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SPE Approach for Robust Estimation of SIR Model with Limited and Noisy Data: 

The Case for COVID-19 

 

Abstract 

The SIR model and its variants are widely used to predict the progress of COVID-19 worldwide, despite 

their rather simplistic nature. Nevertheless, robust estimation of the SIR model presents a significant 

challenge, particularly with limited and possibly noisy data in the initial phase of the pandemic. K-means 

algorithm is used to perform a cluster analysis of the top ten countries with the highest number of 

COVID-19 cases, to observe if there are any significant differences among countries in terms of 

robustness. As a result of model variation tests, the robustness of parameter estimates is found to be 

particularly problematic in developing countries. The incompatibility of parameter estimates with the 

observed characteristics of COVID-19 is another potential problem. Hence, a series of research questions 

are visited. We propose a SPE (“Single Parameter Estimation”) approach to circumvent these potential 

problems if the basic SIR is the model of choice, and we check the robustness of this new approach by 

model variation and structured permutation tests. Dissemination of quality predictions is critical for 

policy and decision-makers in shedding light on the next phases of the pandemic. 
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Introduction 

COVID-19 is recognized as the worst pandemic in modern times in terms of both mortality and 

infectiousness since the flu pandemic of the early 20th century, i.e., the so-called Spanish Flu. The first 

case being reported in the Republic of China on December 8, 2019 [1], COVID-19 spread quickly into 

other countries and continents, which led to its classification as “pandemic” by the World Health 

Organization (WHO) on March 11, 2020 [2]. 

The SIR model is widely used to predict the progress of COVID-19 in many countries [3]–[10], despite its 

rather simplistic nature, such as its underlying assumptions regarding the homogeneity of the 

population. It is a basic deterministic compartmental model that simplifies the mathematical modeling 

of infectious diseases. Its origins date to the seminal work by Kermack and McKendrick in the early 20th 

century [11]. The model involves many variants, such as the SIRD model [12], the MSIR model [13], the 

SEIR model [14], the MSEIR model [15], and the SIR-A model [16]. 

Although deterministic models such as the SIR are simpler than stochastic or agent-based simulation 

models, a deterministic model may be preferred in the case of COVID-19. This is especially the case for 

developing and underdeveloped countries where quality and detailed data required by more 

sophisticated models may be hard or even impossible to collect. Stochastic models are better suited for 

smaller populations, whereas agent-based simulation models require numerous parameters to be 

estimated, and they are also more challenging to interpret and perform sensitivity analysis on [17]. 

On the other hand, the robust estimation of even the most basic SIR model parameters is a significant 

challenge, especially with limited and potentially noisy data in the initial phases of the pandemic [18]. 

Another problem with parameter estimation is observed on the discrepancy between parameter 

estimates and actual disease characteristics. These potential problems shadow the reliability of model 

outputs, which are most needed by decision and policymakers in forecasting the progress of the 

pandemic and taking the necessary measures accordingly. 

Our paper addresses four research questions regarding the basic SIR model. 

1. Is it possible to estimate the model parameters simultaneously in a robust fashion? 

2. What is the impact of time on the degree of robustness? 

3. Are there any significant differences between countries in terms of robustness? 

4. Is it possible to obtain model parameters that are compatible with actual disease characteristics 

when model parameters are estimated simultaneously? 

Accordingly, we have four testable hypotheses corresponding to these research questions. 

Hypothesis 1. Robust estimation of model parameters is not possible if the model parameters are 

estimated simultaneously. 

Hypothesis 2. Robustness improves with more data as time progresses. 

Hypothesis 3. Robustness is relatively more problematic for developing countries compared to 

developed countries. 

Hypothesis 4. Simultaneous estimation of model parameters leads to parameter estimates that are not 

compatible with actual disease characteristics. 
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This paper has two primary objectives. We first focus on the problems in the estimation of the basic SIR 

model parameters and their real-life implications observed throughout the development of COVID-19. 

Second, we propose a SPE (“Single Parameter Estimation”) approach that enables us to obtain robust 

parameter estimates. This approach also helps to bridge the gap between parameter estimates and 

actual disease characteristics. 

It is also imperative to point out that it is more appropriate to use more sophisticated models than the 

basic SIR model whenever the available data permits. Our proposed approach is not a panacea or a 

general modeling method for modeling COVID-19 or any other pandemic. It is just a convenient way of 

obtaining robust parameter estimates if the basic SIR is the model of choice. 

