drilled from the well shaft, three at 5.00 mbtoc (3.48 mbsrs) and one at 4.00 mbtoc (2.48 mbsrs). Three of the four laterals produced water, each flowing at 0.5 l/sec.
- (c) Falling head permeability tests were undertaken upon two samples obtained from holes dug for lithological survey and emplacement of an observation borehole, the latter installed by jetting with compressed air.
- (d) One salt dissolution flow test was undertaken at the observation borehole, located 33 m from the collector well, within the Zimbabwean side of the Ramokgwebana River. This observation borehole was screened to a depth of 1.25 m below the water table. The very slow response measured is indicative of very low formation permeability and/or a very low through-flow rate.
- (e) A drawdown/recovery pumping test was undertaken on the Matshelagabedi collector-well after drilling all four laterals. Within the 8.7 m deep collector-well the rest water level was at 2.90 mbtoc before pumping. The collector-well was emptied in 100 mins at a discharge rate of 6.8 l/sec. Average inflow into the collector-well during drawdown was 3.46 litres/second. The water level recovered to 3.16 mbtoc in 190 mins, at an average inflow rate of 1.66 l/sec.
- (f) The drilling and test-pumping equipment were moved to the Tobane 1 collector-well site on completion of works at the Matshelagabedi site.
- 1.2.3 Works Undertaken at Tobane 1
- (a) Five additional laterals were drilled from the collector well, three at 6.00 mbtoc (4.00 mbsrs), one at 5.50 mbtoc (3.50 mbsrs), and one at 5.00 mbtoc (3.00 mbsrs). Two of the five laterals produced small quantities of flowing water.
- (b) A drawdown/recovery pumping test was undertaken on the Tobane 1 collector-well after drilling of laterals. Within the 8.2 m deep collector-well the rest water level was at 4.8 (mbtoc) before pumping. The well was emptied in 31.6 mins at a discharge rate of 6.7 l/sec. Average inflow into the well during drawdown was 0.94 l/sec. The water level recovered to 6.58 (mbtoc) in 250 mins, at an average inflow rate of 0.31 l/sec.
- (c) The drilling and test-pumping equipment were moved to the Tonota stores for storage on completion of works at the Tobane 1 collector well site.

1.2.4 Reporting to DWA

Progress and findings were described to a DWA project review group. Results of drilling, testpumping, dewatering and ancillary exercises were described. The meeting concluded that:

(a) An adequate well point dewatering system was required if extension of laterals across sandriver channels at shallow depths is to be successful.

Figure 4. Flow chart of activities undertaken

- (b) A ground penetrating radar system is needed to adequately determine lithological variations with depth across sand rivers
- (c) The refurbished BGS rig or a new drilling rig to is needed to undertake the drilling of collector well laterals on a production basis. DWA requested clarification of the current status of the BGS rig and equipment, and a quote for the purchase of a new rig. DWA also requested an estimate of the current cost per metre of drilling laterals. A quote for a replacement drilling rig is presented in Appendix B.
- (d) DWA declared the pilot project stage of the project ended. The meeting concluded that much remains to be resolved about the hydrogeology of sand-rivers but that these factors could be studied during the production collector well phase.

2. STUDIES UNDERTAKEN

The primary aim of the pilot project was 'to assess the application of collector well systems to abstraction of groundwater from sand-rivers in Botswana'. Methods of collector well construction, and drilling and installation of laterals were evaluated at sites selected by DWA. Short term studies were undertaken at these sites, using methods devised, to assess the viability of a collector well system use. The studies included determination of the hydraulic characteristics of the sand-river channel adjacent to the collector well as well as the hydraulic nature of the collector well. Several of these methods are novel and have not previously been applied to the study of sand-rivers. They are described section "2.4 Ancillary Studies" below. Short term visits were undertaken at the end of the annual dry season, when water levels and flow rates along sand-river channels were at their lowest. The results of these studies indicated the complex nature of sand-river sediment infill.

Within this joint project some site activities are undertaken by DWA personnel and some by BGS personnel with the assistance of DWA staff. These activities are itemised in a flow diagram (Figure 4) and described below.

2.1 Sand-river Channel and Sediment Infill Survey

DWA staff use sand probing and sediment sampling methods introduced by Nord (1985) and Wikner (1980) to determine sand river channel shape, sediment infill depth and variations in sediment lithology with depth. These methods are used to locate water bearing alluvial sands suitable for development, and sites for well-shaft excavation, adjacent to target villages. River channel dimensions determined at each of the test sites are presented in Table 3.

Site	River name/ river size	Channel max. depth (m)	Channel depth range (m)	Channel width (m)	Channel saturated cross section area (m ²)
Borolong	Shashe/Minor	3.65	1.8-3.65	65	117
Chadibe	Shashe/Minor	5	3-5	60	220
Mathangwane	Shashe/Minor	5	3.5-5	60	180
Masunga 1	Tati/Sub-minor	4.5	3-4,5	38	45
Masunga 2	Tati/Sub-minor	5	3.5-5	47	100
Tobane I	Motloutse/Major	10.5	8-10.5	165	1071
Tobane 2	Motloutse/Major	10	6-10	120	765
Gulubane	Shashe/Minor	10	9-10	44	173
Matshelagabedi	Ramokgwebana/ Intermediate	10	9-10	52	270

Table 3. Sand-river channel dimensions determined at collector well sites.

2.2 Well-shaft Excavation

At each site DWA staff excavate a 2.2 m diameter well-shaft into the river bank, from a point close to the sand river channel but above flood level, to a depth below the base of the sand-river infill. The diameter of the well-shaft is large enough to allow installation of a 2 m diameter ARMCO corrugated galvanised steel sheet tube; based upon designs and methods developed by BGS in Zimbabwe to minimise time taken to excavate and construct a well-shaft. Boulders of dolerite and unweathered basement complex rocks can hinder excavation and steel tube emplacement, the use of explosives may be required to effect their removal. Where possible, excavation should be undertaken where sufficient depth of weathered basement has been proven by trial drilling. Lithological samples should be collected at regular depth intervals during excavation and described. The degree of weathering, incidence of fracture zones and groundwater inflow zones should also be recorded. Following insertion of the well casing the annulus between the casing and the shaft wall should be gravel packed to stabilise the casing. The status of each test site shaft pre-lateral installation is presented in Table 4.

Site	Well depth (mbtoc)	Rest water level (mbtoc)	Notes - status pre-lateral installation
Borolong	9.5	8	Dry
Chadibe	n/r	n/r	Dry
Mathangwane		5.6	Dry, backfilled to 9 m above dolerite boulders
Masunga 1	12	4.9	Low inflow
Masunga 2	9	3,8	Moderate inflow, dug into fissure zone
Tobane 1	8.4	4.2	Moderate inflow
Tobane 2		7.5	Moderate inflow
Gulubane	10.1	6.1	Very low inflow
Matshelagabedi	8.7	2.9	Moderate inflow, dolerite boulders caused casing to settle from vertical

Table 4.

Well-shaft dimensions and condition on excavation at test sites.

2.3 Test Pumping of Well-shaft Pre-installation of Laterals

The well-shaft is test pumped before erection of drilling equipment. Either an air operated centrifugal pump (Figure 5a) or an air operated diaphragm pump (Figure 5b), both of nominal 6 l/sec capacity, is used to empty the well-shaft. Water levels are monitored at 1-2 min intervals, and discharge levels determined at 10 min intervals, during the drawdown phase. On pumping all storage water from the well-shaft, if significant inflow occurs, the pump is left to operate for several minutes during which time it will pump a mixture of air and water. The discharge rate of water pumped should be that of inflow of water into the well-shaft. Pumped water should be discharged at a point sufficiently distant from the well-shaft to preclude its recharge to the sand-river during the test and subsequent recovery. The pump is then switched off and removed from the well-shaft, the water level being left to recover. Water level measurements during the recovery phase are taken, initially at 1 minute intervals for the first 4 or 5 hr then at 5 or 10 min intervals until at least 75% of the drawdown has recovered.

The total volume of water pumped during the drawdown phase is calculated. The volume of the wellshaft emptied during the test, i.e. the volume of water in storage, can then be deducted from the total amount pumped to produce the volume of water that flowed into the well-shaft during the drawdown phase of the test. The latter volume, in litres, can then be divided by the pumping period in seconds to produce an average inflow rate in litres/second (l/sec). Similarly the volume of well-shaft filled during the recovery phase divided by the period of recovery provides an average inflow rate during the recovery period. The rates of inflow during the drawdown and recovery phases should be approximately the same, but their calculation is dependent upon the apparent radius of the well-shaft. By varying the apparent radius of the well-shaft to equalise the drawdown and recovery inflow rates calculated an effective well-shaft radius can be produced that takes into account the open volume behind the casing that is drained and then refilled during the drawdown/recovery test. The inflow rate calculated should be approximately the same as the rate of inflow determined during pumping after the well-shaft has been emptied of stored water. The calculated inflow rate and effective well-shaft radius can then be applied to the test pumping data obtained after installation of the laterals.

2.4 Ancillary Studies

The methods described below are used to determine the hydraulic and physical characteristics of the sand-river channel and the alluvial sediment infill.

2.4.1 Grain-size Analysis

Since the lateral screens are installed by jetting from the well-shaft, no lithological returns are produced to guide the driller or hydrogeologist as to the nature of the sediments that the laterals are installed within. Some indication of sediment variation with depth and with distance across the channel is needed if factors such as failure of lateral installation or lateral screen blockage are to be avoided. Sediment samples can be obtained by pitting and trenching from above the water table and to a maximum of 0.5 m below the water table. Hence the importance of sediment samples obtained from greater depths during the probing survey and the grain size analyses produced. Grain-size distribution analyses are used to define the proportions of major and minor grain-size components, used to provide first indications of sediment permeability, screen slot size and potential screen blockage problems. The last is most important as, since gravel pack material cannot be installed around the screen, a natural pack must be developed. Therefore the potential for fine matrix movement through coarse grained framework, and the potential for that frame work to collapse, needs to be assessed. The range of sieve sizes used during earlier visits and those of the new set used during the last visit are shown in Table 5.

5b Air operated diaphragm pump

Figure 5.

Compressed air operated pumps used for dewatering and test pumping well -shafts and collector wells

Old set (1995	studies)	New set (1997 studies)				
phi scale	Sieve size	phi scale	Sieve size			
	mm					
-2.7	6.7	-2.7	6.7			
-2.3	5.1	-2.4	5.6			
-2.2	4.75	-2.2	4.75			
-1.75	3.35	-1.75	3.35			
-1.5	2.8	-1.5	2.8			
-1.25	2.3	-1.25	2.3			
-1	2	-1	2			
		-0.75	1.7			
		-0.5	1.4			
-0.25	1.18	-0.25	1.18			
		0	1			
		0.25	0.85			
		0.5	0.71			
0.75	0.6	0.75	0,6			
		1	0.5			
1.25	0.425	1.25	0.425			
· · · · · · · · · · · · · · · · · · ·		1.5	0.355			
1.75	0.3	1.75	0.3			
		2	0.25			
		2.25	0.212			
0.275	2.75	2.5	0.18			
3.75	0.075	3	0.125			
	pan		pan			

Table 5. The ranges of sieve sizes used during the 1995 studies and during the 1997 visit.

Driscoll (1986) describes methods of assessing the degree of sorting of sediments by calculation of an uniformity coefficient, and observing the shape of cumulative % weight distribution curves. The Uniformity Coefficient is defined by dividing the 60% grain size by the 10% grain size. Homogeneous sediments have an uniformity coefficients of 1-1.5, poorly sorted sediments have uniformity coefficients >3. He also describes use of grain-size analysis data to determine screen slot size. For mixed fine to coarse grained sediments Driscoll recommends that the 60% grain size be used to determine the slot size of screen emplaced against a mixed sediment without a gravel pack.

Where samples have bimodal distributions then a method developed by Kovaks (1981), as described in Davies et al (1996), is used to determine the potential for fine matrix movement through a coarse sediment framework, framework collapse and screen blockage, as well as better defining the screen slot size required. The two parts of a bimodal distribution are assessed about an inflection point. The diameters of the 15% (D15C)and 50% (D50C) elements of the coarse segment, and the 15% (D15F), 50% (D50F) and 85% (D85F) elements of the fine segment are then determined. According to the "Kovaks suffusion criteria for bimodal strata" the following conditions may occur:-

If D15F>D15C/4 (A1) yes - fines will not move through coarse grained framework

If D85F>D15C/4 (A2) yes - formation is stable If D50F<D50C/4 (A3) yes - formation will not collapse

If no to the above criteria (A1, A2 and A3) - formation will collapse therefore do not screen.

If 'no' to only A1 then fines will move through the coarser framework material but formation will not collapse. Also the gravel pack should then be designed to be appropriate for the coarse fraction only.

Where F - fine fraction of layer of formation

C - coarse fraction of layer of formation

2.4.2 Salt Dilution Flow Tests

For water supplies from sand-rivers to be sustainable, flow through the sand infill needs to occur throughout the year thus ensuring that water is not being removed from storage alone towards the end of the dry season. Therefore the presence of flow towards the end of the dry season needs to be recognised and evaluated.

Hall (1993) describes how the rate of salt dilution measured down an observation borehole can be used to determine the rate of water flow through an alluvial aquifer. Application of this method is described in Herbert et al (1997). Flow along a sand river can thereby be recognised and evaluated at the critical end of a dry season period.

This test requires the installation of 50 mm diameter screened observation boreholes, drilled to suitable depths into the saturated zone of a sand-river. Various methods of installation have been attempted including:

1. Jetting with compressed air

2. Hammering or driving using a jack hammer (Figure 6a).

3. Pushing in with a heavy weight e.g. the back hoe bucket of a JCB (Figure 6b).

Initial attempts at jetting, using too high an air pressure, resulted in burst air hoses. An alternative, the jack-hammer system, was used to install the majority of observation boreholes to 1-1.5 m below the water table (Figure 6a). In practise, installation to depths >1.5m below the water table was not practical due to sand locking. Problems were experienced with plastic screens splitting and sand locking of the drive pipe within the disposable steel tip. To achieve even these depths installation had to be undertaken within a trench or a pit excavated to the water table. The tips were not truly disposable as they were needed for the drilling of subsequent observation boreholes and laterals, and therefore had to be recovered on completion of testing. At the Gulubane site three observation boreholes were rapidly installed to depths >2 m by pushing steel screens using the back bucket of a JCB (Figure 6b).

The salt dilution flow test requires use of a PhOX conductivity bridge with a sonde located at the end of a 5 m cable, a water level dipper tape, a stopwatch and a bag of common salt (Figure 7a). At each observation borehole the groundwater water conductance is measured at a suitable depth for monitoring. Following the addition of 100-300 gm of common salt, the groundwater in the borehole was agitated to ensure that the salt is dissolved. The sonde is then emplaced within the screened section of the borehole at the pre-determined depth, measured using an attached water level dipper tape, and the rate of dilution of the salt solution monitored by measuring the groundwater conductance at one minute intervals for a period of 1 hr (Figure 7b). The Darcy velocity of flow along the sand-

)

0

0

0

0

 \bigcirc

0

0

 \bigcirc

0

0

0

0

0

0

0

0

Figure 6. Methods of observation borehole installation

6a Using a jack hammer at Tobane I

6b using the back bucket of a JCB at Gulubane

7a. Basic equipment

)

()

0

 \bigcirc

 \bigcirc

0

 \bigcirc

0

0

 \bigcirc

0

0

 \bigcirc

0

Ō

0

0

0

0

7b Equipment in use at Gulubane

Figure 7. Salt dilution flow test equipment

river aquifer is then determined from the rate of decline in salt concentration as described in Herbert et al 1997. Flow rates can be determined at discrete depths within the upper saturated zone using this method. These results are then applied to the cross section area of the channel to determine approximate flow rates that are of the correct order of magnitude. End of dry season sand river flow rates calculated for the full saturated cross sections at each site by salt dilution flow test are summarised in Table 6.

	Estimated flow rate along channel					
Site	m³/day	l/sec				
Mathangwane	101	1.2				
Masunga 1	59	0.7				
Masunga 2	44	0.5				
Tobane 1	442	5.6				
Tobane 2	455	5,3				
Gulubane	206	2.4				
Matshelagabedi	137	1.6				

Table 6. Summary of channel flow rates calculated from salt dilution flow tests at test sites.

2.4.3 Falling Head Permeameter Tests (from Davies and Herbert, 1990)

This method describes determination of vertical permeabilities for formations composed of clean, unconsolidated, nonindurated alluvial sediments. The 1 kg samples collected are totally uncemented and have undergone only a very small degree of compaction. It is considered that if disturbed samples of sufficient thickness are placed within a test cylinder of large enough diameter then realistic vertical permeability values can be determined within a crude falling head permeability apparatus. For this purpose a simple falling head permeameter apparatus was constructed (Figure 8).

The experimental procedure is as follows:-

- (a) The permeameter tube and the retaining mesh are thoroughly cleaned
- (b) A sample is emplaced within the lower part of the tube to a level below that of the hydrometer tube inlet
- (c) The base of the tube is placed firmly upon a plastic sheet underlain by a sheet of foam rubber to stop water flowing out of the tube
- (d) Water is poured into the tube completely filling it
- (e) The distance between the top of the tube and the surface of the sediment plug is measured to determine the thickness of the latter
- (f) The full tube is lifted permitting the water to flow through the plug of sediment
- (g) Ensure that the clear plastic hydrometer tube is clear of sediment before the water level has dropped to level H_0 . Start the stopwatch on the level reaching level H_0 .
- (h) Stop the stop watch when the water level falls to level H_1 and record the time interval t.

Figure 8. Falling head permeameter apparatus

(i) Calculate the vertical permeability of the sample under test by relating the time taken for the water level to drop from H₀ to H₁ to the thickness of the sediment sample using the expression below.

The method of analysis is as follows:-

Assuming quasi-steady-state Darcian flow through the sample, the following formula can be used to determine the permeability/hydraulic conductivity, K, of the samples put into the permeameter:

$$K = \frac{L}{t} \ln \frac{H_0}{H_1}$$

The value of In H_0/H_1 was made common to every test.

where L is the thickness of the sediment sample used (usually 10-15 cm) and t is the time taken for the water level to drop in the permeameter tube from level H_0 to level H_1 .

2.4.4 Hammer Seismic Studies

Wikner (1980) and Nord (1985) recognised that the probing method used to define the shape and nature of sand-river channels was slow and labour intensive. They attempted to use surface resistivity surveys as an alternative but these failed to provide sufficiently accurate data to be of general use. Noting the marked seismic velocity contrast between the sand-river channel infill and the underlying basement rock, BGS proposed the use of an ABEM Miniloc hammer seismic system to define the depth and nature of the infill/country rock boundary. The system was not sensitive enough to recognise changes within the sediment infill.

The use of this system to investigate thicknesses of weathered bedrock in southern Zimbabwe as possible sources of groundwater is described by Davies (1994). The ABEM MINILOC system is a lightweight 3 geophone/channel seismograph system used to conduct shallow refraction surveys. Survey results are produced and analysed in the field on a liquid crystal display that can be down loaded to a printer to produce a hard copy. The system includes a control box, three geophones with connecting cables, a trigger unit with connecting cable, a 7.5 kg steel plate and a 7.5 kg hammer (Figure 9a). The system is easily man portable. A two or three man crew is required, one to strike the plate, one to place the triggering device and third to operate the data collection system (Figure 9b). When the latter system is set to automatic the third man is not required. Typical seismic velocities for formations met in Botswana and Zimbabwe are presented in Table 7. The depth of penetration of the system is limited to about 20 m. The seismic data produced can readily be used to identify the thickness of the sand/regolith layer, depth to the bedrock and the nature of the bedrock. The nature of vertical fracture zones can be identified, i.e. whether they are tight or open.

0

 \bigcirc

0

 \bigcirc

D

0

 \bigcirc

0

 \bigcirc

0

0

0

0

0

0

0

0

0

9a. Seismic system components

9b. Equipment in use at Masunga

Figure 9.

Hammer siesmic equipment

Material	Seismic velocity range	
Dry Loose Soil	300-1000 m/sec	
Clays	1600 m/sec	
Saprolite	1800-2500 m/sec	
Saprock	2200-3000 m/sec	
Weathered Granite/Gneiss	3000-4000 m/sec	
Fractured Granite/Gneiss	3500-4500 m/sec	
Massive Granite Gneiss	4500-6000 m/sec	
Air	330 m/sec	
Water	1450 m/sec	

Table 7. Typical seismic velocities of lithological formations and media met in NE Botswana.

Hammer seismic studies were undertaken at Mathangwane, Masunga and Tobane to confirm depths to bedrock/thickness of sand determined by the probing studies. The analyses indicate depths to channel base that correlate well with depths obtained from dynamic probe traverses at Masunga and Mathangwane. Spurious results were obtained at Tobane indicating that improved correlation of results needs to be undertaken before this system can provide satisfactory depths to saturated zone and bedrock where very thick sand layers are present.

More recent attempts at using geophysical survey methods to define the depth and nature of the channel/bedrock interface, the nature of the sediment infill and location of the water table within sand river channels or similar deposits include:

As part of a study of "Subsistence Irrigation from Shallow Aquifers", Ekstrom et al (1996) investigated shallow alluvial aquifers along the ephemeral Umzingwane River in Zimbabwe. The geophysical DC-resistivity traversing and imaging method was used to map the geology, with the aim of finding out how different geological boundaries affect the size of the alluvial aquifers. Generally the resistivity results indicated alluvium thicknesses of more than 20 m at some places. The DC-resistivity method worked satisfactorily in the investigated environment but it was not supplemented with data from drilling, therefore the reliability of the interpreted geology results are open to question.

Numerous attempts have been made in the UK and else where to use the ground penetrating radar (GPR) survey method to study the composition of modern alluvial sediments along present day river channels. An example is provided in Davies et al (1995a) of a GPR traverse across the Tati River south of Francistown. Bedding features within the sediment infill, the sediment filled channel/bedrock boundary and the water table can be discerned from the radar image produced.

2.4.5 Dewatering Exercise

Studies of sand-river sediments at Masunga indicate that the 1 in 100 year depth of channel scour during major flood episodes lies at about 1.5 m below the sand-river surface (Herbert et al, 1997). Therefore laterals emplaced at 1 m below the dry season water table level i.e. 2.5 m below the sand-river surface should be well below the scour level of even major flood events. If water continues to flow down stream to an abstraction site during the dry season the water level is unlikely to decline by more than 0.5 m. Therefore the installation of laterals at 1-2 m below the dry season water table level would appear to be an attractive option considering they would probably be emplaced within medium to coarse sands. Herbert (1985) devised a "rolling" groundwater control system using parallel lines of well points between which the water table could be lowered sufficiently to permit the excavation of a trench without the side walls collapsing to permit extension of a lateral drilled from a collector well at shallow depth to be extended by hand coupling of screened sections (Appendix C).

In the absence of well point abstraction systems the use of 6 l/sec capacity diaphragm pumps enclosed in perforated 200 l drums was attempted within a wide trench excavated to the water table at the Gulubane site but without much success. If the system described by Herbert (1985) were successfully installed then it would be possible to:

- undertake detailed geological investigation of sediments below normal water table level by trenching.
- install larger diameter laterals made up of screen with appropriate slot size and gravel pack surrounds below the depth of scour, by hand. Such laterals, acting as drains, could be laid across the full width of the stream using the rolling system of overlapping parallel series of well points described.

2.4.6 Sedimentology of Sand-river Alluvium

As indicated in Table 3, the thickness of sand-river channel sediments varies from 5 m in minor river channels to 10 m in major channels. Sediments infilling sand-river channels are studied via exploration pits, sand abstraction pits and trenches dug into the sand-river surface. Unfortunately these are 1-1.5 m deep, excavated to the water table. When excavated below the water table the sides become unstable and liable to collapse. Typically the upper 1 m is composed of successive fining upward cycles of very mixed, cross-bedded fine to coarse sands and gravels. Below this sequence occurs a fairly homogeneous medium to coarse sand that could coarsen upwards in a manner described by Crowley (1983) and observed in the Masunga Sand pit (Figure 10a and interpretation in Figure 10b). Deeper sediments could be exposed within trenches dug within dewatered zones as indicated above.

 C^{14} radio-carbon dating of organic material obtained from a sand pit at Masunga indicates deposition at about 50 years BP. These data were use to infer a 1 in 100 year depth of channel scour during major flood events of about 1.3 m.

The need for detailed study of alluvial sediments within the saturated zone of a sand river remains. Earlier studies at Masunga indicated complex sediment distributions, sediments from the upper 1-2 m, the limit of normal investigation, being potentially different from those at greater depths. The trench dug for construction of the Letsibogo dam across the Motloutse River presented an ideal site for such a detailed study of sand river composition.

Silty sediments encountered during drilling of laterals at Tobane and Matshelagabedi indicate the presence of lower permeability, more indurated fined grained clayey sediments at depth, indicative of sediments deposited during more pluvial periods. Sediments such as this are exposed within the main channel upstream of the Matshelagabedi collector well site. Weakly cemented orange-red sediments have been noted occurring at about 2 m below sand-river surface in dewatering pits excavated into the Umzingwane River at Cawood Ranch in south western Zimbabwe, and in a water abstraction pit in the main channel of the Save River at Gudo's Pool in south east Zimbabwe. At Cawood Ranch the farm owner related how his great grand father had, nearly 100 years ago, observed hippos in the muddy reed beds then occurring in the adjacent Umzingwane River, at a site where the channel is now choked with sand.

2.4.7 Other Studies

Detailed levelling of the sand river surface (at 10 m intervals) and water table (at 100 m intervals) was undertaken between the Masunga I and II collector wells (Figure 11). A gradient of 0.005 for the sand river surface and a water table gradient of 0.0013 were determined. Levelling of the water table

 \bigcirc

 \bigcirc

Figure 10a. Section through sand infill within the Tati sand-river at Masunga.

Figure 10b. Interpretation of section in Figure 10a showing main sedimentary structures and decimetre scale.

Figure 11. Levelling sand river surface gradient and water table along the Tati sandriver between Masunga I and Masunga II collector wells. necessitated the digging of a series of shallow exploration pits to the water table between available groundwater abstraction pits. The water levels produced indicated the effects of abstraction and hard rock outcrops acting as dams upon a depressed water table at the end of the dry season.

There is a profound need to monitor water levels, before pumping and abstraction rates at collector well systems, and relate these to rainfall/recharge events, and flow rates down stream if the long term sustainability of sand-river abstraction sites are to be accurately evaluated. Such monitoring has been initiated at Masunga by Andersen (1996).

In addition the future need to assess the influence of points of recharge and potential contamination, as occurring upstream of the Masunga collector well No. 2 where sewage pond outflows directly recharge into the Shashe River, must not be ignored.

2.5 Drilling and Construction of Laterals

The drilling system as presently used requires the drilling of a 100 mm diameter access bore through the well-shaft casing and weathered/solid river bank formation into the channel sands. If clayey material is met then that formation is cased off with 100 mm steel pipe. As far as is practical each lateral is constructed using blank 50 mm diameter casing through the bank formations and slotted screen within the channel sands.

During the pilot study laterals were constructed using following variety of construction components (Figures 12 and 13):-

2" (50 mm) plastic or steel wash down shoe - outer thread as 2" (50 mm) PVC/steel casing, inner thread 36.5 mm left hand disposable tip

2" (50 mm) flush joint blank pipe PVC 0.5 m lengths

2" (50 mm) flush joint blank pipe steel 0.5 m lengths

2" (50 mm) flush joint plank pipe thermoplastic (blue) 0.5 m lengths

2" (50 mm) flush joint slotted pipe PVC 0.5 m lengths with 0.5 mm slots

2" (50 mm) flush joint slotted pipe steel 0.5 m lengths with 0.5 mm slots

2" (50 mm) flush joint slotted pipe thermoplastic (blue) 0.5 m lengths with 0.5 mm slots

3" (75 mm) flush joint blank steel pipe 0.5 m lengths

4" (100 mm) flush joint blank steel pipe 0.5 m lengths

34" (18 mm) flush joint bank steel adductor pipe 0.5 m lengths

34" (18 mm) flush joint bank steel adductor pipe sub with left hand male thread

The drilling equipment package used included a Hydroquest 2 m drilling rig (Figure 14) designed to drill 30 m deep boreholes using 73 mm diameter rock bits on 50 mm OD drill rods, or using a down the hole hammer with 70 mm button bit. The rig was mounted on a circular frame that fitted within a 2 m diameter well-shaft permitting the rig to be moved 360° in its horizontal mode. The rig operation is controlled from a hydraulically operated console mounted alongside or above the rig. A hydraulic power pack, mounted on the rear of the crane truck provides power for the operation of the rig (Figure 15). The following drilling rods, subs, drilling bits and ancillary items are required for the efficient operation of the rig:-

50 mm x 0.75 m taper thread drill rods - 40 No.

73 mm hard formation rock roller drill bits - 3 No.

73 mm tungsten carbide drag bit - 1 No.

60 mm valveless DTH hammer - 1 No.

70 mm diameter hammer button bits - 4 No.

Figure 12. Blue thermoplastic and black pvc slotted 2" diameter screens above steel adductor pipe connected to a 2" diameter diposable point via a left hand threaded connector. The 2" screen slides over the adductor pipe and is screwed onto the rear thread of the point.

 \bigcirc

()

0

0

 \bigcirc

 \bigcirc

 \bigcirc

 \bigcirc

0

 \bigcirc

0

Figure 13. Steel 2" diameter vertically slotted screens with steel disposable wash-down points

Figure 14. Horizontally mounted Hydroquest 2 rig on circular base plate with jacks for mounting within a 2 m diameter well-shaft. Note cradle with drill rods and drilling bits to left of rig.

()

)

 \odot

 \bigcirc

 \bigcirc

0

0

0

0

0

0

)

)

0

)

)

)

Figure 15. Rear of 4x4 Bedford crane truck with hydraulic power pack for the rig mounted on the rear of the truch. Note winch mounted on extendable hoist arm, and 4" diameter temporary steel pipe on back of truck..

Sub adapter - drill rods to hammer - 1 No.

Sub adapter - drill rods to rock bits - 1 No.

Ancillary equipment - kibble, drill rod cradle, hydraulic hoses, lay flat hoses, timbers, dewatering pumps, necessary spares etc.

Compressed air for the operation of dewatering pumps and the drilling element of the rig is provided from two compressors provided by the DWA (Figures 16 and 17).

The complete drilling system is transported to site on a Bedford 'M' series 4x4 truck with crane fitted with winch (Figure 15). A Landrover is required for transport of the driller and crew to and from site.

A quote for the provision of a new drilling system and crane truck is presented in Appendix B

The procedures for drilling rig emplacement and operation during lateral installation are as follows:

- 1. Pump well shaft dry and clean well base using kibble, suspended on hydraulic winch located on crane truck, to remove debris (Figure 18).
- 2. Emplace timbers in well to locate drill at required depth for lateral drilling.
- 3. Locate rig in the well shaft with hydraulic controls box ensuring beforehand that the crane truck has been located close enough to the well side to allow the crane operator to work the hydraulic controls on the side of the truck whilst observing activity down the well (Figure 19).
- 4. Ensure that the two compressors are fully operational and that hydraulic oil and fuel reservoirs have been topped up.
- 5. The hydraulic hoses for operation of rig and pump as well as the discharge hose from the pump need to be secured to avoid pipe creep down the well side during drilling operations.
- 6. When the two man crew are lowered down the well ensure that they have hard hats, ear mufflers and safety goggles to hand, and that all tools are tied to the base of the rig to avoid them being lost in the flooded hole beneath rig base level.
- 7. Drill pipe, drilling bits and necessary tools are lowered down the well on a special cradle. These include a drag bit, a down the hole hammer and bit and sufficient NW drill pipe to allow initial drilling through the river bank into the channel sands.
- 8. Use clusterite tipped U100 coring bit to drill through the shaft casing and obtain a core of the shaft wall rock (Figure 20).
- 9. Drill out through the bank material using the drag bit to drill soft to medium formations and the down the hole hammer to drill hard formations. When drilling dry, hard formations much dust can be generated. The crew must wear respirators under such conditions as it may take several hours to drill through hard formations into the channel sands. On reaching the channel sands and water entering the lateral, drilling is halted and the drill string removed (Figure 21). The rods and drilling bits are stacked in the cradle and withdrawn from the well.
- 10. The kibble containing a known quantity of blank 2" (50 mm) pipe, slotted 2" (50 mm) pipe, adductor pipe and tools required for coupling these pipes are passed down the well. The first two lengths of screen, two lengths of adductor pipe, disposable point and left hand threaded adductor pipe sub connector are made up and also passed down the well on the kibble. Must

Figure 16. Large capacity Atlas Copco 350 l/sec, 20 bar compressor, used to supply compressed air for drilling and jetting in pipe.

Figure 17. Small capacity 110 lb/in², 125 cfm compressor, used to supply air for dewatering pump operation.

)

)

)

0

 \bigcirc

0

)

0

)

)

)

)

)

Figure 18. Clearing out debris from base of well-shaft with a kibble prior to erection of the drilling rig. Note the Shashe minor size sand-river at Gulubane.

Figure 19.

Lowering the rig down the Masunga well-shaft. Note the position of the winch operator and the truck. The operator is able to observe what is happening down hole whilst operating the winch controls.

Figure 20. Initial drilling through the well-shaft casing using a U100 core bit faced with tungsten carbide clusterite chips. Note rig positioned upon a stack of timbers

)

.)

 \bigcirc

0

 \bigcirc

 \Box

 \bigcirc

0

)

 \bigcirc

)

0

Figure 21. Drilling lateral into water bearing unconsolidated materials. Note drilling crew must wear water proofs and safety glasses during this operation.

unsure that the left hand threaded connection between the adductor pipe and the disposable point is fairly loose thus ensuring ease of uncoupling on cessation of pipe jetting.

- 11. The crew of driller and assistant use the drill head to push screens/blank pipe and adductor rods into the channel sand formation. 0.5 m length of adductor pipe is coupled first (Figure 12). The next length of screen is slid over the adductor pipe and coupled up, the assembly is then pushed further in through the hole (Figure 22). When the effect of sand locking becomes apparent, only then use compressed air through the adductor pipe and disposable tips jets to jet in the screen and casing. Do not rotate the screen. A maximum amount of 10 m of screen should be coupled on followed by sufficient plank pipe to insert the lateral to a maximum length of 23-25 m beyond which the effects of sand locking become to great for the screen to be safely emplaced further. During jetting much water can be blown out of the lateral with sand and gravel chips (Figure 21). Therefore it is essential that the crew members operating the rig wear water proofs, gum boots and safety goggles.
- 12. On achieving maximum lateral emplacement, a distance that can only be adjudged by an experienced operator, when the screen cannot be pulled or pushed further without risk of fracturing the screen or central adductor pipe, the central adductor pipe is turned in a clockwise direction to dissengage the left hand thread at the end of the pipe from the disposable point. The adductor pipe is withdrawn from the lateral, the number of lengths withdrawn being noted, and they are stacked in the kibble. On completion the kibble, adductor pipes and pipe handling tools are withdrawn from the well.
- 13. The rig is then repositioned by rotating the unit on its base to the next lateral drilling position and the above procedure is repeated. Periodically during drilling excess inflow water is pumped from the well.
- 14. If the has to be emplaced at a higher level the rig has to be lifted from the well to allow emplacement of additional timbers. Prior to rig removal the well should be pumped dry to ensure that the timber stack does not float and move. Add the required timbers and re-erect the rig in the well.

During the pilot project 45 laterals were drilled at nine collector well sites (Table 8). Two methods of installing lateral screens into river sands have been attempted used:

1. Using the telescoped method slotted steel screen of 88.9 mm diameter was jetted into river sands, using a central adductor tube and disposable end tip, with compressed air as the flushing medium (Figure 12). On reaching the required distance the adductor pipe was back screwed from the disposable tip leaving the screen in place. Difficulties were experienced where ridges of hard rock had to be drilled within the river sands using down the hole hammer equipment. Location of screens within these remote holes with the basal sand sequence proved to be very difficult if not impossible. While this system of screen emplacement proved to be successful at Masunga and Mathangwane within coarse sand sequences difficulties were experienced at Tobane where the silty sands encountered passed through the screen slots causing sand locking problems. These resulted in failure to unscrew the central adductor pipe that ultimately resulted in the shearing and loss of some of the adductor pipe and screen.

Figure 22. Installation of 2" screens and pipes.

,

	Lateral details-drille	ed depth (mbtoc) x	Discharge/	Discharge/
Location	lateral length (metre	es), discharge, screen	drawdown rate	drawdown rate
	lengths		pre laterals	post laterals
Borolong	1) 8.75x26 dry	4) 8.5x17 dry	Dry	45 m ³ /day for
	2) 8.5x26 flowing	5) 8.5x25 dry		450 min,
	3) 8.5x17 dry	6) 8.75x16 low		drawdown of
		flow		0.50 m
Chadibe	1) ?x23 low flow	3) ?x7 low flow	Dry	45 m ³ /day,
	2) 2^{7} low flow			drawdown of
1				0.28 m
Mathan-	1) 8.7x13.5 dry	4) 7.7x30.4	Dry	21.6m ³ in 130
gwane	2) 8.4x3.4 dry	flowing, 0-20 steel		min, recovery to
	3) 8.4x3.4 dry	5) 7.7x20.3+		75% <3 hr
		flowing, 0-20 steel		
Masunga	1) 7.9x28.5 dry	4) 5.8x29.3 dry	Not tested	32.6m ³ in 154
1	2) 6.9x23.3 dry	5) 5.8x24.8 dry	Į	min, recovery to
	3) 5.8x21.8	6) 5.3x23.3		75% <3.5 hr
	flowing 0-20 steel	flowing, 0-19		
		PVC, 19-24 steel		
Masunga	1) 7.7x27.8	4) 6.3x15.4	3.3 l/s for 1 hr,	24.8m ³ in 46
2	flowing, 0-20	flowing, 0-13 steel	drawdown 2.2 m	mins recovery
	PVC, 20-25 steel	5) 6.3x13.1 dry		to 75% 6 hr.
	2) 7.7X27.8	ļ	ļ	
	Howing, 0-20			
ļ	PVC, 20-25 steel			
	5) 0.5X15.4			
Tohano	1) 7 2×6 8 dm	3) 7 2×44 flowing	11/000 for 60	14.5 m ³ in 32
	$(1) 7.2 \times 0.5 \text{ my}$	0_{15} PVC 15-25	min drawdown	14.5 m m 52
14	$\int \frac{2}{12x^{4}} \int \frac{1}{2x^{4}} \int \frac$	steel	33 m	75% > 360 min
l	PVC 15-25 steel	3001	5.5 m	7570×500 mm
Tobane	1) 6x15 dry	4) 6x25 flowing	4 l/sec for 60	6.7 l/sec for 32
15	2) $5x16 dry$	5) 5 5x25 flowing	min. drawdown	min. drawdown
	3) 6x24 flowed but	of otomic nothing	3.3 m	3 14 m. inflow
	stopped			0.94 l/sec
Tobane 2	1) 9 8x30 flowing	$3) 9 8x9 \pm flowing$	2.8 1/sec for 60	$22.5m^{3}$ in 40
	2) 9.8x9+ flowing	4) 9.8x9+ flowing	min. drawdown	min. recovery to
		.,	2.53 m	50% after 360
				min
Gulubane	1) 8,85x15	3) 8,85x17.5	2.8 l/sec for 77	6.3 l/sec for 102
	flowing, 12.5-15	flowing, 13-17	min, drawdown	min, drawdown
	PVC	PVC	2.79 m, inflow	3.74 m, inflow
	2) 8.85x17	4) 7.09x19	0.3 l/sec	3.6-4.25 l/sec
	flowing, 13-17	flowing, 8-19 PVC		
	PVC			
Matshel-	1) 5.00x10.5 dry	3) 4,00x10	6.5 l/sec for 60	6.9 l/sec for 100
agabedi	2) 5.00x17 flowing	flowing, 0-10 PVC	min, drawdown	min, drawdown
			of 5.75 m,	5.60 m, inflow
		4) 4.00x10	inflow of 0.9	3.5 1/sec
		flowing, 0-10 PVC	l/sec	

T.	610	Q .	Latorala	dellad	and	constructed	of	toot	sitos	during	tha	nilat	project	
1.0	010	νυ,	Daterais	unnou	anu	construction	aı	test	21102	uunng	uic,	pnot j	project	•

2. The duplex system utilised blank outer steel casing of 3" (75 mm) diameter within which was located plastic screen with a disposable tip. On reaching the required distance the outer casing was pulled back exposing the inner 2" (50 mm) screen. When used at Tobane this system also failed due to silty sand flowing into the annulus between the outer casing and inner screen, sand locking the screen to the casing.

The methods of drilling and emplacement of screens within sand formations need further refinement before use in geological conditions as met at Tobane to enable use to be made of the groundwater resources there.

