
Optimization Foundations of Reinforcement Learning

Jalaj Bhandari

Submitted in partial fulfillment of the
requirements for the degree of

Doctor of Philosophy
under the Executive Committee

of the Graduate School of Arts and Sciences

COLUMBIA UNIVERSITY

2020

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Columbia University Academic Commons

https://core.ac.uk/display/334420017?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

© 2020

Jalaj Bhandari

All Rights Reserved

Abstract

Optimization Foundations of Reinforcement Learning

Jalaj Bhandari

Reinforcement learning (RL) has attracted rapidly increasing interest in the machine learn-

ing and artificial intelligence communities in the past decade. With tremendous success already

demonstrated for Game AI, RL offers great potential for applications in more complex, real world

domains, for example in robotics, autonomous driving and even drug discovery. Although re-

searchers have devoted a lot of engineering effort to deploy RL methods at scale, many state-of-the

art RL techniques still seem mysterious - with limited theoretical guarantees on their behaviour in

practice.

In this thesis, we focus on understanding convergence guarantees for two key ideas in re-

inforcement learning, namely Temporal difference learning and policy gradient methods, from

an optimization perspective. In Chapter 2, we provide a simple and explicit finite time analy-

sis of Temporal difference (TD) learning with linear function approximation. Except for a few

key insights, our analysis mirrors standard techniques for analyzing stochastic gradient descent

algorithms, and therefore inherits the simplicity and elegance of that literature. Our convergence

results extend seamlessly to the study of TD learning with eligibility traces, known as TD(_), and

to Q-learning for a class of high-dimensional optimal stopping problems.

In Chapter 3, we turn our attention to policy gradient methods and present a simple and general

understanding of their global convergence properties. The main challenge here is that even for

simple control problems, policy gradient algorithms face non-convex optimization problems and

are widely understood to converge only to a stationary point of the objective. We identify structural

properties – shared by finite MDPs and several classic control problems – which guarantee that

despite non-convexity, any stationary point of the policy gradient objective is globally optimal. In

the final chapter, we extend our analysis for finite MDPs to show linear convergence guarantees

for many popular variants of policy gradient methods like projected policy gradient, Frank-Wolfe,

mirror descent and natural policy gradients.

Table of Contents

List of Tables . v

List of Figures . vi

Acknowledgments . vii

Dedication . ix

Chapter 1: Introduction . 1

Chapter 2: A Finite Time Analysis of Temporal Difference Learning With Linear Function
Approximation . 4