The SIR Model 

The SIR model assumes three homogeneous compartments that comprise the population. Hence, it may 

not be appropriate to use this model if the population under consideration is remarkably 

heterogeneous. A prime example of such heterogeneity is in the United States of America. There is a 

stark difference between New York and the rest of the country in terms of the impact of COVID-19. As of 

May 30, 2020, 11.5% of all confirmed cases in the United States are in New York City [19], which 

represents a mere 2.6% of the total population [20].  This difference is mainly due to population density, 

which affects the transmission dynamics of the disease. 

S, I, and R stand for the number of susceptible, infected, and removed individuals, respectively. 

Removed individuals are those who either recovered or lost their lives so that they can no longer spread 

the disease. The SIR model is represented by three differential equations (1, 2, and 3) that define the 

change in these variables with respect to time. 

 
  

  
   

 

 
    (1) 

 
  

  
  

 

 
       (2) 

 
  

  
    (3) 

In equations (1) to (3), N is the population, whereas   and   are the infection and recovery rates, 

respectively. In most studies, N is assumed to be constant, which is also a reasonable assumption for the 

case of COVID-19. Hence,   and   are the parameters to be estimated. 

Robustness of Parameter Estimates 

Problems arise when these parameters are estimated simultaneously, particularly with limited and 

potentially noisy data at the initial phase of the pandemic. We first observed these problems with our 

own code in R when we estimated the model parameters for successive dates [8]. The model parameter 

estimates were not robust from one day to the next, and the estimated parameters were not 

compatible with actual disease dynamics. We observed the same problems in another study that 

reported the SIR model parameter estimates for successive dates [10]. Realizing that these problems 

arise from the lack of sufficient number of data points, we adopted an approach to take   from the 

literature and estimate   only [8]. 
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For this study, we decided to use the code authored by Batista in MATLAB [10] instead of our own code 

in R [8]. The reason behind this choice is two-fold. First, the code written by Batista is open to the public, 

and it has been downloaded 1123 times with an average 5-star rating out of a total of 43 ratings as of 

May 31, 2020 [21]. Therefore, the code is subject to public and expert to scrutiny and more reliable from 

the viewpoint of an outsider compared to our own code in R. Second; the code was used in a very 

popular study by the Singapore University of Technology and Design that tried to estimate the ending 

dates of the COVID-19 for different countries [22]. The predictions of this study proved to be inaccurate, 

and we think that this is closely related to the problems associated with the estimation of SIR model 

parameters. Using the same code by Batista may provide further insight into why these predictions have 

gone awry. Other than these motivations, there is nothing special behind our choice of code. There is 

also nothing faulty about the code authored by Batista apart from the universal problems of estimation, 

which mainly stem from the lack of sufficient and quality data. 

Batista authored a function in MATLAB, “fitVirusCV19”, to implement the SIR model [10], for which we 

selected the top ten countries with the highest number of COVID-19 cases as of May 20, 2020 [23] to 

apply the SIR model via fitVirusCV19. As a model variation test, the estimates of   and   and the 

absolute value of the percent daily changes in parameter estimates are presented in Table 1 for April 21 

and 22, 2020. 

Country 
  

04/21/2020 

  

04/22/2020 
abs(   ) 

  

04/21/2020 

  

04/22/2020 
abs(   ) 

Brazil 0.927 0.797 14.0% 0.793 0.663 16.4% 
France 0.327 0.320 2.1% 0.163 0.157 3.7% 

Germany 0.336 0.330 1.8% 0.160 0.156 2.5% 
Iran 2.036 1.528 25.0% 1.930 1.422 26.3% 
Italy 0.294 0.297 1.0% 0.157 0.163 3.8% 

Russia 0.742 0.433 41.6% 0.579 0.268 53.7% 
Spain 0.339 0.332 2.1% 0.161 0.157 2.5% 

Turkey 0.331 0.907 174.0% 0.180 0.743 312.8% 
United Kingdom 0.349 0.347 0.6% 0.191 0.191 0.0% 

United States 0.360 0.350 2.8% 0.188 0.183 2.7% 
Mean 0.604 0.564 26.5% 0.450 0.410 42.4% 

Median 0.344 0.349 2.5% 0.184 0.187 3.8% 

Table 1.   and   Estimates with % Daily Change between April 21 and 22, 2020 

The results support Hypotheses 1 and 3. Parameter estimates change significantly from one day to the 

next, and the daily changes are particularly pronounced for developing countries. 