2.6 Retest Collector Well after Installation of Laterals

On completion of drilling of laterals, the drilling rig, ancillary equipment and timbers are removed from the collector well and the water level allowed to fully recover before the collector well can be test pumped. An air operated diaphragm pump of nominal 6 l/sec capacity is used to empty the collector well to dryness. Water levels are monitored at 1-2 min intervals and discharge rate determined at 10 min intervals. On pumping out the collector well, the pump is left to operate for several minutes during which time it will pump a mixture of air and water, the amount of water pumped being equal to the inflow of water into the collector well. The pump is then switched off and the well water level left to recover. Water level measurements are taken initially at 1 min intervals for the first 4 or 5 hr then at 5 or 10 min intervals until at least 75% of drawdown has recovered. The yield of an individual lateral may be determined by noting the time taken to fill a 3 or 5 gallon (13.5 or 22.5 l) bucket suspended beneath the out flow from the respective lateral. When measuring the yields of laterals beware of leakage in the annual space between the lateral and the drilled hole through the bank material.

The total volume of water pumped during the drawdown phase is calculated using measured discharge rates during the drawdown phase and appropriate time intervals. The volume of the collector well emptied during the test, i.e. the volume of storage water calculated using the effective radius apparent from the pre-lateral installation pumping test, can then be deducted from the total amount pumped to produce the volume of water that flowed into the collector well during the drawdown phase of the test. The latter volume, in litres, can then be divided by the pumping period in seconds to produce an average inflow rate in litres/second. Similarly the volume of collector well filled during the recovery phase divided by the period of recovery provides an average inflow rate during the recovery period. The rates of inflow during the drawdown and recovery phases should be approximately the same as the rate of inflow determined during pumping after the well-shaft has been emptied of stored water. The inflow rate and effective well-shaft radius calculated during the pre-lateral installation test can then be compared with these test pumping data obtained after installation of the laterals. Data from both tests, plotted on arithmetic graphs, are compared to show differences/improvements in yield/drawdown/recovery characteristics.

Herbert (1992) attempted to analyse test pumping data derived from Chadibe and Borolong using the methods of Pappadopolos and Cooper, and Rushton and Singh. Poor data fits were produced, and so the data could not be analysed using these methods. Analyses of recovery data using the Theis recovery method produced inconclusive results. It is concluded that aquifer parameters of the channel sands cannot be determined using test pumping data obtained from collector wells. Such data is dominated by storage in the well, rates of flow along laterals, and possible inflow from behind the well casing be that at leakage through the bedrock of from the annular space between the lateral and the bedrock. Herbert et al (1997) concluded that the best way to interpret the behaviour of large diameter wells with high storage is to compare rates of recovery of water levels after pumping. This

is because normal rates of pumping greatly exceed the rates at which the aquifer can replenish the well during the drawdown phase. It is only during the recovery phase that the contribution of the aquifer can be accurately determined. Herbert et al (1997) describes a method of calculating a 'lateral parameter' that, once determined ,can be used to predict drawdown and recovery of water level within the well during different pumping regimes.

2.7 Undertake Completion Studies

Additional studies that could be undertaken by DWA staff include the following.

2.7.1 Additional Pumping Tests - Step Tests

Step drawdown/recovery tests, with more than six steps need to be undertaken on each collector well after completion. To be effective these time consuming tests should be undertaken at various river water level stages during the year to indicate how much water can be contributed to the collector well from the upper and lower parts of the channel infill sequence.

2.7.2 Hydrochemical Analysis of Water Samples

Water samples need to be obtained from the upper and lower parts of the saturated channel infill during the initial channel survey stage. The major and minor ion contents will indicate the state of the water in the sand i.e. recently recharged waters should have low specific electrical conductance, acidic pH, high Eh and be of $Ca(HCO_3)_2$ type. Older waters obtained from the basal parts of the channel may well have higher SEC, alkaline pH and low Eh be of NaHCO₃ type with moderate total dissolved iron content. Water samples should then be obtained on collector well completion for comparative purposes. Introduction of acidic oxygenated water into the basal stagnant parts of the channel may result in flocculation of dissolved iron oxides in the ferric form, with their deposition as a weak cement, thus reducing sediment permeability. Analyses of water samples are undertaken at a DWA laboratory.

3. **RESULTS**

3.1 Gulubane

3.1.1 Survey of Sand-river Site

At Gulubane the upper reaches of the Shashe sand river conform to the minor form of sand-river in the classification of Nord (1985) and Wikner (1980). At the site of the collector well the Shashe River is 46.6 m wide. The collector well is located on the left bank of the river 2.5 km north west of Gulubane and 1 km south of Madwaleng (Figure 23), about 6 m from the edge of the channel where the ground surface is 4.25 m above the sand-river surface. The DWA probed survey indicates that the channel base lies at 10 m below the sand-river surface (Figure 24). The rest water level was 1.34 m below the sand-river surface. A saturated channel cross section of 173.3 m² was determined. Depth sediment samples were latterly obtained from augered holes at intervals across the river bed. The grain size analyses of these samples are presented in Appendix E. The lithological variations noted with depth agree with those noted from the geological trench reported below.

Figure 23. 1:50 000 scale location map of the Gulubane collector well site.

Gulabane Collector Well, Shashe River Cross-section (metres from top of sandriver surface)

Figure 24. Probed cross section across Shashe River at Gulubane site showing location of laterals, observation boreholes and collector well.

3.1.2 Well-shaft Excavation

The 2.2 m diameter well-shaft was excavated to 10 m below top of casing, 5.3 m below sand-river surface level. The well-shaft located excavated adjacent to a vertical dyke of hard quartz feldspar rock (Figure 25) through which laterals had to be drilled to reach the sand-river channel. The lithological log of the shaft has not been reported. The well shaft was cased with a corrugated galvanised steel sheet tube set at vertical. The casing had not been gravel packed at the time of drilling. The top of the well-shaft is located above normal river flood level.

3.1.3 Pre-lateral Installation Pumping Test

Prior to installation of timbers and rig the shaft was test pumped at a discharge rate of 2.8 l/sec for 77 min, by which time the well had been pumped dry. The rest water level before pumping was 6.705 mbtoc, a drawdown of 2.79 m being achieved during the test. Pumping was continued for five minutes using the compressed air driven diaphragm pump, which is capable of pumping a mixture of water and air. During this time water was pumped at a rate of 0.3 l/sec, this being the rate of water inflow into the well shaft from the formation around the shaft casing. An average inflow rate of 0.04 l/sec was calculated from the drawdown data (Figure 26). The residual drawdown was 2.015 m after 1246 minutes, a recovery of 27.6%, during which time an average inflow rate of 0.045 l/sec was determined (Figure 27). The slow recovery and inflow rates are indicative of little hydraulic connection between the well-shaft and the sand-river channel and the general very low permeability of the weathered basement rocks. An effective well-shaft diameter of 2.78 m was calculated from the test pumping and recovery data are tabulated in Appendix D.

3.1.4 Ancillary Studies

3.1.4.1 Sediment grain size analyses

Fourteen sediment samples obtained from the geological inspection trench were sieved through a nest of 22 sieves. Samples 1a to 7a were obtained from fairly homogeneous sand formations located 1.75 m below the sand river surface, about 0.5 m below the water table. They appear to be representative of the formation penetrated by Lateral No. 4. Samples 1b to 7b were obtained from very mixed, cross bedded sand and gravel formations that were recently deposited. The results are tabulated in Appendix E. Cumulative weight % grain size distribution curves for each of the samples sieved are presented in Figures 28 and 29. Data required for determination of the uniformity coefficient of each sample are presented in Table 9. Uniformity coefficients for samples 1a-7a vary between 2.2 and 3.1, indicative of mixed sediments. In contrast the uniformity coefficients for samples 1b-7b vary between 2.3 and 4.3, indicative of mixed to poorly sorted sediments. The average screen slot size for the sediments analysed appears to be 1mm, except sample 6b which indicates a slot size of 2mm.

Sample No.	Distance from left bank (m)	Depth (m)	10% grain size (mm)	60% grain size (mm)	Uniformity coefficient	Screen slot size (mm)
la	2	1.75	0.4	0.98	2.5	1
2a	5	1,75	0.4	1	2.5	1
3a	10	1.75	0.32	1	3.1	1
4a	15	1.75	0.32	1	3.1	1
5a	20	1.75	0.4	1.1	2.2	1
6a	25	1.75	0.4	1.08	2.7	1
7a	30	1.75	0.33	1.02	3.1	1

Figure 25. Quartz-feldspar dyke cropping out upstream of the Gulubane test site.

Figure 26. Pre-installation of laterals test pumping data, Gulubane well-shaft

Figure 27. Pre-installation of laterals recovery data, Gulubane well-shaft

Figure 28. Grain size cummulative % weight curves, Gulubane. Samples 1a-7a from 1.75 m depth

Grain-size Analysis - Gulubane Geological Trench

Figure 29. Grain size cummulative % weight curves, Gulubane. Samples 1b-7b from 1.00 m depth

Sample No.	Distance from left bank (m)	Depth (m)	10% grain size (mm)	60% grain size (mm)	Uniformity coefficient	Screen slot size (mm)
16	2	1	0.46	1.05	2.3	1
2b	5	1	0.3	1.05	3.5	1
36	10	1	0.46	1.1	2.4	1
46	15	1	0.31	0.89	2.9	1
56	20	1	0.46	1.15	2.5	1
6b	25	1	0.48	2.05	4.3	2
7b	30	1	0.028	1.05	3.8	1

Table 9. Determination of sample uniformity coefficients and suitable screen slot sizes

3.1.4.2 Kovaks analysis for sediment stability

The general shape of the cumulative % weight grain size distribution curves indicates bimodal grain size distributions. Therefore analysis for sediment stability according to the method of Kovaks was undertaken upon the grain size analysis data. This analysis assesses the potential for sediment framework collapse and/or movement of fine matrix material towards a well screen during pumping, with potential for screen blockage.

The distribution curves of sediment samples 1a-7a are presented on Figure 28, basic data required for the Kovacs analysis obtained from these curves being presented in Table 10a. The results of the analysis are shown in Table 10b. As can be seen from these results most of the sediments tested are stable. Fine matrix sediments will tend to pass through the coarse sediment framework in sands 3a, 4a and 5a. Within these formations, given sufficient fluid velocities, fines will be carried towards the bore hole screens where, if the slot size is too small to allow their passage into the borehole they will block the screen slots.

No.	Inflec- tion point %	D1	5C	D5	0C	D15F		D50F		D85F	
		%	mm	%	mm	%	mm	%	mm	%	mm
la	90	91.5	1.3	95	2.0	13.5	0.44	45	0.84	76.5	1.2
2a	85	87.3	1.7	92.5	2.0	12.8	0.44	42.5	0.80	72.5	1.2
3a	80	83.0	1.9	90	2.5	12.0	0.35	40	0.70	68	1.2
4a	82	84.7	1.9	91	2.5	12.3	0.35	41	0.68	69.7	1.2
5a	65	70.3	1.8	82.5	2.4	9.8	0.41	32.5	0.80	55.3	1.2
6a	68	72.8	1.4	84	3.0	10.2	0.43	34	0.74	57.8	1.3
7a	77	80.5	1.2	88.5	2.5	11.6	0.36	38.5	0.71	65.5	1.3

Table 10a.

Basic data derived from cumulative % weight distribution curves of samples 1a-7a as required for Kovaks analysis.

No.	A1	A2	A3	Notes
	Is D15F>D15C/4	ls D85F>D15C/4	Is D50F <d50c 4<="" th=""><th></th></d50c>	
la	0.44>3.25 yes	1.1>0.33 yes	0.44<0.5 yes	Formation stable
2a	0.44>0.42 yes	1.2>0.42 yes	0.44<0.5 yes	Formation stable
3a	0.35>0.46 no	1.2>0.46 yes	0.35<0.63 yes	Fines will pass through framework
4a	0.35>0.48 no	1.2>0.48 yes	0.35<0.63 yes	Fines will pass through framework
5a	0.41>0.45 no	1.2>0.45 yes	0.41<0.6 yes	Fines will pass through framework
6a	0.43>0.35 yes	1.3>0.35 yes	0.43<0.75 yes	Formation stable
7a	0.36>0.30 yes	1.25>0.30 yes	0.36<0.63 yes	Formation stable

Table 10b. Results of Kovaks analysis on samples 1a-7a.

The distribution curves of sediment samples 1b-7b are presented on Figure 29, basic data required for the Kovacs analysis obtained from these curves are presented in Table 11a. The results of analyses are shown in Table 11b. These results show that only the sand formation at 5b is entirely stable. Fine matrix sediments will tend to pass through the coarse sediment framework in all of the other test sediments. Within these formations, given sufficient fluid velocities, sediment fines will be carried towards the bore hole screens where, if the slot size is too small to allow their passage into the borehole they will block the screen slots. These poorly sorted and very mixed sediments are modern, recently derived from the erosion of soils and weathered basement. Fortunately all these sediments occur above the water table.

No.	Inflection point %	D1	5C	D5	0C	D	15F	D	50F	D	35F
		%	mm	%	mm	%	mm	%	mm	%	mm
16	84	86.4	1.8	92	2.1	12.6	0.40	42.0	0.84	71.4	1.3
2b	80	83.0	1.8	90	2.3	12.0	0.30	40.0	0.70	68.0	1.3
3b	73	77.5	1.9	86.5	2.4	11.0	0.43	37.5	0.75	62.0	1.2
4b	84	86.4	1.8	92.0	2.3	12.6	0.31	42.0	0.64	71.4	1.1
5b	62	67.7	1.4	81.0	2.8	9.3	0.42	31.0	0.77	52.7	1.3
6b	50	57.5	2.0	75.0	3.0	7.5	0.40	25.0	0.70	42.5	1.2
7b	73	77.5	2.0	86.5	3.0	11.0	0.28	37.5	0.62	62.0	1.2

Table 11a.

Basic data derived from cumulative % weight distribution curves of samples 1a-7a required for Kovaks analysis.

No.	A1	A2	A3	Notes
	Ls D15F>D15C/4	ls D85F>D15C/4	Is D50F <d50c 4<="" th=""><th></th></d50c>	
16	0.4>0.45 no	1.3>0.45 yes	0.84<0.53 no	Fines will pass through framework
2b	0.3>0.45 no	1.3>0.45 yes	0.7<0.58 no	Fines will pass through framework
3b	0.43>0.48 no	1.2>0.48 yes	0.75<0.6 no	Fines will pass through framework
4b	0.31>0.45 no	1.1>0.45 yes	0.64<0.58 no	Fines will pass through framework
5b	0.42>0.35 yes	1.25>0.35 yes	0.77<0.7 no	Formation stable
6b	0.4>0.50 no	1.2>0.5 yes	0.7<0.75 yes	Fines will pass through framework
7b	0.28>0.49 no	1.2>0.49 yes	0.62<0.75 yes	Fines will pass through framework

Table 11b.	Results	of K	Covaks	analysis	on	samples	1a-7a.
					~	~~~ p + • • •	

3.1.4.3 Salt dilution flow tests

Salt dilution flow tests were undertaken at three observation boreholes at the Gulubane test site. Details of three observation boreholes installed, using a JCB at intervals along the main trench are presented in Table 12a. Following salt emplacement dilution was monitored at 1 min intervals for at least 60 min. The results are presented as a series of graphs on Figure 30. Late time data have been used for gradient calculations required for determination of Darcy velocity in each case. Using these data applied to the channel saturated cross section area possible down channel flow rates are calculated (Table 12b). If flow takes place through the entire saturated section then water flows through the system at 2.38 l/sec (205.6 m³/day). If flow only occurs through the upper 2 m of the saturated section the a water flow rate of 1.30 l/sec (112.7 m³/day) occurs. Using the salt dilution flow data average permeabilities for the saturated channel sediments of 148-207 m/day have been calculated (Table 12b).

Observation Bh No.	Obs Bh 1	Obs Bh 2	Obs Bh 3
Distance from collector well (m)	20	30	40
Borehole depth (mbtoc)	2.5	2.5	2.5
Borehole top (mbsrs)	0.66	1.06	1.05
Water level (mbtoc)	0.68	0.28	0.29
Water level (mbsrs)	1.34	1.34	1.34

Table 12a. Details of observation boreholes installed at the Gulubane test site.

Figure 30. Salt dilution flow tests, Gulubane, graphs of the results.

Obs Bh No.	Darcy velocity (m/day)	Cross section area (m ²)	Discharge (m ³ /day)	Discharge (l/sec)	Permeability (m/day)
To probed			<u> </u>		
depth of					
channel					
Obs Bh I	1.11	18 x 3.5	70.1	0.81	148
Obs Bh 2	1.55	10.5 x 4.5	65.6	0.76	207
Obs Bh 3	1.11	18 x 3.5	69.9	0.81	148
		Totals	205.6	2.38	
Top 2 m of saturated zone					
Obs Bh 1	1.11	18 x 2	40.1	0.46	148
Obs Bh 2	1,55	10.5 x 2	32.6	0.38	207
Obs Bh 3	1.11	18 x 2	40.0	0.46	148
	T	Totals	112.7	1.30	

Table 12b. Results of analysis of salt dilution flow test data from the Gulubane test site.

3.1.4.4 Falling head permeameter tests

Using the falling head permeability apparatus described in section 3.4.3. the vertical permeability of 8 sediment samples obtained from the geological and dewatering trenches at the Gulubane test site were determined (Table 13). The samples obtained from below the water table in the geological trench produced permeabilities of 90.5-183 m/day. Samples obtained from beneath the water table in the dewatering trench also produced high K values. That obtained from more than a metre below the water table using the back bucket on the JCB (sample No. 8) produced a permeability of 215.7 m/day. This sample was obtained from the area and depth of installation of the screened portion of lateral No. 4, which may explain the high discharge rate observed from this lateral. The permeabilities obtained correlate very well with those obtained from the salt dilution flow test data.

Sample No.	Location	Date	l (m)	t (sec)	K (m/day)
1	Gulubane 2a	30/7	0.10	69.5	162.7
2	Gulubane 3a	30/7	0.09	79.5	128
3	Gulubane 4a	30/7	0.09	67	151.9
4	Gulubane 5a	30/7	0.11	67.5	183.9
5	Gulubane 6a	30/7	0.09	112.5	90.48
6	Gulubane 7a	30/7	0.12	100	135.7
7	Gulubane dewatering trench	26/7	0.18	120	169.7
8	Gulubane dewatering JCB bucket deep	26/7	0.205	107.5	215.7

 Table 13.
 Results of falling head permeability determinations on sediments from the Gulubane test site.

$$\begin{array}{rcl} k = & \frac{1}{E_{x}} & x = & 1.308 \\ & & & & \\ 1.10 & = & 1.375 & H_{0} & = \\ & & & H_{1} = 0.375 \\ & &$$

3.1.4.5 Dewatering exercise

Results of work undertaken at Masunga indicated that the depth of channel scour during 1 in 100 year floods probably only reached a depth of 1.3 m below the sand-river surface. At Masunga near surface very poorly sorted, recent sediments occurred down to a depth of about 1 m below which occurred either coarsening upward sediments of medium to coarse well sorted sediments. By the end of the dry season a sand-river water table would probably decline to about 1.5 mbsrs. Advantage could be taken of natural flow in the river if a lateral could be emplaced within the medium to coarse river sands, at a depth of 2.5 m below sand-river surface and 1 m below the dry season water table. Using current drilling technology a lateral could only be drilled to about 10 m beyond the channel bank into the river sands. Extension of a shallow lateral by the coupling of additional screen sections by hand would require the excavation of a trench to 1.5 m below the present water table. To achieve this a zone would need to be dewatered across the channel. Herbert (1986) proposed a method utilising well point systems to dewater part of the channel, sufficient to allow excavation of part of the required trench.

A JCB was hired to excavate a 10 m wide trench across the sand river to the water table 1.35 mbsrs (Figure 31). In the absence of suitable well point abstraction system equipment a system was rigged up utilising 200 litre drums with perforated ends within which were to be place 6 l/sec capacity dewatering pumps.

Within the base of the wide trench the JCB was used to sink the 200 l capacity drums into the sands below the water table (Figure 32), the suction pumps could then pump water out of the sumps created thereby creating localised cones of depression. When two sumps, each with a pump, were established then extra drawdown could be achieved between them as the cones combine with each other.

Difficulty was experienced in sinking the drums deep enough in very permeable river sands. Adjacent to the river bank a drawdown of 1 m was achieved after only a short period of pumping. When pumping was attempted within the central part of the channel at the end of lateral No. 4 a drawdown of only 0.5m was achieved (Figure 33). Difficulties were also experience with the stability of the JCB. Therefore the attempt was abandoned.

The method of dewatering attempted failed due to:

- low number of abstraction points
- high permeability of the sediments
- instability of standing area of the JCB

There is a need to try this exercise again but using a well point dewatering system as recommended by Herbert.

During the dewatering exercise much sand was removed from the trench area beneath which laterals were installed which probably made lateral installation much easier. The drilling of lateral No. 4 beneath the deepened part of the trench demonstrated how a lateral could be developed by air since fine sediments were carried upward into the water filled channel above the lateral, as indicated by the turbidity of the channel water. Use of drilling foam could further improve development.

3.1.4.6 Sedimentology of sand river alluvium

A JCB was used to excavate a trench about 2 m wide across the Shashe River downstream of the dewatering trench to permit geological inspection of sediment above the water table (Figure 34). A series of photographs were taken of the trench sides and samples taken for grain size and

Figure 31. Excavation of main dewatering trench to water table at Gulubane.

)

 \bigcirc

)

)

()

0

0

0

0

0

 \bigcirc

0

0

0

0

0

0

0

Figure 32. Initial attempt at dewatering the trench at Gulubane using dewatering pumps located within perforated 200 1 drums. Using JCB rear bucket to dig in the drum.

Figure 33. Second attempt at dewatering the trench at Gulubane using dewatering pumps in perforated 200 l drums located in the central part of the trench.

Figure 34. Excavation of geological inspection trench to water table at Gulubane.

permeability determinations from 1.00 m and 1.75 m below the sand-river surface. Logs of sediment variations with depth were recorded at 15 m and 20 m from the collector well end of the trench, these are presented below.

Geological log at 15 m

Depth (m) Lithology

- 0.00 0.27 Very mixed top of cycle, fine to medium sand and gravel
- 0.27 0.44 Very mixed fine to coarse sand and gravel, cross bedded
- 0.44 0.60 Very mixed fine to coarse sand and gravel, cross bedded with a silty base to the cycle
- 0.60 0.95 Fining upwards cycle of cross bedded medium to coarse grained sand with gravel at base, medium to fine sand at top.
- 0.95 1.22 Cross bedded medium to coarse grained sand

Geological log at 20 m

- Depth (m) Lithology
- 0.00 0.26 Mixed top cycle of fine to coarse dry sands some cross bedding
- 0.26 0.39 Mixed cross bedded cycle of fine to coarse grained sands and gravels
- 0.39 0.49 Mixed cycle fine to coarse sands and gravels
- 0.49 0.79 Fining upwards cross bedded very mixed fine to coarse sands and gravels with coarse fragments up to 1-2" across.
- 0.79 0.96 Mixed cross bedded fine to coarse sands and fine gravels

0.96 - 1.22 Well sorted cross bedded medium to coarse sands.

A series of fining upward cross bedded poorly sorted fine to coarse sands and gravels occur above 1.00 m depth below the sand-river surface as between the 29-33 m section of the trench (Figure 35). Below that level cross bedded medium to coarse sands occur. The water table occurred at a depth of 1.34 mbsrs along the trench. Wood fragments and insect body fragments were recovered at 0.79 m in the 20 m section for possible C^{14} radio-carbon dating.

3.1.5 Drilling and Construction of Laterals - Gulubane Collector Well (Figure 24)

The first three laterals were drilled at a depth of 8.85 m below the top of casing (4.2 mbsrs). In each case the lateral had to be drilled through 1 m of hard quartz-feldspar dike rock using a down the hole hammer with a 4" diameter bit. The laterals were then drilled through several metres of clayey weathered bedrock using a 4" diameter drag bit out into channel sand. 50 mm blank casing and screen was then jetted to a distance of 15 m in lateral No.1, to a distance of 17 m in lateral No. 2 and to a distance of 17.5 m in lateral No. 3. All three laterals produced water at a flow rate of 0.5 l/sec (Figure 36 and Table 14). During screening of first lateral the jetting pipe joint sheared, The left hand thread connector to disposable tip and two jetting pipes were lost. The rig was raised by a metre for the drilling of lateral No. 4, to 7.09 mbtoc (2.44 mbsrs). As with the first three this lateral was initially drilled through a very hard quartz band, thence through weathered basement rock before entering the channel sands. 50 mm diameter PVC slotted screen and blank casing was jetted to a depth of 19 m. Water flowed from this lateral at the rate of 2 l/sec (Figure 36).

 \bigcirc

0

0

0

0

)

 \bigcirc

0

0

)

0

)

)

)

Figure 35. Geological section at 29-33 m along geological trench, Gulubane.

Figure 36. Flowing laterals within the completed Gulubane collector well.

×

Lateral details (drilled depth/metres, discharge, casing/screen lengths)	Discharge rate pre laterals	Discharge rate post laterals
(1) 8.85 x 15 flowing, 0-12.5 PVC blank, 12.5-	Total inflow	0.5 1/sec
15 PVC screen	of 0.045 l/sec	
(2) 8.85 x 17 flowing, 0-13 PVC blank, 13-17		0.5 1/sec
PVC screen		
(3) 8.85 x 17.5 flowing, 0-13 PVC blank, 13-		0.5 l/sec
17.5 PVC screen		
(4) 7.09 x 19 flowing, 0-8 PVC blank, 8-19		2 1/sec
PVC screen		Total inflow of
		3.6 to 4.25 l/sec

Table 14. Details of laterals drill from the Gulubane collector well

3.1.6 Post-lateral Installation Drawdown/Recovery Pumping Test - Gulubane Collector Well

At the start of the drawdown phase the rest water level was 6.11 m in the completed collector well 27/7/97. The well was pumped to dry, a drawdown of 3.74 m resulted after 102 min of pumping at an average discharge rate of 6.27 l/sec, a total volume of 38.4 m³ being pumped. Pumping of inflow water and air was continued after this time, an inflow rate of 4.25 l/sec being measured. An average inflow rate of 3.6 l/sec was determined from the drawdown data (Appendix D and Figure 37).

During the recovery phase rapid water level recovery to a residual drawdown of 0.272 m was noted by 100 min, a recovery of 92.72%, 75% recovery to 0.935 mbtoc achieved after 68 min, an average inflow of water into the well of 2.53 l/sec being recorded (Appendix D and Figure 38). Linear recovery occurred between the base of the well at a residual drawdown of 3.75 m and the bottom laterals at a residual drawdown of 2.5 m in 20 min with an inflow rate of 4.4 l/sec. Between the bottom laterals at a residual drawdown of 2.5 m and the top lateral at a residual drawdown of 1 m linear recovery took 43 min at an inflow rate of 2.4 l/sec. Above the upper lateral recovery was logarithmic with the rate of inflow declining from 3 l/sec to less than 1 l/sec by a residual drawdown of 0.272 after 100 min of recovery. This collector well could be continuously pumped at 3 l/sec (259 m³/day).

Comparison of arithmetic plots of the drawdown/recovery data derived from pumping tests undertaken before and after installation show a marked increase in inflow rate and recovery rate within the collector well (Figure 39). Prior to lateral installation it took nearly 80 min to pump the well-shaft dry at a discharge rate of 2.8 l/sec. Recovery was extremely slow, only 27.6 % recovery had occurred after 1246 min. After lateral installation it took 100 min pumping at 6.3 l/sec to empty the collector well. In contrast recovery was extremely fast, with 92.7% recovery after only 100 min.

3.1.7 Completion Studies

Current water demand is estimated to be $150 \text{ m}^3/\text{day}$ (1.7 l/sec) of which 44 m³/day (0.5 l/sec) are obtained from a borehole located between Gulubane village and the Shashe River. Demand for 2007 estimated to be 216 m³/day (2.5 l/sec). The collector well system should be capable of supplying all of this projected future requirement. Stepped discharge/ drawdown/ recovery test-pumping needs to be undertaken upon this collector well system at different channel water stage levels during the year. The results of these tests coupled with data obtained from long term monitoring of abstractions and water levels should be used to judge the long term sustainability of the resource.

Figure 37. Post-installation of laterals test pumping data, Gulubane collector well

Figure 38. Post-installation of laterals recovery data, Gulubane collector well

Figure 39. Comparative plots of pre and post lateral installation drawdown/recovery test pumping data, Gulubane collector well.

3.2 Matshelagabedi

3.2.1 Survey of Sand-river Site

The collector well site is located 5 km NNE of Matshelagabedi on the upper reaches of the Ramokgwebana sand-river (Figure 40). There the Ramokgwebana sand-river is 52.7 m wide, and is of intermediate size according to the classification of Nord (1985) and Wikner (1980). The collector well is located on the right bank, on the Botswana side of the river, 3.8 m from the edge of the channel. The DWA probed survey indicates that the channel base lies between 9 m and 10 m below the sand-river surface (Figure 41). The rest water level was 1.35 m below the sand-river surface, and a saturated channel cross section of 269.6 m² was determined. Depth sediment samples were latterly obtained from augered holes at intervals across the river bed. The grain size analyses of these samples are presented in Appendix E. The lithological variations noted with depth indicate a marked reduction in sediment grain size below 2 m depth, results that correlate well with drilling problems experienced during the installation of the lower laterals as described below. If these results had been available earlier maybe the well shaft would not have been constructed at this site. The grain size analyses obtained indicate that the laterals will probably block with time reducing well yield.

3.2.2 Excavation of Well-shaft (Figure 42)

The 2.2 m diameter well-shaft was excavated to 10 m below the level of the sand-river surface through a sequence of sands, consolidated clayey sands and dolerite boulders. The lithological log of the well-shaft has not been reported. The well-shaft lining of corrugated steel sheet hung up on dolerite boulders during excavation. Attempts to straighten the well-shaft to bring the casing back to vertical failed, the base of the well remaining 1 m from vertical. That the well-shaft was back-filled with sediment during flood events when the casing was over-topped, as indicated by the base of the well-shaft now lying at 7.19 mbsrs. Since the well-shaft sides slope to such an extent, difficulties were experienced with emplacement of timbers used to locate the rig at depths required for lateral drilling. The awkward positioning of the hydraulic controls rendered operation of rig difficult.

3.2.3 Pre-lateral Installation Pumping Test

Prior to installation of timbers and rig the well-shaft was test pumped at a discharge rate of 6.5 l/sec for 60 minutes, by which time the well-shaft had been pumped dry (Figure 43). Pumping was continued for several minutes using the compressed air driven diaphragm pump, which is capable of pumping a mixture of water and air. During this time water was pumped at a rate of 1.1 l/sec, this being the rate of water inflow into the well-shaft from the formation around the casing. An average inflow rate of 0.9 l/sec was calculated from the drawdown data (Figure 43). Water level recovery, within the well-shaft, was monitored for 310 min during which time an average inflow rate of 0.9 l/sec was determined (Figure 44).

3.2.4 Ancillary Studies

3.2.4.1 Salt dilution flow tests

Using compressed air, an observation borehole was jetted into the bed of the Ramokgwebana River at 33.1 m from the collector well, through the base of a 1.35 m deep exploration pit, dug to the water table (Table 15). The observation borehole was constructed using 50 mm diameter slotted steel pipe with a disposable well jetting point.

Figure 42. River bank well-shaft location, Matshelagabedi

 \bigcirc

)

 \bigcirc

 \bigcirc

 \bigcirc

Figure 43. Pre-installation of laterals test pumping data, Matshelagabedi well-shaft

Figure 44. Pre-installation of laterals recovery data, Matshelagabedi well-shaft

Observation Bh No.	Obs Bh 1
Distance from collector well (m)	33.1
Borehole depth (mbtoc)	2.5
Borehole top (mbsrs)	0.10
Water level (mbtoc)	1.25
Water level (mbsrs)	1.35

Table 15. Observation borehole details at the Matshelagabedi collector well site.

An initial salt dilution flow test was attempted on 29/7/97 with the changes in conductance being monitored at 1 m below the water table (2.25 mbtoc). At that depth no reduction in conductance was discerned even after 60 minutes of monitoring. Therefore the change in conductance with depth below the water table at 100 mm intervals was therefore determined. A marked increase in conductance was recorded at 1.6 mbtoc. Below that depth conductance increased from 1000 μ S to 9000 μ S (Figure 45). The borehole was logged again the following day by which time the depth at which conductance was seen to increase had dropped to 1.8 mbtoc, conductance rising from 500 μ S at that depth to 7500 μ S at the base of the hole. Therefore a zone of higher flow occurs through high permeability sediments between 1.2 and 1.8 mbtoc, above lower permeability sediments. A salt dilution test was therefore undertaken monitoring conductance in the fast zone at 1.55 mbtoc. The results of this test are presented in Appendix F and summarised in Table 16. The less permeable horizons below 1.8 metres below the sand-river surface may represent older more indurated sediments, as observed existing at similar depths within sand-rivers of similar size in southern Zimbabwe.

Two estimates of flow rate along the channel have been produced (Table 16). The first uses a gradient of 0.0025 and the full saturated cross section of the channel, a flow rate of 1.58 l/sec (136.9 m³/day) being calculated. The second uses a gradient of 0.003 and the upper 2 m of the saturated cross section, a flow rate of 0.59 l/sec (50.8 m³/day) being calculated. The results of this test highlight the necessity for a full understanding of the geomorphological history of the sand-river channel sediment infills.

Obs Bh No. 1	Darcy velocity (m/day)	Cross section area (m ²)	Discharge (m³/day)	Discharge (l/sec)	Permeability (m/day)
To probed depth of channel and gradient of 0.0025	0.51	269.5	136.9	1.58	203
Top 2 metres of saturated zone and gradient of 0.003	0.51	50 x 2	50.8	0.59	169

Table 16. Result of salt dilution flow test at the Matshelagabedi collector well obs bh No. 1.

3.2.4.2 Falling head permeameter tests

An exploration pit was sunk to the water table within the sand channel some 9.6 m from the collector well. Two sediment samples were obtained from this pit, the first at a depth of 1 m and the second at a depth of 0.3 m below the water table (1.7 mbsrs). Falling head permeameter tests were conducted upon these samples and the results are produced in Table 17. The results produced are in very good agreement with the permeabilities produced from the salt dilution flow test of 170 - 200 m/day.

Sample No.	Location	Date	l (m)	t (sec)	K (m/day)
9	Matshelagabedi litho-hole 1 m	29/7	0.185	101	207.2
10	Matshelagabedi litho-hole 1.7 m	30/7	0.195	128	172.3

Table 17. Falling head permeameter test results from the Matshelagabedi collector well site.

3.2.4.3 Sedimentology of sand river alluvium

Above the water table unconsolidated cross bedded poorly graded mixed medium to coarse sands and gravels were noted within the exploration pits sunk at distances of 9.6 m (Figure 46) and 33.1 m from the collector well. The possible presence of lower permeability semi-consolidated alluvium at depths greater than 1.8 mbsrs are indicated by the results of conductance logging within an observation borehole. Semi consolidated, older alluvial sediments seen to crop out within the main river channel about 1 km upstream (Figure 47) of the collector well site, may be similar to the less permeable sediments that occur below the water table adjacent to the collector well site. Detailed studies of the sediments in the channel at the collector well site need to be undertaken.

3.2.5 Drilling and Construction of Laterals

During the drilling of the first lateral at a depth of 2.2 m below the water table, the tungsten carbide cutting shoe used to cut a 100 mm hole through the shaft casing cut through into the consolidated clayey medium sands that forms the well wall, a cored sample of the formation being retrieved (Figure 48). Drilling was continued through this dry consolidated formation using a 100 mm diameter drag bit into the channel sands. 50 mm screen was then jetted to a depth of 10.5 m. The jetting pipe broke during the installation of this lateral leaving 7 x 0.5 m lengths of pipe in the lateral, which was dry on completion. The second lateral was drilled to the left of the first. The lateral was drilled through dry, fairly hard clayey sand using a 100 mm drag bit, into the channel sands. The initial hole was cased with 100 mm steel casing through which PVC screen and casing was jetted to a depth of 17 m. Initially very muddy water flowed from this lateral at the rate of about 1.5 l/sec. During dewatering of the well prior to drilling the following morning the well was being pumped at 5.5 l/sec, the second lateral continuing to flow at about 1.5 l/sec, producing extremely muddy water, for about 43 min when the flow from the lateral suddenly stopped. The lateral was re-developed by jetting with air, finally producing 0.5 l/sec of very muddy water (Figure 49). The rig was repositioned at a level of 2 m below the water table. Two laterals were drilled at that level, with screen jetted out to 10 m in each case. Both of these laterals produces clear water at the rate of 0.5 l/sec(Table 18). The second lateral continued to flow at a rate of 0.5 l/sec, finally clearing of sediment after a further 24 hr after jetting.

Lateral details (drilled depth(mbtoc)/length (m), discharge, casing/screen lengths (m)	Inflow rate pre lateral installation	Inflow rate post lateral installation		
 (1) 5.00 x 10.5 dry (2) 5.00 x 17 flowing (3) 4.00 x 10 flowing, 0-10 PVC screen, 0-1.5 x 4" steel (4) 4.00 x 10 flowing, 0-10 PVC screen, 0-1.5 x 4" steel 	0.9 l/sec	dry 0.5 l/sec 0.5 l/sec 0.5 l/sec total inflow of 2.7 l/sec		

Table 18.

Details of laterals drill from the Matshelagabedi collector well

Figure 47. Semi-consolidated, older alluvial sediments cropping out along Ramokgwebana River 1 km upstream of collector well site.

 \bigcirc

Figure 48. Core of sandy siltstone obtained from the weathered bank of the Ramokgwebana River at Matshelagabedi.

Figure 49. Water flow from second lateral heavily charged with silt, Matshelagabedi.

3.2.6 Post-lateral Installation Drawdown/Recovery Pumping Tests

The completed collector well was retested on 3/8/97 when the well was pumped to dry at a discharge rate of 6.9 l/sec in 100 min. Pumping of inflow water and air continued after this time, an inflow rate of 2.7 l/sec being measured. An average inflow rate of 3.5 l/sec was determined from the drawdown data. During the drawdown phase the rate of inflow is seen to fall from 3.8 l/sec to less than 2 l/sec, a decline that may be due to screen blockage in one or more of the laterals. (Appendix D and Figure 50).

Water level recovery was monitored for 190 min during which time an average inflow of water into the well of 1.7 l/sec was recorded, nearly twice the pre-lateral installation inflow rate (Appendix D and Figure 51). During the recovery phase the water level recovered linearly from 8.52 m to the lower laterals at 5.1m in 83 min at an inflow rate of 2.4 l/sec. Between the lower laterals at 5.1 m and the upper laterals at 4.09 m the water level recovered linearly in 28 min at inflow rate of 2 l/sec. Above 4.09 m recovery occurred at an exponential rate with inflow declining rapidly from 2 l/sec at 120 min to 0.2 l/sec at 190 min. This collector well could be continuously pumped at 2-3 l/sec.

Comparison of arithmetic plots of the drawdown/recovery data derived from pumping tests undertaken before and after installation show an increase in inflow rate and recovery rate within the collector well (Figure 52). Prior to lateral installation it took nearly 60 min to pump the well-shaft dry at a discharge rate of 6.5 l/sec. Recovery was fairly fast recovery to about a 1 m of residual drawdown occurring by 310 min. After lateral installation it took 100 min of pumping at 6.9 l/sec to empty the collector well. In contrast recovery was fast, with 88.4% recovery after 190 min (Figure 52).

3.2.7 Completion Studies

Water supply demand by the year 2007 is estimated to be 346 m³/day (4 l/sec). The collector well system should be capable of supplying up to 75% of this demand at least in its present form. However the initial salt dilution flow test indicates that yields could decline if water levels fall to the levels of the lower permeability layers at 1.8 m below the sand-river surface. Additional probing surveys need to be undertaken to indicate the distribution of any lower permeability layers with depth across the channel cross section. Additional stepped discharge/ drawdown/ recovery test pumping needs to be undertaken upon this collector well system. The results of these tests coupled with data obtained from long term monitoring of abstractions and water levels should be used to judge the long term sustainability of the resource.

3.3 Tobane

Initial studies at the Tobane 1 collector well site were undertaken during 1995 and reported in Davies et al (1995b). During the latest visit, undertaken at the request of DWA, additional laterals were drilled and constructed within the Tobane 1 collector well by the BGS driller who subsequently re-tested the collector well. The drilling and construction of additional laterals and test pumping results are described and commented upon here.

3.3.1 Drilling and Construction of Additional Laterals

According to the criteria of Wikner (1980) and Nord (1980) the Motloutse River at Tobane belongs to the major class of sand-river (Figure 53). Initial drilling results proved the existence of fine grained sandy sediments at depth in the channel at shallow depth. Drilling of laterals at shallower depths was undertaken to intercept coarser sediments. Unfortunately similar fine grained sandy sediments were also encountered in the latest series of laterals drilled. Only three of the five laterals drilled producing

Figure 50. Post-installation of laterals test pumping data, Matshelagabedi collector well

Figure 52. Comparative plots of pre and post lateral installation drawdown/recovery test pumping data, Matshelagabedi collector well.