The countries can be broadly categorized into three groups in terms of the robustness of parameter 

estimates. For France, Germany, Italy, Spain, the United Kingdom, and the United States, the absolute 

value of the percent daily change in parameter estimates ranges between 0.6% and 2.8% for  and 0.0% 

and 3.8% for . For Brazil, Iran, and Russia, the absolute value of the percent daily change in parameter 

estimates ranges between 14.0% and 41.6% for  and 16.4% and 53.7% for . Turkey stands out as an 

outlier with very high percent daily changes in both parameter estimates. 

Figure 1 shows a graphical representation of the distance matrix of countries calculated from abs(   ) 

and abs(   ) for April 21 and 22, 2020. If the color of a box is green (smaller distance), it means that 
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the corresponding two countries are similar in terms of robustness.  A red box, on the other hand, is an 

indication of greater distance and dissimilarity. 

 

Figure 1. Distance Matrix Calculated From abs(   ) and abs(   ) for April 21 and 22, 2020 

To perform a formal cluster analysis, we used the k-means algorithm. K-means is one of the most 

popular unsupervised machine learning algorithms to group similar data points into clusters and 

discover underlying patterns [24]. The algorithm identifies k number of centroids, i.e., the imaginary or 

real locations representing the centers of the clusters, and then allocates every data point to the nearest 

cluster. The most common distance metric is the usual Euclidean distance, but it is possible to use other 

metrics such as the Manhattan distance,  Chebyshev distance, or the Minkowski distance. 

To determine the optimal number of clusters, there are various methods, such as the elbow method and 

the average silhouette method. We prefer to use the average silhouette method since it provides an 

objective estimate for the optimal number of clusters. Figure 2 shows the results of the average 

silhouette method for k-means clustering of the countries in terms of abs(   ) and abs(   ) for April 

21 and 22, 2020. 
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Figure 2. Average Silhouette Width for April 21 and 22, 2020 

The results show that 2 clusters maximize the average silhouette width, whereas using 3 clusters is the 

second optimal choice. Using 2 clusters seems to be a trivial option considering that Turkey stands out 

as a significant outlier, and the k-means algorithm will be forced to include Turkey in one cluster and all 

the other nine countries in the other cluster. Therefore, we decided to use three clusters, which is also 

in line with our initial rough guess. 

Figure 3 shows the results of our cluster analysis. We used two graphs, one with only country names and 

one with only data points, to provide a better visual representation. 
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Figure 3. K-Means Cluster Analysis for April 21 and 22, 2020 

The only difference between these results and our initial guess concerns Brazil. It turns out that Brazil is 

clustered with six developed countries, i.e., France, Germany, Italy, Spain, the United Kingdom, and the 

United States. Yet, after carefully examining the second graph in Figure 3, it is evident that these 

developed countries stand closely grouped. In contrast, Brazil stands close to the border with the cluster 

of Iran and Russia. 
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These results clearly showed that obtaining robust parameter estimates is a bigger challenge in 

developing countries compared to developed countries. The higher gap between daily forecasts in 

developing countries can be attributed to potentially noisier data. 

To explore the impact of time and more data on robustness, the model variation test is replicated with 

the same countries for May 19 and 20, 2020, and the results are presented in Table 2. 

Country 
  

05/19/2020 

  

05/20/2020 
abs(   ) 

  

05/19/2020 

  

05/20/2020 
abs(   ) 

Brazil 0.499 0.122 75.6% 0.420 0.054 87.1% 
France 0.237 0.235 0.8% 0.097 0.096 1.0% 

Germany 0.244 0.242 0.8% 0.099 0.098 1.0% 
Iran 0.181 0.176 2.8% 0.094 0.092 2.1% 
Italy 0.181 0.180 0.6% 0.081 0.081 0.0% 

Russia 0.438 0.419 4.3% 0.325 0.307 5.5% 
Spain 0.255 0.251 1.6% 0.105 0.099 5.7% 

Turkey 0.217 0.215 0.9% 0.092 0.092 0.0% 
United Kingdom 0.210 0.208 1.0% 0.108 0.108 0.0% 

United States 0.203 0.200 1.5% 0.102 0.101 1.0% 
Mean 0.267 0.225 9.0% 0.152 0.113 10.4% 