1

Figure 53. A typical major sand-river, the Motloutse sand-river at Tobane I collector well

flows of water on completion, and of these one latterly dried up. Details of the laterals drilled are presented in Table 19.

Lateral details (drilled depth/metres, discharge, casing/screen lengths)	Discharge rate pre laterals	Discharge rate post laterals
(1) 6x15 dry	dry	Inflow rate of 0.94 l/sec
(2) 5x16 dry	dry	
(3) 6x24 flowed but stopped	dry	
(4) 6x25 flowing	not determined	
(5) 5.5x25 flowing	not determined	

Table 19. Additional laterals drilled and constructed at Tobane 1 collector well.

3.3.2 Post-lateral Installation Drawdown/Recovery Pumping Tests

The collector well was re-tested on 18/8/97 on completion of lateral construction and removal of rig and ancillary equipment from the collector well. The rest water level prior to the test was at 4.8 mbtoc. The collector well was pumped at 6.7 l/sec for 32 min, until the collector well was emptied. Inflow rate at the end of the drawdown phase was 0.99 l/sec, an overall average inflow rate of 0.94 l/sec being determined for the drawdown phase (Figure 54). During the recovery phase a recovery of 43.2 % to a residual drawdown level of 1.78 m had been reached after 250 minutes, an average inflow rate of 0.31 l/sec being determined (Figure 55). The drawdown/discharge characteristics of the collector well seem to have deteriorated since first tested in August 1995 (Figure 56). In addition the rate of recovery is slower than that determined on 26/8/95 (Figure 57). This deterioration could be due to:

- blockage of screen slots by fine sediments reducing inflow
- reduced availability in the most permeable near surface layers as indicated by a marked decline in water levels, possibly due to the upstream damming of the Motloutse River at Letsebogo.

or a combination of both of the above.

4. **DISCUSSION**

During the pilot project ten well-shafts were sunk by DWA and nine of these were converted to collector wells by a BGS team with varying success.

Wikner (1980) and Nord (1985) concluded from their probe surveys of sand-rivers of north eastern Botswana that:

- coarse sediments occur at the top and base of channel infill deposits, and that a range of sediment sizes occur between,
- only certain parts of the main sand-rivers were large enough to have groundwater development potential,
- these sand-rivers could be grouped into three categories according to channel size.

Figure 54. Post-installation of laterals test pumping data, Tobane I collector well

Figure 55. Post-installation of laterals recovery data, Tobane I collector well

Tobane 1 Collector Well - Drawdown Pumping Tests 26/8/95 and 18/8/97

Figure 56. Comparative plots of drawdown/discharge test pumping data, Tobane I collector well.

Tobane 1 Collector Well - Recovery Tests 26/8/95 and 18/8/97

Figure 57. Comparative plots of recovery test data, Tobane I collector well.

The above conclusions were used as criteria for the initial application of collector wells for the development of sand-river water resources. Laterals were to be drilled and constructed into the coarse basal sediments recognised by Wikner and Nord. The main limitation was the 25-30 m maximum length of lateral that could be installed.

Therefore, according to these criteria, the main requirements were:

- knowledge of the depth of the channel to determine apparent depth to basal sands and gravels
- that the well-shaft be sunk to a depth greater than the depth of the channel and in the river bank at a location as close as possible to the channel but that was high enough to avoid flooding.

Lateral construction using the above criteria were first attempted at Chadibe and Borolong on the Shashe River. At these sites problems were encountered with the variable nature of the sand infill/bedrock interface. Several of the laterals, when drilled encountered pinacles of hard rock between pockets of sand, making the installation of casing and screen extremely difficult. In addition pockets of clayey weathered material were encountered within the interface horizon. Dry or poor yielding laterals were drilled in consequence. Attempted use of the telescoped drilling system at these two sites produced mixed results.

Similar problems were encountered during lateral construction at the two collector wells at Masunga. These are located at the very end of a minor river and are therefore atypical as there is insufficient stream length available upstream to provide groundwater drainage throughout a year. Studies undertaken at and between these sites did produce insight into the nature of sediment deposition within sandriver channels. Several laterals were thereby installed at the Masunga collector wells.

Of the other sites developed, Gulubane is located along the upper reaches of the Shashe River. In this area of apparent minor development potential, the river has good flow, sediment formation and upstream drainage characteristics. At Matshelagabedi the Ramokgwebana river is of intermediate development size, but the river channel appears to occupied with partially indurated older sediments below mixed upper recent sediments. The two collector wells at Tobane are located on the Motloutse River that has apparent major development potential. However, thick fine alluvial sands occur beneath shallow coarse grained mixed recent sediments within a wide channel. Such a channel could be split into a major central channel with minor channels either side within which finer sediments have been deposited during pluvial periods, all now masked by recent coarse sediments. The above results emphasis the importance of understanding sediment distribution and structure along rivers of different sizes and therefore development potential if they are to be effectively developed using the collector well system or any other system that involves the emplacement of drainage laterals at depths across sand-rivers.

Initial site surveys undertaken by DWA staff includes a traverse of probing sites across a sand-river channel at 10 m intervals. This system allows determination of the depth to bedrock at each site, allowing construction of a channel base profile. The equipment also permits collection of sand samples at specific depths. A cross section showing the distribution of sediments within a channel should thereby be compiled. Unfortunately these data were not made available to BGS staff during the project. Without such knowledge of sediment distribution application of appropriate drilling and lateral construction methods is difficult, as was experienced at the Tobane collector well sites. However, geophysical survey methods have been developed that produce images of sediment distribution with depth across a sand-river channel. Potentially the correlation of ground penetrating radar traversing

with sediment probing and depth sampling will be the most effective way of investigating sediment structure, thickness, lithology and water content in the future.

The age of sediment deposition is still imperfectly understood. The C^{14} radio-carbon dating of organic materials from the Masunga site have indicated the very recent nature of the near surface coarse grained very mixed sediments, 1 to 1.5 m thick, that blanket the channel infill sediments along most valleys. The deposition of these sediments are indicative of possible changes in local climatic patterns during the not too recent past and to the influence of possible anthropogenic influences, including population movements into the area (Tapela, 1982), upon vegetation patterns that has resulted in massive erosion of top soils throughout the north-eastern Botswana region. Such anthropogenic changes could, themselves have contributed to climatic change in the area. The age of underlying sediments, which from the extremely limited understanding of their characteristics, appear to have been deposited under pluvial conditions, is unknown.

As well as investigating the derivation of sediments within sand-river channel methods have been devised during the pilot project to assess the hydraulic and lithologic characteristics of these sediments.

- A salt dilution flow test has been used to recognise the presence, rate of and quantity of groundwater flow down channel through inflow sediments at the end of the dry season.
- A falling head permeameter apparatus has been used to determine the approximate permeabilities of disturbed samples of unconsolidated and uncemented sediments.
- A method following on the work of Kovaks was applied to grain size analyses data to recognise the potential for suffusion to take place adjacent to screened sections of laterals that could cause screen blockage.

The 2 m diameter well-shafts are converted into collector wells by the drilling of horizontal laterals connecting the well-shaft with saturated sediments within the adjacent sand-river channel. The application of telescoped and duplex methods of drilling and constructing laterals into sand-rivers were investigated. Mixed results were obtained, these depending to a great deal upon which type of river site was investigated.

Best results were achieved using the telescoped method of drilling/construction in the coarse grained sediments of minor rivers, as at Gulubane. Within this situation laterals with up to 10 metres of screen can be jetted out into coarse sands to 23 metres before sand locking halts further progress. Unfortunately the use of 0.5 mm slot screen may have resulted in progressive screen blockage with mobilised sediment matrix fines at Masunga where yields have reportedly declined with collector well use. Larger slot sized screens need to be used in the future. Attempts to use the duplex method failed due to sand locking of 50 mm screens within the outer 88 mm temporary steel pipe.

At Matshelagabedi within an intermediate sand-river environment screeens were successfully jetted out to 20 m or more but water flowing through the laterals initially carried a very large silt content. This silt content could result in the sudden cessation of flow from a lateral. The silt content only cleared after a day or so of lateral flow.

At the Tobane sites, within a major sand-river environment, laterals were easily jetted out into finer sediments for distances up to 25 m. Unfortunately the fine sediments flowed through the 0.5 mm slots sand locking the adductor pipe within the screened section of the lateral. This problem highlights the need to understand the distribution of sediments within all sizes of sand rivers with depth if effective laterals are to be constructed.

Initial attempts to install longer laterals across a sand-river channel at Gulubane, at shallow depths below the apparent depth of channel flood scour, failed due to a lack of appropriate dewatering equipment. Such methods are technically feasible and maybe the best way of installing longer laterals within intermediate and major sand-river environments where larger diameter laterals with necessary gravel packs can be installed within dewatered trenches.

Assessment of the hydraulic characteristics of collector wells requires comparison of drawdown/yield/recovery characteristics of the well-shaft before lateral installation and of the completed collector well. Need to equate rates of inflow during pumping and recovery by calculating a nominal well radius by iteration. Once a nominal flow rate and effective well radius have been worked out from the results of the initial test (inflow rate should approximately equate with rate of pumping when pump is sucking air on emptying the well) these factors can be applied to the test pumping data obtained after installation of the laterals. Using the effective well radius the inflow rates can be calculated and compared to those obtained prior to installation of the laterals. Application of test pumping analytical techniques such as those of Papadopolos and Cooper as well as Rushton and Singh have provided little in the way of useful data, as had application of the Theis method to recovery data. Herbert et al concluded that one needed to understand the component parts of the drawdown and recovery curves as occurring below lateral level and above lateral level. They attempted to apply a lateral factor to try to predict collector well flow conditions with differing head conditions in the adjacent sand river. Some success has been achieved with this approach.

To fully understand the flow regime along sand-river channels and the sustainability of water supplies abstracted via collector wells long term monitoring of water levels, water abstractions, as well as rainfall and river flow events must be recorded if any meaningful modelling of such systems can be undertaken. This will be particularly important downstream of new major dam sites, as at the Letsebogo Dam site where as well as understanding the nature of the sand river at the dam site itself there is an urgent need to understand and assess the impact of the Letsebogo dam site upon abstraction systems down stream.

Before production collector well drilling can be undertaken the nature of the drilling system and ancillary equipment requirements need to be assessed. At present the BGS vehicles and rig system need to be thoroughly overhauled. The Landrover is now nearly 16 years old and has just lost use of 5th gear. It requires replacement. The 4x4 crane truck is of even older vintage, in excess of 25 years old. This requires a replacement brake master cylinder and the linkage engaging low and high ratio four wheel drive is u/s. The body work is in poor condition and the unit needs replacement. The drilling rig and hydraulic motor both require overhaul and upgrading. The four dewatering pumps need urgent replacement as their pumping efficiency have declined due to erosion of component parts. Compressor units were supplied by DWA. All 2" diameter casing and screen has been used and so a stock of suitable blank pipe and screen needs to be purchased. DWA may be able to use the BGS drilling rig to construct collector wells in the short term but procurement of a new drilling system more appropriate for lateral construction in all types of sand river system must be considered. A quotation for such a system is presented in Appendix B.

5. **RECOMMENDATIONS AND CONCLUSIONS**

5.1 Site Investigation

The sediment morphology of sand river channels is complex. Detailed investigations need to be undertaken a series of typical sand river channels, including weathering patterns within the underlying basement strata and the nature of the channel infill sediments including age of deposition. In order to determine the maximum yields at each collector well site, the geometry and lithology of the sand river must be determined as the collector well adits must be drilled into the most water-productive layers of the sand river. Ground penetrating radar or perhaps automatic resistivity imagery techniques could be used to quickly produce detailed channel cross-section images. These could be used to identify target points where the DWA penetration probe and sampling device can be used to confirm depths and sediment distributions interpreted from the geophysical data and provide sediment samples for sieving analysis to determine sand properties. This approach should provide the detailed data require for optimum location of laterals installation and reduce the number of man days spent investigating each channel section, and the number of sections needed to be investigated in detail. This option should be investigated.

5.2 Drilling

The laterals are usually constructed by drilling through the weathered basement rocks of the sand river bank and out into the sand river alluvial sediments, which may be clays, silts or sands. Drilling through weathered basement and into semi-consolidated beds like silty sands is no problem, air hammer or rotary drilling can be used. To date success in drilling into the unconsolidated material has been mixed. Some success has been had using telescoped jetting. However, further work is needed to fully determine the capabilities of other drilling methods available such as moling within finer silty sands. The drilling method used should be appropriate for the sand lithology to be developed. Therefore in the short term, the BGS drilling rig should be overhauled and used to drill the initial production collector wells, but a rig of more appropriate design should be procured, capable of inserting laterals by moling as well as jetting. Two new drill strings are considered. A special GRP screened well strong enough to be jetted directly in place and a Duplex system consisting of PVC screen emplaced within temporary steel casing are both strong candidates for better results. The installation of longer and larger diameter laterals are required in intermediate and major sand river environments within dewatered trench systems. Installation of appropriate gravel packs and screen slot sizes can be used within such systems.

5.3 Determining Sustainable Yields by Modelling Studies

The sustainable yield of a sand river system depends upon:

- the recharge it receives and its distribution with time
- the geometry of the sand river deposits
- the geometry of the collector well, shaft and adits
- the hydraulic properties of the sand river
- the upstream use of the sand river groundwater resources

It is recommended a generalised digital model be constructed of the groundwater system of a sand river. A subroutine for simulating different patterns of recharge should be developed. The model could be used to examine the issues, which decide the long term sustainable yield and the factors which affect efficient design of the collector well adits. The model will need to be proven against observations of long term behaviour of collector-well sites, as at Masunga. For this purpose long term monitoring should be initiated at three more sites, one on each of the main classes of sand rivers. Development of the Gulubane, Matshelagabedi and Tobane sites is recommended and that monitoring of collector well and sand-river behaviour be started at these sites as quickly as possible. In conclusion, the pilot study, which was primarily of an engineering nature, successfully investigated application of the collector well system to abstraction of groundwater from sand rivers. The criteria used for these studies were based upon the conclusions drawn about the physical characteristics of sand-rivers from earlier, much more extensive studies. Although not the primary purpose of the pilot project, the DWA/BGS study has demonstrated that the characteristics of sand-rivers are more complex than previously thought. The study has highlighted the need for detailed understanding of the sedimentology of sand rivers and the main factors controlling the modes of sediment deposition and diagenesis. The installation of production collector well systems should now be undertaken, with BGS involvement, within a process type project. This will ensure the further development of collector well abstraction systems appropriate for each class of sand river.

REFERENCES

- Andersen N J 1996. Monitoring of surface and groundwater levels in ephemeral sand rivers and the related performance of collector wells. Report on visit to Botswana, 8 October to 7 December 1996. Department of Civil Engineering, Imperial College, London.
- Bennett J D 1971. Brief explanation of the geology of the Magogaphate sheet (2128C), Geological Survey of Botswana.
- Bond G 1967. River valley morphology, stratigraphy and palaeoclimatology in southern Africa. In: Bishop W W and Clark J D (editors). Background to Evolution in Africa, University of Chicago Press, pp 303-312.
- Crockett R N, Gerrard I, Key R M and Litherland M 1974. Brief explanation of the Precambrian Geology of North Eastern Botswana sheet. Geological Survey of Botswana.
- Crowley K D 1983. Large scale bed configurations (macroforms), Platte River Basin, Colorado and Nebraska: Primary structures and formative processes. Geological Society of America Bulletin 94, pp 117-133.
- Davies J 1994. Application of the seismic refraction method to the study of Basement rock aquifers in SE Zimbabwe. Technical Report WC/94/28R, Overseas Geology Series, British Geological Survey.
- Davies J and Herbert R 1990. Field determination of vertical permeability. British Geological Survey Technical Report WD/90/47R.
- Davies J, Herbert R and Rastall P 1995a. Collector Well Systems for Sand Rivers, Report on visit to Botswana, 23 November-9 December 1994. British Geological Survey Technical Report WD/95/2C.
- Davies J, Herbert R and Rastall P 1995b. Collector Well Systems for Sand Rivers, Report on visit to Botswana, 4 August-10 September 1995. British Geological Survey Technical Report WD/95/53C.
- Davies J, Herbert R and Hussain M S 1996. Unconsolidated sedimentary aquifers: special study No. 1
 study of causes of borehole deterioration, Pakistan. British Geological Survey Technical Report WC/96/8.

Driscoll F G 1986. Groundwater and Wells. Johnson Division, second edition.

- Ekstrom K, Prenning C and Dladla Z 1996. Geophysical Investigation of Alluvial Aquifers in Zimbabwe. MSc Thesis. Department of Geotechnology, Institute of Technology, Lund University.
- Graf W L 1988. Fluvial Processes in Dryland Rivers. Springer-Verlag.
- Hall S H 1993. Single well tracer tests in aquifer characterisation. Ground Water Monitoring and Remediation, Spring 1993, pp 118-124.
- Herbert R 1992. Final Report on ODA/BGS R&D Project 91/7: Development of Horizontal Drilling Rig for Alluvial Aquifers of High Permeability. Work on sand rivers in Botswana and summary of work in Malaysia, Zimbabwe and UK. British Geological Survey Technical Report WD/92/34.
- Herbert R, Barker J A, Davies J and Katai O T 1997. Exploiting ground water from sand rivers in Botswana using collector wells. In: Fei Jin and Krothe N C (editors). Proceedings of the 30th International Geological Congress, China, 22, Hydrogeology, pp 235-257.
- Key R M 1976. The Geology of the Area Around Francistown and Phikwe, North-eastern and Central Districts, Botswana. Memoir of the Geological Survey of Botswana, 3.
- Kovaks G 1981. Seepage Hydraulics. Elsevier, London.
- Lister L A 1987. The Erosion Surfaces of Zimbabwe. Zimbabwe Geological Survey Bulletin No. 90, Harare.
- Litherland M 1975. The Geology of the area around Maitengwe, Sebina and Tshesebe, North-east and Central Districts, Botswana. Memoir of the Geological Survey of Botswana, 2.
- Nord M 1985. Sand rivers of Botswana. Results from Phase 2 of the Sand Rivers Project sponsored by the Swedish International Development Authority (SIDA). [Report held by the Department of Water Affairs, Botswana].
- Owen R J S 1989. The Use of Shallow Alluvial Aquifers for Small Scale Irrigation; with reference to Zimbabwe. Final report of ODA Project R4239. University of Zimbabwe and Southampton University, UK.
- Tapela H M 1982. Movement and settlement in the Tati region: a historical survey. In: R R Hitchcock and M R Smith (editors), Proceedings of the Symposium on Settlement in Botswana - the historical development of a human landscape. The Botswana Society.
- Wikner T 1980. Sand Rivers of Botswana. Results from Phase 1 of the Sand Rivers Project sponsored by the Swedish International Development Authority (SIDA). [Report held by the Department of Water Affairs, Botswana].

BRITISH GEOLOGICAL SURVEY Natural Environment Research Council

TECHNICAL REPORT WD/98/2C Hydrogeology Series

Technical Report WD/98/2C

Final Report on Application of Collector Well Well Systems to Sand Rivers Pilot Project APPENDICES

J Davies, P Rastall and R Herbert

This report was prepared for the Department of Water Affairs, Republic of Botswana

Bibliographic Reference

Davies J, Rastall P and Herbert R 1998 Final Report on Application of Collector Well Systems to Sand Rivers Pilot Project. APPENDICES British Geological Survey Report WD/98/2C

©NERC copyright 1998

Keyworth, Nottinghamshire

British Geological Survey 1998

APPENDIX A: ITINERARY

Detailed BGS staff movements during the last fieldwork period in Botswana:

July

- 6. Mr Rastall travelled via London (Heathrow) to Gaborone flight BA55, departed at 22.05.
- 7. Mr Rastall arrived in Gaborone at 12.00 noon.
- 8. Mr Rastall flew to Francistown on Air Botswana's morning flight.
- 9-15 Mr Rastall organised equipment and vehicles. Overhauled the project Landrover and Bedford truck. Brake master cylinder was u/s on the latter. Serviced the rig and checked spares, stocks of screen, casing, stores and equipment held at the DWA Francistown and Tonota stores. Organised insurance for the two vehicles. Moved equipment to the first collector well site at Gulubane. Contacted DWA field officers.
- 13 Mr Davies travelled from London (Heathrow) to Gaborone flight BA55, departed at 22.05.
- 14 Arrived Gaborone at 12.00 noon. Contacted the DWA office.
- 15. To DWA where met Mr Katai. Discussed the proposed work programme and content of the last report. Passed on copy of bibliography on disk to Katai. Positive response received from Mr Katai about possible joint TDR project to look at the nature of sand rivers. Problems reported with the laterals at Masunga blocking up. Flew to Francistown on Air Botswana flight BP044. Met by Peter Rastall at Francistown.
- 16 Persistent problems with brake master cylinder (BMC) on the Bedford truck. The inside of the cylinder was too badly scored with rust, had the cylinder reamed out. Visited the Gulubane collector well site. The JCB was being used to dig the dewatering trench. Returned to Francistown.
- 17 To the DWA stores to collect hammer seismic equipment. To Gulubane where used JCB to install 2 observation wells. Returned to Francistown to collect the repaired BMC but found one of the plastic fluid reservoirs was badly cracked and leaking.
- 18 To DWA stores at Tonota from where transferred drilling equipment to the drilling site at Gulubane. Geological trench dug by JCB, 3rd obs Bh inserted. Undertook initial pumping test on collector well followed by a recovery test, recovery was monitored throughout the night. Returned to Francistown.
- 19 To Gulubane where undertook salt dilution tests upon three observation wells. Drilling equipment prepared. Large compressor U/S due to lack of engine and hydraulic oil. Returned to Francistown to purchase ancillary equipment and enter data into computer.
- 20 To Gulubane where undertook survey of geological trench and collected sediment samples for grain size analysis. The large compressor repaired and three 44 gallon drums were perforated. Drilling equipment was erected in collector well. Drilling of the first lateral was begun, through hard band of white quartz feldspar rock. Returned to Francistown.

21 Public Holiday, to Gulubane where repaired wiring problems with large compressor. During screening of first lateral, a jetting pipe joint sheared therefore lost left hand thread connector to disposable tip and two jetting pipes. Photographed part of the geological trench. JCB used to deepen the dewatering trench below the water table across half of the river adjacent to the collector well. Repositioned rig within the well and started drilling the second lateral. Returned to Francistown.

Surfaces

- 22 Public holiday, to Gulubane where collector well had been dewatered. Completed drilling out second lateral. Logged several sections in geological trench. Attempted dewatering of the main trench using diaphragm pump set in perforated 200 litre drum, but insufficient perforations. Increased number of perforations and tried again. Managed to lower the water level by 0.75 metre by pumping at 6 l/sec. Increased the density of perforations in two more drums. Returned to Francistown.
- 23 Arranged manufacture of left hand thread jetting pipe subs in Francistown. To Gulubane where levelled in the river water level and the collector well. Back-filled part of geological trench. Attempted dewatering trench using two pumps, pumping at 12 l/sec and managed the lowering of water level by more than 1 metre. Returned to Francistown to obtain additional equipment and left hand threaded subs.
- 24 To Gulubane where completed the construction of second lateral. Moved rig and undertook drilling and construction of third lateral. Removed rig from the hole. Assessed sieving equipment and dried sediment samples. Returned to Francistown.
- 25 Transported timbers from Tobane to Gulubane. Dewatered collector well and set up rig in the hole. Initiated drilling of fourth lateral. Undertook the grain size analysis sieving of 10 sediment samples at Francistown.
- To Gulubane where dewatered the collector well. Constructed a falling head permeameter test rig. The testing of sediment samples from the dewatering trench produced high permeability results. Drilled and constructed 4th lateral and removed drilling equipment. Dewatered the collector well and undertook a recovery test. Dewatering of the central part of the trench attempted to locate the end of the 4th lateral but could only lower water level by 0.5 metre although pumping water from the trench at the rate of 12 l/sec. Returned to Francistown.
- 27 To Gulubane where undertook a drawdown/recovery pumping test on the collector well. Packed up drilling equipment. Moved equipment to next site at Matshelagabedi on the Ramokgwebana river. Left equipment and small compressor at the drilling camp. Inspected access to the collector well site. Returned to Francistown where undertook grain size analysis of 4 sediment samples.
- 28 To Matshelagabedi where moved drilling equipment to site. Undertook a drawdown/recovery pumping test on the collector well. Attempted to jet observation well into central area of the river. Returned to Francistown.
- 29 To Matshelagabedi where large compressor was moved to site. Jetted in observation well and undertook salt dilution test. Dewatered collector well and erected rig upon a stack of timbers in the well shaft. Started drilling first lateral. Returned to Francistown.
- 30 To Matshelagabedi where undertook repeat salt dilution test on observation well. Dewatered the collector well and drilled/constructed first lateral. Lost 5 lengths of jetting pipe due to joint fracture. Repositioned rig and drilled/constructed second lateral. Undertook falling head permeability tests on six samples. Returned to Francistown.

31 To Matshelagabedi where during monitoring of dewatering of well the flow of very muddy water (about 1 l/sec) from second lateral suddenly ceased. Redeveloped this lateral by jetting with air and re-established flow at a reduced rate (0.5 l/sec). Extracted observation well from river sediments. Transported timber from Tonota to site. Noted occurrence of palaeo-alluvial sediments as a gravel/sand-bank one kilometre upstream of site. Reset drilling rig in well at a higher position. Returned to Francistown where discussed results of the project with Douglas. Passed grain size sieve analysis and falling head permeameter equipment to him.

August

- 1. To Gaborone on Air Botswana flight BP41. To DWA where discussed the collector wells project with Mr Katai. At 13-45 returned to DWA where with the Deputy Director of DWA, Mr Jay and Mr Katai reviewed the project and the way forward. Contacted Mr Rastall who had drilled and constructed a third lateral at Matshelagabedi, which had the same discharge rate as that of the second. The water flowing from the second lateral had cleared. Obtained a quote from CJ Engineering re the manufacture of steel disposable tips for the drilling of up to six laterals at Tobane.
- 2 Departed from Gaborone to London (Heathrow) on BA flight 054. Fourth lateral drilled and constructed in Matshelagabedi collector well.
- 3 Arrived at London (Heathrow). A drawdown/recovery pumping test was carried out on the Matshelagabedi collector well.
- 3-10 Mr Rastall transferred equipment to the Tobane 1 collector well site, experienced problems with mobilisation of rig, equipment and vehicles from Matshelagabedi to Tobane.
- 10-17 Mr Rastall undertook the drilling of five laterals at Tobane 1 collector well and undertook a drawdown/recovery pumping test on completion. All remaining screen and casing were used at Tobane. DWA promised to supply sediment grain-size analysis data from the Gulubane, Matshelagabedi and Tobane sites.
- 17-20 Vehicles, rig and equipment moved from Tobane to Tonota and Francistown stores for storage.
- 21 Mr Rastall travelled from Francistown to Gaborone on Air Botswana flight BP41.
- 22 Mr Rastall departed from Gaborone for London (Heathrow) on BA flight 054.
- 23 Mr Rastall arrived at London (Heathrow).

۰. •

APPENDIX B: DRILLING EQUIPMENT QUOTE

No. 1997

10000

Courses.

Demco

DRILLING EQUIPMENT

THERMOPLASTIC CASINGS AND SCREENS

SEWER RELINING PIPE

Unite 11 and 12, Star Industrial Park, Bodmin Road, Wyken, Coventry, West Midlands, CV2 5DB Telephone: (01203) 602323 Fax: (01203) 602116

Quotation

For the attention of	:	Mr Jeff Davies	Sheet	:	1 of 4
Company	:	British Geological Survey	Date	:	22.8.97
Tel Number	:		Quote No	:	8625
Fax Number	:	01491692345	Your Ref	:	

Thank you for your enquiry, we now have pleasure in quoting the following:-

Item No.	Description	Quantity	Unit Price	Total Price
1	Hydroguest 2m Drilling Rig. To drill 30m deep boreholes using 73mm diameter rock bits on 50mm OD drill rods, or using a D.T.H. hammer with 70mm button bit.	1	Unit	76415.00

Suitable for operation in 2m diameter wells up to 20m deep.

As per following specification:

Rotation	:	0-1000ft 1bf	(0-138 kgf.m)	Infinitely variable 0-	100 rpm,	Infinitely variable.
----------	---	--------------	---------------	------------------------	----------	----------------------

Feed/Retract : 0-2200 1bf (0-1000 kgf) Infinitely variable. 0-9.8 ft/min (0-3m/min) Infinitely variable.

Drill Stroke : 3'3" (1.0m) Wire rope feed/retract with Hydraulic Cylinder operation.

- Drill Head : Hydraulic Motor drive with spring-loaded sliding sub-adapter for easy making/breaking of drill pipe joints in any plane. Hinged to swing clear of centre line for inserting casings. C/w water/air circulation swivel.
- Drill Rods : 50mm OD X 0.75m. Taper thread connections. Specifically designed for horizontal drilling.
- Drill Table : 100mm diameter casing capacity. Bushed to suit drill rods.
- Breakout : Hydraulic ram operated to assist in breaking drill pipe joints.

Demco

DEMCO

DRILLING EQUIPMENT

THERMOPLASTIC CASINGS AND SCREENS

SEWER RELINING PIPE

Units 11 and 12, Star Industrial Park, Bodmin Road, Wyken, Coventry, West Midlands, CV2 5DB Telephone: (01203) 602323 Fax: (01203) 602116

Quotation

For the attention of	:	Mr Jeff Davies	Sheet	:	2 of 4
Company	:	British Geological Survey	Date	:	22.8.97
Tel Number	:	•	Quote No	;	8625
Fax Number	:	01491 692345	Your Ref	:	

Description

The Hydroquest 2m is comprised of 3 portable units, connected together by hydraulic hoses with quick release connectors.

Drill Frame:

To be mounted on a base frame which enables mast to be rotated to enable drilling to be carried out in any horizontal direction, with the ability to angle the borehole up or down. To prevent the frame moving/lifting during drilling operations it must be securely anchored. Drill table, Rotary Drill Head and Breakout to be removable.

Control Console:

To be a free standing unit containing all of the controls for the hydraulic system, enabling the drilling to be carried out, and monitored from one position.

Power Pack:

2 wheeled trailer mounted unit, to consist of air-cooled diesel engine (nominal 20 hp (15 kw)) with electric start, driving two section hydraulic pump through an over-centre clutch. Incorporating hydraulic tank and filters.

The Power Pack can be positioned away from the Drill frame and Controls as its only link is by hydraulic hoses.

If required the unit can be left on the support vehicle.

Description	Quantity	Unit	Total
Drilling Equipment			
50mm x 0.75m taper thread drill	40	No	
rods.			
73mm diameter drill bits.			
Hard formation rock roller	3	No	
Drag bit - tungsten carbide.	1	No	
	Description <u>Drilling Equipment</u> 50mm x 0.75m taper thread drill rods. 73mm diameter drill bits. Hard formation rock roller Drag bit - tungsten carbide.	DescriptionQuantityDrilling Equipment4050mm x 0.75m taper thread drill40rods.73mm diameter drill bits.73mm diameter drill bits.3Hard formation rock roller3Drag bit - tungsten carbide.1	DescriptionQuantityUnitDrilling Equipment50mm x 0.75m taper thread drill40No50mm x 0.75m taper thread drill40Norods.73mm diameter drill bits.40No73mm diameter drill bits.50 No50 NoHard formation rock roller3NoDrag bit - tungsten carbide.1No

Demco

DEMCO

00000

antes la

11004543

2000

10000

1010221

000000

Sheer S

Strategy

DRILLING EQUIPMENT THERMOPLASTIC CASINGS AND SCREENS

SEWER RELINING PIPE

Units 11 and 12, Star Industrial Park, Bodmin Road, Wyken, Coventry, West Midlands, CV2 5DB Telephone: (01203) 602323 Fax: (01203) 602116

Quotation

For the attentic Company Tel Number Fax Number	on of : Mr Jeff Davies : British Geological Survey : : 01491 692345	Sheet Date Quote No Your Ref	: 3 of 4 : 22.8.97 : 8625 :	
2.3	60mm valveless DTH hammer.	1	Each	
2.4	70mm diameter hammer button bits	4	Each	
2.5	Sub adapter. Drill rods to hammer	1	No	
2.6	Sub adapter. Drill rods to rock bits.	1	No	
2.7	Tool kit for drilling rig.	1	Each	
Total items 2.1	- 2.7 as listed			6808.00
2.8	Manufacturer's spares set for drilling rig. Either as a percentage or as an itemised list at your options.	Extra	A/R	
3.1	Crane Truck comprising :-	1	No	35710.00
a)	Reconditioned Bedford 'M' Series double drop side diesel 4 x 4 truck. This vehicle is ex-Ministry, fully overhauled and prepared to MOT testing and plating standard. c/w tow hitch. 9650 Kg. g.v.w. Includes painting to customers colour.			
b)	Above fitted with hydraulic loading crane including vehicle stabiliser feet, reinforcing sub chassis. Crane fitted behind cab. C/w safety hook. Whole unit fully tested and supplied with wor test certificate.	ks		

DEMCO

DRILLING EQUIPMENT

THERMOPLASTIC CASINGS AND SCREENS

SEWER RELINING PIPE

FHUL

Units 11 and 12, Star Industrial Park, Bodmin Road, Wyken, Coventry, West Midlands, CV2 5DB Telephone: (01203) 602323 Fax: (01203) 602118

Quotation

For the attention of	:	Mr Jeff Davies	Sheet	:	4 of 4
Company	:	British Geological Survey	Date	:	22.8.97
Tel Number	:	· · ·	Quote No	:	8625
Fax Number	:	01491 692345	Your Ref	:	

- c) Above crane fitted with 1000kg capacity hydraulic winch with 25m of wire rope. Tested and certified.
- 3.2 Recommended spares for crane truck. Extra A/R Either as a percentage or as an itemised list at your option.

Notes:

All of the above prices are pound sterling, nett, excluding VAT, ex-works Coventry UK unpacked, based on the specification indicated. For 2 units there will be a price reduction of 2.5%.

Delivery:	To be agreed.
Terms:	To be agreed.
Validity:	Our quotation is open for acceptance within 30 days.

Demco standard Terms and conditions apply.

We trust that our offer meets with your requirements and look forward to hearing from you.

M A Park

APPENDIX C : THE DESIGN OF A "ROLLING" GROUNDWATER CONTROL SYSTEM, R Herbert (1985)

Sectors

10000

2010.00

10000

000-000
3-MAY F\$18-1 The design of a "rolling" groundwater control system

by R. HERBERT*, BSc, PhD, FGS

*Principal Scientific Officer, British Geological Survey, and Hydrogeological Advisar to ODA.

Abstract

0

A "rolling" dewatering system is defined as two parallel lines of wells installed at a rate to match the movement of the centre of construction for which dewatering is required. As the centre of construction moves forward the first wells installed are gradually shut down as they become more distant from the centre of dewatering. This kind of dewatering installation is useful for construction of sewers, canals, tunnels, etc. where a high water table exists.

A program is written for the hand-held programmable T159 calculator, which predicts the performance of such dewatering installations.

It is shown that, depending on the diffusivity (T/S) of the aquifer, spacing between wells can be gradually increased as time progresses and economies in devatering costs can be made. Criteria are daveloped to test this possibility.

An example is given of the design of a dewatering system required for the construction of a canal in Bangladesh.

1. Definition of a "Rolling" **Dewatering System**

Fig. 1 shows what is meant by a Rolling Dewatering System. Two parallel, closely spaced lines of wells are used to assist construction of long lines of sewers, tunnels and canals. For small scale jobs, well points are often used, elsewhere large capacity, deep tubawells must be employed. The dewatering system is designed to lower the water table between the wells so that excavation can continue dry. If a long line of dewatering is required then only a few of the wells are pumped at any one time. The centre of the dewatered zone is "rolled" forward to keep pace with construction. This reduces the number of pumps required and hence the capital cost of the dewatering system.

Referring to Fig. 1:

2)

- At any one time two sets of wells contained within a constant length (A) will be situated × around the line of construction such that forward rate of construction V_w is equal to the forward rate of movement of the centre of $(\overline{\lambda_2})$. The first two wells in each line are spaced
- $\Delta \lambda_{\rm L}^2$ apart and the spacing is increased by a constant factor F such that the spacing between nth pair of wells is given by:

$$\Delta \hat{\lambda}_{n} = F \Delta \hat{\lambda}_{n-1} = F^{n-1} \Delta \hat{\lambda}_{1} \qquad \dots (1)$$

At first the two sets of wells are stationary for t_0 where $t_0 = (\lambda_2 (V_{x_1}, 2))$ This means the x wells at the centre of λ_2 will each pump for the same period, $\lambda_2 V_{x_1}$ as all the dewatering wells to their right hand side. Plate 1 shows one such system in

operation. In this case well points are being used in an urban situation

2. The general solution

The aim is to calculate the drawdown at any point X, Y caused by a rolling system of wells at any time t_i , since start of pumping the first well;

- Where $t_1 = t_0 + t$ $t_1 = \text{time since start of movement of rolling}$ system
- = time the first set of pumping wells remain stationary (see below for further clarification)

2.1 Assumptions

- The aquifer is homogeneous and infinite, having a transmissivity, T, and specific
- yield S, The wells are fully penetrating, fully screened and have a constant discharge per well, Q.
- It is required to lower the water table along a straight line of length L by storat.

2.2 The mode of solution

The option of having a gradually increasing spacing between wells was considered, Equation 7, because in certain situations fewer wells will be required in the later stages of construction than earlier. This is because pumping from the earlier wells (since closed down) can have a residual effect on groundwater levels further along the line L. The importance of this option is discussed in more detail in section 3.

The dewatering system is symmetrical about the line, y = 0, see Fig. 1, and so only about the interval y = 0, set so be considered. The first well is located at x = 0, y =dewatering installation x1, y, at time t, should be doubled.

$$x' = [V_w \times (t - t_0) + (N_0/2), y = 0 \dots (2)]$$

The drawdown at distance r from a well pumping at rate Q for time I_2 is given by the Theis equation (3)

$$s_{r} = (Q/4\pi T) \cdot W(U) \qquad ... ($) 3$$

In Equation 3, M(u) is a well tabulated function of u. Todd (1959)

$$u = r^2 S/4Tt_2$$
 ... (4)

The total drawdown at x^1 , Fig. 1, at t_1 is solved using Image Well theory. Fodd (1959) At time t, all wells to the left of $x = (\lambda_1 + \lambda_2)$, where Equation 5 applies, are pumping wells.

$$\hat{X}_1 = V_n(t_1 - t_0)$$
 ... (5)

All wells to the left of x = 4, are image wells pumping at -0. The drawdowns of each real and image well are summed to give the total drawdown at a

2.3 The program written for the T159

Fig. 2 gives the flow chart used to construct a simple digital program written for the T159. As stated above the aim of the program is to calculate the drawdown at a general point X, Y caused by a rolling system of wells at any time t1. To do his the following steps are used and are summarised on the flow chart of Fig. 2.

- (a) Key data is entered
- (b) Initial values for key variables are calculated
- (c) The position of the centre of the dewatering front is calculated
 (d) Each well is considered in turn until all
- wells which have played a part in dewatering during time t have been considered and the drawdowns associated with each well are summed.

The program is listed on Fig. 3. In this program W(u) is calculated using a polynomial approximation as described in Herbert (1978).

Totare

el

3. Example of the use of the program

3.1 The problem A 20km canal, 100m wide was to be constructed in the alluvium of Bangladesh. The water table was above the base of the canal and construction was to be dry. A rolling well system was to be used to dwater the line of the canal. Allowing for berms, two lines of wells 200m, λ_0^{2} apart were to be used. The wells were to be typical irrigation wells. having a 2cusec yield and heing effectively fully penetrating. Construction was to be completed in 225 days, one dry season, thus the rate of advance of the centre of construction and dewatering, $V_{\rm w}$, would have to be $(20\ 000\ +(N-2))/225$. For convenience of construction purposes, λ_{k} is chosen as 5km, thus V_{w} was 100m/day. The transmissivity and storage coefficient, T and S, of the aquifer were 12 000m/day and 0.13 respectively. The drawdown required was 10.0m

3.2 Solutions run

Several solutions were run on the computer, Table 1 lists the rusults.

Solutions 1 and 2 illustrate one short cut to running the program on the 159. If only the number of wells, $N_{\rm w}$, is varied then the geometry of the dewatering system is unchanged and the drawdown achieved at the centre is proportional to the number of wells used. Thus, solution 2 gives half the drawdown of solution 1. Similarly, solution 4 indicates that to achieve 10m drawdown at the centre of two lines of wells a well spacing of 100m is necessary and 500 wells in total will be required.

Solutions 3 and 4 calculate the drawdowns at two positions equivalent to the centre of the rolling installation as it moves along the 20km line. It is interesting to note that drawdowns do not get significantly larger as time goes on so there is no residual effect from the now, closed-down, distant earlier wells

Ground Engineering Vol 18 Nº 8, November 1985

SYMBOLS USED

£

N,

spacing between wells

The above results are in contrast to the results from solutions 5, 6 and 7. For these solutions S was changed to .0013 and for a constant well spacing, F = 1.0, the drawdowns at the centre of the rolling system gradually became bigger, showing that for this aquifer less wells were needed as time went on to achieve the same drawdown. The contrast in behaviour between solutions 5, 6 and 7 and 2, 3 and 4 is explained as follows:

:3 -- MAY

Boulton (1965) has shown that after long times the radius of influence caused by a well, R., is given by Equation 7:

$$R_{*} = 1.5\sqrt{7t_{*}/S}$$
 ... (7)

Hence the rate of movement of R_e is given by:

$$V_{R} = R_{0}/t_{2} = 1.5\sqrt{T/St_{2}}$$
 ... (8)

The rate of movement of the rolling system is V_{w} and when $V_{w} > V_{B}$ for a particular well at a particular time then the drawdown of the well will no longer be "felt" at the dewatering front.

For solutions 1, 2, 3 and 4, the time t2 when $V_{\mu} = V_{A}$ is 20.7 days. For solutions 5, 6 and 7 $V_{\mu} = V_{A}$ at 2 070 days. These calculations explain the difference in performance of a rolling system in different aquifer types and in particular why the drawdown in solution 7 is 31% greater than that for solution 5.

Solutions 8, 9, 10 and 11 illustrate how values chosen for F and Δh effect the drawdown values. Reducing Δh increases drawdowns at early times, small x^1 , while increasing F reduces drawdowns at late times, large x^i . Careful selection of F and ΔA will allow the number of wells required to be minimised.

4. Conclusions

A computer program, suitable for use on the T159, has been written, which can predict the drawdowns caused by a rolling dewatering system.

In aquifers with high diffusivities (T/S), fewer wells are needed with the passage of time. The program allows this effect to be studied and the minimum number of wells to be identified.

Acknowledgements

This Paper is published by permission of the Director, British Geological Survey, NERC and of Sir William Halcrow and Partners for whom the work in Bangladesh was undertaken.

References

Todd, D.K. (1959); "Groundwater Hydrology", John Wiley & Sons, New York

Harbert, R. (1978): "Programs for the T159 suitable for hydrogeologists overseas", British Geological Survey Report No. WD/OS/78/40. December

Boulton, N.S. (1965): "The discharge to a well in an extensive unconfined aquifer with constant pumping level", Journal of Hydrology, 3, 129-130

L	length of dewatering line	L
(B2	distance along dewatering line	
	including all pumping wells	L
W	distance moved in time t by rolling	
	system	L
ΔA	spacing between first two wells	L
(Å)	spacing between two lines of	
0-	wells	ŧ.
a	discharge of a single well	L°/T
5,	drawdown caused by one well at	
	distance r	Ł
STOTAL	== <i>S</i>	
	total drawdown caused by all	
	wells	L.
t	time after start of movement of	

constant used to calculate

number of wells at any one time t -

Dimensions

7

1.2/1

- t rolling system
- $t + t_0$ T time first wells remain stationary T t,
- time of pumping real or image t2 Well
- transmissivity
- s, V"
- specific yield rate of movement required of
- centre of dewatering M centre of dewatering installation L general coordinates relative to
- Х. first well at 0.0
- position of well being considered in program

F516-TABLE

3 MAY.

TABLE I: RESULTS OF ROLLING DEWATERING SYSTEM STUDIES

}		DAT	TA EN	TERE	D		R	ESULTS	No. of Wells
Sol'n No.	S	x	Y	t,	F	Δλ	Total No. Wells analysed	Drawdown (m) at XY from 1 lina of wells	required for 10.0m drawdown
1	-13	2 500	100	50	1.0	100	75	4.99	
2	-13	2 500	100	50	1-0	200	38	2.47	
3	-13	12 500	100	125	1.0	200	75	2.66	
4	-13	22 500	100	225	1.0	200	126	2.66	
5	-0013	2 500	100	25	10	200	26	7.87	500
8	0013	12 500	100	125	1.0	200	75	9.59	{
7	0013	22 500	100	225	1.0	200	126	10-34	
8	-0013	2 500	100	25	1.01	150	29	8.86	
9	0013	22 500	100	225	1-01	150	99	6·1C]
10	.0013	22 500	100	225	1.005	150	123	8.34]
11	0013	2 500	100	25	1.005	150	32	9.45	1

Constants for all Solutions entered into program 7 = 12 000m/d

V. = 100m/d 1. - 250

n.b. Fig. shows position of wells at time $t_1 = 0$ to $t_1 = t_0$ and at general time $t_1 > t_0$.

After t_0 , centre of dewatering wells moves at rate V

The spacing between first two wells is $\Delta \ell$

The spacing between nth pair of wells is F. Δl_1

Fig. 1. Rolling Dewatering System (Nomenclature).

. • • Diseased. (Decoup)]

APPENDIX D: TEST PUMPING AND RECOVERY DATA

ANALAS .

000000

•

.

Dumping to:			18/07/97				
Pumping les	olloctor \	٨/٥١	10101101				
Guiubarie C	whether a	drilling of Is	itorale				
Pumping tes		arining on ie 6 705	mbtoc				
Rest water i	evei	10.703	mbtoc				
vveli deptri		0.0	mad				
l op of casir	1g 40.00	0,4	illagi Cummulativa	Dumping	Volumo	Cummulative	inflow
Start of test	13:03		Cummulative	Fumping	numpod	volume	rate
lime	PVVL	Drawdown		I die	m2	m3	lison
mins	metres	metres	ma				1360
0	6.71	0.005	0.00540400	2.22222	0 0000	0.00000000	4 2070
0.1666667	6.72	0.015	0.06549402	. 2.22222	0.0222	0.02222222	2 2256
0.3333333	6.73	0.025	0.1091567		0.0222	0.04444444	4 4462
0.5	6.73	0.025	0.1091567	2.22222	0.0222	0.066666667	-1.4103
0.667	6.73	0.025	0.1091567	2.22222	0.0223	0.08893333	-0.5053
0.833	6.738	0.033	0.14408684	2.22222	0.0221	0.11106667	-0.6607
1	6.74	0.035	0.15281938	2.22222	0.0223	0.13333333	-0.3248
1.5	6.75	0.045	0.19648206	2.22222	0.0667	0.2	0.0391
2	6.76	0.055	0.24014474	2.22222	0.0667	0.26666667	0.221
2.5	6.77	0.065	0.28380742	2.22222	0.0667	0.333333333	0.3302
3	6.782	0.077	0.33620264	2.22222	0.0667	0.4	0.3544
3.5	6.798	0.093	0.40606292	2.22222	0.0667	0.46666667	0.2886
4	6.81	0.105	0.45845814	2.38095	0.0714	0.53809524	0.3318
4.5	6.825	0.12	0.52395216	2.38095	0.0714	0.60952381	0.3169
5	6.84	0.135	0.58944618	2.38095	0.0714	0.68095238	0.305
65	6.88	0.175	0.7640969	2.38095	0.2143	0.8952381	0.3363
7	6 89	0.185	0.80775958	2.38095	0.0714	0.96666667	0.3784
8	6.92	0.215	0.93874762	2.38095	0.1429	1.10952381	0.3558
q	6 948	0 243	1 06100312	2.5641	0.1538	1.26336996	0.3748
10	6 98	0.275	1 2007237	2 5641	0.1538	1.41721612	0.3608
11	7.01	0.305	1 33171174	2 5641	0.1538	1.57106227	0.3627
12	7.01	0.000	1 46269978	2 5641	0 1538	1 72490842	0.3642
12	7 072	0.000	1 60242036	2.5641	0 1538	1 87875458	0.3543
14	7 102	0.308	1 73777466	2 38095	0.1000	2 02161172	0 3379
14	7,103	0.030	1 87749524	2 38095	0.1429	2 16446886	0.3189
10	7.100	0.45	2 00948328	2.00000	0.1420	2 30732601	0 3113
10		0.40	2.00040520	2.00000	0.1420	2.00102001	0.0710
17	7.193	0,480	2.13073070	4.00090	0.1429	2.40010010	0.0102
18	(.223	0.518	2.20172002	1.92300	0.1104	2.00000777	0.2010
19	1.25	0.545	2.37961606	1.92308	0.1104	2.00090200	0.2040
20	1.275	0.57	2.48877276	1.92308	0.1194	2.790337	0.2000
21	7.303	0.598	2.61102826	1.92308	0.1154	2.911/2101	0.2300
22	7.328	0.623	2./2018496	1.92308	0.1154	3.02710623	0.2020
23	7.348	0.643	2.80751032	1.83486	0.1101	3.13/19/9/	0.2389
24	7.375	0.67	2.92539956	1.83486	0.1101	3.24/289/1	0.2235
25	7.4	0.695	3.03455626	1.83486	0.1101	3.35738146	0.2152
26	7.422	0.717	3.13061416	1.83486	0.1101	3.4674732	0.2159
27	7.445	0.74	3.23103832	1.83486	0.1101	3.57756494	0.2139
28	7.47	0.765	3.34019502	2.94118	0.1765	3.75403553	0.2463
29	7.508	0.803	3.5061132	2.94118	0.1765	3.93050612	0.2439
30	7.544	0.839	3.66329885	2.94118	0.1765	4.10697671	0.2465
31	7.58	0.875	3.8204845	2.94118	0.1765	4.2834473	0.2489
32	7.616	0.911	3.97767015	2.89855	0.1739	4.45736034	0.2498
33	7.65	0.945	4.12612326	2.89855	0.1739	4.63127338	0.2551
34	7.691	0.986	4.30514025	2.89855	0,1739	4.80518643	0.2451
35	7.732	1.027	4.48415724	2.89855	0.1739	4.97909947	0.2357

Structure.

 			4 0 4 4 0 4 0 0 0	0.00055	0.1720	5 15201251	0.2260
36	7.768	1.063	4.64134288	2.89855	0.1739	5,15301251	0.2009
37	7.802	1.097	4,789796	2.89855	0.1739	5.32692556	0.242
38	7.84	1.135	4.95571418	2.89855	0.1739	5.5008386	0.2391
39	7.88	1.175	5.1303649	2.89855	0.1739	5.6/4/5164	0.2326
40	7.92	1.215	5.30501562	2.89855	0.1739	5.84866469	0.2265
41	7.96	1.255	5.47966634	2.89855	0.1739	6.02257773	0.2207
42	7.99	1.285	5.61065438	2.98507	0.1791	6.20168221	0.2345
43	8.03	1.325	5.7853051	2.98507	0.1791	6.38078669	0.2308
44	8.07	1.365	5.95995582	2.98507	0.1791	6.55989116	0.2272
45	8.11	1.405	6.13460654	2.98507	0.1791	6.73899564	0.2238
 46	8.145	1.44	6.28742592	2.85714	0.1714	6.91042421	0.2257
 47	8.185	1,48	6.46207664	2.85714	0.1714	7.08185278	0.2198
 48	8 2 2 5	1.52	6.63672736	2.89855	0.1739	7.25576583	0.2149
 49	8.26	1 555	6.78954674	2.89855	0.1739	7.42967887	0.2177
50	8 296	1 591	6 94673239	2.89855	0.1739	7.60359191	0.219
	8 335	1.63	7 11701684	2 89855	0.1739	7 77750496	0.2158
52	8.37	1 665	7 26983622	2 85714	0 1714	7 94893353	0.2177
52	0.01 Q.4	1 695	7.40082426	2 85714	0 1714	8 1203621	0 2263
 55	0.4	1 725	7 57547498	2.85714	0.1714	8 29179067	0.2211
 54	0.44	1.755	7 72820426	2.00714	0.1714	8 46321924	0.2227
 	0.475	1.77	7 0600001	2.00714	0.1714	8 63/6/781	0.2227
 56	8.505	1.8	7.0092024	2.00/ 14	0.1714	0.00404701	0.2000
 57	8.54	1.835	8.01210178	2.00/14	0.1714	0.00007039	0.2022
 58	8.575	1.87	8.16492116	2.85/14	0.1714	0.97750496	0.2335
 59	8.608	1.903	8.309008	2.85/14	0.1714	9,14893353	0.23/3
 60	8,645	1.94	8.47055992	2.85/14	0.1/14	9.3203621	0.2361
 61	8.678	1.973	8.61464676	2.85714	0.1714	9.49179067	0.2397
 62	8.717	2.012	8.78493122	2.85714	0.1714	9.66321924	0.2361
63	8.745	2.04	8.90718672	2.98507	0.1791	9.84232372	0.2474
64	8.785	2.08	9.08183744	2.98507	0.1791	10.0214282	0.2447
 65	8.82	2.115	9.23465682	2.98507	0.1791	10.2005327	0.2477
 66	8.855	2.15	9.3874762	2.98507	0.1791	10.3796372	0.2505
 67	8.888	2.183	9.53156304	2.98507	0.1791	10.5587416	0.2555
68	8.924	2.219	9.68874869	2.85714	0.1714	10.7301702	0.2553
 69	8.955	2.25	9.824103	2.85714	0.1714	10.9015988	0.2603
 70	8.99	2.285	9.97692238	2.85714	0.1714	11.0730273	0.261
 71	9.025	2.32	10,1297418	2.85714	0.1714	11.2444559	0.2617
 72	9.06	2 355	10.2825611	2.85714	0.1714	11.4158845	0.2623
 73	9 099	2 394	10 4528456	2.85714	0.1714	11.5873131	0.259
 74	9 1 4	2 435	10.6318626	2 85714	0.1714	11.7587416	0.2538
 75	Q 182	2 477	10.8152458	2 85714	0 1714	11 9301702	0.2478
 76	0.102 0.227	2 522	11 0117279	2.85714	0.1714	12 1015988	0.239
 77	0.221 0.272	2.522	11 20821	2 85714	0 1714	12 2730273	0 2305
 70	0.212	2.007	11 /0/692	0.2063	0.0178	12 2908051	0 1893
 70	3.317	2.012	11 5024415	0.2000	0.0178	12 3085820	0.1511
19	9,30	2.000	11.0024410	0.2000	0.0170	12.0000028	0.1165
80	9.4	2.090	14.0005740	0.2000	0.0170	12.0200007	0.1100
 81	9.445	2.14	11.9035743	0.2903	0.0170	10.0610160	0.0703
82	9.49	2.785	12.1600564	U.2903		12.3019102	0.041
		Average inf	low rate l/sec	=	0.041		

0.0000

Gulubane Collector Well Drawdown Pumping Test Before Installation of Laterals - 18/7/97

Time (mins)

100

Gulubane Collector Well - Pre-installation of Laterals Drawdown and Inflow Data - 18/7/97

Time (mins)

Start of rec	overy					
	Time since			Residual	Volume of	rate of
Time	start		PWL	Drawdown	water in we	inflow
mins	mins	t/ť	metres	metres	m3	
0	82	0	9.49	2.785	0	
0.166667	82.16667	0.002028	9.49	2.785	0	0
0.5	82.5	0.006061	9,485	2.78	0.021831	1.091567
0.667	82.667	0.008069	9.485	2.78	0.021831	0
0.833		0.010056	9,482	2.777	0.03493	1.315141
1	83	0.012048	9.482	2.777	0.03493	0
1.5	83.5	0.017964	9.482	2.777	0.03493	0
2	84	0.02381	9.48	2.775	0.043663	0.291085
2.5	84.5	0.029586	9.48	2.775	0.043663	0
3	85	0.035294	9.478	2.773	0.052395	0.291085
3.5	85.5	0.040936	9.477	2.772	0.056761	0.145542
4	86	0.046512	9.477	2.772	0.056761	0
4.5	86.5	0.052023	9.477	2.772	0.056761	0
5	87	0.057471	9 477	2.772	0.056761	0
Å Å	88	0.068182	9 474	2 769	0.06986	0.218313
7	89	0.000,02	9 473	2 768	0.074227	0.072771
8	90	0.07 0002	9 47	2 765	0.087325	0.218313
	Q1	0.000000	9 468	2 763	0.096058	0 145542
10	97	0.000000	9 467	2 762	0 100424	0.072771
10		0.100000	9.466	2 761	0 10479	0.072771
12	00 01	0.12766	9465	2.76	0 109157	0.072771
12		0.12700	9,400	2 758	0.100101	0.145542
1.1	90	0.100042	9.400	2.760	0.122256	0.072771
14	90	0.140000	0 150	2.757	0.135354	0.218313
10	97	0.104009	9,459	2.754	0.139721	0.072771
17	90	0.171717	9,400	2.700	0.100721	0.072777
10	99	0.173717	9,400	2.75	0.152819	0.1-00-2
10	100	0.10	9,400	2.70	0.157186	0.072771
19	101	0.100119	0.453	2.745	0.161552	0.072771
20	102	0.190070	9,400	2.740	0.165018	0.072771
21	103	0.200000	9.402	2.141	0 170284	0.072771
22	104	0.211000	9.401	2.740	0.179017	0.072773
23	105	0.219040	9.449	2.744	0.19775	0.145542
24	100	0.220410	9.447	2.742	0.10710	0.140042
20	107	0.233043	5.440 0 115	2.141 071	0.102110	0.072771
20	100	0.240741	5440 2410	2.14 2722	0.700402	0.145542
21	109	0.241700	5.443 0 110	2.130	0.200210	0.7-00-2
28	¥۱U ۸۸۸	0.204040	5,44Z	2.131	0.200001	0.072771
29	440	0.201201	9,441 0 44	2.130	0.210847	0.072771
30	112	0.20/00/	5.44	2.130	0.210010	0.012111
32	114	0.2007.02	9,437 0,425	<u>4</u> .102	0.201412	0.109107
34	110	0.293103	9,430	2.13	0.240140	0.072774
36	118	0.305085	9.433		0.2400//	0.01211
38	120	0.316667	9.43	2.125 1700	0.2019/0	0.10913/
40	122	0.327869	9.42/	4.144	0.2/50/5	0.10910/
42	124	0.33871	9.425	2.12	0.203807	0.072771
44	126	0.349206	9,422	2.717	0.296906	0.10915/
46	128	0.3593/5	9.42	2./15	0.305639	0.072774
48	130	0.369231	9.418	2.713	0.314371	0.072777
50	132	0.378788	9.416	2.711	0.323104	0.072771
52	134	0.38806	9.413	2.708	0.336203	0.109157

2010.00

\$00005

2010/000

100

54	136	0.397059	9.411	2.706	0.344935	0.072771
56	138	0.405797	9,409	2.704	0.353668	0.072771
58	140	0.414286	9.407	2.702	0.3624	0.072771
60	142	0.422535	9,406	2.701	0.366767	0.036386
75	157	0.477707	9,395	2.69	0.414795	0.053365
105	187	0.561497	9.37	2.665	0.523952	0.060643
135	217	0.62212	9,34	2.635	0.65494	0.072771
165	247	0.668016	9.31	2.605	0.785928	0.072771
195	277	0.703971	9.28	2.575	0.916916	0.072771
225	307	0.732899	9.26	2.555	1.004242	0.048514
 255	337	0.756677	9.23	2.525	1.13523	0.072771
285	367	0.776567	9.21	2.505	1.222555	0.048514
315	397	0.793451	9.19	2.485	1.30988	0.048514
345	427	0.807963	9.17	2.465	1.397206	0.048514
375	457	0.820569	9.15	2.445	1.484531	0.048514
405	487	0.831622	9.13	2.425	1.571856	0.048514
435	517	0.841393	9.11	2.405	1.659182	0.048514
465	547	0.850091	9.09	2.385	1.746507	0.048514
 495	577	0.857886	9.07	2.365	1.833833	0.048514
975	1057	0.922422	8.84	2.135	2.838074	0.03487
1035	1117	0.926589	8.81	2.105	2.969062	0.036386
1078	1160	0.92931	8.795	2.09	3.034556	0.025385
1161	1243	0.934031	8.76	2.055	3.187376	0.030687
1201	1283	0.936087	8.745	2.04	3.25287	0.027289
1235	1317	0.937737	8.73	2.025	3.318364	0.032105
1246	1328	0.938253	8.72	2.015	3.362026	0.066156
		Average inf	low rate l/sec =		0.044971	

Gulubane Collector Well Recover Pumping Test Before Installation of Laterals - 18-19/7/97

ť/ť

Gulubane Collector Well - Pre-installation of Laterals Recovery and Inflow Data - 18-19/7/97

and the second second

.

	~ * * ~ ~ *		07/07/07						
Pumpin	ig test		2/10/19/						
Guluba	ne Colle	ector Well							
After in	stallatio	n of laterals							
Rest wa	ater leve	6.11	mbtoc				,		
Well de	pth	10.08	mbtoc						
Top of (casing	. 0.4	magl					-	
Start of	test						19. – 19. – 19.		
			Pumping	Vol of well	Cum vol	Volume	Cum vol	inflow	inflow
Time	PWL	Drawdown	Rate	emptied	emptied	pumped	pumped	rate	rate
mins	metres	metres	l/sec	m3	m3	m3	_m3	m3	l/sec
0	6.11	0	5.882353		•		:		
0.167	6.125	0.015	5.882353	0.065494	0.06549	0.05882	0.05882	~0.007	-0.67
0.333	6.14	0.03	5.882353	0.065494	0.13099	0.05882	0.11765	-0.013	-0.67
0.5	6.15	0.04	5.882353	0.043663	0.17465	0.05882	0.17647	0.002	0.061
0.667	6.16	0.05	5.882353	0.043663	0.21831	0.05894	0.23541	0.017	0.427
0.833	6 17	0.06	5 882353	0.043663	0.26198	0.05859	0.294	0.032	0.641
1	6.18	0.07	5 882353	0.043663	0.30564	0.05894	0.35294	0.047	0.788
15	6.21	0.1	5 882353	0 130988	0.43663	0 17647	0.52941	0.093	1.031
	624	0.1	5 882353	0.130988	0.56761	0.17647	0 70588	0.138	1 152
2		0.10	5 882353	0.100000	n 6986	0.17647	0.88235	0 184	1 225
2.5	0.27	0.10	5.002000	0.100000	0.0000	0.17647	1 05882	0.104	1 27/
		0.19	5.002333	0.130900	0.02000	0.17647	1.00002	0.225	1 308
3.5	0,00	0.22	5.002000	0.130900	1.0470	0.17047	1 41176	0.275	1.516
4	6,35	0.24	5.882353	0.087325	1.04/9	0.17047	1 50004	0.304	1.510
4.5	6.38	0.27	5,882353	0.130966	1.17009	0.17047	1.00024	0.409	1.510
5	6,405	0.295	5.882353	0.109157	1.28805	0.17647	1,70471	0.477	1.009
6	6.445	0.335	5.882353	0.174651	1.4627	0.35294	2.11765	0.000	1.019
7	6.49	0.38	5.882353	0.196482	1.65918	0.35294	2.47059	0.811	1.932
8	6.525	0.415	6.451613	0.152819	1.812	0.3871	2.85/69	1.046	2.179
9	6.56	0.45	6.451613	0.152819	1.96482	0.3871	3.244/8	1.28	2.37
10	6.6	0.49	6.451613	0.174651	2.13947	0.3871	3.63188	1.492	2.487
11	6,664	0.554	6.451613	0.279441	2.41891	0.3871	4.01898	1.6	2.424
12	6.67	0.56	6.451613	0.026198	2.44511	0.3871	4.40607	1.961	2.724
13	6.705	0.595	6.451613	0.152819	2.59793	0.3871	4.79317	2.195	2.814
14	6.742	0.632	6.451613	0.161552	2.75948	0.3871	5.18027	2.421	2.882
15	6.77	0.66	6.451613	0.122256	2.88174	0.3871	5.56736	2.686	2.984
16	6.805	0.695	6.451613	0.152819	3.03456	0.3871	5.95446	2.92	3.042
17	6.84	0.73	6.451613	0.152819	3.18738	0.3871	6.34156	3.154	3.092
18	6.87	0.76	6.451613	0.130988	3.31836	0.3871	6.72865	3.41	3.158
19	6.9	0 79	6.451613	0.130988	3,44935	0.3871	7.11575	3.666	3.216
20	6.93	0.82	6.25	0.130988	3.58034	0.375	7,49075	3.91	3.259
21	6.96	0.85	6 25	0 130988	3 71133	0.375	7.86575	4.154	3.297
22	6 99	0.00	6 25	0 130988	3 84232	0.375	8 24075	4.398	3,332
22	7.03	0.00	6.25	0 174651	4 01697	0.375	8 61575	4 599	3 332
2.0	7.00	0.32	6.25	0.174007	A 14795	0.070	8 99075	4 843	3 363
24		0.90	625	0.130721	1 28768	0.070	9 36575	5 078	3 385
20	1.092	0.902	0.20	0.100/21	A 16250	0.075	9.00070 9.7/075	5 287	3 280
20	7.13	1.02	0.25	0.100910	4.40009	0,375	10 1457	5 511	3 101
2/	7.164	1.054	0.25	0.140403	4.00200	0.375	40.107	5746	3 /10
28	7.197	1.087	6.25	0.144087	4,74013	0.3/5	10,4907	5.740	2 400
29	. 7.235	1.125	6.25	0.165918	4.91205	0.375		0.904	3.422
30	7.268	1.158	6.25	0.144087	5.05614	0.375	11.2407	0.185	3.430
31	7.3	. 1.19	6,17284	0.139721	5.19586	0.37037	11.6111	0.415	3.449
32	7.335	1.225	6.17284	0.152819	5.34868	0.37037	11.9815	6.633	3.455
33	7.37	1.26	6.17284	0.152819	5.5015	0.37037	12.3519	_6.85	3.46
34	7.402	1.292	6.17284	0.139721	5.64122	0.37037	12.7222	7.081	3.471

sources.

Anderson (

20000

35	7 44	1 33	6 17284	0 165918	5 80714	0.37037	13.0926	7.285	3.469
36	7 475	1 365	6 17284	0.152819	5 95996	0.37037	13 463	7.503	3.474
37	7 505	1.000	6 17284	0.130988	6 09094	0.37037	13 8333	7 7 42	3 488
20	7.505	1.035	6 17204	0.100000	6.26550	0.07007	14 2037	7 938	3 482
20	7.040	1.400	6.17204	0.174001	6 41941	0.01001	14.2001	8 16	3 487
40	7.00	1.47	0.20	0.102019	6 50206	0.075	1/ 0627	8 361	3 484
40	7.02	1.01	0.20	0.174001	6 72270	0.375	15 3287	8 596	3 494
41	7.652	1,542	0.20	0.139721	0.13219	0.375	10.0207	0.030 8.84	3 508
42	7.682	1.572	6.25	0.130988	7,00000	0.375	10.7037	0.040	3 507
43	1.12	1.61	6.25	0.165918	7.02969	0.375	10.0/0/	9.049	3.507
44	7.755	1.645	6.25	0.152819	7.18251	0.375	10.4007	9.271	3.01Z
45	7.79	1.68	6.25	0.152819	7.33533	0.375	15.8287	9.493	3.510
46	7.82	1.71	6.25	0.130988	7.46632	0.375	17.2037	9.737	3.520
47	7.86	1.75	6.25	0.174651	7.64097	0.375	17.5787	9.938	3.524
48	7.89	1.78	6.25	0.130988	7.77196	0.375	17.9537	10.18	3.535
49	7.925	1.815	6.25	0.152819	7.92478	0.375	18.3287	10.4	3.539
50	7.955 ₁	1.845	6.17284	0.130988	8.05576	0.37037	18.6991	10.64	3,548
51	7.99	1.88	6.17284	0.152819	8.20858	0.37037	19.0695	10.86	3.549
52	8.025	1.915	6.17284	0.152819	8.3614	0.37037	19,4398	11.08	3.551
53	8.055	1.945	6.17284	0.130988	8.49239	0.37037	19.8102	11.32	3.559
54	8.085	1.975	6.17284	0.130988	8.62338	0.37037	20.1806	11.56	3.567
55	8.125	2.015	6.17284	0.174651	8,79803	0.37037	20.5509	11.75	3.561
56	8.155	2.045	6.17284	0.130988	8.92902	0.37037	20.9213	11.99	3.569
57	8.19	2.08	6.17284	0.152819	9.08184	0.37037	21.2917	12.21	3.57
58	8.22	2.11	6.17284	0.130988	9.21283	0.37037	21.662	12.45	3.577
59	8 25	2.14	6 17284	0.130988	9.34381	0.37037	22.0324	12.69	3,584
60	8 28	2 17	6 451613	0 130988	9 4748	0 3871	22,4195	12.94	3.596
61	8.31	22:	6 451613	0 130988	9 60579	0 3871	22 8066	13.2	3.607
62	8.34	2 23	6 451613	0 130988	9 73678	0 3871	23 1937	13,46	3.617
62	8 37	2.20	6.451613	0.100000	9.86777	0.3871	23 5808	13 71	3 628
64	8.4	2.20	6.451613	0.100000	9 99875	0.3871	23 9679	13 97	3 638
65	8 / 3	2 32	6.451613	0.100000	10 1297	0.3871	24 355	14 23	3 648
66	0.40	2.52	6 451613	0.130988	10.12.07	0.3871	24.000	14 48	3 657
67	0.40	2.00	6 451613	0.130988	10.2007	0.3871	25 1202	14 74	3,666
0/	0.49	2.30	0.451013	0.150900	10.3917	0.3071	25.1232	1/1 07	3.67
00	0.525	2.410	0.451013	0.152019	10.0440	0.0071	25.5105	15.01	3 673
69	8.55	2.45	6.451613	0.152819	10.0974	0.3071	20.9034	15.44	3.075
	8.595	2,485	6.451613	0.152819	10.8502	0.3071	20.2905	10.44	2 674
/1	8.635	2.525	6.451613	0.174651	11.0248	0.3871	20.07/0	10.00	2,074
/2	8.67	2.56	6.451613	0.152819	11.1776	0.3871	27.0647	10.09	3.070
/3	8.705	2.595	6.451613	0.152819	11.3305	0.3871	27.4518	10.12	3,001
74	8.735	2.625	6.451613	0.130988	11.4615	0.3871	27.8389	10.38	3.698
75	8.77	2.66	6.451613	0.152819	11.6143	0.3871	28.226	16.61	3.691
76	8.805	2.695	6.451613	0.152819	11.7671	0.3871	28.6131	16.85	3.694
77	8.835	2.725	6.451613	0.130988	11.8981	0.3871	29.0002	17.1	3.702
78	8.865	2.755	6.451613	0.130988	12.0291	0.3871	29.3873	17.36	3.709
79	8.882	2.772	6.451613	0.074227	12.1033	0.3871	29.7744	17.67	3.728
80	8.915	2.805	6.369427	0.144087	12.2474	0.38217	30.1565	17.91	3.731
81	8.955	2.845	6.369427	0.174651	12.422	0.38217	30.5387	18.12	3.728
82	8.995	2.885	6.369427	0.174651	12.5967	0.38217	30.9208	18.32	3.724
83	9.04	2.93	6.369427	0.196482	12.7932	0.38217	31.303	18.51	3.717
84	9.08	2.97	6.369427	0.174651	12.9678	0.38217	31.6852	18.72	3.714
85	9.12	3.01	6.369427	0.174651	13.1425	0.38217	32.0673	18.92	3.711
86	9.16	3.05	6.369427	0.174651	13.3171	0.38217	32.4495	19.13	3.708
87	9.21	3.1	6,369427	0.218313	13.5354	0.38217	32.8317	19.3	3.697
88	9.26	3.15	6.21118	0.218313	13.7537	0.37267	33.2043	19.45	3.684

· · · · · · · · · · · · · · · · · · ·									
89	9,305	3,195	6.21118	0.196482	13.9502	0.37267	33.577	19.63	3.675
90	9.355	3.245	6.21118	0.218313	14.1685	0.37267	33.9497	19.78	3.663
91	9.392	3.282	6.21118	0.161552	14.3301	0.37267	34.3224	19.99	3.662
92	9.44	3.33	6.21118	0.209581	14.5397	0.37267	34.695	20.16	3.651
93	9.485	3.375	6.21118	0.196482	14.7362	0.37267	35.0677	20.33	3.644
94	9.53	3.42	6.21118	0.196482	14.9326	0.37267	35.4404	20.51	3.636
95	9.565	3.455	6.25	0.152819	15.0855	0.375	35.8154	20.73	3.637
96	9.61	3.5	6.25	0.196482	15.2819	0.375	36.1904	20.91	3.63
97	9,655	3.545	6.25	0.196482	15.4784	0.375	36.5654	21.09	3.623
98	9.69	3.58	6.25	0.152819	15.6312	0.375	36.9404	21.31	3.624
99	9.732	3.622	6.25	0.183383	15.8146	0.375	37.3154	21.5	3.62
100	9.78	3.67	6.25	0.209581	16.0242	0.375	37.6904	21.67	3.611
101	9.82	3.71	6.25	0.174651	16.1989	0.375	38.0654	21.87	3.608
102	9.85	3.74	6.25	0.130988	16.3298	0.375	38.4404	22.11	3.613
103	9.85	3.74	4.25						
	•	A	verage inf	low rate (l/s	ec) =	:	3.61283		

(Scr20)

1010000

000000

2000000

000000

constitution of the

000000

outoffin.

distants.

•

Drawdown (metres)

Gulubane Collector Well Drawdown Pumping Test After Installation of Laterals - 27/7/97

Gulubane Collector Well - Post-installation of Laterals Drawdown and Inflow Data - 27/7/97

Time at star	rt of recovery	/	14:45				
Time since	Time since						
recoverv	pumping			Residual	Vol well	cum vol	inflow
started	started		PWL	drawdown	filled	well filled	rate
mins	mins	t/ť	metres	metres	m3	m3	l/sec
0	102	0	9.86	3.75			
0.166667	102,16667	0.001631	9.85	3.74	0.043663	0.043663	4.366268
0.33333	102.33333	0.003257	9.84	3.73	0.043663	0.087325	4.366355
0.5	102.5	0.004878	9.83	3.72	0.043663	0.130988	4.366181
0.667	102.667	0.006497	9.82	3.71	0.043663	0.174651	4.357553
0.833	102.833	0.008101	9.81	3.7	0.043663	0.218313	4.383803
1	103	0.009709	9.8	3.69	0.043663	0.261976	4.357553
1.5	103.5	0.014493	9.78	3.67	0.087325	0.349301	2.910845
2	104	0.019231	9.75	3.64	0.130988	0.480289	4.366268
2.5	104.5	0.023923	9.72	3.61	0,130988	0.611278	4.366268
3	105	0.028571	9.69	3.58	0.130988	0.742266	4.366268
3.5	105.5	0.033175	9.66	3.55	0.130988	0.873254	4.366268
4	106	0.037736	9.64	3.53	0.087325	0.960579	2.910845
45	106 5	0 042254	9,61	3.5	0.130988	1.091567	4.366268
5	107	0.046729	9.58	3.47	0.130988	1.222555	4.366268
6	108	0.055556	9.525	3,415	0.240145	1.4627	4.002412
7	109	0.06422	9,465	3.355	0.261976	1.724676	4.366268
/ 	110	0 072727	9.406	3.296	0.25761	1.982286	4.293497
a a	111	0.081081	9 35	3.24	0.244511	2.226797	4.075183
10	. 112	0.089286	9.29	3.18	0.261976	2.488773	4.366268
10	112	0.097345	9.23	3.12	0.261976	2.750749	4.366268
12	114	0.105263	9.17	3.06	0.261976	3.012725	4.366268
13	115	0.113043	9.11		0.261976	3.274701	4.366268
10	116	0.110040	9.05	2 94	0 261976	3,536677	4.366268
15	117	0 128205	9	2.89	0.218313	3.75499	3.638557
16	118	0.135593	8 945	2 835	0.240145	3.995135	4.002412
17	110	0.100000	8 895	2 785	0.218313	4.213449	3.638557
18	120	0.15	8 845	2 735	0.218313	4,431762	3,638557
19	121	0 157025	8 795	2 685	0.218313	4,650075	3.638557
20	127	0.163934	8 752	2 642	0.18775	4.837825	3,129159
20	123	0.100001	87	2 59	0.227046	5.064871	3.784099
21	120	0.177419	8 65	2.54	0.218313	5,283184	3.638557
22	. 125	0.171 110	8 615	2 505	0.152819	5,436004	2.54699
20	120	0.104	8 58	2.000	0 152819	5 588823	2,54699
27	120	0.19685	8.54	2.43	0 174651	5.763474	2.910845
20	128	0.203125	8 505	2 395	0.152819	5,916293	2.54699
20	120	0.200720	8 475	2 365	0 130988	6.047281	2.183134
21	129	0.200002	8 435	2.000	0 174651	6.221932	2.910845
20	131	0.210000	8.4	2.020	0 152819	6 374751	2,54699
29	132	0.221014	837	2.20	0.102010	6 505739	2.183134
30	132	0.22727270	8 335	2.20	0.152819	6 658559	2.54699
ວ ວງ	133	0.2000000		2.220	0 161552	6.820111	2,692532
 	. 104 . 125	0.20000	0.230 2.280	2.100 2.158	0.130988	6 951099	2 183134
	100	0.244444	0.200 2.02	∠.100 	0 165918	7 117017	2,765303
	100	0.20	ຸບ.∠ວ ຂາ	2.12 2.10	0.100010	7 248005	2 183134
30	10/	0.200474	 عادھ	2.08	0 152810	7 400824	2 54699
30 27	130	0.2000/	0,100 	2.000	0.102019	7 566742	2 765303
3/	139	0.20010/	0.127 		0.100010	7 728204	2 692532
38	140	0.271429	0.09 0.09	1.30	0.101002	7 880816	2 692532
39	141	0.210090	0.000	1.940	0.101002	1.003040	2.002.002

(hereal)

and the second

Allowed St.

		******			****			
	40	142	0.28169	8.018	1.908	0.152819	8.042666	2.54699
	41	143	0.286713	7.98	1.87	0.165918	8.208584	2.765303
	42	144	0.291667	7.945	1.835	0.152819	8.361403	2.54699
	43	145	0.296552	7.904	1.794	0.179017	8.54042 _.	2.983616
	44	146	0.30137	7.87	1.76	0.148453	8.688873	2.474219
	45	147	0.306122	7.835	1.725	0.152819	8.841693	2,5469
	46	148	0.310811	7.798	1.688 _.	0.161552	9.003245	2.69253
	47	149	0.315436	7.76	1.65	0.165918	9.169163 _.	2,76530
	48	150	0.32	7.725	1.615	0.152819	9.321982	2.5469
	49	151	0.324503	7.685	1.575	0.174651	9.496633	2.91084
	50	152	0.328947	7.655	1.545	0.130988	9.627621	2.183134
	51	153	0.333333	7.615	1,505	0.174651	9.802272	2.91084
	52	154	0.337662	7.58	1.47	0.152819	9.955091	2.5469
	53	155	0.341935	7.542	1.432	0.165918	10.12101	2,76530
	54	156	0.346154	7.508	1.398	0.148453	10.26946	2.47421
	55	157	0.350318	7.47	1.36	0.165918	10.43538	2.76530
	56	158	0.35443	7,44	1.33	0.130988	10.56637	2.18313
	57	159	0.358491	7.402	1.292	0.165918	10.73229	2.76530
-	58	160	0.3625	7.368	1.258	0.148453	10.88074	2.474219
	59	161	0.36646	7.338	1.228	0.130988	11.01173	2.18313
	60	162	0.37037	7.3	1.19	0.165918	11.17765	2.76530
	61	163	0.374233	7.27	1.16	0.130988	11.30863	2.18313
	62	164	0.378049	7.237	1.127	0.144087	11.45272	2.40144
	63	165	0.381818	7.202	1.092	0.152819	11.60554	2.5469
	64	166	0.385542	7.172	1.062	0.130988	11.73653	2.183134
	65	167	0.389222	7,137	1.027	0.152819	11.88935	2.54699
	66	168	0.392857	7.107	0.997	0.130988	12.02034	2.183134
	67	169	0.39645	7.075	0.965	0.139721	12.16006	2.328676
	68	170	0.4	7.045	0.935	0.130988	12.29104	2.183134
	69	171	0.403509	7.012	0.902	0.144087	12.43513	2.40144
	70	172	0.406977	6.98	0.87	0.139721	12.57485	2.328676
	71	173	0.410405	6.95	0.84	0.130988	12.70584	2.183134
* • • • • • • • •	72	174	0.413793	6.92	0.81	0.130988	12.83683	2.18313
	73	175	0.417143	6.89	0.78	0.130988	12.96782	2.183134
• • • •	74	176	0.420455	6.865	0.755	0.109157	13.07697	1.819278
	75	177	0.423729	6.838	0.728	0.117889	13.19486	1.96482
	76	178	0 426966	6.812	0.702	0.113523	13.30838	1.892049
	77	179	0.430168	6.785	0.675	0.117889	13.42627	1.96482
	78	180	0.433333	6.762	0.652	0.100424	13.5267	1.673736
	79	181	0.436464	6.737	0.627	0.109157	13.63585	1.819278
• • • • • • • • • • • • • • • • • • • •	80	182	0.43956	6.714	0.604	0.100424	13.73628	1,673736
	81	183	0 442623	6.689	0.579	0.109157	13.84544	1.819278
	82	184	0 445652	6.667	0.557	0.096058	13,94149	1.60096
	83	185	0 448649	6.647	0.537	0.087325	14.02882	1.455423
	84.	186	0.451613	6.624	0.514	0.100424	14.12924	1.673736
	85	187	0 454545	6 605	0.495	0.082959	14,2122	1.382652
	86	188	0 457447	6.586	0.476	0.082959	14 29516	1.382652
·· ·	87	189	0.460317	6.567	0.457	0.082959	14.37812	1,38265
	88	190	0.463158	6.55	0.44	0.074227	14,45235	1.23710
	89	190	0 465969	6.535	0 425	0.065494	14,51784	1,09156
	an	102	0.46875	6.515	0.405	0.087325	14.60517	1.455423
	Q1	102	0.471502	6.5	0.400	0.065494	14 67066	1 09156
	ື	10/	0.474000	6 495	0.385	0.000404	14 69249	0.363856
	02	105	0.776002	6 <i>4</i> 7	0.000	0.100157	14 80165	1 819278
	30.	190	0.410320	0.47	0.00	0.100107	1-100100	1.0102.11

2010/02

000/000

0.000

(1999)

00000

Northeast.