Median 0.227 0.212 1.2% 0.101 0.097 1.0% 

Table 2.   and   Estimates with % Daily Change between May 19 and 20, 2020 

The results support Hypothesis 2. The parameter estimates become more robust as time progresses, 

particularly for developing countries. The apparent divergence between developing and developed 

countries in terms of robustness seems to have vanished with more data, except for Brazil. For countries 

other than Brazil, the absolute value of the percent daily change in parameter estimates ranges between 

0.6% and 4.3% for  and 0.0% and 5.7% for  . This time, Brazil stands out as an outlier with very high 

percent daily changes in both parameter estimates. 

Figure 4 shows a graphical representation of the distance matrix of countries calculated from abs(   ) 

and abs(   ) for May 19 and 20, 2020. 
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Figure 4. Distance Matrix Calculated From abs(   ) and abs(   ) for May 19 and 20, 2020 

Again, we used the k-means algorithm to perform a formal cluster analysis. Figure 5 shows the results of 

the average silhouette method for determining the optimal number of clusters. 

 

Figure 5. Average Silhouette Width for May 19 and 20, 2020 

Similar to our previous analysis for April 21 and 22, 2020, using 2 clusters seems to be the optimal 

choice, whereas the use of 3 clusters was the second-best option. However, this time, using 2 clusters 
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can indeed be reasonable considering our observation that the results for all countries other than Brazil 

converge. 

Figure 6 shows the results of our cluster analysis. As before, we used two graphs, one with only country 

names and one with only data points, to provide a better visual representation. 

 

 

Figure 6. K-Means Cluster Analysis for May 19 and 20, 2020 
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An examination of the second graph provides a visual proof that using two clusters was indeed the 
optimal choice. Since the marginal impact of each new data point on parameter estimates becomes 
smaller as time passes, the results were in line with our expectations. It is essential to point out that the 
impact of time on robustness was more significant for developing countries. 

Incompatibility of Parameter Estimates with Observed Characteristics of COVID-19 

The recovery rate,  , can be estimated as the reciprocal of the average number of days for the transition 
from I to R. For instance, a   of 0.2 corresponds to 5 days for the infectious period. To this date, there is 
still no consensus in the medical community on the length of the contagious period for COVID-19 [25], 
[26]. 

In this study, the median gamma estimate for COVID-19 was 0.187 on April 22, 2020, and 0.097 on May 
20, 2020. These figures correspond to 5.3 days and 10.3 days for the infectious period, respectively. A 
recent study used five days for the infectious period of COVID-19 [27]. Another study argued that the 
infectious period seems longer for COVID-19 based on the few available clinical virological studies, 
perhaps lasting for ten days or more after the incubation period [25]. Hence, the median   estimates 
can be deemed to be plausible. 

On the other hand,   estimates for Brazil, Turkey, and Iran on April 22, 2020, were 0.663, 0.743, and 

1.422, respectively. These estimates correspond to a range of 0.7 to 1.5 days for the infectious period. 

Although the contagious period for COVID-19 is still deemed uncertain, this parameter range was 

unrealistic. These findings support Hypothesis 4. The model parameter estimates for some countries 

were not compatible with the actual disease dynamics. Hence, the models obtained at the end of this 

estimation procedure were unreliable. 

Even with more data on May 20, 2020, the   estimates for Brazil and Russia significantly diverged from 

the   projections for other countries, which converge to a range of 0.08 to 0.11. 

As a salient example, the Singapore University of Technology and Design (SUTD) did some research for 
the timing of the end of COVID-19 in different countries [22], using the same code from Batista [10], i.e., 
“fitVirusCV19” function in MATLAB. The study achieved wide-spread instant popularity through news 
outlets all around the world, probably due to its optimistic predictions regarding the timing of the end of 
COVID-19. 

For instance, for Turkey, the study predicted the date to reach 97% of the total expected cases as of May 
16, 2020 [28]. Despite the favorable impact of preventive measures, the daily number of new cases in 
Turkey was still around 1,000 (972 on May 20, 2020), while the pandemic was far from over. Considering 
the problems in parameter estimation, as mentioned earlier, particularly for developing countries such 
as Turkey, it was not surprising that the predictions turned out to be inaccurate and potentially 
misleading, both for the public and, more importantly, for policy and decision-makers. 