00000

adarys species adarase

potected

Necost

2011/201

Marriell

6 g ar

and a start which with an and the second start which which were second second

94	196	0.479592	6.455	0.345	0.065494	14.86714	1.091567
95	197	0.482234	6.442	0.332	0.056761	14.9239	0.946025
96	198	0.484848	6.43	0.32	0.052395	14.9763	0.873254
97	199	0.487437	6.417	0.307	0.056761	15.03306	0.946025
98	200	0.49	6.406	0.296	0.048029	15.08109	0.800482
99	201	0.492537	6.394	0.284	0.052395	15.13348	0.873254
100	202	0.49505	6.382	0.272	0.052395	15.18588	0.873254
	······		Average inflo	w rate (I/s	ec) =	2.53098	

Stants

Section of

North N

40000

and on

.

Gulubane Collector Well Recovery Pumping Test After Installation of Laterals - 27/7/97

Gulubane Collector Well - Post-installation of Laterals Recovery and Inflow Data - 27/7/97

.

Dumping	toet		28/07/07	······		······································			
Matcholo	lesi Japhadi Ca	llootor Mal	_20/07/97 1			•			1
Rofora in	stallation r	fiatorale	ţ				· ·	•	
Derote in Deetwet	istaliation (,		
Rest water level 2.87		2.07	mbtoc			•			
vven dep	in The second	8.73	motoc						••••••
TOP OF Ca	asing	0.422	magi				• • • • • • •	•••••	
Start of te	est	• •	·					··· · · ·	
	· ·		Pumping	Vol of well	Cum vol	Volume	Cum vol	inflow	inflow rate
lime	PWL	Drawdown	rate	emptied	emptied	pumped	pumped	_m3	l/sec
nins	metres	metres	l/sec	_m3	_m3	_m3	_m3		
	0 2.87	0	6.66667				•••••••••••••	• • • • • • • • • • • • • • • • • • • •	
0.1666	7 2.88	0.01	6.66667	0.035338	0.03534	0.06667	0.06667	0.0313	3.132817
0.33333	3 2.895	0.025	6.66667	0.053008	0.08835	0.06667	0.13333	0.0137	1.365892
0.8	5 2.91	0.04	6.66667	0.053008	0.14135	0.06667	0.2	0.0137	1.365892
0.66	7 2.935	0.065	6.66667	0.088346	0.2297	0.0668	0.2668	-0.0215	-2.15032
0.833	3 2.95	0.08	6.66667	0.053008	0.28271	0.0664	0.3332	0.0134	1.344603
•	1 2.97	0.1	6.66667	0.070677	0.35339	0.0668	0.4	-0.0039	-0.38693
1.(5 3.025	0.155	6.66667	0.194362	0.54775	0.2	0.6	0.0056	0.187942
· · · · · · · · · · · · · · · · · · ·	2 3.085	0.215	6.66667	0.212031	0.75978	0.2	0.8	-0.012	-0.40103
2 5	5 3.14	0.27	6.66667	0.194362	0.95414	0.2	1	0.0056	0.187942
	3 3.2	0.33	6.66667	0.212031	1.16617	02	12	-0.012	-0.40103
3 5	5 325	0.38	6 66667	0 176692	1 34286	0. <u>_</u> 0.2	14	0.0233	0 776917
····· · · · · · · · · · · · · · · · ·	4 3.31	0.44	6 66667	0.212031	1.55489	0.2	16	-0.012	-0.40103
	5 3.37	0.44	6.66667	0.212031	1 76693	0.2	1.0	-0.012	-0.40103
איך איך איר	5 3/25	0.555	6 66667	0.212001	1.70000	0.2	1.0	0.012	0.187942
· · · · · · · ·	2 2 52	0.000	6 80655	0.134502	2 22224	0.2	2 /1270	0.0000	0.712214
· · · · · · · · · · · · · · · · · · ·	7 264	0.00	6 90655	0.371034	2.00204	0.41379	2.41379	0.0427	0./12314
	0.04	0.77	0.09000	0.300724	2.12100	0.41379	2.02109	0.0251	0.417027
	0 3.70 D 0.00	0.88	0.09000	0.366724	3.109/9	0.413/9	3.24130	0.0201	0.417827
		0.99	0.09000	0.388724	3.49851	0.41379	3.65517	0.0251	0.417827
10	J 3.96	1.09	0.89655	0.353385	3.8519	0.41379	4.06897	0.0604	1.006802
11	4.065	1.195	6.89655	0.371054	4.22295	0.413/9	4.482/6	0.0427	0.712314
12	2, 4.17	1.3	6.89655	0.3/1054	4.59401	0.41379	4.89655	0.0427	0./12314
13	3 4.28	1.41	6.89655	0.388724	4.98273	0.41379	5.31034	0.0251	0.417827
14	4.375	1.505	6.89655	0.335716	5.31844	0.41379	5.72414	0.0781	1.301289
15	5 4.475	1.605	6.45161	0.353385	5.67183	0.3871	6.11123	0.0337	0.561863
16	6 4.58	1.71	6.45161	0.371054	6.04288	0.3871	6.49833	0.016	0.267375
17	4.685	1.815	6.45161	0.371054	6.41394	0.3871	6.88543	0.016	0.267375
18	3 4.78	1.91	6.45161	0.335716	6.74965	0.3871	7.27253	0.0514	0.85635
19	4.875	2.005	6.45161	0.335716	7.08537	0.3871	7.65962	0.0514	0.85635
20) 4.975	2.105	6.45161	0.353385	7.43875	0.3871	8.04672	0.0337	0.561863
21	5.07	2.2	6.45161	0.335716	7.77447	0.3871	8.43382	0.0514	0.85635
22	2. 5.17	2.3	6.45161	0.353385	8.12786	0.3871	8.82091	0.0337	0.561863
23	5.27	2.4	6.66667	0.353385	8.48124	0.4	9.22091	0.0466	0.776917
24	5.36	2.49	6.66667	0.318047	8,79929	0.4	9.62091	0.082	1.365892
25	5.45	2.58	6.66667	0.318047	9.11733	0.4	10.0209	0.082	1.365892
26	5 54	2.67	6.66667	0.318047	9,43538	0.4	10 4209	0.082	1,365892
27	5.64	2 77	6 66667	0 353385	9 78876	0.⊴r ∩ 4	10 8209	0.0466	0 776917
29	5 72	2.65	6 26959	0.282708	10 0716	0.37618	11 1071	0.0425	1 557792
20	, <u>0.72</u> 1 5.82	2.00	6 26050	0.202100	10.0713	0.07010	11 5722	0.0000	0 370842
23	, <u>υ.υ</u> Ζ η και	∠.⊎J 2 ∩∕	6 26060	0.000000	10.7420	0.07010	11 0404	0.0220	0.073042
30	່ວ.ສ ເ	J.∪4 0 40	0.20909	0.010047	14.004	0.37010	10 2050	0.0504	0.90001/
31	0	3.13	0.20909	0.310047	14 44 40	0.37018	12.3250	0.0581	0.30001/
32	5.1	3.23	0.20959	0.353385	11.4143	0.3/618	12.7018	0.0228	0.3/9842
33	0.185	3.315	0.26959	0.300377	11./14/	0.37618	13.078	0.0758	1.263305
34	6.27	3.4	6.26959	0.300377	12.0151	0.37618	13.4541	0.0758	1.263305

to a la contra

 35	6.37	3.5	6.26959	0.353385	12.3685	0.37618	13.8303	0.0228	0.379842
36	6.45	3.58	6.26959	0.282708	12.6512	0.37618	14.2065	0.0935	1.557792
37	6.54	3.67	6.26959	0.318047	12.9692	0.37618	14,5827	0.0581	0.968817
38	6.62	3.75	6.26959	0.282708	13.2519	0.37618	14.9588	0.0935	1.557792
39	6.71	3.84	6.26959	0.318047	13.57	0.37618	15.335	0.0581	0.968817
40	6.8	3.93	6.55738	0.318047	13.888	0.39344	15.7285	0.0754	1.256602
41	6.892	4.022	6.55738	0.325114	14.2131	0.39344	16.1219	0.0683	1.138807
42	6.98	4.11	6.55738	0.310979	14.5241	0.39344	16.5153	0.0825	1.374397
43	7.06	4.19	6.55738	0.282708	14.8068	0.39344	16.9088	0.1107	1.845577
 44	7.15	4.28	6.55738	0.318047	15.1249	0.39344	17.3022	0.0754	1.256602
45	7.24	4.37	6.55738	0.318047	15.4429	0.39344	17.6957	0.0754	1.256602
46	7.315	4.445	6.55738	0.265039	15.708	0.39344	18.0891	0.1284	2.140065
 47	7.41	4.54	6.55738	0.335716	16.0437	0.39344	18.4826	0.0577	0.962115
48	7.49	4.62	6.55738	0.282708	16.3264	0.39344	18.876	0.1107	1.845577
49	7.58	4.71	6.55738	0.318047	16.6444	0.39344	19.2694	0.0754	1.256602
 50	7.66	4.79	6.55738	0.282708	16.9271	0.39344	19.6629	0.1107	1.845577
 51	7.76	4.89	6.55738	0.353385	17.2805	0.39344	20.0563	0.0401	0.667627
52	7.84	4.97	6.55738	0.282708	17.5632	0.39344	20.4498	0.1107	1.845577
 53	7.92	5.05	6.55738	0.282708	17.8459	0.39344	20.8432	0.1107	1.845577
54	8	5.13	6.06061	0.282708	18.1287	0.36364	21.2069	0.0809	1.348806
 55	8.085	5.215	6.06061	0.300377	18.429	0.36364	21.5705	0.0633	1.054319
 56	8.17	5.3	6.06061	0.300377	18.7294	0.36364	21.9341	0.0633	1.054319
 57	8.26	5.39	6.06061	0.318047	19.0475	0.36364	22.2978	0.0456	0.759831
 58	8.35	5.48	6.06061	0.318047	19.3655	0.36364	22.6614	0.0456	0.759831
 59	8.44	5.57	6.06061	0.318047	19.6835	0.36364	23.025	0.0456	0.759831
 60	8.525	5.655	6.06061	0.300377	19.9839	0.36364	23.3887	0.0633	1.054319
 61	8.62	5.75	6.06061	0.335716	20.3196	0.36364	23.7523	0.0279	0.465344
 62	8.63	5.76	1.11111	0.035339	20.355	0.06667	23.819	0.0313	0.522136
			Average r	ate of inflov	v (l/sec) =		0.93118	:	

.

Drawdown (metres)

Matshelagabedi Drawdown pumping test before drilling of laterals 28/7/97

100000

provide the

000000

Matshelagabedi Collector Well - Pre-installation of Laterals Drawdown and Inflow Data - 28/7/97

1	Start of rec	covery						
ĺ		Time sind	ce		Residual	Vol well	cum vol	inflow
	Time	start		PWL	drawdown	filled	well filled	rate
	mins	mins	t/ť	metres	metres	m3	m3	l/sec
	0	62	Ö	. 8.77	5.9			
	0.16667	62.167	0.002681	8.77	5.9	0	0	0
	0.33333	62.333	0.005348	8.76	5.89	0.03534	0.03534	3.53392
	0.5	62.5	0.008	8.75	5.88	0.03534	0.07068	3.53378
	0.667	62.667	0.010644	8.735	5.865	0.05301	0.12368	5.29019
	0.833	62.833	0.013257	8.73	5.86	0.01767	0.14135	1.77402
	1	63	0.015873	8.72	5.85	0.03534	0.17669	3.5268
	1.5	63.5	0.023622	8.7	5.83	0.07068	0.24737	2.3559
	2	64	0.03125	8.68	5.81	0.07068	0.31805	2.3559
	2.5	64.5	0.03876	8.65	5.78	0.10602	0.42406	3.53385
	3	65	0.046154	8,63	5.76	0.07068	0.49474	2.3559
	3.5	65.5	0.053435	8.622	5.752	0.02827	0.52301	0.94236
	4	66	0.060606	8.615	5.745	0.02474	0.54775	0.82456
	4.5	66.5	0.067669	8.605	5.735	0.03534	0.58309	1.17795
	5	67	0.074627	8.595	5.725	0.03534	0.61842	1.17795
	6	68	0.088235	8.575	5.705	0.07068	0.6891	1.17795
	7	69	0.101449	8.56	5.69	0.05301	0.74211	0.88346
	8	70	0.114286	8.54	5.67	0.07068	0.81279	1.17795
	9	71	0.126761	8.527	5.657	0.04594	0.85873	0,76567
	10	72	0.138889	8.506	5.636	0.07421	0.93294	1.23685
	11	73	0.150685	8.488	5.618	0.06361	0.99655	1.06016
	12	74	0.162162	8.47	5.6	0.06361	1.06016	1.06015
	13	75	0.173333	8.45	5.58	0.07068	1.13083	1.17795
	14	76	0.184211	8.43	5.56	0.07068	1.20151	1.17795
	15	77	0.194805	8.412	5.542	0.06361	1.26512	1.06015
	16	78	0.205128	8.396	5.526	0.05654	1.32166	0.94236
	17	79	0.21519	8.378	5.508	0.06361	1.38527	1.06016
	18	80	0.225	8.36	5.49	0.06361	1.44888	1,06016
	19	81	0.234568	8.342	5.472	0.06361	1.51249	1.06015
	20	82	0.243902	8.322	5,452	0.07068	1.58316	1.17/95
	21	83	0.253012	8.305	5.435	0.06008	1.64324	1.00126
	22	84	0.261905	8.287	5.417	0.06361	1.70685	1.06015
	23	85	0,270588	8.27	5.4	0.06008	1.76693	1.00126
	24	86	0.27907	8.252	5.382	0.06361	1.83053	1.06015
	25	87	0.287356	8.232	5.362	0.07068	1.90121	1.17795
	26	88	0.295455	8.215	5.345	0.06008	1.96129	1,00126
	27	89	0.303371	8.198	5.328	0.06008	2.02130	1.00120
	28	90	0.311111	8.18	5,31	0.06361	2.0049/	1.00010
	29	91	0.318681	8.16	5.29	0.07068	2.10000	0.00046
	30	92	0.326087	8.145	5.2/5	0.05301	2.20000	1 17705
	31	93	0.333333	8,125	5.200	0.07000	2.27933	1.00100
	32	94	0.340426	0.108		0.00008	2.00941	1.00120
	33	95	0.34/368	8.092	5.222	0.000714	2.39390	1 11005
	34	96	0.354167	0.0/3	5.203	0.007.14	2.40309	1.11905
	35	97	0.360825	0,055	5.105	0.00301	2.020/	1.00010
	36	98	0,30/34/ 0 272757	0.U3/	/סו.כ בירב	0.00301	2,09031	1 0010
	37		0.3/3/3/	0.02	ວ.ເວ ຂາງດີ	0.00000	2 714	1.00120
	38	100	0.38	0.00Z	5.13Z	0.00301	2.714	61000.1 AN 288 A
	39	101	0,000109	7.000	0.117 £ 009	0.00001	2.101	1 1100540
	40	102	0.092107	7.900	5.090	0.007.14	2.00410	1.11300

40	101 0 102846	7 022	5 062	0 10700	2 06137	1.06015
42	104 0.403846	7.902	5,002	0.12722	2.90107	1 0896
44	106 0.415094	7.695	5.025	0.13075	0.09212	1.0000
46	108 0.425926	7.00	4.99	0.12300	2.25110	0.14724
50	112 0.446429	7.85	4,90	0.03534	3.20114	0.14724
55	117 0.470085	7.8	4,93	0.17009	3.42/03	0.58897
60	122 0.491803	7.75	4.88	0.17009	3.00405	0.00097
65	127 0.511811	7.68	4,81	0.24737	3.0019	1 06016
10	132 0.530303	7.59	4.72	0.31805	4.10994	0.000101
75	137 0.547445	/ 4	4,53	0.67143	4.84137	2.2301
80	142 0.56338	7.31	4.44	0.31805	5.15942	0.04026
	147 0.578231	(.23	4.36	0.28271	5.44213	0.94236
90	152 0.592105	7.14	4.27	0.31805	5.76018	1.06016
95	157 0.605096	7.06	4.19	0.28271	6.04288	0.94236
100	162 0.617284	6.98	4.11	0.28271	6.32559	0.94236
105	167 0.628743	6.9	4.03	0.28271	6.6083	0.94236
110	172 0.639535	6.81	3.94	0.31805	6.92635	1.06016
115	177 0.649718	6.72	3.85	0.31805	7.24439	1.06016
120	182 0.659341	6.56	3,69	0.56542	7.80981	1.88472
125	187 0.668449	6.51	3.64	0.17669	7.9865	0.58897
130	192 0.677083	6.46	3.59	0.17669	8.16319	0.58897
135	197 0.685279	6.39	3.52	0.24737	8.41056	0.82457
140	202 0.693069	6.31	3,44	0.28271	8.69327	0.94236
145	207 0.700483	6.25	3.38	0.21203	8.9053	0,70677
150	212 0.707547	6.15	3.28	0.35338	9.25869	1.17795
155	217 0.714286	6.06	3,19	0.31805	9.57673	1.06016
160	222 0.720721	5.99	3,12	0.24737	9.8241	0.82456
165	227 0.726872	5.9	3.03	0.31805	10.1421	1.06016
170	232 0.732759	5.82	2.95	0.28271	10.4249	0.94236
175	237 0.738397	5.75	2.88	0.24737	10.6722	0.82457
180	242 0.743802	5.67	2.8	0.28271	10.9549	0.94236
185	247 0.748988	5.6	2.73	0.24737	11.2023	0.82457
190	252 0.753968	5.51	2.64	0.31805	11.5204	1.06016
195	257 0.758755	5.43	2.56	0.28271	11.8031	0.94236
200	262 0.763359	5.35	2,48	0.28271	12.0858	0.94236
205	267 0.76779	5.27	2.4	0.28271	12.3685	0.94236
210	272 0 772059	5.21	2.34	0.21203	12.5805	0,70677
215	277 0 776173	5.13	2.26	0.28271	12.8632	0.94236
220	282 0 780142	5.06	2.19	0.24737	13.1106	0.82457
225	287 0 783972	5.01	2 14	0 17669	13.2873	0.58897
230	292 0 787671	4.92	2.05	0.31805	13,6053	1.06016
235	297 0 791246	4 87	2	0 17669	13,782	0,58897
240	302 0 794702	4.8	1 93	0 24737	14.0294	0.82457
245	307 0 798046	4 75	1.88	0 17669	14,2061	0.58897
250	312 0 801282	4 68	1.81	0 24737	14 4534	0.82457
255	317 0 804416	4.61	1 74	0.24737	14 7008	0.82456
200	222 0 807452	1.01 1.56	1 69	0 17669	14 8775	0.58898
200	327 0.810308	4.00	1.00	0 31805	15 1956	1 06016
200	222 0.010000	1 AO	1 55	0.17660	15 3722	0 58897
2/0	337 0.816034	-1.42 1 365	1 /05	0.17003	15 5666	0.64787
2/0	242 0.010024	4.000	1.435	0 17660	15 7433	0 58897
200	347 0 934306	4.010	1 20	0 1009	15 0277	0.64787
200	357 0 002 1320	4.20	1.03	0 17660	16 11/1	0.58897
290	357 0 000001		1.04	0.17660	16 201	0.58807
295	357 0.020331	4,10	1.29	0.17009	16 5720	0.00007
300	362 0.828/29	4.08	1.21	U.20211	10.07.00	0.34230

0.00000

0.000000

Sector Sec.

310	372	0.833333	4.016	1.146	0.22617	16.7999	0.37694
L		·	0.90322				

0000000

A102003

Section 2

099800

100,0003

62711/62

Sectors!

000000

Sector Sector

2003075

Street St.

Matshelagabedi Recovery Pumping Test Before Installation of Laterals 28/7/97

ť/ť

Matshelagabedi Collector Well - Pre-installation of Laterals Recovery and Inflow Data - 28/7/97

Time (mins)
Pum	ning test		03/08/97						
Matst	helanahe	nto allecto	r Well						
After	installati	on of latera	ls.		1		÷	•	
Rest	water lev		20	mbtoc				•	
Mall	danth		8.73	mbtoc					
Top	uepui Mondina		0.70	motoc				•	
top c	ricasing		0.422	magi					
					·		· ~ ·	·	·
		D	Pumping	VOLOT WEIL	Cum voi	volume	Cum vol	Intiow	Intiow
iime	PVVL	Drawdown	rate	emptied	emptied	pumped	pumped	rate	rate
Imins	metres	metres	//sec	m3	_m3	_m3	m3	m3	l/sec
0	2.9	0	6.55738						
0.5	2.95	0.05	6.55738	0.176693	0.1767	0.1967	0.1967	0.02	0.668
1	. 3.	0.1	6.55738	0.176692	0.3534	0.1967	0.3934	0.02	_. 0.668
1.5	. 3.05 _.	0.15	6.55738	0.176692	0.5301	0.1967	0.5902	0.02	0.668
2	3.09	0.19	6.55738	0.141354	0.6714	0.1967	0.7869	0.055	_. 1.846
2.5	3.13	0.23	6.55738	0.141354	0.8128	0.1967	0.9836	0.055	1.846
3	3.18	0.28	6.55738	0.176693	0.9895	0.1967	1.1803	0.02	0.668
3.5	3.21	0.31	6.55738	0.106015	1.0955	0.1967	1.377	0.091	3.024
4	3.24	0.34	6.55738	0.106016	1.2015	0.1967	1.5738	0.091	3.024
4.5	3.27	0.37	6.55738	0.106015	1.3075	0.1967	1.7705	0.091	3.024
5	3.3	0.4	6.66667	0.106015	1.4135	0.2	1.9705	0.094	3.133
6	3.36	0.46	6.66667	0.212031	1.6256	0.4	2.3705	0.188	3,133
7	3,425	0.525	6.66667	0.2297	1.8553	0.4	2.7705	0.17	2.838
8	3 48	0.58	6 66667	0 194362	2 0496	0.4	3 1705	0.206	3 427
9	3 53	0.63	6 66667	0 176692	2 2263	0.4	3 5705	0.223	3 722
10	3.58	0.68	6 89655	0.176693	2 403	0.4138	3 9843	0.220	3 952
11	3.62	0.72	6.89655	0 141354	2 5444	0.4138	4 3981	0.207	A 541
12	3.67	0.72	6 80655	0.176602	2.044	0.4138	4.8110	0.272	3052
12	3.71	0.77	6 89655	0.1/125/	2.7211	0.4130	5 00 13 5 00 57	0.237	J.JJZ 1 5/1
16	3 83	0.01	6 80655	0.141004	2.0024	1 2/1/	0.2207 6 AG77	0.272	4.041
10	2.03	0.93	0.09000	0.424062	0.2000	0 4429	0.407	0.017	4.041
10	3.07	0.97	0.09000	0.141354	3.4270	0.4130	0.0000	0.272	4.541
10	3.91	1.01	0.09000	0.141354	3.5692	0.4138	7.2946	0.272	4.541
19	3.96	1.06	0.09000	0.176692	3.7459	0.4138	7.7084	0.237	3.952
20	4.01	1.11	6.89655	0.176692	3.9226	0.4138	8.1222	0.237	3.952
	4.1	1.2	6.89655	0.318047	4.2406	0.8276	8.9498	0.51	4.246
24	4.19	1.29	6.89655	0.318047	4.5587	0.8276	9.7774	0.51	4.246
26	4.28	1.38	6.89655	0.318047	4.8767	0.8276	10.605	0.51	4.246
28	4.38	1.48	6.89655	0.353385	5.2301	0.8276	11.433	0.474	3.952
30	4.48	1.58	6.89655	0.353385	5.5835	0.8276	12.26	0.474	3.952
32	4.58	1.68	6.89655	0.353385	5.9369	0.8276	13.088	0.474	3.952
34	4.69	1.79	6.89655	0.388724	6.3256	0.8276	13.915	0.439	3.657
36	4.79	1.89	6.89655	0.353385	6.679	0.8276	14.743	0.474	3.952
38	4.9	2	6.89655	0.388724	7.0677	0.8276	15.57	0.439	3.657
40	5.01	2.11	6.89655	0.388723	7.4564	0.8276	16.398	0.439	3.657
42	5.12	2.22	6.89655	0.388724	7.8451	0.8276	17.226	0.439	3.657
44	5.22	2.32	6.89655	0.353385	8,1985	0.8276	18.053	0.474	3.952
46	5.35	2.45	6.89655	0.459401	8.6579	0.8276	18.881	0.368	3.068
48	5.46	2.56	6.89655	0.388724	9 0467	0 8276	19 708	0 439	3 657
50	5.57	2.67	6 89655	0.388724	9 4354	0.8276	20.536	0 439	3 657
52	5.68	2 78	6 89655	0.388723	9 8241	0.8276	21 36/	0 439	3 657
. <u>2</u> 57	5.00	2.10	6 89655	0.000720	10.0241	0.0210 0.8276	22.004	0.420	3 667
56	5 005	2.09 2.09	6 80655	0.000724	10.210	0.0270 0.8276	22.101	0.400	2 61
50	6.02	2 12	6 80655	0.400393	11.064	0.0210	20.019	0.421	2.01
00 60	0.00	ວ. ເວັ ອຸດຂັ	0.09000	0.441701	11.001	0.0270	23.040	0.000	0.210
00	ю. ID	3.20	0.0000/	0.424062	11.485	U.8	24.646	0.3/6	<u> ৩. । </u>

62	6.26	3.36	6.66667	0.388723	11.874	0.8	25.446	0.411	3.427
64	6.38	3.48	6.66667	0.424062	12.298	0.8	26.246	0.376	3.133
66	6.5	3.6	6.66667	0.424062	12.722	0.8	27.046	0.376	3.133
68	6.63	3.73	6.66667	0.459401	13.181	0.8	27.846	0.341	2.838
70	6.75	3.85	6.89655	0.424062	13.605	0.8276	28.674	0.404	3.363
72	6.87	3.97	6,89655	0.424062	14.029	0.8276	29.502	0.404	3.363
74	7	4.1	6.89655	0.459401	14.489	0.8276	30.329	0.368	3.068
76	7.12	4.22	6.89655	0.424062	14.913	0.8276	31.157	0.404	3.363
78	7.25	4.35	6.89655	0.459401	15.372	0.8276	31.984	0.368	3.068
80	7.37	4.47	6.89655	0.424062	15.796	0.8276	32.812	0.404	3.363
82	7.48	4.58	6.89655	0.388724	16,185	0.8276	33.639	0.439	3.657
84	7.61	4.71	6.89655	0.459401	16.644	0.8276	34.467	0.368	3.068
86	7.74	4.84	6.89655	0.459401	17.104	0.8276	35.295	0.368	3.068
88	7.86	4.96	6.89655	0.424062	17.528	0.8276	36.122	0.404	3.363
90	7.98	5.08	6.89655	0.424062	17.952	0.8276	36.95	0.404	3.363
92	8.11	5.21	6.89655	0.4594	18.411	0.8276	37.777	0.368	3.068
94	8.24	5.34	6.89655	0.459401	18,871	0.8276	38.605	0.368	3.068
96	8.37	5.47	6.89655	0.4594	19.33	0.8276	39.433	0.368	3.068
98	8.5	5.6	6.89655	0.459401	19.79	0.8276	40.26	0.368	3.068
100	8.5	5.6	2.7027	0	19,79	0.3243	40.584	0.324	2.703
		· · · · ·	Average r	ate of inflow	(I/sec) =	3.4658			

\$2000

1000000

100000

200003

(2000)

0000000

Section.

Street C

2007022

0007722

100001

1011-101 -

. .

•

Drawdown (metres)

Matshelagabedi Collector Well - Drawdown pumping test after drilling of laterals - 3/8/97

Matshelagabedi Collector Well - Post-installation of Laterals Drawdown and Inflow Rate Data - 3/8/97

Recovery 7	lest							
Timo since	Timo ei	000						
I Time Since					Residual	Volwell	cum vol	inflow
started (t)	started	'9 (†'\	+/+'		drawdown	filled	well filled	rate
mins	mins	(1)	νı	metres	metres	m3	m3	Usec
[111173	i mus	100		8.52	5.6	2	110	1000
1		101	0.01	8.48	5.5	⊂. 8 ∩ 1414	0 14135	2 3559
		102	0.01	8.41	5.5	1 0.2474	0.38872	4 1228
3		103	0.02	8.37	5.4	7 0 1414	0.53008	2 3559
		104	0.020	8.34	5.4	4 0.1416 4 0.106	0.63609	1 7669
		105	0.000	8.28	5.3	- 0.100 8 0.212	0.84812	3 5339
		106	0.040	8.25	5.3	0.212 5 0.106	0.04012	1 7669
7		107	0.007	8.21	. 0.0- . 53	1 0.100	1 09549	2 3559
/ 	 t	107	0.000	8 15	52	5 0.1414 5 0.212	1 30752	3 5339
		100	0.077	8.11		1 0 1414	1 44888	2 3559
10	• •	110	0.000	8.07		7 0 1414 7 0 1414	1 59023	2 3559
11	•	111	0.001		5.1	2 0 1767	1 76693	2 9449
10	1.11	112	0.000	7 07	5.0	7 0.1767	1 9/362	2.0110
12	<i>.</i>	112	0.107	7.02	5.0	3 0 1/14	2 08/07	2 3559
14	•	110	0.110	7.33		0.1414 8 0.1767	2.00407	2.0000
14		114	0.123	7.00	4.3	0.1707 A 0.1717	2.20100	2.0440
	• • · · ·	110	0.10	· 7.04	4.5	9 0 1414 0 0 1414	2.40302	2,0000
10	• • • • • •	110	0.130	7.0		9 0.1414 2 0.1414	2.04407	2.0000
1/		117	0.145	, 1.70 , 7.70	4.0	0 1414	2.00010	2.0000
10		110	0.155	1.12	4,0, 	2 0.1414	2.02700	2.0000
19	i	119	0,16	7.67	4.7		3.00377	2.9449
20	i	120	0.167	7.63	4,7	3 0.1414 0.04444	3.14513	2.3009
21		121	0.174	7.59	4.6	9 0.1414	3.28648	2.3009
22	· · · · · · · · · · · · · · · · · · ·	122	0.18	1.55	4.0	0 1414	3.42/83	2.3009
	н Элгэл гэ	123	0.187	7.51	4.6	1 0.1414	3.56919	2.3559
24	i i i i i i i i i i i i i i i i i i i	124	0.194	7.46	4.5	o 0.1767	3.74588	2.9449
25		125	0.2	1.42	4.5	2 0.1414	3.88724	2.3009
26		126	0.206	7.38	4.4	8 0.1414	4.02859	2.3009
2/	· · · · ·	127	0.213	7.34	4.4	4 01414	4.16994	2.3559
28		128	0.219	7.3	4.	4 0.1414	4.3113	2.3009
29	4	129	0.225	1.25	4.3	5 0.1767	4.48799	2.9449
30) /	130	0.231	1.2		3 0.1/6/	4.66468	2.9449
31	s	131	0.237	<u> </u>	4.2	/ 0.106	4.7707	1.7669
32		132	0.242	/.14	4.2	4 0.106	4.8/6/1	1.7669
33		133	0.248	7.09	4.1	9 0.1767	5.05341	2.9449
34		134	0.254	7.04	4.1	4 01/6/	5.2301	2.9449
36	: :	136	0.265	6.96	4.0	5 0.2827	5.51281	2.3559
37		137	0.27	6.91		1 0.1/6/	5.6895	2.9449
38		138	0.275	6.87	3.9	/ 01414	5.83085	2.3559
39	11 	139	0.281	6.84	. 3.9	4 0.106	5.93687	1.7669
40	l.	140	0.286	. 6.8	3.1	9 0.1414	6.07822	2.3559
41		141	0.291	. 6.75	. 3,8	5 0.1767	6.25491	2.9449
42	· .	142	0.296	6.71	3.8	1 0.1414	6.39627	2.3559
43		143	0.301	6.67	3.7	7 0.1414	6.53762	2.3559
44		144	0.306	6.63	3.7	3 _. 0.1414	6.67898	2.3559
45	, .	145	0.31	6.59	, 3.6	9_0.1414	6.82033	2.3559
46	i	146	0.315	6.55	. 3.6	5 0.1414	6.96168	2.3559
47	· ·	147	0.32	6.51	3,6	1 0.1414	7.10304	2.3559
48		148	0.324	6.47	3,5	7 0.1414	7.24439	2.3559

:

	49	149 0.329	6.43	3.53	0.1414	7.38575	2.3559
l	50	150 0.333	6.39	3.49	0.1414	7.5271	2.3559
	51	151 0.338	6.35	3.45	0.1414	7.66845	2.3559
	52	152 0.342	6.31	3.41	0.1414	7.80981	2.3559
ĺ	53	153 0.346	6.27	3.37	0.1414	7.95116	2.3559
	54	154 0.351	6.23	3.33	0.1414	8.09252	2.3559
	55	155 0.355	6.19	3.29	0.1414	8.23387	2.3559
	56	156 0.359	6.15	3.25	0.1414	8.37522	2.3559
	57	157 0.363	6.11	3.21	0.1414	8.51658	2.3559
l	58	158 0.367	6.07	3.17	0.1414	8.65793	2.3559
ł	59	159 0.371	6.04	3.14	0.106	8.76395	1.7669
	60	160 0.375	6	3.1	0.1414	8.9053	2.3559
	61	161 0.379	5.95	3.05	0.1767	9.08199	2.9449
	62	162 0.383	5.91	3.01	0.1414	9.22335	2.3559
ł	63	163 0.387	5.88	2.98	0.106	9.32936	1.7669
	64	164 0.39	5.84	2.94	0.1414	9.47072	2.3559
	65	165 0.394	5.8	2.9	0.1414	9.61207	2.3559
ļ	66	166 0.398	5.76	2.86	0.1414	9.75343	2.3559
	67	167 0.401	5.73	2.83	0.106	9.85944	1.7669
	68	168 0.405	5.68	2.78	0.1767	10.0361	2.9449
ł	69	169 0.408	5.64	2.74	0.1414	10.1775	2.3559
ł	70	170 0.412	5.6	2.7	0.1414	10.3188	2.3559
Ì	71	171 0.415	5.57	2.67	0.106	10.4249	1.7669
	72	172 0.419	5.53	2.63	0.1414	10.5662	2.3559
	73	173 0.422	5.49	2.59	0.1414	10.7076	2.3559
	74	174 0.425	5.46	2.56	0.106	10.8136	1.7669
ł	75	175 0.429	5.42	2.52	0.1414	10.9549	2.3559
	76	176 0.432	5.38	2.48	0.1414	11.0963	2.3559
	77	177 0.435	5.34	2.44	0.1414	11.2376	2.3559
ł	78	178 0.438	5.3	2.4	0.1414	11.379	2.3559
	79	179 0.441	5.26	2.36	0.1414	11.5204	2.3559
	80	180 0.444	5.22	2.32	0.1414	11.6617	2.3559
	81	181 0.448	5.18	2.28	0.1414	11.8031	2.3559
	82	182 0.451	5.14	2.24	0.1414	11.9444	2.3559
	83	183 0.454	5.1	2.2	0.1414	12.0858	2.3559
	84	184 0.457	5.07	2.17	0.106	12,1918	1.7669
	85	185 0.459	5.03	2.13	0.1414	12.3331	2.3559
	86	186 0.462	4.98	2.08	0.1767	12.5098	2,9449
	87	187 0.465	4.95	2.05	0.106	12.6158	1.7669
	88	188 0.468	4.92	2.02	0.106	12.7219	1.7669
	89	189 0.471	4.88	1.98	0.1414	12.8632	2.3559
	90	190 0.474	4.84	1.94	0.1414	13.0046	2.3559
	91	191 0.476	4.8	1.9	0.1414	13.1459	2.3559
	92	192 0.479	4.76	1.86	0.1414	13.2873	2.3559
	93	193 0.482	4.72	1.82	0.1414	13.4286	2.3559
	94	194 [°] 0.485 [°]	4.69	1.79	0.106	13.5346	1.7669
	95	195 0.487	4.65	1.75	0.1414	13.676	2.3559
	96	196 0.49	4.62	1.72	0.106	13.782	1.7669
	97	197 0.492	4.58	1.68	0.1414	13.9234	2.3559
	98	198 0.495	4.54	1.64	0.1414	14.0647	2.3559
	99	199 0.497	4.51	1.61	0.106	14.1707	1.7669
	100	200 0.5	4.48	1.58	0.106	14.2768	1.7669
	101	201 0.502	4.43	1.53	0.1767	14.4534	2.9449
	102	202 0.505	4.4	1.5	0.106	14.5595	1.7669

All and a second

000000

10000

200003

Chord X

Spectre

[103	203	0.507	4.36	1.46	0.1414	14.7008	2.3559
	104	204	0.51	4.32	1.42	0.1414	14.8422	2.3559
	105	205	0.512	4.29	1.39	0.106	14.9482	1.7669
ł	106	206	0.515	4.25	1.35	0.1414	15.0895	2.3559
	107	207	0,517	4.22	1.32	0.106	15.1956	1.7669
	108	208	0.519	4.18	1.28	0.1414	15.3369	2.3559
ĺ	109	209	0.522	4.15	1.25	0.106	15.4429	1.7669
	110	210	0.524	4.12	1.22	0.106	15.5489	1.7669
	111	211	0.526	4.09	1.19	0.106	15.655	1.7669
	112	212	0.528	4.05	1.15	0.1414	15,7963	2.3559
	113	213	0.531	4.02	1.12	0.106	15.9023	1.7669
ĺ	114	214	0.533	3.98	1.08	0.1414	16.0437	2.3559
	115	215	0.535	3.95	1.05	0.106	16.1497	1.7669
Į	116	216	0.537	3.92	1.02	0.106	16.2557	1.7669
	117	217	0.539	3.89	0.99	0.106	16.3617	1.7669
	118	218	0.541	3.86	0.96	0.106	16.4677	1.7669
	119	219	0.543	3.84	0.94	0.0707	16.5384	1.178
	120	220	0.545	3.81	0.91	0.106	16.6444	1.7669
	125	225	0.556	3.7	0.8	0.3887	17.0332	1.2957
	130	230	0.565	3.6	0.7	0.3534	17.3865	1.178
	135	235	0.574	3.5	0.6	0.3534	17.7399	1.178
	140	240	0.583	3.44	0.54	0.212	17.952	0.7068
	145	245	0.592	3.37	0.47	0.2474	18.1993	0.8246
	150	250	0.6	3.34	0.44	0.106	18.3053	0.3534
	155	255	0.608	3.3	0.4	0.1414	18.4467	0.4712
	160	260	0.615	3.28	0.38	0.0707	18.5174	0.2356
	165	265	0.623	3.25	0.35	0.106	18.6234	0.3534
	170	270	0.63	3.23	0.33	0.0707	18.6941	0.2356
	175	275	0.636	3.22	0.32	0.0353	18.7294	0.1178
	180	280	0.643	3.2	0.3	0.0707	18.8001	0.2356
	185	285	0.649	3.18	0.28	0.0707	18.8708	0.2356
	190	290	0.655	3.16	0.26	0.0707	18.9414	0.2356
	• •		Averag	e rate of	inflow (l/sec)	1.6615		

•

•

Matshelagabedi Collector Well Recovery PumpingTest After Installation of Laterals - 3/8/97

ťť

Matshelagabedi Collector Well - Post-instalation of Laterals Recovery and Inflow Data - 3/8/97

Matshelagabedi Collector Well - Test Pumping Post-lateral Installation Pumping Rate Details

Pumpi	na test		18/08/97	·····		·····			
Toban	e 1 Collec	tor Well							i
After in	stallation	of laterals							·
Rest w	ater level	ornatorato	4.8	mbtoc					
Mall d	anth		82	mbtoc					•
Top of	oneina		0.2	manl					
Ctort of	Casing fteet			magi					
istan o	lest		Dumping	Volofwall	Cumual	Volumo	Cumvol	Inflow	Inflow
		Drouvdour	rumping	omntiad	ometiod	, volume	numpod	rato	rate
1 ime	PVVL	Drawdown	lace	emptieu	emptieu 	pumpeu	pumped	1010 m2	Vooc
Imins	metres	metres	VSec	1113	_mə	: :	1113	1115	1/580
	4.8	. 0		. 0.007040	0.0070			0.007	0.044
0.5	4.86	0.06	6.66667	0.207319	0.2073	. 0.2	0.2	-0.007	-0.244
1	4.91	0.11	6.66667	0.172766	0.3801	0.2	0.4	0.027	0.908
1.5	4.97	0.17	6,66667	0.207319	0.5874	0.2	0.6	-0.007	-0.244
2	. 5.02	0.22	6.66667	0.172766	0.7602	. 0.2	0.8	0.027	0.908
2.5	5.08	0.28	6.66667	0.207319	0.9675	. 0.2	, 1	-0.007	-0.244
3	5.14	0.34	6,66667	0.207319	1.1748	0.2	1.2	-0.007	-0.244
3.5	5.19	0.39	6.66667	0.172766	1.3476	, 0.2	1.4	0.027	0.908
4	5.25	0.45	6.66667	0.207319	1.5549	0.2	1.6	-0.007	-0.244
4.5	5.29	0.49	6.66667	0.138213	1.6931	0.2	1.8	0.062	2.06
5	5.34	0.54	6.66667	0.172766	1.8659	0.2	2	0.027	0.908
5,5	5.39	0.59	6.66667	0.172766	2.0386	0.2	2.2	0.027	0.908
6	5.45	0.65	6.66667	0.207319	2.246	0.2	2.4	-0.007	-0.244
6.5	5.5	· 0.7 [°]	6.66667	0.172766	2.4187	. 0.2	2.6	0.027	0.908
7	5.55	0.75	6.66667	0.172766	2.5915	0.2	2.8	0.027	0.908
75	56	0.8	6 66667	0.172766	2.7643	0.2	3	0.027	0.908
8	5 65	0.85	6.66667	0.172766	2.937	0.2	3.2	0.027	0.908
9	5 75	0.95	6 66667	0.345532	3.2826	0.4	3.6	0.054	0.908
10	5.85	1 05	6 66667	0 345532	3.6281	0.4	4	0.054	0.908
11	5.95	1 15	6 66667	0 345532	3 9736	04	44	0.054	0.908
12		1.75	6 66667	0.345532	4 3192	0.4	4.8	0.054	0.908
12	, 0.00 , 6.14	1.20	6 66667	0.310979	4 6301	0.4	52	0.089	1 484
14	6.73	1.04	6 66667	0.010070	4 9411	0.1	56	0.089	1 484
14	· 0.20	1.40	6 66667	0.010979	5 2521	0.4		0.000	1 484
10	0.52	1.02	6.66667	0.310979	5 5631	, 0.4	64	0.000	1 484
10	0.41	1.01	6 66667	0.310979	5.0001	0.4	6.9 6.8	0.000	0 908
	0.01	1.71	0.00007	0.345532	6.0541	0.4	0.0 7 0	0.004	0.000
18	0.01	1.81	0.00007	0.345532	0.2041	0,4	76	0.004	0.000
19	6.71	1.91	0.00007	0.345532	0.0997	0.4	1.0	0.004	0.900
20	6,81	2.01	6,66667	0.345532	0.9452	0.4	0	0.054	0,900
21	6.91	2.11	0.00007	0.345532	7.2907	0.4	0.4	0.054	0.900
22	7	2.2	6.66667	0.310979	7.6017	0.4	8.8	0.089	1.464
23	7.1	2.3	6.66667	0.345532	1.9472	0.4	9.2	0.054	0.908
25	7.28	, 2.48	6.66667	0.621958	8.5692	. 0.8	10	0.178	1.484
27	7.48	2,68	6.66667	0.691064	9.2603	. 0.8	. 10.8	0.109	0.908
29	7.69	2.89	6.66667	0.725617	9.9859	. 0.8	11.6	0.074	0.62
31	7.88	3.08	6.66667	0.656511	10.642	. 0.8	. 12.4	0.143	1.196
31.6	7.935	3.135	6.66667	0.190043	10.832	0.24	12.64	0.05	1.388
Rate o	finflow	0.9852217	l/sec after	r dewatering	pumping	with air	المستوجعين المراجع		
Averag	ge inflow r	rate (l/sec) =	0.94495		Apparent	t well diar	neter (m) =	1.1	

Start of reco		******	Tobane 1 (Collector W	ell	18/08/97		
								ſ
Time since	Time sind	ce						
recovery	pumping				Residual	Vol well	Cum vol	Inflow
started	started			PWL	drawdown	filled	well filled	rate
mins (t)	mins (t')		t/ť	metres	metres	m3	m3	l/sec
0		32	0	7.935	3.135			
1		33	0.030303	7.93	3.13	0.017277	0.017277	0.287943
2		34	0.058824	7.92	3,12	0.034553	0.05183	0.575887
3		35	0.085714	7,91	3.11	0.034553	0.086383	0.575887
4		36	0.111111	7.9	3.1	0.034553	0.120936	0.575887
5		37	0.135135	7.89	3.09	0.034553	0.155489	0.575887
6		38	0.157895	7.88	3.08	0.034553	0.190043	0.575887
7	•	39	0.179487	7.875	3.075	0.017277	0.207319	0.287943
8		40	0.2	7.87	3.07	0.017277	0.224596	0.287943
9		41	0.219512	7.865	3.065	0.017277	0.241872	0.287943
10		42	0.238095	7.857	3.057	0.027643	0.269515	0.460709
11		43	0.255814	7.85	3.05	0.024187	0.293702	0.403121
12		44	0 272727	7 845	3 045	0.017277	0.310979	0.287943
13		45	0.288889	7 835	3 035	0.034553	0.345532	0.575887
14		46	0.304348	7.83	3.03	0.017277	0.362809	0 287943
15		47	0.319149	7.82	3.02	0.034553	0.397362	0.575887
16		48	0 333333	7 815	3 015	0.017277	0.414638	0 287943
17		49	0.346939	7.81	3.01	0.017277	0.431915	0.287943
18		50	0.00-0000	7 805	3 005	0.017277	0.449192	0.287943
10		50 51	0.372549	7.000	0.000	0.017277	0.466468	0.287943
20		52	0.384615	7 79	2 99	0.017277	0.501021	0.575887
20		52	0.004070	7.78	2.00	0.034553	0.535575	0.575887
21		50 57	0.000220	7 775	2.00	0.004000	0.552851	0.2870/3
22		55	0.418182	7 77	2.070	0.017277	0.570128	0.287943
20		56	0.478571	7 765	2.57	0.017277	0.587404	0.207943
25		57	0.438596	7 76	2.000	0.017277	0.007404	0.287943
20		58	0.400000	7.75	2.00	0.034553	0.004001	0.575887
20		50 50	0.440270	7.70	2.30	0.034553	0.003234	0.575887
28		60 60	0.466667	7 7 2 5	2.34	0.034000	0.691064	0.287043
20		61 61	0.47541	7.73	2.300	0.017277	0.708344	0.287043
20		ດາ ເວີ	0.47041	7.73	2.90	0.034653	0.700341	0.207943
30		ີ	0.403071	7.72	2.92	0.034553	0.742094	0.575887
່ ວາ 		03 G 4	0.492003	7 705	2.91	0.034000	0.704724	0.070007
		66	0.0	7.703	2.900	0.017277	0.794724	0.287943
34		60 66'	0.507092	7 605	2.9	0.017277	0.012	0.287943
25		00 67	0.515152	7.090	2.090	0.017277	0.029211	0.207943
		07 60	0.522300	7.09	2.09	0.017277	0.040000	0.207943
30 27		00 60	0.029412	7,000	2,000	0.017277	0.00303	0.207943
37. 20.	-	09 70	0.000202	7,675	2.010	0.034000	0.090303	0.575667
30 20		70 774	0.542657	7.07	2.07	0.017277	0.91000	0.207943
39	-	70	0.049290	7.000	2.000	0.017277	0.952930	0.207943
40		72	0.000000	1.00	2.00	0.01/2//	0.900213	0.201343
41		13 71	0.501044	(.00 7 c 4	2.80	0.034003	0.904/00	0.5/500/
42	-	74 75	0.50/568	7,64	2.84	0.034053	1.019319	0.07000/
43		15	0.5/333	7.035	∠.୪35	0.017277	1,030596	0.28/943
44		ט <i>ו</i> דר	0.5/894/	7.63	2.83	0.017277	1.0538/3	0.28/943
45		11	0.584416	7.62	2.82	0.034553	1.088426	0.575887
46		78	0.589/44	7.615	2.815	0.01/2/7	1.105/02	0.287943
47		79	0.594937	7.61	2.81	0.01/277	1.122979	0.287943

\$20,000

Charles and

48	80	0.6	7.6	2.8	0.034553	1,157532	0.575887
49	81	0.604938	7.595	2.795	0.017277	1.174809	0.287943
50	82	0.609756	7.59	2.79	0.017277	1.192085	0.287943
51	83	0.614458	7.58	2.78	0.034553	1.226639	0.575887
52	84	0.619048	7.575	2.775	0.017277	1.243915	0.287943
53	85	0.623529	7.57	2.77	0.017277	1.261192	0.287943
54	86	0.627907	7.565	2.765	0.017277	1.278468	0.287943
55	87	0.632184	7.56	2.76	0.017277	1.295745	0.287943
56	88	0.636364	7.555	2.755	0.017277	1.313022	0.287943
57	89	0.640449	7.55	2.75	0.017277	1.330298	0.287943
58	90	0.644444	7.54	2.74	0.034553	1.364851	0.575887
59	91	0.648352	7.53	2.73	0.034553	1.399405	0.575887
60	92	0.652174	7.525	2.725	0.017277	1.416681	0.287943
61	93	0.655914	7.52	2.72	0.017277	1.433958	0.287943
62	94	0.659574	7.515	2.715	0.017277	1.451234	0.287943
63	95	0.663158	7.51	2.71	0.017277	1.468511	0.287943
64	96	0.666667	7.5	2.7	0.034553	1.503064	0.575887
65	97	0.670103	7.495	2.695	0.017277	1.520341	0.287943
66	98	0.673469	7,49	2.69	0.017277	1.537617	0.287943
67	99.	0.676768	7,485	2.685	0.017277	1.554894	0.287943
68	100	0.68	7.48	2.68	0.017277	1.572171	0.287943
69	101	0.683168	7.47	2.67	0.034553	1,606724	0.575887
70	102	0.686275	7 465	2.665	0.017277	1,624	0.287943
71	103	0.68932	7 46	2.66	0.017277	1.641277	0.287943
72	104	0.692308	7 45	2 65	0.034553	1.67583	0.575887
72	105	0.695238	7 445	2 645	0.017277	1.693107	0.287943
74	106	0.698113	7 44	2.64	0.017277	1,710383	0.287943
75	107	0.700935	7 435	2.635	0.017277	1.72766	0.287943
76	108	0 703704	7 43	2.63	0.017277	1,744937	0.287943
77	109	0 706422	7 425	2.625	0.017277	1.762213	0.287943
78	110	0 709091	7 42	2 62	0.017277	1 77949	0.287943
70.	111	0.700001	7 41	2.61	0.034553	1.814043	0.575887
80	112	0.714286	7 405	2 605	0.017277	1.83132	0.287943
00 81	112	0.716814	7 395	2 595	0.034553	1 865873	0.575887
82	114	0.710208	7 39	2.59	0.017277	1 883149	0.287943
02	115	0.710200	7 38	2.58	0.034553	1 917703	0 575887
94	110	0.72/138	7 375	2 575	0.017277	1 934979	0 287943
95	117	0.726/06	7 37	2.57	0.017277	1 952256	0 287943
00	418	0.728814	7 365	2 565	0.017277	1 969532	0 287943
00	110	0.720074	7.36	2.000	0.017277	1 986809	0 287943
07	10	0.733333	7.35	2.55	0.017277	2 021362	0.575887
00	120	0.735535	7 345	2 545	0.017277	2 038639	0 287943
09	400	0.733337	7.34	2.040	0.017277	2.000000	0 287943
90	122	0.737703	7.34	2.04	0.017277	2.000010	0.287943
91	120	0.739037	7.000	2.000	0.017277	2.090469	0.287943
92	124	0.741933	7.30	2.00	0.017277	2 107745	0.287943
93	120	0.744	7.020	2.020	0.017277	2 125022	0.207040
94	120	0.740034	1.04	. 2.02 2 E1	0.017217	2 150522	0.575887
95	12/	0.740031	7.01	2.01	0.004000	2 100070	0.518208
96	128	0.75	7.301	2.001	0.001090	2 100070	0.010200
97.	129	0.751930	7.0	2.0	0.000400	2.104120	0.007.009
98	130	0.755705	7.290	2.490	0.017277	2.211400	0.201040
99	131	0.700720	7.29	2.49	0.017077	2.220001	0.201 943
100	132	0.75/5/6	7.285	2.400	0.017277	2 240900	0.20/ 343
<u> </u>	133	0.759398	1.28	∠.48	0.017277	2.203233	0.201943

Sports,

110000

Alter May

SPANAL SPANAL

March 1

102	134	0 761194	7 275	2,475	0.017277	2.280511	0.287943
102	135	0.762963	7 27	2.47	0.017277	2.297788	0.287943
100	136	0 764706	7 265	2 465	0.017277	2.315064	0.287943
105	137	0.766423	7.26	2 46	0.017277	2.332341	0.287943
106	138	0.768116	7 255	2 455	0.017277	2.349618	0.287943
107	139	0 769784	7 25	2 45	0.017277	2 366894	0.287943
107	140	0.700704	7 245	2 445	0.017277	2.384171	0.287943
109	141	0 77305	7 24	2 44	0.017277	2.401447	0.287943
100	142	0.774648	7 235	2 435	0.017277	2 418724	0.287943
112	111	0.777778	7 225	2 425	0.034553	2 453277	0.287943
112	145	0.77931	7.220	2 42	0.017277	2 470554	0 287943
111	140	0.7780822	7 215	2 4 1 5	0.017277	2 48783	0.287943
114	1/7	0.782313	7.21	2.41	0.017277	2 505107	0.287943
116	1/8	0.702010	7 205	2 405	0.017277	2 522384	0 287943
117	1/10	0.785235	7.200	2.100	0.017277	2 53966	0.287943
118	140	0.786667	7 1 9 5	2 395	0.017277	2 556937	0.287943
110	150	0.788079	7 19	2.000	0.017277	2 574213	0.287943
120	160	0.780474	7 185	2 385	0.017277	2 59149	0 287943
120	152	0.705474	7.165	2.365	0.069106	2 660596	0 230355
120	162	0.730170	7.105	2.345	0.069106	2 729703	0 230355
135	167	0.002.400	7 125	2.325	0.069106	2 798809	0.230355
1/0	172	0.813953	7 105	2.305	0.069106	2 867916	0.230355
1/15	177	0.819209	7.085	2.000	0.069106	2.937022	0.230355
150	182	0.824176	7 065	2 265	0.069106	3.006128	0.230355
155	187	0.828877	7 04	2.24	0.086383	3.092511	0.287943
160	192	0.833333	7 015	2.215	0.086383	3.178894	0.287943
165	197	0.837563	6.99	2.19	0.086383	3.265277	0.287943
170	202	0 841584	6.965	2.165	0.086383	3.35166	0.287943
175	207	0.845411	6.94	2.14	0.086383	3.438043	0.287943
180	212	0.849057	6.91	2.11	0.10366	3.541703	0.345532
185	217	0.852535	6.89	2.09	0.069106	3.610809	0.230355
190	222	0.855856	6.86	2.06	0.10366	3.714469	0.345532
195	227	0.859031	6.835	2.035	0.086383	3.800852	0.287943
200	232	0.862069	6.81	2.01	0.086383	3.887235	0.287943
205	237 [±]	0.864979	6.78	1.98	0.10366	3.990895	0.345532
210	242	0.867769	6.755	1.955	0.086383	4.077278	0.287943
215	247	0.870445	6.74	1.94	0.05183	4.129107	0.172766
220	252	0.873016	6.71	1.91	0.10366	4.232767	0.345532
225	257	0.875486	6.68	1.88	0.10366	4.336427	0.345532
230	262	0.877863	6.65	1.85	0.10366	4.440086	0.345532
235	267	0.88015	6.64	1.84	0.034553	4.474639	0.115177
240	272	0.882353	6.62	1.82	0.069106	4.543746	0.230355
245	277	0.884477	6.6	1.8	0.069106	4.612852	0.230355
250	282	0.886525	6.58	1.78	0.069106	4.681959	0.230355
Averag	e rate	of inflow (I/	sec) =	0.312131			
Appare	nt wel	I diameter (m) =	1.1			

schudes

Nation 2

10003

AMMA

100000

000000

Tobane 1 Collector Well Recovery Pumping Tests 26/8/95 and 18/8/97

ť/ť

APPENDIX E: SEDIMENT GRAIN SIZE ANALYSES

. r

and the second

	Grain size	analyses						
	Sample No	o Gulí	Gul2	Gul3	Gul4	Gul5	Gul6	Gul7
	Distance	10	10	20	20	20	30	30
phi	Depth	1	2	1	2	3	1	2
scale	Sieve size	weight gm						
pan	0.71	115.9	75.5	78.5	53.5	141.15	60.13	114.5
0.25	0.85	19.1	24.5	15.8	11.7	30.6	16.15	27.3
0	1	19.7	29	15.7	14.6	30.26	15.9	27
-0.25	1.18	17.5	32.8	15	19.5	28.26	15.25	27
-0.5	1.4	22.5	47.3	17.4	46.3	33.75	16.15	35
-0.75	1.7	4.3	10.7	5	12.7	3.3	4.4	7.85
-1	2	9	22.8	8.5	38.9	12.5	8.15	66.85
-1.25	2.3	16.9	59.2	12.7	129.6	40.6	. 14	42.5
		224.9	301.8	168.6	326.8	320.42	150.13	348
	Sample No	Gul1	Gul2	Gul3	Gul4	Gul5	Gul6	Gul7
	Distance	10	10	20	20	20	30	30
	Depth	1	2	1	2	3	1	2
phi scale	Sieve size	% weight						
0.5	0.71	51.53402	25.01657	46.55991	16.37087	44.05156	40.05195	32.9023
0.25	0.85	8.492663	8.117959	9.371293	3.580171	9.549966	10.75734	7.844828
0	1	8.759449	9.609013	9.311981	4,467564	9.443855	10.59082	7.758621
-0.25	1.18	7.781236	10.86812	8.896797	5.966952	8.819674	10.15786	7.758621
-0.5	1.4	10.00445	15.67263	10.32028	14.16769	10.53305	10.75734	10.05747
-0.75	1.7	1.911961	3.545394	2.965599	3.886169	1.029898	2.930793	2.255747
-1	2	4.001779	7.554672	5.041518	11.9033	3.90113	5,428629	19.20977
-1.25	2.3	7.514451	19.61564	7.532622	39.65728	12.67087	9.325251	12.21264
	sum	100	100	100	100	100	100	100
	Sample No	Gul1	Gul2	Gul3	Gul4	Gul5	Gul6	Gui7
	Distance	10	10	20	20	20	30	30
	Depth	1	2	1	2	3	1	2
		cummulativ						
ohi scale	Sieve size	% weight						
·····.,		Gul1	Gul2	Gul3	Gul4	Gul5	Gul6	Gul7
0.5	0.71	51.53402	25.01657	46.55991	16.37087	44.05156	40.05195	32.9023
0.25	0.85	60.02668	33.13453	55.9312	19.95104	53,60152	50.8093	40.74713
0	1	68.78613	42.74354	65.24318	24.4186	63.04538	61.40012	48.50575
-0.25	1,18	76.56736	53.61166	74.13998	30.38556	71.86505	71.55798	56.26437
-0.5	1.4	86.57181	69.28429	84.46026	44.55324	82.3981	82.31533	66.32184
-0.75	1.7	88.48377	72.82969	87.42586	48.43941	83.428	85.24612	68.57759
-1	2	92.48555	80.38436	92.46738	60.34272	87.32913	90.67475	87.78736
-1.25	2.3	100	100	100	100	. 100	100	100

10.000

dist States

(1922)

2011/22

Very set

whereaster

500 C 100 C

		-	Gul8	Gul9	Gul10	Gul11	Gul12
		Distance	30	30	30	2	2
phi		Depth	3		5		2
scale	Э	Sieve size	weight gm	weight gm	weight gm	weight gm	weight gm
pan		0.71	128.7	46.8	33.4	82	12.9
	0.25	0.85	28.4	17.8	9.73	12.4	0.5
	0	1	28.35	23.2	12.1	12.8	0.8
	-0.25	1.18	27.2	27.7	15	10	0.3
	-0.5	1.4	31.25	47.2	28.2	10.3	2.2
	-0.75	1.7	5.9	12.3	7.55	1.8	0.1
	-1	. 2	12	29.35	22.65	2.3	4.8
	-1.25	2.3	26.5	101.7	227.2	. 1.2	245.4
		<u>.</u>	288.3	306.05	355.83	132.8	267
			Cull	Culo	Gul10	Cull1	Cul12
l		Distance	30	30	30	2	0u112 2
		Denth				<u></u> 1	2
nhi s	cale	Sieve size	% weight	weight	% weight	% weight	% weight
p111 0	0.5	01010 0120	44 641	15 29162	9 386505	61 74699	4 831461
	0.25	0.85	9 85085	5 816043	2 734452	9 337349	0 187266
	0	1	9.833507	7.580461	3,4005	9.638554	0.299625
	-0.25	1.18	9,434617	9.050809	4.215496	7.53012	0.11236
	-0.5	1.4	10.8394	15.42232	7.925133	7.756024	0.82397
	-0.75	1.7	2.046479	4.018951	2.1218	1.355422	0.037453
	-1	2	4.162331	9.589936	6.365399	1.731928	1.797753
	-1.25	2.3	9.191814	33.22986	63.85072	0.903614	91.91011
		sum	100	100	100	100	100
1 * 1* # # 1 * 1* 1* 1* 1* 1* 1* 1*			Maranda a na amb () () () () () () () () () (
			Gul8	Gul9	Gul10	Gul11	Gul12
		Distance	30	30	30	2	2
		Depth	3	4	5	1	2
е			cummulativ	cummulativ	cummulativ	cummulativ	cummulativ
phi s	cale	Sieve size	% weight	% weight	% weight	% weight	% weight
			Gul8	Gul9	Gul10	Gul11	Gul12
	0.5	0.71	44.641	15.29162	9.386505	61.74699	4.831461
	0.25	0.85	54.49185	21.10766	12.12096	71.08434	5.018727
	0	1	64.32536	28.68812	15.52146	80.72289	5.318352
	-0.25	1.18	73.75997	37.73893	19.73695	88.25301	5.430712
	-0.5	1.4	84.59938	53.16125	27.66209	96.00904	6.254682
	-0.75	1.7	86.64586	57,1802	29.78389	97.36446	6.292135
	-1	2	90.80819	66.77014	36.14928	99.09639	8.089888
	-1.25	2.3	100	100	100	100	100

Sciences

. .

 $\phi_{2}\phi_{2}\phi_{3}$

(Wester

Service .

0000000

Sectors.

20-204

\$200.01

000460

Negative.

Sugar

2044/02

Services

\$37775\$

000000

100000

2000

2012

(2003)