Furthermore, as Faranda et al. indicated, early estimates of COVID-19 show enormous fluctuations 
despite the importance of having robust estimates of the time-asymptotic total number of infections 
[18]. They showed that predictions are extremely sensitive to the reporting protocol and crucially 
depend on the last available data point before the maximum number of daily infections is reached. 

SUTD, now, acknowledged that “model and data are inaccurate to the complex, evolving, and 
heterogeneous realities of different countries over time, and earlier predictions are no longer valid 
because the real-world scenarios have changed rapidly.” Thus, they removed the predictions from their 
website. They indicated that “the project is internalized,” and they referred visitors to other live public 
COVID-19 forecasting efforts around the world [29].  

https://doi.org/10.1017/dmp.2020.220
Downloaded from https://www.cambridge.org/core. IP address: 194.237.167.44, on 30 Jul 2020 at 12:37:06, subject to the Cambridge Core terms of use, available at https://www.cambridge.org/core/terms.

https://doi.org/10.1017/dmp.2020.220
https://www.cambridge.org/core
https://www.cambridge.org/core/terms


Robust Estimation of SIR Model 

The curse of dimensionality states that the number of data points needed to estimate an arbitrary 

function with a given level of accuracy grows exponentially with the number of input variables (i.e., 

dimensionality) of the function [30]. 

For instance, an n-th order polynomial will achieve a perfect fit for n+1 data points. However, such a 

model will seriously lack the ability to generalize, and it will not be able to generate accurate 

predictions. Instead, a simple linear regression will be much superior in terms of predictive performance 

and the ability to generalize over unseen data. 

The presence of noise exacerbates the problem, and the real-world data is inherently noisy. The data for 

COVID-19 is imperfect and incomplete. This is even more so for developing and underdeveloped 

countries. Most developing countries suffer from an acute lack of COVID-19 testing capacity, and they 

either collect low-quality data or do not record deaths at all [31]. 

Figure 7 depicts the number of tests per 100,000 for the top 25 most populous countries as of May 30, 

2020 [23]. 

 

Figure 7. Tests per 100,000 for the Top 25 Most Populous Countries as of May 30, 2020 

As can be seen from the figure, the number of tests per 100,000 for Ethiopia, Egypt, Indonesia, Nigeria, 

Mainland China, Democratic Republic of Congo, and United Republic of Tanzania is below 100, which 

suggests a serious lack of COVID-19 testing capacity for some of the most populous countries in the 

world. 
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Besides, death tolls are sporadically revised in many countries, which cast further doubt on the reported 

figures [32]–[34]. This inevitably makes the COVID-19 data highly noisy, especially for developing 

countries. Even for developed countries such as the United States and Italy, there is new research that 

shows that coronavirus deaths could be up to double the official counts [35]. More complex models 

tend to learn the noise as well as signal, which is not intended. 

This phenomenon is closely related to the principle of “Occam’s razor” [36], i.e., “pluralitas non est 

ponenda sine necessitate” or “plurality should not be posited without necessity.” In other words, “of 

two competing theories, the simpler explanation of an entity is to be preferred.” 

Therefore, especially in the initial phase of the pandemic with insufficient data, we propose to estimate 

only   instead of trying to estimate   and  , simultaneously. The infection rate,  , is dependent on 

many factors, such as population density [37], demographics [38], and social distancing measures [39]. 

On the other hand, the removal rate,  , is the reciprocal of the infectious period, which is expected to be 

more stable compared to  . Hence, we prefer to take   from the literature and estimate   only. As 

demonstrated below, this effectively overcomes the problem of estimating robust parameters for the 

basic SIR model, particularly for noisier data from developing countries. It also eliminates the problem of 

incompatibility between parameter estimates and actual disease characteristics. 

Since the code provided by Batista [10] estimates   and  , simultaneously, we modified the code to 

allow for single parameter estimation. 

First, we repeat the model variation test for April 21 and 22, 2020, with   set equal to 0.2 by using the 

modified code to estimate the remaining parameter,  . A   of 0.2 corresponds to 5 days for the 

infectious period of COVID-19 [27]. The estimate of   and the absolute value of the percent daily 

changes in parameter estimates are presented in Table 3 for April 21 and 22, 2020. 