sitestalis

[Grain size anal	vses	· ······	Gulubane	site aeoloaid	cal trench	·····	·····
l	Sample No	1a	2a	3a	4a	5a	6a	7a
	Distance	2	5	10	15	20	25	30
lphi	Denth	. 175	175	175	1 75	1 75	1 75	. 175
Iscale	Sieve size mm	weight am	weight am	weight am	weight am	weight am	weight am	weight am
Jocale	01070 0120 1111	2.2	2 weight gin	<u></u>	2.88	1 //8	1 28	4.06
2	0.075	5.86	ے 6 /8	8.38	6.88	0 7 .1 A 36	2.88	9.7
25	0.120	5.00	6.96	7 14	0.00	4.50	2.00	870
2.0	0.10	40.19	12.1	11 00	10.6	4.0	ు.∠ డాం	15 50
2.20	0.212	10.10	ا <u>ل</u> م ا	11.00	10.0	1.0	0.20	10.00
2	0.25	17.4	24.72	21.1	26,92	15.04	16.28	31.86
1.75	0.3	18.32	28.26	41.5	36.9	21.4	22.1	41.38
1.5	0.355	26.28	39.14	64.9	84.5	58.98	38.58	68.84
1.25	0.425	31,36	39,84	49.58	99.88	67.7	44.88	55.24
1	0.5	47.26	59.54	106	107.44	74.64	69.76	112.38
0.75	0.6	54.28	66.02	79.92	89.26	61.7	66.34	83.08
0.5	0.71	134.28	189.8	154.74	150.46	119.22	123.08	193.92
0.25	0.85	142.62	175.64	116.2	109.98	98.2	96.44	151.16
0	1	169.32	193.82	105.92	117.4	117.54	105.28	154.62
-0.25	1.18	154.26	190.72	128.48	114.36	136.78	107.86	156.2
-0.5	1.4	132.9	187.72	159.26	161.4	227.42	154.88	210.72
-0.75	1.7	18.68	44.46	14	6.9	30,46	5.74	7.56
-1	2	34.52	62.8	61.98	63.9	118.34	73.94	92.38
-1.25	2.3	4.9	38.36	46.6	43.44	91.54	53.68	75.3
-1.5	28	11 86	23.4	41 78	39.98	77 62	46.88	75.4
-1 75	3 35	12.04	24.08	46.64	38.86	99.38	68.7	57.06
_22	0.00 1 75	A 12	5 16	11 36	15.82	29.26	25.28	21.66
-2 1		-7.1£ 25	5.10	11.00	16.02	20.20	20.20	21.00
								× 1 × / 1
2.7	67	186	7.00	34	22.04	75	97.7	46.84
-2.7	6.7	18.6	7.9	34	32.04	75	87.7	46.84
-2.7	6.7	18.6 1060.7	7.9 1433.9	34 1335.18	32.04 1383.26	75 1560.18	87.7 1252.44	46.84 1694.96
-2.7 phi sca	6.7 Sieve size mm	18.6 1060.7 % weight	7.9 1433.9 % weight	34 1335.18 % weight	32.04 1383.26 % weight	75 1560.18 % weight	87.7 1252.44 % weight	46.84 1694.96 % weight
-2.7 phi sca	6.7 6.7 Sieve size mm 0.075	18.6 1060.7 % weight 0.20741	7.9 1433.9 % weight 0.13948	34 1335.18 % weight 0.247158	32.04 1383.26 % weight 0.208204	75 1560.18 % weight 0.094861	87.7 1252.44 % weight 0.102204	46.84 1694.96 % weight 0.239534
-2.7 phi sca	0.0 6.7 Sieve size mm 0.075 0.125	18.6 1060.7 % weight 0.20741 0.552465	7.9 1433.9 % weight 0.13948 0.451914	34 1335.18 % weight 0.247158 0.627631	32.04 1383.26 % weight 0.208204 0.497376	75 1560.18 % weight 0.094861 0.279455	87.7 1252.44 % weight 0.102204 0.229958	46.84 1694.96 % weight 0.239534 0.572285
-2.7 phi sca 3 2.5	0.0 6.7 Sieve size mm 0.075 0.125 0.18	18.6 1060.7 % weight 0.20741 0.552465 0.561893	7.9 1433.9 % weight 0.13948 0.451914 0.478416	34 1335.18 % weight 0.247158 0.627631 0.534759	32.04 1383.26 % weight 0.208204 0.497376 0.472796	75 1560.18 % weight 0.094861 0.279455 0.294838	87.7 1252.44 % weight 0.102204 0.229958 0.255509	46.84 1694.96 % weight 0.239534 0.572285 0.514466
-2.7 phi sca 3 2.5 2.25	0.075 6.7 0.075 0.125 0.18 0.212	18.6 1060.7 % weight 0.20741 0.552465 0.561893 0.959744	7.9 1433.9 % weight 0.13948 0.451914 0.478416 0.843852	34 1335.18 % weight 0.247158 0.627631 0.534759 0.889768	32.04 1383.26 % weight 0.208204 0.497376 0.472796 0.766306	75 1560.18 % weight 0.094861 0.279455 0.294838 0.499942	87.7 1252.44 % weight 0.102204 0.229958 0.255509 0.501437	46.84 1694.96 % weight 0.239534 0.572285 0.514466 0.919196
-2.7 phi sca 3 2.5 2.25 2	0.0 6.7 Sieve size mm 0.075 0.125 0.18 0.212 0.25	18.6 1060.7 % weight 0.20741 0.552465 0.561893 0.959744 1.640426	7.9 1433.9 % weight 0.13948 0.451914 0.478416 0.843852 1.72397	34 1335.18 % weight 0.247158 0.627631 0.534759 0.889768 2.074627	32.04 1383.26 % weight 0.208204 0.497376 0.472796 0.766306 1.946127	75 1560.18 % weight 0.094861 0.279455 0.294838 0.499942 0.963991	87.7 1252.44 % weight 0.102204 0.229958 0.255509 0.501437 1.299904	46.84 1694.96 % weight 0.239534 0.572285 0.514466 0.919196 1.87969
-2.7 phi sca 3 2.5 2.25 2 2 1.75	0.075 6.7 0.075 0.125 0.18 0.212 0.25 0.3	18.6 1060.7 % weight 0.20741 0.552465 0.561893 0.959744 1.640426 1.727161	7.9 1433.9 % weight 0.13948 0.451914 0.478416 0.843852 1.72397 1.970849	34 1335.18 % weight 0.247158 0.627631 0.534759 0.889768 2.074627 3.108195	32.04 1383.26 % weight 0.208204 0.497376 0.472796 0.766306 1.946127 2.667611	75 1560.18 % weight 0.094861 0.279455 0.294838 0.499942 0.963991 1.371637	87.7 1252.44 % weight 0.102204 0.229958 0.255509 0.501437 1.299904 1.764612	46.84 1694.96 % weight 0.239534 0.572285 0.514466 0.919196 1.87969 2.441356
-2.7 phi sca 3 2.5 2.25 2 1.75 1.5	0.075 6.7 Sieve size mm 0.075 0.125 0.18 0.212 0.25 0.3 0.355	18.6 1060.7 % weight 0.20741 0.552465 0.561893 0.959744 1.640426 1.727161 2.477609	7.9 1433.9 % weight 0.13948 0.451914 0.478416 0.843852 1.72397 1.970849 2.729619	34 1335.18 % weight 0.247158 0.627631 0.534759 0.889768 2.074627 3.108195 4.860768	32.04 1383.26 % weight 0.208204 0.497376 0.472796 0.766306 1.946127 2.667611 6.108758	75 1560.18 % weight 0.094861 0.279455 0.294838 0.499942 0.963991 1.371637 3.780333	87.7 1252.44 % weight 0.102204 0.229958 0.255509 0.501437 1.299904 1.764612 3.080485	46.84 1694.96 % weight 0.239534 0.572285 0.514466 0.919196 1.87969 2.441356 4.061453
-2.7 phi sca 3 2.5 2.25 2 1.75 1.5 1.25	0.075 6.7 Sieve size mm 0.075 0.125 0.18 0.212 0.25 0.3 0.355 0.425	18.6 1060.7 % weight 0.20741 0.552465 0.561893 0.959744 1.640426 1.727161 2.477609 2.956538	7.9 1433.9 % weight 0.13948 0.451914 0.478416 0.843852 1.72397 1.970849 2.729619 2.778436	34 1335.18 % weight 0.247158 0.627631 0.534759 0.889768 2.074627 3.108195 4.860768 3.713357	32.04 1383.26 % weight 0.208204 0.497376 0.472796 0.766306 1.946127 2.667611 6.108758 7.220624	75 1560.18 % weight 0.279455 0.294838 0.499942 0.963991 1.371637 3.780333 4.339243	87.7 1252.44 % weight 0.102204 0.229958 0.255509 0.501437 1.299904 1.764612 3.080485 3.58352	46.84 1694.96 % weight 0.239534 0.572285 0.514466 0.919196 1.87969 2.441356 4.061453 3.259074
-2.7 phi sca 3 2.5 2.25 2 1.75 1.5 1.25 1.25	0.0 6.7 Sieve size mm 0.075 0.125 0.18 0.212 0.25 0.3 0.355 0.425 0.5	18.6 1060.7 % weight 0.20741 0.552465 0.561893 0.959744 1.640426 1.727161 2.477609 2.956538 4.455548	7.9 1433.9 % weight 0.13948 0.451914 0.478416 0.843852 1.72397 1.970849 2.729619 2.778436 4.152312	34 1335.18 % weight 0.247158 0.627631 0.534759 0.889768 2.074627 3.108195 4.860768 3.713357 7.939004	32.04 1383.26 % weight 0.208204 0.497376 0.472796 0.766306 1.946127 2.667611 6.108758 7.220624 7.767159	75 1560.18 % weight 0.094861 0.279455 0.294838 0.499942 0.963991 1.371637 3.780333 4.339243 4.784063	87.7 1252.44 % weight 0.102204 0.229958 0.255509 0.501437 1.299904 1.764612 3.080485 3.58352 5.570105	46.84 1694.96 % weight 0.239534 0.572285 0.514466 0.919196 1.87969 2.441356 4.061453 3.259074 6.630245
-2.7 phi sca 3 2.5 2.25 2 1.75 1.25 1.25 1.25 1.25 1.25	6.7 Sieve size mm 0.075 0.125 0.18 0.212 0.25 0.3 0.355 0.425 0.5 0.6	18.6 1060.7 % weight 0.20741 0.552465 0.561893 0.959744 1.640426 1.727161 2.477609 2.956538 4.455548 5.117375	7.9 1433.9 % weight 0.13948 0.451914 0.478416 0.843852 1.72397 1.970849 2.729619 2.778436 4.152312 4.604226	34 1335.18 % weight 0.247158 0.627631 0.534759 0.889768 2.074627 3.108195 4.860768 3.713357 7.939004 5.98571	32.04 32.04 1383.26 % weight 0.208204 0.497376 0.472796 0.766306 1.946127 2.667611 6.108758 7.220624 7.767159 6.452872	75 1560.18 % weight 0.094861 0.279455 0.294838 0.499942 0.963991 1.371637 3.780333 4.339243 4.784063 3.954672	87.7 1252.44 % weight 0.229958 0.255509 0.501437 1.299904 1.764612 3.080485 3.58352 5.570105 5.29703	46.84 1694.96 % weight 0.239534 0.572285 0.514466 0.919196 1.87969 2.441356 4.061453 3.259074 6.630245 4.901591
-2.7 phi sca 3 2.5 2.25 2 1.75 1.75 1.25 1.25 1.25 1.25 0.75 0.5	6.7 Sieve size mm 0.075 0.125 0.18 0.212 0.25 0.3 0.355 0.425 0.5 0.6	18.6 1060.7 % weight 0.20741 0.552465 0.561893 0.959744 1.640426 1.727161 2.477609 2.956538 4.455548 5.117375 12.65956	7.9 1433.9 % weight 0.13948 0.451914 0.478416 0.843852 1.72397 1.970849 2.729619 2.778436 4.152312 4.604226 13.23663	34 1335.18 % weight 0.247158 0.627631 0.534759 0.889768 2.074627 3.108195 4.860768 3.713357 7.939004 5.98571 11.58945	32.04 32.04 1383.26 % weight 0.208204 0.497376 0.472796 0.766306 1.946127 2.667611 6.108758 7.220624 7.767159 6.452872 10.8772	75 1560.18 % weight 0.094861 0.279455 0.294838 0.499942 0.963991 1.371637 3.780333 4.339243 4.784063 3.954672 7.641426	87.7 1252.44 % weight 0.102204 0.229958 0.255509 0.501437 1.299904 1.764612 3.080485 3.58352 5.570105 5.29703 9.827531	46.84 1694.96 % weight 0.239534 0.572285 0.514466 0.919196 1.87969 2.441356 4.061453 3.259074 6.630245 4.901591 11.44098
-2.7 phi sca 3 2.5 2.25 2.25 2 1.75 1.5 1.25 1.25 1.25 1.25 0.75 0.5 0.25	6.7 Sieve size mm 0.075 0.125 0.18 0.212 0.25 0.3 0.355 0.425 0.5 0.6 0.71 0.85	18.6 1060.7 % weight 0.20741 0.552465 0.561893 0.959744 1.640426 1.727161 2.477609 2.956538 4.455548 5.117375 12.65956 13.44584	7.9 1433.9 % weight 0.13948 0.451914 0.478416 0.843852 1.72397 1.970849 2.729619 2.778436 4.152312 4.604226 13.23663 12.24911	34 1335.18 % weight 0.247158 0.627631 0.534759 0.889768 2.074627 3.108195 4.860768 3.713357 7.939004 5.98571 11.58945 8.702946	32.04 32.04 1383.26 % weight 0.208204 0.497376 0.472796 0.766306 1.946127 2.667611 6.108758 7.220624 7.767159 6.452872 10.8772 7.950783	75 1560.18 % weight 0.094861 0.279455 0.294838 0.499942 0.963991 1.371637 3.780333 4.339243 4.339243 4.784063 3.954672 7.641426 6.294146	87.7 1252.44 % weight 0.102204 0.229958 0.255509 0.501437 1.299904 1.764612 3.080485 3.58352 5.570105 5.29703 9.827531 7.700415	46.84 1694.96 % weight 0.239534 0.572285 0.514466 0.919196 1.87969 2.441356 4.061453 3.259074 6.630245 4.901591 11.44098 8.918205
-2.7 phi sca 3 2.5 2.25 2 1.75 1.25 1.25 1.25 1.25 1.25 0.5 0.25 0.25	6.7 Sieve size mm 0.075 0.125 0.18 0.212 0.25 0.3 0.355 0.425 0.5 0.6 0.71 0.85 1	18.6 1060.7 % weight 0.20741 0.552465 0.561893 0.959744 1.640426 1.727161 2.477609 2.956538 4.455548 5.117375 12.65956 13.44584 15.96304	7.9 1433.9 % weight 0.13948 0.451914 0.478416 0.843852 1.72397 1.970849 2.729619 2.778436 4.152312 4.604226 13.23663 12.24911 13.51698	34 1335.18 % weight 0.247158 0.627631 0.534759 0.889768 2.074627 3.108195 4.860768 3.713357 7.939004 5.98571 11.58945 8.702946 7.933013	32.04 32.04 1383.26 % weight 0.208204 0.497376 0.472796 0.766306 1.946127 2.667611 6.108758 7.220624 7.767159 6.452872 10.8772 7.950783 8.487197	75 1560.18 % weight 0.094861 0.279455 0.294838 0.499942 0.963991 1.371637 3.780333 4.339243 4.784063 3.954672 7.641426 6.294146 7.533746	87.7 1252.44 % weight 0.102204 0.229958 0.255509 0.501437 1.299904 1.764612 3.080485 3.58352 5.570105 5.29703 9.827531 7.700415 8.40626	46.84 1694.96 % weight 0.239534 0.572285 0.514466 0.919196 1.87969 2.441356 4.061453 3.259074 6.630245 4.901591 11.44098 8.918205 9.122339
-2.7 phi sca 3 2.5 2.25 2 1.75 1.5 1.25 1.25 1.25 0.75 0.25 0.25 0 -0.25	6.7 Sieve size mm 0.075 0.125 0.18 0.212 0.25 0.3 0.355 0.425 0.5 0.425 0.5 0.6 0.71 0.85 1 1.18	18.6 1060.7 % weight 0.20741 0.552465 0.561893 0.959744 1.640426 1.727161 2.477609 2.956538 4.455548 5.117375 12.65956 13.44584 15.96304 14.54323	7.9 1433.9 % weight 0.13948 0.451914 0.478416 0.843852 1.72397 1.970849 2.729619 2.778436 4.152312 4.604226 13.23663 12.24911 13.51698 13.30079	34 1335.18 % weight 0.247158 0.627631 0.534759 0.889768 2.074627 3.108195 4.860768 3.713357 7.939004 5.98571 11.58945 8.702946 7.933013 9.622673	32.04 32.04 1383.26 % weight 0.208204 0.497376 0.472796 0.766306 1.946127 2.667611 6.108758 7.220624 7.767159 6.452872 10.8772 7.950783 8.487197 8.267426	75 1560.18 % weight 0.094861 0.279455 0.294838 0.499942 0.963991 1.371637 3.780333 4.339243 4.784063 3.954672 7.641426 6.294146 7.533746 8.766937	87.7 1252.44 % weight 0.102204 0.229958 0.255509 0.501437 1.299904 1.764612 3.080485 3.58352 5.570105 5.29703 9.827531 7.700415 8.40626 8.612264	46.84 1694.96 % weight 0.239534 0.572285 0.514466 0.919196 1.87969 2.441356 4.061453 3.259074 6.630245 4.901591 11.44098 8.918205 9.122339 9.215557
-2.7 phi sca 3 2.5 2.25 2.25 2 1.75 1.25 1.25 1.25 1.25 0.75 0.25 0.25 0 -0.25 -0.5	6.7 Sieve size mm 0.075 0.125 0.18 0.212 0.25 0.3 0.355 0.425 0.425 0.5 0.6 0.71 0.85 1 1.18 1.4	18.6 1060.7 % weight 0.20741 0.552465 0.561893 0.959744 1.640426 1.727161 2.477609 2.956538 4.455548 5.117375 12.65956 13.44584 15.96304 14.54323 12.52946	7.9 1433.9 % weight 0.13948 0.451914 0.478416 0.843852 1.72397 1.970849 2.729619 2.778436 4.152312 4.604226 13.23663 12.24911 13.51698 13.30079 13.09157	34 1335.18 % weight 0.247158 0.627631 0.534759 0.889768 2.074627 3.108195 4.860768 3.713357 7.939004 5.98571 11.58945 8.702946 7.933013 9.622673 11.92798	32.04 32.04 1383.26 % weight 0.208204 0.497376 0.472796 0.766306 1.946127 2.667611 6.108758 7.220624 7.767159 6.452872 10.8772 7.950783 8.487197 8.267426 11.66809	75 1560.18 % weight 0.094861 0.279455 0.294838 0.499942 0.963991 1.371637 3.780333 4.339243 4.784063 3.954672 7.641426 6.294146 7.533746 8.766937 14.57652	87.7 1252.44 % weight 0.102204 0.229958 0.255509 0.501437 1.299904 1.764612 3.080485 3.58352 5.570105 5.29703 9.827531 7.700415 8.40626 8.612264 12.36666	46.84 1694.96 % weight 0.239534 0.572285 0.514466 0.919196 1.87969 2.441356 4.061453 3.259074 6.630245 4.901591 11.44098 8.918205 9.122339 9.215557 12.43215
-2.7 phi sca 3 2.5 2.25 2 1.75 1.25 1.25 1.25 1.25 1.25 0.75 0.25 0.25 0 0 -0.25 -0.5	5.0 6.7 5.0 0.075 0.125 0.18 0.212 0.25 0.3 0.25 0.3 0.355 0.425 0.5 0.425 0.5 0.6 0.71 0.85 1 1.18 1.18 1.4 1.7	18.6 1060.7 % weight 0.20741 0.552465 0.561893 0.959744 1.640426 1.727161 2.477609 2.956538 4.455548 5.117375 12.65956 13.44584 15.96304 14.54323 12.52946 1.761101	7.9 1433.9 % weight 0.13948 0.451914 0.478416 0.843852 1.72397 1.970849 2.729619 2.778436 4.152312 4.604226 13.23663 12.24911 13.51698 13.30079 13.09157 3.100635	34 1335.18 % weight 0.247158 0.627631 0.534759 0.889768 2.074627 3.108195 4.860768 3.713357 7.939004 5.98571 11.58945 8.702946 7.933013 9.622673 11.92798 1.048548	32.04 32.04 1383.26 % weight 0.208204 0.497376 0.472796 0.766306 1.946127 2.667611 6.108758 7.220624 7.767159 6.452872 10.8772 7.950783 8.487197 8.267426 11.66809 0.498822	75 1560.18 % weight 0.094861 0.279455 0.294838 0.499942 0.963991 1.371637 3.780333 4.339243 4.784063 3.954672 7.641426 6.294146 7.533746 8.766937 14.57652 1.952339	87.7 1252.44 % weight 0.102204 0.229958 0.255509 0.501437 1.299904 1.764612 3.080485 3.58352 5.570105 5.29703 9.827531 7.700415 8.40626 8.612264 12.36666 0.45832	46.84 1694.96 % weight 0.239534 0.572285 0.514466 0.919196 1.87969 2.441356 4.061453 3.259074 6.630245 4.901591 11.44098 8.918205 9.122339 9.215557 12.43215 0.446028
-2.7 phi sca 3 2.5 2.25 2.25 2 1.75 1.25 1.25 1.25 1.25 0.75 0.25 0.25 0.25 0.25 -0.5 -0.75 -0.75	6.7 Sieve size mm 0.075 0.125 0.18 0.212 0.25 0.3 0.355 0.425 0.5 0.425 0.5 0.6 0.71 0.85 1 1.18 1.4 1.4 1.7 2	18.6 1060.7 % weight 0.20741 0.552465 0.561893 0.959744 1.640426 1.727161 2.477609 2.956538 4.455548 5.117375 12.65956 13.44584 15.96304 14.54323 12.52946 1.761101 3.254455	7.9 1433.9 % weight 0.13948 0.451914 0.478416 0.843852 1.72397 1.970849 2.729619 2.778436 4.152312 4.604226 13.23663 12.24911 13.51698 13.30079 13.09157 3.100635 4.379664	34 335.18 % weight 0.247158 0.627631 0.534759 0.889768 2.074627 3.108195 4.860768 3.713357 7.939004 5.98571 11.58945 8.702946 7.933013 9.622673 11.92798 1.048548 4.642071	32.04 32.04 1383.26 % weight 0.208204 0.497376 0.472796 0.766306 1.946127 2.667611 6.108758 7.220624 7.767159 6.452872 10.8772 7.950783 8.487197 8.267426 11.66809 0.498822 4.619522	75 1560.18 % weight 0.094861 0.279455 0.294838 0.499942 0.963991 1.371637 3.780333 4.339243 4.784063 3.954672 7.641426 6.294146 7.533746 8.766937 14.57652 1.952339 7.585022	87.7 1252.44 % weight 0.102204 0.229958 0.255509 0.501437 1.299904 1.764612 3.080485 3.58352 5.570105 5.29703 9.827531 7.700415 8.40626 8.612264 12.36666 0.45832 5.903865	46.84 1694.96 % weight 0.239534 0.572285 0.514466 0.919196 1.87969 2.441356 4.061453 3.259074 6.630245 4.901591 11.44098 8.918205 9.122339 9.215557 12.43215 0.446028 5.450276
-2.7 phi sca 3 2.5 2.25 2 2 1.75 1.25 1.25 1.25 1.25 1.25 0.5 0.25 0.25 0.25 0.25 0.25 -0.5 -0.75 -1.25	6.7 Sieve size mm 0.075 0.125 0.18 0.212 0.25 0.3 0.355 0.425 0.425 0.5 0.425 0.5 0.6 0.71 0.85 1 1.18 1.4 1.7 2 2.3	18.6 1060.7 % weight 0.20741 0.552465 0.561893 0.959744 1.640426 1.727161 2.477609 2.956538 4.455548 5.117375 12.65956 13.44584 15.96304 14.54323 12.52946 1.761101 3.254455 0.461959	7.9 1433.9 % weight 0.13948 0.451914 0.478416 0.843852 1.72397 1.970849 2.729619 2.778436 4.152312 4.604226 13.23663 12.24911 13.51698 13.30079 13.09157 3.100635 4.379664 2.675221	34 335.18 % weight 0.247158 0.627631 0.534759 0.889768 2.074627 3.108195 4.860768 3.713357 7.939004 5.98571 11.58945 8.702946 7.933013 9.622673 11.92798 1.048548 4.642071 3.490166	32.04 32.04 1383.26 % weight 0.208204 0.497376 0.472796 0.766306 1.946127 2.667611 6.108758 7.220624 7.767159 6.452872 10.8772 7.950783 8.487197 8.267426 11.66809 0.498822 4.619522 3.140407	75 1560.18 % weight 0.094861 0.279455 0.294838 0.499942 0.963991 1.371637 3.780333 4.339243 4.784063 3.954672 7.641426 6.294146 7.533746 8.766937 14.57652 1.952339 7.585022 5.867272	87.7 1252.44 % weight 0.102204 0.229958 0.255509 0.501437 1.299904 1.764612 3.080485 3.58352 5.570105 5.29703 9.827531 7.700415 8.40626 8.612264 12.36666 0.45832 5.903865 4.286171	46.84 1694.96 % weight 0.239534 0.572285 0.514466 0.919196 1.87969 2.441356 4.061453 3.259074 6.630245 4.901591 11.44098 8.918205 9.122339 9.215557 12.43215 0.446028 5.450276 4.442583
-2.7 phi sca 3 2.5 2.25 2 2.25 2 1.75 1.25 1.25 1.25 1.25 0.5 0.25 0.25 0.25 0.25 0.25 -0.5 -0.75 -1.25 -1.5	6.7 Sieve size mm 0.075 0.125 0.18 0.212 0.25 0.3 0.355 0.425 0.5 0.425 0.5 0.6 0.71 0.85 1 1.18 1.4 1.7 2 2.3 2.8	18.6 1060.7 % weight 0.20741 0.552465 0.561893 0.959744 1.640426 1.727161 2.477609 2.956538 4.455548 5.117375 12.65956 13.44584 15.96304 14.54323 12.52946 1.761101 3.254455 0.461959 1.11813	7.9 1433.9 % weight 0.13948 0.451914 0.478416 0.843852 1.72397 1.970849 2.729619 2.778436 4.152312 4.604226 13.23663 12.24911 13.51698 13.30079 13.09157 3.100635 4.379664 2.675221 1.631913	34 335.18 % weight 0.247158 0.627631 0.534759 0.889768 2.074627 3.108195 4.860768 3.713357 7.939004 5.98571 11.58945 8.702946 7.933013 9.622673 11.92798 1.048548 4.642071 3.490166 3.129166	32.04 32.04 1383.26 % weight 0.208204 0.497376 0.472796 0.766306 1.946127 2.667611 6.108758 7.220624 7.767159 6.452872 10.8772 7.950783 8.487197 8.267426 11.66809 0.498822 4.619522 3.140407 2.890274	75 1560.18 % weight 0.094861 0.279455 0.294838 0.499942 0.963991 1.371637 3.780333 4.339243 4.784063 3.954672 7.641426 6.294146 7.533746 8.766937 14.57652 1.952339 7.585022 5.867272 4.975067	87.7 1252.44 % weight 0.102204 0.229958 0.255509 0.501437 1.299904 1.764612 3.080485 3.58352 5.570105 5.29703 9.827531 7.700415 8.40626 8.612264 12.36666 0.45832 5.903865 4.286171 3.743213	46.84 1694.96 % weight 0.239534 0.572285 0.514466 0.919196 1.87969 2.441356 4.061453 3.259074 6.630245 4.901591 11.44098 8.918205 9.122339 9.215557 12.43215 0.446028 5.450276 4.442583 4.448483
-2.7 phi sca 3 2.5 2.25 2.25 2 1.75 1.5 1.25 1.25 1.25 0.25 0.25 0 -0.25 -0.5 -0.75 -1.5 -1.5 -1.5 -1.5 -1.5	6.7 Sieve size mm 0.075 0.125 0.125 0.12 0.212 0.25 0.3 0.355 0.425 0.5 0.425 0.5 0.425 0.5 0.6 0.71 0.85 1 1.18 1.4 1.7 2 2.3 2.8 2.35	18.6 1060.7 % weight 0.20741 0.552465 0.561893 0.959744 1.640426 1.727161 2.477609 2.956538 4.455548 5.117375 12.65956 13.44584 15.96304 14.54323 12.52946 1.761101 3.254455 0.461959 1.11813 1.135099	7.9 1433.9 % weight 0.13948 0.451914 0.478416 0.843852 1.72397 1.970849 2.729619 2.778436 4.152312 4.604226 13.23663 12.24911 13.51698 13.30079 13.09157 3.100635 4.379664 2.675221 1.631913 1.679336	34 335.18 % weight 0.247158 0.627631 0.534759 0.889768 2.074627 3.108195 4.860768 3.713357 7.939004 5.98571 11.58945 8.702946 7.933013 9.622673 11.92798 1.048548 4.642071 3.490166 3.129166 3.493162	32.04 32.04 1383.26 % weight 0.208204 0.497376 0.472796 0.766306 1.946127 2.667611 6.108758 7.220624 7.767159 6.452872 10.8772 7.950783 8.487197 8.267426 11.66809 0.498822 4.619522 3.140407 2.890274 2.809306	75 1560.18 % weight 0.094861 0.279455 0.294838 0.499942 0.963991 1.371637 3.780333 4.339243 4.784063 3.954672 7.641426 6.294146 7.533746 8.766937 14.57652 1.952339 7.585022 5.867272 4.975067 6.369778	87.7 1252.44 % weight 0.102204 0.229958 0.255509 0.501437 1.299904 1.764612 3.080485 3.58352 5.570105 5.29703 9.827531 7.700415 8.40626 8.612264 12.36666 0.45832 5.903865 4.286171 3.743213 5.485468	46.84 1694.96 % weight 0.239534 0.572285 0.514466 0.919196 1.87969 2.441356 4.061453 3.259074 6.630245 4.901591 11.44098 8.918205 9.122339 9.215557 12.43215 0.446028 5.450276 4.442583 4.448483 3.366451
-2.7 phi sca 3 2.5 2.25 2.25 2 1.75 1.5 1.25 1.25 1.25 0.25 0.25 0.25 0.25 -0.75 -0.75 -1.25 -1.5 -1.75 -1.75	6.7 Sieve size mm 0.075 0.125 0.18 0.212 0.25 0.3 0.355 0.425 0.5 0.425 0.5 0.6 0.71 0.85 1 1.18 1.4 1.7 2.3 2.3 2.8 3.35 4.75	18.6 1060.7 % weight 0.20741 0.552465 0.561893 0.959744 1.640426 1.727161 2.477609 2.956538 4.455548 5.117375 12.65956 13.44584 15.96304 14.54323 12.52946 1.761101 3.254455 0.461959 1.11813 1.135099 0.388422	7.9 1433.9 % weight 0.13948 0.451914 0.478416 0.843852 1.72397 1.970849 2.729619 2.778436 4.152312 4.604226 13.23663 12.24911 13.51698 13.30079 13.09157 3.100635 4.379664 2.675221 1.631913 1.679336 0.259859	34 335.18 % weight 0.247158 0.627631 0.534759 0.889768 2.074627 3.108195 4.860768 3.713357 7.939004 5.98571 11.58945 8.702946 7.933013 9.622673 11.92798 1.048548 4.642071 3.490166 3.129166 3.493162 0.850822	32.04 32.04 1383.26 % weight 0.208204 0.497376 0.766306 1.946127 2.667611 6.108758 7.220624 7.767159 6.452872 10.8772 7.950783 8.487197 8.267426 11.66809 0.498822 4.619522 3.140407 2.890274 2.809306 1.142675	75 1560.18 % weight 0.094861 0.279455 0.294838 0.499942 0.963991 1.371637 3.780333 4.339243 4.784063 3.954672 7.641426 6.294146 7.533746 8.766937 14.57652 1.952339 7.585022 5.867272 4.975067 6.369778 1.875425	87.7 1252.44 % weight 0.102204 0.229958 0.255509 0.501437 1.299904 1.764612 3.080485 3.58352 5.570105 5.29703 9.827531 7.700415 8.40626 8.612264 12.36666 0.45832 5.903865 4.286171 3.743213 5.485468 2.018524	46.84 1694.96 % weight 0.239534 0.572285 0.514466 0.919196 1.87969 2.441356 4.061453 3.259074 6.630245 4.901591 11.44098 8.918205 9.122339 9.215557 12.43215 0.446028 5.450276 4.442583 4.448483 3.366451 1.277006
-2.7 phi sca 3 2.5 2.25 2.25 2 1.75 1.25 1.25 1.25 1.25 0.75 0.25 0.25 0.25 0.25 -0.5 -0.75 -1.25 -1.5 -1.75 -2.2	6.7 Sieve size mm 0.075 0.125 0.18 0.212 0.25 0.3 0.355 0.425 0.425 0.425 0.5 0.425 0.425 0.5 0.425 0.45	18.6 1060.7 % weight 0.20741 0.552465 0.561893 0.959744 1.640426 1.727161 2.477609 2.956538 4.455548 5.117375 12.65956 13.44584 15.96304 14.54323 12.52946 1.761101 3.254455 0.461959 1.11813 1.135099 0.388423 0.220071	7.9 1433.9 % weight 0.13948 0.451914 0.478416 0.843852 1.72397 1.970849 2.729619 2.778436 4.152312 4.604226 13.23663 12.24911 13.51698 13.30079 13.09157 3.100635 4.379664 2.675221 1.631913 1.679336 0.359858	34 335.18 % weight 0.247158 0.627631 0.534759 0.889768 2.074627 3.108195 4.860768 3.713357 7.939004 5.98571 11.58945 8.702946 7.933013 9.622673 11.92798 1.048548 4.642071 3.490166 3.129166 3.493162 0.850822 1.042555	32.04 32.04 1383.26 % weight 0.208204 0.497376 0.472796 0.766306 1.946127 2.667611 6.108758 7.220624 7.767159 6.452872 10.8772 7.950783 8.487197 8.267426 11.66809 0.498822 4.619522 3.140407 2.890274 2.809306 1.143675	75 1560.18 % weight 0.094861 0.279455 0.294838 0.499942 0.963991 1.371637 3.780333 4.339243 4.784063 3.954672 7.641426 6.294146 7.533746 8.766937 14.57652 1.952339 7.585022 5.867272 4.975067 6.369778 1.875425	87.7 1252.44 % weight 0.102204 0.229958 0.255509 0.501437 1.299904 1.764612 3.080485 3.58352 5.570105 5.29703 9.827531 7.700415 8.40626 8.612264 12.36666 0.45832 5.903865 4.286171 3.743213 5.485468 2.018524	46.84 1694.96 % weight 0.239534 0.572285 0.514466 0.919196 1.87969 2.441356 4.061453 3.259074 6.630245 4.901591 11.44098 8.918205 9.122339 9.215557 12.43215 0.446028 5.450276 4.442583 4.448483 3.366451 1.277906 1.256667
-2.7 phi sca 3 2.5 2.25 2.25 2 1.75 1.25 1.25 1.25 1.25 0.75 0.25 0.25 0.25 0.25 0.25 -0.5 -0.75 -1.25 -1.5 -1.75 -2.2 -2.4	6.7 Sieve size mm 0.075 0.125 0.18 0.212 0.25 0.3 0.355 0.425 0.425 0.5 0.425 0.5 0.425 0.5 0.425 0.425 0.5 0.425 0.425 0.425 0.5 0.425 0.5 0.425 0.425 0.5 0.425 0.5 0.425 0.5 0.425 0.5 0.425 0.5 0.425 0.5 0.5 0.425 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.	18.6 1060.7 % weight 0.20741 0.552465 0.561893 0.959744 1.640426 1.727161 2.477609 2.956538 4.455548 5.117375 12.65956 13.44584 15.96304 14.54323 12.52946 1.761101 3.254455 0.461959 1.11813 1.135099 0.388423 0.329971	7.9 1433.9 % weight 0.13948 0.451914 0.478416 0.843852 1.72397 1.970849 2.729619 2.778436 4.152312 4.604226 13.23663 12.24911 13.51698 13.30079 13.09157 3.100635 4.379664 2.675221 1.631913 1.679336 0.359858 0.354279	34 335.18 % weight 0.247158 0.627631 0.534759 0.889768 2.074627 3.108195 4.860768 3.713357 7.939004 5.98571 11.58945 8.702946 7.933013 9.622673 11.92798 1.048548 4.642071 3.490166 3.129166 3.493162 0.850822 1.042556 2.546472	32.04 32.04 1383.26 % weight 0.208204 0.497376 0.472796 0.766306 1.946127 2.667611 6.108758 7.220624 7.767159 6.452872 10.8772 7.950783 8.487197 8.267426 11.66809 0.498822 4.619522 3.140407 2.890274 2.809306 1.143675 1.223197	75 1560.18 % weight 0.094861 0.279455 0.294838 0.499942 0.963991 1.371637 3.780333 4.339243 4.784063 3.954672 7.641426 6.294146 7.533746 8.766937 14.57652 1.952339 7.585022 5.867272 4.975067 6.369778 1.875425 1.392147	87.7 1252.44 % weight 0.102204 0.229958 0.255509 0.501437 1.299904 1.764612 3.080485 3.58352 5.570105 5.29703 9.827531 7.700415 8.40626 8.612264 12.36666 0.45832 5.903865 4.286171 3.743213 5.485468 2.018524 2.507186	46.84 1694.96 % weight 0.239534 0.572285 0.514466 0.919196 1.87969 2.441356 4.061453 3.259074 6.630245 4.901591 11.44098 8.918205 9.122339 9.215557 12.43215 0.446028 5.450276 4.442583 4.448483 3.366451 1.277906 1.256667 2.762487
-2.7 phi sca 3 2.5 2.25 2 2 1.75 1.25 1.25 1.25 1.25 1.25 0.5 0.25 0.25 0.25 0.25 0.25 0.25 -0.5 -0.75 -1.5 -1.5 -1.75 -1.75 -2.2 -2.4 -2.7	6.7 Sieve size mm 0.075 0.125 0.125 0.18 0.212 0.25 0.3 0.355 0.425 0.5 0.425 0.5 0.425 0.5 0.425 0.5 0.425 1 1.18 1.4 1.7 2 2.3 2.8 3.35 4.75 5.6 6.7	18.6 1060.7 % weight 0.20741 0.552465 0.561893 0.959744 1.640426 1.727161 2.477609 2.956538 4.455548 5.117375 12.65956 13.44584 15.96304 14.54323 12.52946 1.761101 3.254455 0.461959 1.11813 1.135099 0.388423 0.329971 1.753559	7.9 1433.9 % weight 0.13948 0.451914 0.478416 0.843852 1.72397 1.970849 2.729619 2.778436 4.152312 4.604226 13.23663 12.24911 13.51698 13.30079 13.09157 3.100635 4.379664 2.675221 1.631913 1.679336 0.359858 0.354279 0.550945	34 335.18 % weight 0.247158 0.627631 0.534759 0.889768 2.074627 3.108195 4.860768 3.713357 7.939004 5.98571 11.58945 8.702946 7.933013 9.622673 11.92798 1.048548 4.642071 3.490166 3.129166 3.129166 3.493162 0.850822 1.042556 2.546473	32.04 32.04 1383.26 % weight 0.208204 0.497376 0.472796 0.766306 1.946127 2.667611 6.108758 7.220624 7.767159 6.452872 10.8772 7.950783 8.487197 8.267426 11.66809 0.498822 4.619522 3.140407 2.890274 2.809306 1.143675 1.223197 2.316267	75 1560.18 % weight 0.094861 0.279455 0.294838 0.499942 0.963991 1.371637 3.780333 4.339243 4.784063 3.954672 7.641426 6.294146 7.533746 8.766937 14.57652 1.952339 7.585022 5.867272 4.975067 6.369778 1.875425 1.392147 4.807138	87.7 1252.44 % weight 0.102204 0.229958 0.255509 0.501437 1.299904 1.764612 3.080485 3.58352 5.570105 5.29703 9.827531 7.700415 8.40626 8.612264 12.36666 0.45832 5.903865 4.286171 3.743213 5.485468 2.018524 2.507186 7.002555	46.84 1694.96 % weight 0.239534 0.572285 0.514466 0.919196 1.87969 2.441356 4.061453 3.259074 6.630245 4.901591 11.44098 8.918205 9.122339 9.215557 12.43215 0.446028 5.450276 4.442583 4.448483 3.366451 1.277906 1.256667 2.763487

Grain-size Analyses - Gulubane Geological Trench Samples from 1.75 m depth

Grain size (mm)

		_							
			1b	2b	3b	4b	5b	6b	7b
Į			. 2	5	10	. 15	20	25	30
			1	. 1	1	1	1	1	1
scal	e	Sieve size	weight gm	weight gm	weight gm	weight gm	weight gm	weight gm	weight gm
.		0.075	2.32	2.02	1.34	1.5	0.58	0.72	5.94
	. 3	0.125	4.64	7.62	3.46	5.28	1.98	1.64	15.08
ļ.,	2.5	0.18	4.42	8.02	3.84	5.68	2.44	1.92	14.76
	2.25	0.212	9.32	16.32	6.4	11.34	4.94	3.84	20.54
	2	0.25	23.32	37.8	13.52	26.1	11.54	10.22	46.24
	1.75	0.3	31.04	41.32	19.22	35.98	17.04	12.36	45.48
	1.5	0.355	48.84	51.12	35.3	55.16	29.16	26.72	58.24
	1.25	0.425	48.12	37.72	42.16	55.7	31.14	37.34	50.44
	1	0.5	63.92	49.58	70.88	82.88	49.66	53.54	72.3
	0.75	0.6	59.78	45.9	73.84	69.32	44.12	36.72	64.74
1	0.5	0.71	133.54	93.58	157.46	114.6	79.12	88.38	105.06
	0.25	0.85	128.16	77.86	110.8	83.42	65.12	54.1	79.12
1	0	1	153.94	83.12	115.8	79.56	71.32	65.92	80.58
	-0.25	1.18	158.96	92.5	103,38	74,16	76.24	61.86	80.6
	-0.5	1.4	214.68	123.5	127.12	90.64	124.36	96.74	108.64
-	-0.75	1.7	11.46	17.32	25.04	5.7	12.44	13	11.44
	-1	2	68.52	50.28	54 72	37 76	69.46	66.36	49.16
	-1.25	2.3	40.68	31.12	48 64	32 54	59 46	70.9	39.42
	-1.5	2.8	26.94	25.52	46 62	21.92	51.6	70 34	37 16
	-1 75	3 35	22.02	25 48	70.08	27.08	67.28	131.84	52 94
	-22	4 75	59	10.34	21.78	7 88	19.8	51 16	16.38
	-2.4	56	5.2	5.82	19.66	5.96	18.4	53.9	14 9
1	-27	67	20.6	30.5	39.68	11.66	76.06	85.2	84 42
	Kan (1	0.7	1286 32	964 36	1210 74	941.82	983.26	1094 72	1153 58
nhi s	cale	Sieve size	% weight	% weight	% weight	% weight	% weight	% weight	% weight
	ouro	0.075	0 180359	0 209465	0 110676	0 159266	0.058987	0.06577	0.514919
	3	0.125	0.360719	0 790161	0.285776	0.560617	0 201371	0 14981	1 307235
	2.5	0.18	0.343616	0.83164	0.317161	0.603088	0 248154	0 175387	1 279495
	2 25	0.10	0.724548	1 692314	0.528602	1 204052	0.50241	0.350775	1 780544
	2.20	0.2.72	1 812924	3 919698	1 116672	2 77123	1 173647	0.933572	4 008391
	1 75	0.20	2 413085	4 284707	1 587459	3 820263	1 733011	1 129056	3 942509
	1.10	0 355	3 796878	5 300925	2 915572	5 856745	2 965645	2 440807	5.048631
}	1 25	0.000	3 740904	3 911402	3 482168	5 914081	3 167016	3 410918	4 372475
	1	0.420	1 969215	5 1/1234	5 85/271	8 799983	5.050546	4 890748	6 267446
	0.75	0.0	4 647366	4 759633	6 09875	7 360217	4 487114	3 354282	5.612095
	0.10	0.0	10.38155	9 703845	13 00527	12 16702	8 046702	8 073207	9 107301
]	0.0	0.7 C	9 962306	8 0727/8	9 151/2P	8 857210	6 622867	4 941002	6 8586/01
	0.20	0.00	11 06747	8 610188	9.107420	8 447474	7 252422	6.021621	6 985211
	0.25	1 1 9	10 35773	0.010100	8.52858	7 874116	7 753700	5 65076	6 986945
	-0.2.0	1.10	12.00110	3.031004	0.00000	7.074110	1.100100	0.00070	0.000940
	05	1 /	16 680/7	12 206/2	10 40036	0 62202	176777		
1	-0.5	1.4	16.68947	12.80642	2 068157	9.62392	12.64/72	1 187519	0.991605
.	-0.5 -0.75	1.4 1.7	16.68947 0.890914	12.80642 1.79601	10.49936	9.62392	12.64772	1.187518	0.991695
	-0.5 -0.75 -1	1.4 1.7 2	16.68947 0.890914 5.326824	12.80642 1.79601 5.213821	10.49936 2.068157 4.51955	9.62392 0.605211 4.009259	12.64772 1.265179 7.064256	6.061824 6.061824	0.991695
· · · · · · · · · · · · ·	-0.5 -0.75 -1 -1.25	1.4 1.7 2 2.3	16.68947 0.890914 5.326824 3.16251	12.80642 1.79601 5.213821 3.227011	10.49936 2.068157 4.51955 4.017378	9.62392 0.605211 4.009259 3.455013	12.64772 1.265179 7.064256 6.047231	6.061824 6.476542	0.991695 4.261516 3.417188
	-0.5 -0.75 -1 -1.25 -1.5	1.4 1.7 2 2.3 2.8	16.68947 0.890914 5.326824 3.16251 2.094347	12.80642 1.79601 5.213821 3.227011 2.646315	10.49936 2.068157 4.51955 4.017378 3.850538	9.62392 0.605211 4.009259 3.455013 2.327409	12.64772 1.265179 7.064256 6.047231 5.247849	6.061824 6.476542 6.425387	0.991695 4.261516 3.417188 3.221276
• • • • • • • • • • •	-0.5 -0.75 -1 -1.25 -1.5 -1.75	1.4 1.7 2 2.3 2.8 3.35 4.77	16.68947 0.890914 5.326824 3.16251 2.094347 1.71186	12.80642 1.79601 5.213821 3.227011 2.646315 2.642167	10.49936 2.068157 4.51955 4.017378 3.850538 5.788196	9.62392 0.605211 4.009259 3.455013 2.327409 2.875284	12.64772 1.265179 7.064256 6.047231 5.247849 6.842544	6.061824 6.476542 6.425387 12.04326	0.991695 4.261516 3.417188 3.221276 4.589192
	-0.5 -0.75 -1 -1.25 -1.5 -1.75 -2.2	1.4 1.7 2.3 2.3 2.8 3.35 4.75	16.68947 0.890914 5.326824 3.16251 2.094347 1.71186 0.458673	12.80642 1.79601 5.213821 3.227011 2.646315 2.642167 1.072214	10.49936 2.068157 4.51955 4.017378 3.850538 5.788196 1.7989	9.62392 0.605211 4.009259 3.455013 2.327409 2.875284 0.836678	12.64772 1.265179 7.064256 6.047231 5.247849 6.842544 2.013709	6.050983 1.187518 6.061824 6.476542 6.425387 12.04326 4.673341	0.991695 4.261516 3.417188 3.221276 4.589192 1.419928
	-0.5 -0.75 -1 -1.25 -1.5 -1.75 -2.2 -2.4	1.4 1.7 2 2.3 2.8 3.35 4.75 5.6	16.68947 0.890914 5.326824 3.16251 2.094347 1.71186 0.458673 0.404254	12.80642 1.79601 5.213821 3.227011 2.646315 2.642167 1.072214 0.603509	10.49936 2.068157 4.51955 4.017378 3.850538 5.788196 1.7989 1.6238	9.62392 0.605211 4.009259 3.455013 2.327409 2.875284 0.836678 0.632817	12.64772 1.265179 7.064256 6.047231 5.247849 6.842544 2.013709 1.871326	6.050983 1.187518 6.061824 6.476542 6.425387 12.04326 4.673341 4.923633 7.780040	0.991695 4.261516 3.417188 3.221276 4.589192 1.419928 1.291631
	-0.5 -0.75 -1 -1.25 -1.5 -1.75 -2.2 -2.4 -2.7	1.4 1.7 2 2.3 2.8 3.35 4.75 5.6 6.7	16.68947 0.890914 5.326824 3.16251 2.094347 1.71186 0.458673 0.404254 1.601468	12.80642 1.79601 5.213821 3.227011 2.646315 2.642167 1.072214 0.603509 3.162719	10.49936 2.068157 4.51955 4.017378 3.850538 5.788196 1.7989 1.6238 3.277335	9.62392 0.605211 4.009259 3.455013 2.327409 2.875284 0.836678 0.632817 1.238028	12.64772 1.265179 7.064256 6.047231 5.247849 6.842544 2.013709 1.871326 7.735492	6.050963 1.187518 6.061824 6.476542 6.425387 12.04326 4.673341 4.923633 7.782812	0.991695 4.261516 3.417188 3.221276 4.589192 1.419928 1.291631 7.318088

Grain-size Analyses - Gulubane Geological Trench Samples from 1.00 m depth

Grain size (mm)

		Grain size	analyses						
Ì		Sample No	Mat1	Mat2	Mat3	Mat4	Mat5	Mat6	Mat7
		Distance	2	2	10	10	20	20	20
lohi		Denth		~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	10		<u></u>	20	<u>ح</u>
lecal	Δ	Sieve size	weight am	weight am	woight am	woight am	woight am	weight gm	weight om
non	.	01676 3126	422.2	ູພຣເບຼາະ ບານ	weight gin	weight gin	75 1		weight gin
lpan	0.25		100.2	200			10.1	01.2	20
	0.25	0.05	10.9	33.4 45.0	9.4	20.1	11.9	20.0	20
{	0.00	1 40	10,9	40.8	11.5	23.1	13.0	31.7	23
	-0.25	1.18	14.2	49.8	9.3	26.4	13.3	34.4	26.3
	-0.5	1.4	3.3	55.3	11.3	39.4	17.6	44	39.3
	-0.75	1,7	2.4	18.6	2.4	. 10,9	3.3	9.6	10.8
	-1	2	3.9	14.2	4.1	20.6	6.9	16.9	20.5
	-1.25	2.3	4.3	33.1	6.1	70.2	15.1	31.1	70.1
		•••••••••••••••••••••••••••••••••••••••	196.1	338.2	133	217.82	156.8	283.5	281.1
		Sample No	Mat1	Mat2	Mat3	Mat4	Mat5	Mat6	Mat7
		Distance	2	2	10	10	20	20	20
		Depth	1	2	1	2	1	2	3
phi s	scale	Sieve size	% weight	% weight	% weight	% weight	% weight	% weight	% weight
	0.5	0.71	67.92453	26.02011	59.32331	3.268754	47.89541	30.75838	25.29349
	0.25	0.85	9.63794	9.875813	7.067669	9.227803	7.589286	10.08818	7.114906
	0	1	8 108108	13 54228	8 646617	10 60509	8 673469	11 18166	8 182142
	-0.25	1 18	7 241203	14 72501	6 992481	12 1201	8 482143	12 13404	9 356101
	-0.5	1 4	1 682815	16 35127	8 496241	18 08833	11 22449	15 52028	13 98079
	-0.75	17	1 223865	5 499704	1 80/511	5 00/132	2 104592	3 386243	3 842049
	-0.75	1.7	1.220000	4 108600	2 082707	0.45725	4 40051	5.061100	7 202778
	1 25	~ つつ	2 402750	4.190099	4.596466	30,00045	4.40031	10.07002	7.292110
	-1.20	۲.3	2.192709	9.707100	4,000400	32.22043	9.030102	10.9700Z	24.93114
		01.000	100	100	100	100	400	100	400
	:	sum	100	100	100	100	100	100	100
		sum	100 Mat1	100 Mat2	100 Mat3	100 Mat4	100 Mat5	100 Mat6	100 Mat7
		sum Sample No	100 Mat1	100 Mat2	100 Mat3	100 Mat4	100 Mat5	100 Mat6	100 Mat7
		sum Sample No Distance	100 Mat1 2	100 Mat2 2	100 Mat3 10	100 Mat4 10	100 Mat5 20	100 Mat6 20	100 Mat7 20
		sum Sample No Distance Depth	100 Mat1 2 1	100 Mat2 2 2	100 Mat3 10 1	100 Mat4 10 2	100 Mat5 20 1	100 Mat6 20 2	100 Mat7 20 3
nhi n		sum Sample No Distance Depth	100 Mat1 2 1 cummulativ	100 Mat2 2 cummulativ	100 Mat3 10 1 cummulativ	100 Mat4 10 2 cummulativ	100 Mat5 20 1 cummulativ	100 Mat6 20 2 cummulativ	100 Mat7 20 3 cummulativ
phi s	cale	sum Sample No Distance Depth Sieve size	100 Mat1 2 1 cummulativ % weight	100 Mat2 2 cummulativ % weight	100 Mat3 10 1 cummulativ % weight	100 Mat4 10 2 cummulativ % weight	100 Mat5 20 1 cummulativ % weight	100 Mat6 20 2 cummulativ % weight	100 Mat7 20 3 cummulativ % weight
phi s	cale	sum Sample No Distance Depth Sieve size	100 Mat1 2 1 cummulativ % weight Mat1	100 Mat2 2 cummulativ % weight Mat2	100 Mat3 10 1 cummulativ % weight Mat3	100 Mat4 10 2 cummulativ % weight Mat4	100 Mat5 20 1 cummulativ % weight Mat5	100 Mat6 20 2 cummulativ % weight Mat6	100 Mat7 20 3 cummulativ % weight Mat7
phi s	cale	sum Sample No Distance Depth Sieve size 0.71	100 Mat1 2 1 cummulativ % weight Mat1 67.92453	100 Mat2 2 cummulativ % weight Mat2 26.02011	100 Mat3 10 1 cummulativ % weight Mat3 59.32331	100 Mat4 10 2 cummulativ % weight Mat4 3.268754	100 Mat5 20 1 cummulativ % weight Mat5 47.89541	100 Mat6 20 2 cummulativ % weight Mat6 30.75838	100 Mat7 20 3 cummulativ % weight Mat7 25.29349
phi s	cale 0.5 0.25	sum Sample No Distance Depth Sieve size 0.71 0.85	100 Mat1 2 1 cummulativ % weight Mat1 67.92453 77.56247	100 Mat2 2 cummulativ % weight Mat2 26.02011 35.89592	100 Mat3 10 1 cummulativ % weight Mat3 59.32331 66.39098	100 Mat4 10 2 cummulativ % weight Mat4 3.268754 12.49656	100 Mat5 20 1 cummulativ % weight Mat5 47.89541 55.48469	100 Mat6 20 2 cummulativ % weight Mat6 30.75838 40.84656	100 Mat7 20 3 cummulativ % weight Mat7 25.29349 32.4084
phi s	cale 0.5 0.25 0	sum Sample No Distance Depth Sieve size 0.71 0.85 1	100 Mat1 2 1 cummulativ % weight Mat1 67.92453 77.56247 85.67058	100 Mat2 2 cummulativ % weight Mat2 26.02011 35.89592 49.4382	100 Mat3 10 1 cummulativ % weight Mat3 59.32331 66.39098 75.03759	100 Mat4 10 2 cummulativ % weight Mat4 3.268754 12.49656 23.10164	100 Mat5 20 1 cummulativ % weight Mat5 47.89541 55.48469 64.15816	100 Mat6 20 2 cummulativ % weight Mat6 30.75838 40.84656 52.02822	100 Mat7 20 3 cummulativ % weight Mat7 25.29349 32.4084 40.59054
phi s	cale 0.5 0.25 0 -0.25	sum Sample No Distance Depth Sieve size 0.71 0.85 1 1.18	100 Mat1 2 1 cummulativ % weight Mat1 67.92453 77.56247 85.67058 92.91178	100 Mat2 2 cummulativ % weight Mat2 26.02011 35.89592 49.4382 64.16322	100 Mat3 10 1 cummulativ % weight Mat3 59.32331 66.39098 75.03759 82.03008	100 Mat4 10 2 cummulativ % weight Mat4 3.268754 12.49656 23.10164 35.22174	100 Mat5 20 1 cummulativ % weight Mat5 47.89541 55.48469 64.15816 72.64031	100 Mat6 20 2 cummulativ % weight Mat6 30.75838 40.84656 52.02822 64.16226	100 Mat7 20 3 cummulativ % weight Mat7 25.29349 32.4084 40.59054 49.94664
phi s	cale 0.5 0.25 0 -0.25 -0.5	sum Sample No Distance Depth Sieve size 0.71 0.85 1 1.18 1.4	100 Mat1 2 1 cummulativ % weight Mat1 67.92453 77.56247 85.67058 92.91178 94.59459	100 Mat2 2 cummulativ % weight Mat2 26.02011 35.89592 49.4382 64.16322 80.51449	100 Mat3 10 1 cummulativ % weight Mat3 59.32331 66.39098 75.03759 82.03008 90.52632	100 Mat4 10 2 cummulativ % weight Mat4 3.268754 12.49656 23.10164 35.22174 53.31007	100 Mat5 20 1 cummulativ % weight Mat5 47.89541 55.48469 64.15816 72.64031 83.8648	100 Mat6 20 2 cummulativ % weight Mat6 30.75838 40.84656 52.02822 64.16226 79.68254	100 Mat7 20 3 cummulativ % weight Mat7 25.29349 32.4084 40.59054 49.94664 63.92743
phi s	cale 0.5 0.25 0 -0.25 -0.5 -0.75	sum Sample No Distance Depth Sieve size 0.71 0.85 1 1.18 1.4 1.7	100 Mat1 2 1 cummulativ % weight Mat1 67.92453 77.56247 85.67058 92.91178 94.59459 95.81846	100 Mat2 2 cummulativ % weight Mat2 26.02011 35.89592 49.4382 64.16322 80.51449 86.01419	100 Mat3 10 1 cummulativ % weight Mat3 59.32331 66.39098 75.03759 82.03008 90.52632 92.33083	100 Mat4 10 2 cummulativ % weight Mat4 3.268754 12.49656 23.10164 35.22174 53.31007 58.3142	100 Mat5 20 1 cummulativ % weight Mat5 47.89541 55.48469 64.15816 72.64031 83.8648 85.96939	100 Mat6 20 2 cummulativ % weight Mat6 30.75838 40.84656 52.02822 64.16226 79.68254 83.06878	100 Mat7 20 3 cummulativ % weight Mat7 25.29349 32.4084 40.59054 49.94664 63.92743 67.76948
phi s	cale 0.5 0.25 0 -0.25 -0.5 -0.75 -1	sum Sample No Distance Depth Sieve size 0.71 0.85 1 1.18 1.4 1.7 2	100 Mat1 2 1 cummulativ % weight Mat1 67.92453 77.56247 85.67058 92.91178 94.59459 95.81846 97.80724	100 Mat2 2 cummulativ % weight Mat2 26.02011 35.89592 49.4382 64.16322 80.51449 86.01419 90.21289	100 Mat3 10 1 cummulativ % weight Mat3 59.32331 66.39098 75.03759 82.03008 90.52632 92.33083 95.41353	100 Mat4 10 2 cummulativ % weight Mat4 3.268754 12.49656 23.10164 35.22174 53.31007 58.3142 67.77155	100 Mat5 20 1 cummulativ % weight Mat5 47.89541 55.48469 64.15816 72.64031 83.8648 85.96939 90.3699	100 Mat6 20 2 cummulativ % weight Mat6 30.75838 40.84656 52.02822 64.16226 79.68254 83.06878 89.02998	100 Mat7 20 3 cummulativ % weight Mat7 25.29349 32.4084 40.59054 49.94664 63.92743 67.76948 75.06226
phi s	cale 0.5 0.25 0 -0.25 -0.5 -0.75 -1 -1.25	sum Sample No Distance Depth Sieve size 0.71 0.85 1 1.18 1.4 1.7 2 2.3	100 Mat1 2 1 cummulativ % weight Mat1 67.92453 77.56247 85.67058 92.91178 94.59459 95.81846 97.80724 100	100 Mat2 2 cummulativ % weight Mat2 26.02011 35.89592 49.4382 64.16322 80.51449 86.01419 90.21289 100	100 Mat3 10 1 cummulativ % weight Mat3 59.32331 66.39098 75.03759 82.03008 90.52632 92.33083 95.41353 100	100 Mat4 10 2 cummulativ % weight Mat4 3.268754 12.49656 23.10164 35.22174 53.31007 58.3142 67.77155 100	100 Mat5 20 1 cummulativ % weight Mat5 47.89541 55.48469 64.15816 72.64031 83.8648 85.96939 90.3699 100	100 Mat6 20 2 cummulativ % weight Mat6 30.75838 40.84656 52.02822 64.16226 79.68254 83.06878 89.02998 100	100 Mat7 20 3 cummulativ % weight Mat7 25.29349 32.4084 40.59054 49.94664 63.92743 67.76948 75.06226 100
phi s	cale 0.5 0.25 0 -0.25 -0.5 -0.75 -1 -1.25	sum Sample No Distance Depth Sieve size 0.71 0.85 1 1.18 1.4 1.7 2 2.3	100 Mat1 2 1 cummulativ % weight Mat1 67.92453 77.56247 85.67058 92.91178 94.59459 95.81846 97.80724 100	100 Mat2 2 cummulativ % weight Mat2 26.02011 35.89592 49.4382 64.16322 80.51449 86.01419 90.21289 100	100 Mat3 10 1 cummulativ % weight Mat3 59.32331 66.39098 75.03759 82.03008 90.52632 92.33083 95.41353 100	100 Mat4 10 2 cummulativ % weight Mat4 3.268754 12.49656 23.10164 35.22174 53.31007 58.3142 67.77155 100	100 Mat5 20 1 cummulativ % weight Mat5 47.89541 55.48469 64.15816 72.64031 83.8648 85.96939 90.3699 100	100 Mat6 20 2 cummulativ % weight Mat6 30.75838 40.84656 52.02822 64.16226 79.68254 83.06878 89.02998 100	100 Mat7 20 3 cummulativ % weight Mat7 25.29349 32.4084 40.59054 49.94664 63.92743 67.76948 75.06226 100
phi s	cale 0.5 0.25 0 -0.25 -0.5 -0.75 -1 -1.25	sum Sample No Distance Depth Sieve size 0.71 0.85 1 1.18 1.4 1.7 2 2.3	100 Mat1 2 1 cummulativ % weight Mat1 67.92453 77.56247 85.67058 92.91178 94.59459 95.81846 97.80724 100	100 Mat2 2 cummulativ % weight Mat2 26.02011 35.89592 49.4382 64.16322 80.51449 86.01419 90.21289 100	100 Mat3 10 1 cummulativ % weight Mat3 59.32331 66.39098 75.03759 82.03008 90.52632 92.33083 95.41353 100	100 Mat4 10 2 cummulativ % weight Mat4 3.268754 12.49656 23.10164 35.22174 53.31007 58.3142 67.77155 100	100 Mat5 20 1 cummulativ % weight Mat5 47.89541 55.48469 64.15816 72.64031 83.8648 85.96939 90.3699 100	100 Mat6 20 2 cummulativ % weight Mat6 30.75838 40.84656 52.02822 64.16226 79.68254 83.06878 89.02998 100	100 Mat7 20 3 cummulativ % weight Mat7 25.29349 32.4084 40.59054 49.94664 63.92743 67.76948 75.06226 100
phi s	cale 0.5 0.25 0 -0.25 -0.5 -0.75 -1 -1.25	sum Sample No Distance Depth Sieve size 0.71 0.85 1 1.18 1.4 1.7 2.3	100 Mat1 2 1 cummulativ % weight Mat1 67.92453 77.56247 85.67058 92.91178 94.59459 95.81846 97.80724 100	100 Mat2 2 cummulativ % weight Mat2 26.02011 35.89592 49.4382 64.16322 80.51449 86.01419 90.21289 100	100 Mat3 10 1 cummulativ % weight Mat3 59.32331 66.39098 75.03759 82.03008 90.52632 92.33083 95.41353 100	100 Mat4 10 2 cummulativ % weight Mat4 3.268754 12.49656 23.10164 35.22174 53.31007 58.3142 67.77155 100	100 Mat5 20 1 cummulativ % weight Mat5 47.89541 55.48469 64.15816 72.64031 83.8648 85.96939 90.3699 100	100 Mat6 20 2 cummulativ % weight Mat6 30.75838 40.84656 52.02822 64.16226 79.68254 83.06878 89.02998 100	100 Mat7 20 3 cummulativ % weight Mat7 25.29349 32.4084 40.59054 49.94664 63.92743 67.76948 75.06226 100
phi s	cale 0.5 0.25 0 -0.25 -0.5 -0.75 -1 -1.25	sum Sample No Distance Depth Sieve size 0.71 0.85 1 1.18 1.4 1.7 2 2.3	100 Mat1 2 1 cummulativ % weight Mat1 67.92453 77.56247 85.67058 92.91178 94.59459 95.81846 97.80724 100	100 Mat2 2 cummulativ % weight Mat2 26.02011 35.89592 49.4382 64.16322 80.51449 86.01419 90.21289 100	100 Mat3 10 1 cummulativ % weight Mat3 59.32331 66.39098 75.03759 82.03008 90.52632 92.33083 95.41353 100	100 Mat4 10 2 cummulativ % weight Mat4 3.268754 12.49656 23.10164 35.22174 53.31007 58.3142 67.77155 100	100 Mat5 20 1 cummulativ % weight Mat5 47.89541 55.48469 64.15816 72.64031 83.8648 85.96939 90.3699 100	100 Mat6 20 2 cummulativ % weight Mat6 30.75838 40.84656 52.02822 64.16226 79.68254 83.06878 89.02998 100	100 Mat7 20 3 cummulativ % weight Mat7 25.29349 32.4084 40.59054 49.94664 63.92743 67.76948 75.06226 100
phi s	cale 0.5 0.25 0 -0.25 -0.5 -0.75 -1 -1.25	sum Sample No Distance Depth Sieve size 0.71 0.85 1 1.18 1.4 1.7 2 2.3	100 Mat1 2 1 cummulativ % weight Mat1 67.92453 77.56247 85.67058 92.91178 94.59459 95.81846 97.80724 100	100 Mat2 2 cummulativ % weight Mat2 26.02011 35.89592 49.4382 64.16322 80.51449 86.01419 90.21289 100	100 Mat3 10 1 cummulativ % weight Mat3 59.32331 66.39098 75.03759 82.03008 90.52632 92.33083 95.41353 100	100 Mat4 10 2 cummulativ % weight Mat4 3.268754 12.49656 23.10164 35.22174 53.31007 58.3142 67.77155 100	100 Mat5 20 1 cummulativ % weight Mat5 47.89541 55.48469 64.15816 72.64031 83.8648 85.96939 90.3699 100	100 Mat6 20 2 cummulativ % weight Mat6 30.75838 40.84656 52.02822 64.16226 79.68254 83.06878 89.02998 100	100 Mat7 20 3 cummulativ % weight Mat7 25.29349 32.4084 40.59054 49.94664 63.92743 67.76948 75.06226 100
phi s	cale 0.5 0.25 -0.25 -0.5 -0.75 -1 -1.25	sum Sample No Distance Depth Sieve size 0.71 0.85 1 1.18 1.4 1.7 2 2.3	100 Mat1 2 1 cummulativ % weight Mat1 67.92453 77.56247 85.67058 92.91178 94.59459 95.81846 97.80724 100	100 Mat2 2 cummulativ % weight Mat2 26.02011 35.89592 49.4382 64.16322 80.51449 86.01419 90.21289 100	100 Mat3 10 1 cummulativ % weight Mat3 59.32331 66.39098 75.03759 82.03008 90.52632 92.33083 90.52632 92.33083 100	100 Mat4 10 2 cummulativ % weight Mat4 3.268754 12.49656 23.10164 35.22174 53.31007 58.3142 67.77155 100	100 Mat5 20 1 cummulativ % weight Mat5 47.89541 55.48469 64.15816 72.64031 83.8648 85.96939 90.3699 100	100 Mat6 20 2 cummulativ % weight Mat6 30.75838 40.84656 52.02822 64.16226 79.68254 83.06878 89.02998 100	100 Mat7 20 3 cummulativ % weight Mat7 25.29349 32.4084 40.59054 49.94664 63.92743 67.76948 75.06226 100
phi s	cale 0.5 0.25 0 -0.25 -0.5 -0.75 -1 -1.25	sum Sample No Distance Depth Sieve size 0.71 0.85 1 1.18 1.4 1.7 2 2.3	100 Mat1 2 1 cummulativ % weight Mat1 67.92453 77.56247 85.67058 92.91178 94.59459 95.81846 97.80724 100	100 Mat2 2 cummulativ % weight Mat2 26.02011 35.89592 49.4382 64.16322 80.51449 86.01419 90.21289 100	100 Mat3 10 1 cummulativ % weight Mat3 59.32331 66.39098 75.03759 82.03008 90.52632 92.33083 95.41353 100	100 Mat4 10 2 cummulativ % weight Mat4 3.268754 12.49656 23.10164 35.22174 53.31007 58.3142 67.77155 100	100 Mat5 20 1 cummulativ % weight Mat5 47.89541 55.48469 64.15816 72.64031 83.8648 85.96939 90.3699 100	100 Mat6 20 2 cummulativ % weight Mat6 30.75838 40.84656 52.02822 64.16226 79.68254 83.06878 89.02998 100	100 Mat7 20 3 cummulativ % weight Mat7 25.29349 32.4084 40.59054 49.94664 63.92743 67.76948 75.06226 100
phi s	cale 0.5 0.25 0 -0.25 -0.5 -0.75 -1 -1.25	sum Sample No Distance Depth Sieve size 0.71 0.85 1 1.18 1.4 1.7 2.3	100 Mat1 2 1 cummulativ % weight Mat1 67.92453 77.56247 85.67058 92.91178 94.59459 95.81846 97.80724 100	100 Mat2 2 cummulativ % weight Mat2 26.02011 35.89592 49.4382 64.16322 80.51449 86.01419 90.21289 100	100 Mat3 10 1 cummulativ % weight Mat3 59.32331 66.39098 75.03759 82.03008 90.52632 92.33083 95.41353 100	100 Mat4 10 2 cummulatiw % weight Mat4 3.268754 12.49656 23.10164 35.22174 53.31007 58.3142 67.77155 100	100 Mat5 20 1 cummulativ % weight Mat5 47.89541 55.48469 64.15816 72.64031 83.8648 85.96939 90.3699 100	100 Mat6 20 2 cummulativ % weight Mat6 30.75838 40.84656 52.02822 64.16226 79.68254 83.06878 89.02998 100	100 Mat7 20 3 cummulativ % weight Mat7 25.29349 32.4084 40.59054 49.94664 63.92743 67.76948 75.06226 100
phi s	cale 0.5 0.25 0 -0.25 -0.5 -0.75 -1 -1.25	sum Sample No Distance Depth Sieve size 0.71 0.85 1 1.18 1.4 1.7 2.3	100 Mat1 2 1 cummulativ % weight Mat1 67.92453 77.56247 85.67058 92.91178 94.59459 95.81846 97.80724 100	100 Mat2 2 cummulativ % weight Mat2 26.02011 35.89592 49.4382 64.16322 80.51449 86.01419 90.21289 100	100 Mat3 10 1 cummulativ % weight Mat3 59.32331 66.39098 75.03759 82.03008 90.52632 92.33083 95.41353 100	100 Mat4 10 2 cummulativ % weight Mat4 3.268754 12.49656 23.10164 35.22174 53.31007 58.3142 67.77155 100	100 Mat5 20 1 cummulativ % weight Mat5 47.89541 55.48469 64.15816 72.64031 83.8648 85.96939 90.3699 100	100 Mat6 20 2 cummulativ % weight Mat6 30.75838 40.84656 52.02822 64.16226 79.68254 83.06878 89.02998 100	100 Mat7 20 3 cummulativ % weight Mat7 25.29349 32.4084 40.59054 49.94664 63.92743 67.76948 75.06226 100
phi s	cale 0.5 0.25 0 -0.25 -0.5 -0.75 -1 -1.25	sum Sample No Distance Depth Sieve size 0.71 0.85 1 1.18 1.4 1.7 2.3	100 Mat1 2 1 cummulativ % weight Mat1 67.92453 77.56247 85.67058 92.91178 94.59459 95.81846 97.80724 100	100 Mat2 2 cummulativ % weight Mat2 26.02011 35.89592 49.4382 64.16322 80.51449 86.01419 90.21289 100	100 Mat3 10 1 cummulativ % weight Mat3 59.32331 66.39098 75.03759 82.03008 90.52632 92.33083 95.41353 100	100 Mat4 10 2 cummulativ % weight Mat4 3.268754 12.49656 23.10164 35.22174 53.31007 58.3142 67.77155 100	100 Mat5 20 1 cummulativ % weight Mat5 47.89541 55.48469 64.15816 72.64031 83.8648 85.96939 90.3699 100	100 Mat6 20 2 cummulativ % weight Mat6 30.75838 40.84656 52.02822 64.16226 79.68254 83.06878 89.02998 100	100 Mat7 20 3 cummulativ % weight Mat7 25.29349 32.4084 40.59054 49.94664 63.92743 67.76948 75.06226 100
phi s	cale 0.5 0.25 0 -0.25 -0.75 -1 -1.25	sum Sample No Distance Depth Sieve size 0.71 0.85 1 1.4 1.4 1.7 2 2.3	100 Mat1 2 1 cummulativ % weight Mat1 67.92453 77.56247 85.67058 92.91178 94.59459 95.81846 97.80724 100	100 Mat2 2 cummulativ % weight Mat2 26.02011 35.89592 49.4382 64.16322 80.51449 86.01419 90.21289 100	100 Mat3 10 1 cummulativ % weight Mat3 59.32331 66.39098 75.03759 82.03008 90.52632 92.33083 90.52632 92.33083 100	100 Mat4 10 2 cummulativ % weight Mat4 3.268754 12.49656 23.10164 35.22174 53.31007 58.3142 67.77155 100	100 Mat5 20 1 cummulativ % weight Mat5 47.89541 55.48469 64.15816 72.64031 83.8648 85.96939 90.3699 100	100 Mat6 20 2 cummulativ % weight Mat6 30.75838 40.84656 52.02822 64.16226 79.68254 83.06878 89.02998 100	100 Mat7 20 3 cummulativ % weight Mat7 25.29349 32.4084 40.59054 49.94664 63.92743 67.76948 75.06226 100

depende

\$11113

10,000

	Sample No	o Mat8	Mat9	Mat10	Mat11	Mat12	Mat13	
	Distance				40	40	40	
phi	Depth	1	2		1	2	3	
scale	Sieve size	weight gm	weight gm	weight gm	weight gm	weight gm	weight gm	
ban	0.71	81.1	65.9	74.3	99.4	156.5	61.7	
0.2	5 0.85	13.7	26.8	23.3	17.6	27.8	19.5	
	0 1	15.7	32.4	29.4	19	23.8	22.6	
-0.2	5 1.18	15.9	34.5	33.5	19.9	. 23	25.3	
-0.	5 1.4	21.5	53.1	50.5	25.6	30.8	43.9	
-0.7	5 1.7	5.6	7.2	. 8.5	6.7	2.8	7.45	
-	1 2	0.01	21	22.4	2.75	4.2	21	
-1.2	5 2.3	25.8	45	47.6	35.9	20	76.1	
	·····	179.31	285.9	289.5	226.85	288.9	277.55	- • • • • • • • •
		•						
	Sample No	Mat8	Mat9	Mat10	Mat11	Mat12	Mat13	
	Distance	30	30	30	40	40	40	
	Depth	1	2	3	1	2	3	
hi scale	Sieve size	% weight	% weight	% weight	% weight	% weight	% weight	
0.	5 0.71	45.22893	23.05002	25.66494	43.8175	54,17099	22.23023	
0.2	5 0.85	7.640399	9.373907	8.048359	7.758431	9.622707	7.025761	
	0 1	8.755786	11.33263	10.15544	8.375579	8.238145	8.142677	
-0.2	5 1.18	8.867325	12.06716	11.57168	8.772317	7.961232	9.115475	
-0,	5 1.4	11.99041	18.57293	17.44387	11.28499	10.66113	15.81697	
-0.7	5 1.7	3.123083	2.518363	2.936097	2.953493	0.969193	2.684201	
-	1 2	0.005577	7.345226	7.737478	1.212255	1.45379	7.566204	
-1.2	5 2.3	14.38849	15.73977	16.44214	15.82544	6.922811	27.41848	
	sum	100	100	100	100	100	100	
	Sample No	Mat8	Mat9	Mat10	Mat11	Mat12	Mat13	
				20	40	4():	40	
	Distance	30	30					
	Distance Depth	30 1	30 2	3.	1	2	3	
	Distance Depth	30 1 cummulativ	30 2 cummulativ	30 3 cummulativ	1 cummulativ	2 cummulativ	3 cummulative	
hi scale	Distance Depth Sieve size	30 1 cummulativ % weight	30 2 cummulativ % weight	3 cummulativ % weight	1 cummulativ % weight	2 cummulativ % weight	3 cummulative % weight	
hi scale	Distance Depth Sieve size	30 1 cummulativ % weight Mat8	30 2 cummulativ % weight Mat9	3 cummulativ % weight Mat10	1 cummulativ % weight Mat11	2 cummulativ % weight Mat12	3 cummulative % weight Mat13	
hi scale	Distance Depth Sieve size	30 1 cummulativ % weight Mat8 45.22893	30 2 cummulativ % weight Mat9 23.05002	3 cummulativ % weight Mat10 25.66494	1 cummulativ % weight Mat11 43.8175	2 cummulativ % weight Mat12 54.17099	3 cummulative % weight Mat13 22.23023	
hi scale 0.9	Distance Depth Sieve size 5 0.71 5 0.85	30 1 cummulativ % weight Mat8 45.22893 52.86933	30 2 cummulativ % weight Mat9 23.05002 32.42392	3 cummulativ % weight Mat10 25.66494 33.7133	1 cummulativ % weight Mat11 43.8175 51.57593	2 cummulativ % weight Mat12 54.17099 63.7937	3 cummulative % weight Mat13 22.23023 29.25599	
hi scale 0.2 0.2	Distance Depth Sieve size 5 0.71 5 0.85 0 1	30 1 cummulativ % weight Mat8 45.22893 52.86933 61.62512	30 2 cummulativ % weight Mat9 23.05002 32.42392 43.75656	3 cummulativ % weight Mat10 25.66494 33.7133 43.86874	1 cummulativ % weight Mat11 43.8175 51.57593 59.95151	2 cummulativ % weight Mat12 54.17099 63.7937 72.03184	3 cummulative % weight Mat13 22.23023 29.25599 37.39867	
hi scale 0.9 0.29 0.29	Distance Depth Sieve size 5 0.71 5 0.85 0 1 5 1.18	30 1 cummulativ % weight Mat8 45.22893 52.86933 61.62512 70.49244	30 2 cummulativ % weight Mat9 23.05002 32.42392 43.75656 55.82371	3 cummulativ % weight Mat10 25.66494 33.7133 43.86874 55.44041	1 cummulativ % weight Mat11 43.8175 51.57593 59.95151 68.72383	2 cummulativ % weight Mat12 54.17099 63.7937 72.03184 79.99308	3 cummulative % weight Mat13 22.23023 29.25599 37.39867 46.51414	
hi scale 0.9 0.29 0.29 0.29 0.29	Distance Distance Depth Sieve size 5 0.71 5 0.85 0 1 5 1.18 5 1.4	30 1 cummulativ % weight Mat8 45.22893 52.86933 61.62512 70.49244 82.48285	30 2 cummulativ % weight Mat9 23.05002 32.42392 43.75656 55.82371 74.39664	3 cummulativ % weight Mat10 25.66494 33.7133 43.86874 55.44041 72.88428	1 cummulativ % weight Mat11 43.8175 51.57593 59.95151 68.72383 80.00882	2 cummulativ % weight Mat12 54.17099 63.7937 72.03184 79.99308 90.65421	3 cummulative % weight Mat13 22.23023 29.25599 37.39867 46.51414 62.33111	
hi scale 0.2 0.25 0.25 0.25 -0.25 -0.5	Distance Depth Sieve size 5 0.71 5 0.85 0 1 5 1.18 5 1.4 5 1.7	30 1 cummulativ % weight Mat8 45.22893 52.86933 61.62512 70.49244 82.48285 85.60593	30 2 cummulativ % weight Mat9 23.05002 32.42392 43.75656 55.82371 74.39664 76.91501	3 cummulativ % weight Mat10 25.66494 33.7133 43.86874 55.44041 72.88428 75.82038	1 cummulativ % weight Mat11 43.8175 51.57593 59.95151 68.72383 80.00882 82.96231	2 cummulativ % weight Mat12 54.17099 63.7937 72.03184 79.99308 90.65421 91.6234	3 cummulative % weight Mat13 22.23023 29.25599 37.39867 46.51414 62.33111 65.01531	
hi scale 0.2 0.2 0.2 0.2 0.2 0.2	Distance Depth Sieve size 5 0.71 5 0.85 0 1 5 1.18 5 1.4 5 1.7 1 2	30 1 cummulativ % weight Mat8 45.22893 52.86933 61.62512 70.49244 82.48285 85.60593 85.61151	30 2 cummulativ % weight Mat9 23.05002 32.42392 43.75656 55.82371 74.39664 76.91501 84.26023	3 cummulativ % weight Mat10 25.66494 33.7133 43.86874 55.44041 72.88428 75.82038 83.55786	1 cummulativ % weight Mat11 43.8175 51.57593 59.95151 68.72383 80.00882 82.96231 84.17456	2 cummulativ % weight Mat12 54.17099 63.7937 72.03184 79.99308 90.65421 91.6234 93.07719	3 cummulative % weight Mat13 22.23023 29.25599 37.39867 46.51414 62.33111 65.01531 72.58152	

100102-

\$205000

salates .

APPENDIX F: SALT DILUTION FLOW TEST RESULTS AND CONDUCTANCE PROFILES

-000000

201000

adition

20000

000000

Street,

strates.

Location	Gulubane Colle	ctor Well	19/07/97			
Trench obs bh						
darcy velocity f	rom point dilutic	n method				x
	F			• •		
enter values in (consistant units b	elow				
Irw	l	ь	tl	log10(c1-c0)	t2	$\log 10(c2-c0)$
0.038	1.83	1.83	0.027777778	3.146	0.034722222	3.0334238
	••••••••			•		
darcy v=			graph slope=	•••••••	•••••••••••••••••••••••••••••••••••••••	· · · · · · · · · · · · · · · · · · ·
1.112782766		•••••••••	16,2109728	·····	• •••• • • • ••• • • • •	
			·····			
			calculating alpl	ia		
			kpack/kaquif		rpack/raquif	
	•		1		2	
		•	alpha=	alpha used	· · · · · · · · · · · · · · · · · · ·	
			2	2		
n.b.DISCHARC	GE DOWN-RIV	ER=V*XSECTI	ON. Also,alpha	coeff used in a8 is	from e14	
X-section area	212	63	m2	stream gradient =	2	0.0075
Discharge =	70.10531428	m3/day	Permeabilty	m	148.3710355	m/day
	0.8114041	l/sec	Transmissivity	<u></u>	271.518995	m2/day
						·
Initial conductiv	vity	•	160	2		
Time	Conductivity	· ·			· ·	·
mins	microS	• ······• ··· · ··· · ··· · · · · · · ·				
0	6000		5840	:		
0.5	6350		6190	:		
1	6250		6090			
1.5	6025		5865			
2	5950		5790			
2.5	5870		5710			
3	5700		5540			·
4	5400		5240			
5	5100		4940			
6	4870		4710			
7	4600	· · · · · · · · · · · · · · · · · · ·	4440			
8	4330	· · · · · · · · · · · · · · · · · · ·	4170			
9	4100		3940	· · ···		
10	3890	·······	3730			
	3670	·······	3510			
12	3490		3330			
	3340		3180	· · · · · · · · · · · · · · · ·		
14	3200					
15	3050	• ···· • ·····• •	2890			
16	2930		2770			
	2800		2640			
[8]	2660		2500	ر • • • • • • • • • • • • • • • • • • •		·····
19	2540		2380			
20	2480	·	2320	·		
21	2430		2270		·····	
	2370			· · · · · · · · · · · · · · · ·		
23	2280		2120			
24	2240		2080			
25	2180		2020		····· ··· ··· ··· ·····	
26	2100		1940]

ARREAD

Aquae 62

20000

10000

AAAAA

\$22.0 million

044400

Service.

WARDAN.

diffusion of

Sherrich

-

27	2080	1920
28	2060	1900
29	2020	1860
30	1990	1830
31	1920	1760
32	1850	1690
33	1810	1650
34	1800	1640
35	1770	1610
36	1710	1550
37	1680	1520
38	1620	1460
39	1580	1420
40	1560	1400
41	1520	1360
42	1470	1310
43	1410	1250
44	1390	1230
45	1390	1230
46	1370	1210
47	1310	1150
48	1280	1120
49	1260	1100
50	1240	1080
51	1230	1070
52	1180	1020
53	910	750
54	750	590
55	682	522
56	658	498
57	620	460
58	605	445
59	592	432
60	585	425

through

00.000

200700

ARAAN I

4000

.

Location	Gulubane Colleg	ctor Well					
Trench obs bh 2)	Date of test	19/07/97			• -	
darcy velocity fi	rom noint dilutio	n method		•		•	
canoy verocity i	form point anatio						
enter values in c	onsistant units h	elow					
rw		h	tl	log10(c1-c0)	t2	log10(c2	-c0)
0.038	2.22	2 2 2 2	0.027777778	3 2227	0.041666667		2.9085
0.038	in . he he	به مرغ و منام	. 0.02111110	، مى <i>د سە</i> يىر ب	0.01.000000		
darau			aroob clone=			•	
arcy V =	• • •		graph slope				
1.552887489			. 22.0224				
				· · · · · · · · · · · · · · · · · · ·		•	а. — А.
			calculating alpha	a		• • • • • •	
			kpack/kaquit		граск/гадин		
			, <u>.</u> .				
			alpha=	alpha used			
			2				
n.b.DISCHARC	GE DOWN-RIVE	ER=V*XSECTI	ON. Also, alpha c	oeff used in a8 is f	rom e14		
X-section area	==	42.25	5 m2	stream gradient =			0.0075
Discharge =	65.60949643	m3/day	Permeabilty		207.0516653	m/day	
	0.759369172	l/sec	Transmissivity		459.6546969	m2/day	
			· · · · · · · · · · ·				
Initial conduction	an a		170	general and a second second Second second second Second second			
Time	Conductivity			····· ··· ··· ··· ··· ··· ··· ··· ···			
mino	mioro			•••••••			
	0000		020				
0	9000		10020	p		k.,	
0.5	10200	• ••• ••••••••••••••••••••••••••••••••	10030	۹۰۰۰۰۰			
1	10900		10730			p	
1.5	11000		10830	{			
2	10900		10730				
2.5	10700		10530	· •			
3	10500		10330	: 			
4	10100		9930			}	
5	9950		9780	·			
6	8650		8480		-		
7	8100	• • • • • • • • • • • • • • • • • • •	7930]
8	7650	······································	7480				
	7220	••••••••••••••••••••••••••••••••••••••	7050	\$	· · · · · · · · · · · · · · · · · · ·	•	
یَہ ۱۵	7000		6830	*		÷	
11	6650		6480	<u></u>		4 .	
11	6350		6180	•	<u></u>	ŧ	
12			5010	••••••			
13	5700		5600	· · · · · · · · · · · · · · · · · · ·		•	
	5790	•••••••••	5020			•	
	5520	•	5350				
16	5010		4840		•• ••• •	••••••••••	
17	, 4700	• • • • • • • • • • • • • • • • • • •	4530	•	•	•• •• ••	
18	. 4450	•	4280	• • • • • • •		• • • • • •	
	4220		4050			(
20	3850	,	3680	2	,	••••	
21	3610	: :	3440	5 4		1	
22	3420		3250			4	
23	3170	,	3000		· 	1	
24	3030	••••	2860			•	
25	2920	••• •• •• • • • • • •	2750				
	2220	• • • • • • • • • • • • • • • • • • • •	2640	and the second		•	
±0			4040				

Strayes.

20140470

0024220

2001006

10.000

 $A_{\rm eff}^{\rm eff} = A_{\rm eff}^{\rm eff} A_{\rm eff}^{\rm eff}$

40.000

WARRAN

0.00000

10000

all and a star

.

		2540	
27	2710	2540	
28	2610	2440	
29	2530	2360	
30	2480	2310	
31	2340	2170	
32	2290	2120	and the second
33	2250	2080	· · · · · · · · · · · · ·
34	2190	2020	and a second
35	2130	1960	en e
36	2080	1910	
37	2000	1830	and a second
38	1920	1750:	·
39	1880	1710	· · · · · · · · · · · · · · · · · · ·
40	1840	1670	en e
41	1790	1620	en e
42	1740	1570	
43	1710	1540	· · · · · · · · · · · · · · · · · · ·
44	1700	1530	
45	1690	1520	
46	1600	1430	
47	1570	1400	
48	1540	1370	3
49	1520	1350	
50	1500	1330	
51	1420	1250	
52	1360	1190	i
53	1290	1120	
54	1250	1080	
55	1210	1040	
56	1160	990	
57	1110	940	
58	1090	920	
59	1030	860	
60	980	810	
61	925	755	
62	902	732	
63	876	706	1
64	790	620	
·····	···· · · · · · · · · · · · · · · · · ·		
······		····· ···· ···························	
· · · · · · ·	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·
·	,	i an	
		· · · · · · · · · · · · · · · · · · ·	and a second product of the second
	алан алан алан алан алан алан алан алан	n e sen e	n na antina anna anna anna anna anna ann
·····	· · · · ·	.	 A second sec second second sec
1			

100000

000000

Weiley?

0000000

anna .

2001000

(100 miles)

Location	Gulubane Coll	ector Well				
Trench obs bh	3	Date of test	19/07/97		·	•
darcy velocity	from point dilut	ion method	•••		•	
	F					- · · ·
enter values in	consistant units	below	•			• • • • •
rw	l	Ь	tl	log10(c1-c0)	t2	log10(c2-c0)
0.038	3 2.2	1 2,21	0.027777778	2.7686	0.041666667	2,544
(• •
darcy v=	•		graph slope=		• ··· · ··· · ··	;
1.11005261	•••••	•••••••	16.1712		•••	
		• • • • •	• ••• • •	• • • • • • • • • • • • • • • • • • • •		
			calculating alpha	a	•••••••••••••••••	
			kpack/kaquif		rpack/raquif	
			ł		2	
		1	alpha=	alpha used		
			2	2		
n.b.DISCHAR	GE DOWN-RI	VER=V*XSECTI	ION. Also,alpha	coeff used in a8 is	from e14	
X-section area	<u></u>	63	m2	stream gradient ==		0.0075
Discharge =	69.93331444	1 m3/day	Permeabilty	=	148.0070147	m/day
	0.809413362	2 l/sec	Transmissivity	=	518.0245514	m2/day
			· · · · · · · · · · · · · · · · · · ·			
Initial conduct	ivity		160			
Time	Conductivity	* 				
mins	microS					
ļ	5300)	5140			
0.5	6400)	6240			
1	7900)	7740			
1.5	8700)	8540			
2	9200)	9040			
2.5	9500)	9340			
3	9050)	8890			
3.5	8250)	8090			
4	7450)	7290			
4.5	6650)	6490			
5	6120)	5960			
6	5180)	5020		:	
7	4500)- -	4340			
8	3920)	3760			
9	3420)	3260			
10	3000	} 	2840			
	2650	· · · · · · · · · · · · · · · · · · ·	2490	· · · · · · · · · · · · · · · · · · ·		
12	2350) 	2190		۰ بر مراجع در ۱۰۰۰۰۰۰	
13	2120	k. 1	1960		: 	
	1950		1790			
15	1780		1620			
16	1660		1500	·		
	1570		1410			
18	1420		1260	·····		
19		• · · · · · · · · · · · ·	1200	·		
20	1280		1120			
21			1070			
22	1200		1040			
23			950			
24	1080		920			}

	25	1010	850	
	26	999	839	· · · · · ·
	27	990	830	·····
-	28	047	787	
	20	018	707	
	29	918	158	··· ······
	30	828	668	
	31	813	653	
	32	808	648	NAMES AND
	33	799	639	1
	34	790	630	
	35	789	629	
	36	769	609	· · · · · · · · · · · · · · · · · · ·
	37:	763	603	<u>.</u>
	38	758	508	
	20	751	501	
	40	7.51	507	
	40	747	587	
	41	/33	573	
	42	724	564	·
	43	720	560	
	44	719	559	
	45	715	555	
	46	708	548	
	47	694	534	
	48	672	512	
	49	655	495	
	501	635	475	······································
	51	618	158	·····
	50	018	400	······································
	32	602	442	
	53	589	429	
·····	54	576	416	· · · · · · · · · · · · · · · · · · ·
	55	562	402	
	56	551	391	
	57	543	383	}
	58	539	379	
	59	517	357	
	60	510	350	
······	61	491	331	
	62	463	303	
	63	425	265	
	64	205	205	
	64 65	220	170:	······································
	00	237	1/2	
	60	310	150	
	67	302	142	
	68	290	130	:
	69	281	121	:
	70	271	111	
	71	268	108	
	72	265	105	

Concentration (microS)

Gulubane Collector Well Salt Dilution Flow Tests at Observation Boreholes 1, 2 and 3.

Time after salt injection (minutes)

Location	Matshelagab	edi Collector V	Vell				
Obs Bh	•	Date of test	30/07/97				
darcy velocity fro	om point dilut	ion method				•	ł
enter values in co	onsistant units	below					}
rw	1	b	tl	log10(c1-c0)	t2	log10(:2-c0)
0.038	1	1	0.034722222	2.692	0.05555556		2.5378
darcy v=			graph slope=			•	
0.508073946			7.4016			1	ļ
						a	
			calculating alp	ha		1 .	{
	:		kpack/kaquif		rpack/raquif		
			. 1		2		.]
			alpha=	alpha used		: 	
	:		2	2.		-	
i.b.DISCHARGI	E DOWN-RI	VER=V*XSEC	TION. Also,alj	pha coeff used in	a8 is from e1	4	
X-section area =		269.5	m2	stream gradient	=		0.0025
Discharge =	136.92593	m3/day	Permeabilty		203.229578	m/day	}
	1.5847908	l/sec	Transmissivity		203.229578	m2/day	[
nitial conductivit	ty	· · ·	110				
líme	Conductivity	/					
nins	microS		<u>.</u>	· · · · · · · · · · · · · · · · · · ·		;	[
0	9500		9390	,			
0.5	9900		9790			į	
	9500		9390				[
1.5	8700		8590			; ;	
2	7850		7740			: :	
2.5	7100		6990	·			
3	6400		6290			: ; ;	
3.5	5750		5640	, , , , , , , , , , , , , , , , , , , ,	· · · · · · · · · · · · · · · · · · ·		
4	5250		5140			: 	
4.5	4650		4540				
5	4200		4090			· • • • • • • • • • • • • • • • • • • •	[
6	3400		3290				
7	2820		2710		· · · · · · · · · · · · · · · · · · ·	:	
8	2420		2310			: ; ;	
	2100		. 1990			·	
10	1850		1740	· · · · · · · · · · · · · · · · · · ·		(
	1650		1540	: • • • • • • • • •		• • • • • • • • • • • • • • • • • • • •	
	1500		1390				
	1400		1290	. .			
14	1290		1180				(
15	1220		1110	• · · · · · · · · · · · ·			
16	1170		1060				[
	. 1140		1030			• • • • • •	
18	1110		1000				
19	1070		960	k		: 	
20	1000		890				
21	975		865				
22	958		848				
23	920		810				
			780				

10000

2010/022

Accession of

0000000

60000

20022014

00000

40.000

10 years of the

2010/07/02

2019/02

25	860	750
26	835	725
27	810	700
28	789	679
29	770	660
30	750	640
31	730	620
32	755	645
33	710	600
34	700	590
35	692	582
36	688	578
37	683	573
38	677	567
39	669	559
40	662	552
41	657	547
42	650	540
43	644	534
44	638	528
45	629	519
46	620	510
47	615	505
48	611	501
49	608	498
50	602	492
51	598	488:
52	592	482
53	587	477
54	583	473
55	579	469
56	573	463
57	568	458
58	562	452
59	558	448
60	553	443
61	549	439
62	543	433
63	538	428
	532	422
65	527	417
65	521	411
67	515	405
68	509	399
60	502	392
70	498	388
71	494	384
77	490	380
72	487	377
7,5 7/1	481	371.
74	476	366
75	473	363
70	470	360
// ?*	770	355
18	400	

(and).

souver

10000

strands.

and a second second

79	460	350	
80	455	345	
81	451	341	
82	448	338	······
83	444	334	
84	441	331	
85	439	329	
86	435	325	·
87	431	321	
88	427	317	
89	423	313	
90	420	310	
91	418	308	· · · · · · · · · · · · · · · · · · ·
92	415	305	
93	411	301	
94	407	297	· · · · · · · · · · · · · · · · · · ·
95	403	293	
96	402	292	•
97	401	291	
98	391	281	· ·
99	386	276	-
100	384	274	

	(7)) () () () () () () () () (L POL DE
Conductivity Pro	otiles - Matshelagi	abedi Obs Bh
Depth	Conductance	Conductance
metres	29/7/97 (11.07)	30/7/97 (8.20)
1.25	1000	300
1.3	1000	450
1.35	1100	400
1.4	1110	395
1.45	1200	395
1.5	1300	395
1.55	1550	390
1.6	1620	390
1.65	2000	390
1.7	3150	390
1.75	3650	600
L.8	4050	650
1.85	4600	1000
1.9	5100	1600
1.95	5600	2900
2	5850	3500
2.05	6200	4200
2.1	6650	4500
2,15	7000	5000
2.2	7400	5250
2.25	7700	5700
2.3	8000	6300
2 35	8300	6600
2.4	8500	6900
2 45	8600	7100
25	8800	7400

Conductance Logs - Obs Bh Matshelagabedi CW