Country 
  

04/21/2020 

  

04/22/2020 
abs(   ) 

  

04/21/2020 

  

04/22/2020 
abs(   ) 

Brazil 0.337 0.336 0.3% 0.200 0.200 0.0% 
France 0.364 0.350 3.9% 0.200 0.200 0.0% 

Germany 0.357 0.355 0.4% 0.200 0.200 0.0% 
Iran 0.313 0.319 1.8% 0.200 0.200 0.0% 
Italy 0.316 0.314 0.5% 0.200 0.200 0.0% 

Russia 0.382 0.378 0.9% 0.200 0.200 0.0% 
Spain 0.366 0.379 3.4% 0.200 0.200 0.0% 

Turkey 0.374 0.370 1.1% 0.200 0.200 0.0% 
United Kingdom 0.359 0.357 0.6% 0.200 0.200 0.0% 

United States 0.370 0.368 0.6% 0.200 0.200 0.0% 
Mean 0.354 0.353 1.4% 0.200 0.200 0.0% 

Median 0.362 0.356 0.7% 0.200 0.200 0.0% 

Table 3.   Estimates with % Daily Change for fixed   between April 21 and 22, 2020 

Compared to the results in Table 1, the new results obtained by estimating   only were evidently more 

robust. The absolute value of the percent daily change in   estimate ranges between 0.3% and 3.9% 

with a mean of 1.4%. On the other hand, the same measure in the previous version, where both 

parameters were estimated simultaneously, ranged between 0.6% and 174.0% with a mean of 26.5%. 
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Next, we perform a structured permutation test via perturbing   by ±10% for April 21, 2020. The results 

are presented in Tables 4 & 5. 

Country 
  

04/21/2020 

  

04/21/2020 
abs(   ) 

  

04/21/2020 

  

04/21/2020 
abs(   ) 

Brazil 0.337 0.357 5.7% 0.200 0.220 10.0% 
France 0.364 0.384 5.5% 0.200 0.220 10.0% 

Germany 0.357 0.397 11.3% 0.200 0.220 10.0% 
Iran 0.313 0.333 6.3% 0.200 0.220 10.0% 
Italy 0.316 0.335 6.2% 0.200 0.220 10.0% 

Russia 0.382 0.402 5.2% 0.200 0.220 10.0% 
Spain 0.366 0.402 9.8% 0.200 0.220 10.0% 

Turkey 0.374 0.394 5.3% 0.200 0.220 10.0% 
United Kingdom 0.359 0.379 5.6% 0.200 0.220 10.0% 

United States 0.370 0.392 6.2% 0.200 0.220 10.0% 
Mean 0.354 0.377 6.7% 0.200 0.220 10.0% 

Median 0.362 0.388 5.9% 0.200 0.220 10.0% 

Table 4.   Estimates for   = 0.20 and   = 0.22 on April 21, 2020 

 

Country 
  

04/21/2020 

  

04/21/2020 
abs(   ) 

  

04/21/2020 

  

04/21/2020 
abs(   ) 

Brazil 0.337 0.318 5.9% 0.200 0.180 10.0% 
France 0.364 0.344 5.5% 0.200 0.180 10.0% 

Germany 0.357 0.357 0.1% 0.200 0.180 10.0% 
Iran 0.313 0.293 6.3% 0.200 0.180 10.0% 
Italy 0.316 0.316 0.0% 0.200 0.180 10.0% 

Russia 0.382 0.344 10.0% 0.200 0.180 10.0% 
Spain 0.366 0.362 1.2% 0.200 0.180 10.0% 

Turkey 0.374 0.355 5.3% 0.200 0.180 10.0% 
United Kingdom 0.359 0.339 5.6% 0.200 0.180 10.0% 

United States 0.370 0.352 4.7% 0.200 0.180 10.0% 
Mean 0.354 0.338 4.5% 0.200 0.180 10.0% 

Median 0.362 0.344 5.4% 0.200 0.180 10.0% 

Table 5.   Estimates for   = 0.20 and   = 0.18 on April 21, 2020 

When   increases by 10%, the absolute value of the percent change in   estimate ranges between 5.2% 

and 11.3%, with a mean of 6.7%. On the other hand, when   decreases by 10%, the absolute value of 

the percent change in   estimate ranges between 0.0% and 10.0%, with a mean of 4.5%. Hence, the 

results of the structured permutation test also validate the robustness of the SPE approach. 

In addition, the incompatibility of parameter estimates with actual disease characteristics is also 

resolved by this new approach. As   is set equal to a figure taken from the literature,   remains as the 

only potential source of incompatibility. Yet, the resulting   estimates range in a relatively tight and 

plausible interval of 0.313 and 0.382 with a mean of 0.354 for   = 0.2. 
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An Illustrative Example from Norway and Norwegian Counties 

Norway was one of the countries that implemented tough restrictions to follow the containment 

strategy towards the COVID-19 pandemic. Following WHO’s declaration of the pandemic, the 

announced measures involved emergency shutdowns of many public and private institutions including 

schools and kindergartens. The country managed to bring down the effective reproduction number,   , 

to 0.7 by early April [40]. It was also amongst the countries that provided open access data at the 

county-level. 

We used Norwegian data to test our proposed “SPE” approach both at the country and county levels.   

is set equal to 0.2, corresponding to 5 days for the infectious period, which is taken from a report 

published by the Norwegian Institute of Public Health [27]. We obtained a time-series of the infection 

rate,  , the basic reproduction number,   , and the effective reproduction number,   , for the 11 

counties and the whole country. The time series covered a one-month period, which was between the 

35th and 64th days of the pandemic. Figures 8, 9, and 10 depict these time series whereas the time series 

for    is also tabulated in Table 6. 

Figure 8.   (Infection Rate) for Norway and Counties in Norway 
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Figure 9.    (Basic Reproduction Number) for Norway and Counties in Norway 

 

Figure 10.    (Effective Reproduction Number) for Norway and Counties in Norway
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Table 6.    (Effective Reproduction Number) for Norway and Counties in Norway 
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An examination of Figures 8 and 9 provides a visual proof that robust estimates of   and    are 

obtained for all the counties in Norway, with the possible exception of Troms og Finnmark. This is 

probably due to data collection problems in that particular county since the data for all the other 

counties and the whole country generated robust parameter estimates. 

If    is above 1.0, then the number of infected people grows exponentially. Hence, the threshold level 

for    that can be deemed safe should be less than or equal to 1.0. Countries such as Germany and 

Czechia have declared this threshold level to be 1.0 to start easing restrictions and preventive measures 

[41], [42].  

Norway, on the other hand, waited until    came down to 0.7, to even consider easing. Bent Hoeie, the 

Norwegian Minister of Health and Care Services, announced that    was equal to 0.7 as of April 6, 2020 

[40]. This date corresponded to the 46th day of the pandemic. An examination of Table 6 shows that our 

   estimate for the 46th day is indeed 0.70, which is congruent with the estimate made by the 

Norwegian health authorities. 

Figure 10 and Table 6 show that almost half of the counties in Norway were already in the safe zone in 

terms of    at the beginning of the one-month period, i.e. the 35th day of the pandemic. Agder, 

Nordland, Oslo, Troms og Finnmark, Vestfold og Telemark, and Viken had    values higher than 0.7.    

values for all these counties quickly came down to 0.7 in a few days with the exception of Agder, which 

reached the threshold level on the 61st day of the pandemic. 

Norway did not start easing the restrictions until April 13, 2020, i.e. the 53rd day of the pandemic [43]. 

The easing has been slow and gradual. 

Concluding Remarks 

Predicting the progress of COVID-19 is a crucial problem for policy and decision-makers. However, the 

models used for this purpose are prone to significant estimation errors. Therefore, the results obtained 

from these models should be viewed with extreme caution. 

We do not claim that our proposed “SPE” approach makes the basic SIR model an optimal tool for 

predicting the progress of COVID-19 or any other pandemic. If data permits, more sophisticated models 

should be preferred. The “SPE” can be a useful approach to obtain robust parameter estimates if the 

basic SIR is the model of choice. In fact, the “SPE” approach is nothing more than an application of one 

of the most critical tenets of data science, i.e., the predilection for simpler models if data is limited and 

noisy. Hence, the same principle can be applied to any model with any number of parameters. For 

instance, if a model requires the estimation of three parameters, fixing one parameter and estimating 

the other two is going to be more robust than the simultaneous estimation of all three parameters. 

From a policy perspective, monitoring the current state of the pandemic is at least as important as 

predicting its progress. A fundamental policy question persists regarding the timing for easing and 

eventually lifting limitations such as lockdowns. Estimating the instantaneous reproduction number by 

using a rather robust method such as Bayesian statistical inference can shed light on the optimal timing 

for easing limitations [44], [45].  
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