2.1 Contributions . 4

2.2 Related Literature . 6

2.3 Problem formulation . 10

2.4 Temporal difference learning . 13

2.5 Asymptotic convergence of temporal difference learning 15

2.6 Outline of analysis . 17

2.7 Analysis of mean-path TD . 19

2.7.1 Gradient descent on a value function loss 20

2.7.2 Key properties of mean-path TD . 21

i

2.7.3 Finite time analysis of mean-path TD . 24

2.8 Analysis for the i.i.d. observation model . 25

2.9 Analysis for the Markov chain observation model: Projected TD algorithm 31

2.9.1 Finite time bounds . 34

2.9.2 Choice of the projection radius . 36

2.9.3 Analysis . 36

2.10 Extension to TD with eligibility traces . 44

2.10.1 Projected TD(_) algorithm . 45

2.10.2 Limiting behavior of TD(_) . 46

2.10.3 Finite time bounds for Projected TD(_) 47

2.11 Extension: Q-learning for high dimensional Optimal Stopping 50

2.11.1 Problem formulation . 50

2.11.2 Q-Learning for high dimensional Optimal Stopping 51

2.11.3 Asymptotic guarantees . 52

2.11.4 Finite time analysis . 54

2.12 Conclusions . 56

Chapter 3: Global Optimality Guarantees For Policy Gradient Methods 58

3.1 Introduction . 58

3.1.1 Our Contribution . 60

3.2 Further Related Literature . 63

3.3 Problem formulation . 65

3.4 Convergence to stationary points in smooth optimization 69

ii

3.5 Closed policy classes and the optimality of stationary points 71

3.5.1 Motivation from linear quadratic control 71

3.5.2 General results . 78

3.5.3 A sharp connection between policy gradient and weighted policy iteration . 80

3.5.4 Proof of Theorem 5 . 82

3.5.5 Examples beyond LQ control . 84

3.6 Beyond closed policy classes: the case of non-stationary policy classes 88

3.7 The exploratory initial distribution and concentrability coefficients 91

3.8 Convergence rates for policy gradient methods . 94

3.8.1 Background on Gradient Dominance . 95

3.8.2 Gradient dominance of the policy gradient objective 98

3.8.3 Gradient dominance and smoothness for examples 2-4 100

3.9 Policy classes closed under approximate policy improvement 101

3.10 Notation . 102

Chapter 4: On the Linear Convergence of Policy Gradient Methods 104

4.1 Problem Formulation . 105

4.2 Linear convergence of policy iteration . 107

4.3 A sharp connection between policy gradient and policy iteration 108

4.4 Policy gradient methods for finite MDPs . 109

4.5 Main result: geometric convergence . 113

References . 136

iii

Appendix A: Proofs for Chapter 2 . 137

A.1 Analysis of Projected TD(0) under Markov chain sampling model 137

A.1.1 Restatement of the theorem and key lemmas from the main text 137

A.1.2 Proof of Theorem 3. 138

A.1.3 Proof of Lemma 10 . 141

A.2 Analysis of Projected TD(_) under Markov chain sampling model 144

A.2.1 Proof strategy and key lemmas . 146

A.2.2 Proof of Theorem 4 . 154

A.2.3 Proof of supporting lemmas. 158

A.3 Proofs of Additional Lemmas . 162

Appendix B: Additional details for Chapter 3 . 165

B.1 Background on Bellman operators and policy iteration 165

B.2 Background: First order methods . 167

B.2.1 Asymptotic convergence to stationary points: proof of Lemma 16 168

B.2.2 Convergence rates under gradient dominance: Proof of Lemma 27. 170

B.3 On the necessity of an exploratory initial distribution 172

B.4 Details for LQ control . 173

B.5 Details for Optimal Stopping . 177

B.6 Details for finite horizon inventory control . 184

B.7 Miscellaneous Proofs . 188

B.8 An example of state aggregation . 190

iv

List of Tables

3.1 Table of Notation for our general problem formulation 103

v

List of Figures

3.1 Policy gradient fails with the constrained policy class for a simple deterministic
MDP. (a) Two state, two action MDP where the optimal policy, c∗ plays right in
both states. (b) For the constrained policy class, c\ (' |(!) = c\ (' |(') = \ ∈
[0, 1], policy gradient objective is non-convex with two local minima. For (b), we
took W = 0.8 and d = [0.6, 0.4]. We remark that this example is not cherry picked.
For any W > 1/2 and different initial distributions d which put non-zero weight on
both states, ℓ(\) has two local minima at \ = 0 and \ = 1. 60

vi

Acknowledgements

I would like to extend my heartfelt gratitude to my advisor, Daniel Russo for sharing his excit-

ing research ideas, constant encouragement and his willingness to help at any time. He has taught

me to identify and work on the most impactful ideas, unblocked me when I was stuck, been kind

when I made errors and has always insisted on simple but clear writing which has often helped me

clarify my own thinking. I am incredibly lucky to have had the opportunity to work closely with

him. I would also like to thank Garud Iyengar for his mentorship throughout my time at Columbia.

He has always supported and guided me on acedemic and non-academic issues, recommended me

for internships as well as pointed me toward exciting courses and research projects. While we have

never published a paper together, I have truly enjoyed all of our research discussions on a couple

of projects and one day we will definitely publish a paper together.

I would also like to thank Shipra Agrawal, Christian Kroer and Krzysztof Choromanski for

serving on my thesis committee. I really enjoyed working closely with Shipra on a joint project

with Amazon and taking her graduate class on Reinforcement learning. I interacted with Krzysztof

for the first time at AISTATS, 2017. I thank him for fruitful discussions on reseach ideas and

hope to pursue research together in the future sometime. I also owe a great deal to Profs. John

Cunningham and David Blei for teaching excellent graduate level courses on machine learning and

including me in their weekely group meethings which got me excited about research in statstical

machine learning. John and I have also co-authored two papers which were led by Francois Fagan,

and are not a part of this thesis. I learnt a lot from this colloboration and research experience.

I also wish to acknowledge constant support from the IEOR department which has been par-

vii

ticuarly patient with me, specially during my on-going health issues (thanks to Garud, Vineet and

Jay). Along with that, I want to thank my physios, Dr. Courtney Burdowski and Dr. Lea Noonan

for helping me recover which allowed me to complete this work. My fellow students in IEOR have

all been very helpful and supportive. A special thanks to Itai Feigenbaum and Praveen for their

words of encouragement during initial years of my PhD. I would also like to thank my undergrad-

uate professors, Nomesh Bolia and Kiran Seth at IIT Delhi as well as Sandeep Juneja at TIFR, for

sparking my interest in scientific research. I stayed at International House, NYC from 2014-17 and

met some of the most fun people who showered me with kindness and affection. Without naming

everyone, I wish to thank them all, Emad Khan and Ms Lorraine Pirro in particular.

I credit this thesis, and whatever little I have accomplished in life to my parents, people name

above and everyone else who helped me so far. The numerous errors, mistakes, and failures are all

attributable to me and I’ll hold onto them.

viii

To my parents, Naresh and Anita, for their unconditional love and numerous sacrifices.

ix

Chapter 1: Introduction

Reinforcement learning (RL) is a computational approach to automating sequential decision

making where an agent learns by trial-and-error interactions with a complex, uncertain environ-

ment [1]. It uses the framework of Markov decision processes to define this interaction in terms

of states of the environment, actions and reward signals. The agent’s goal is to learn a decision

rule (actions to take in a particular state) to maximize long run sum of the reward signal; as the

action taken in the present state may not only affect the immediate reward but also change the

next state. In the past decade, RL has attracted rapidly increasing interest in the machine learning

and artificial intelligence communities where a primary goal is to come up with fully autonomous

agents that are interactive and can continuously learn from past experiences.

With tremendous success already demonstrated on game environments like Alpha Go [2], RL

algorithms offer great promise for applications to even more complex domains, for example in

autonomous driving [3], robotics [4] and even drug discovery [5]. There is tremendous potential,

as modeling the environments (to even reasonable approximations) in many modern applications

is extremely challenging. Although researchers have devoted a lot of engineering effort to deploy

RL methods at scale, many state-of-the-art RL techniques still seem mysterious – with limited the-

oretical guarantees on their behavior in practice. This poses a significant challenge in convincing

practitioners to use these for real world tasks. The motivation of this thesis is to understand theo-

retical underpinnings of some of the key ideas in RL using tools from optimization theory. Doing

this can help spur progress in principled approaches to algorithm design to tackle some key chal-

lenges, for example in statistical efficiency and robustness, in applications where collecting data is

difficult and expensive.

We broadly focus on two different classes of RL techniques, namely, Temporal difference learn-

ing and policy gradient methods, both of which are widely adopted by practitioners and popular

1

among RL researchers. I considered a larger introductory chapter, but felt that it would be too

repetitive in terms of context to be useful. Each chapter in this thesis is self-contained with an

introduction to the problem, its motivation in context of the literature and our contribution. There-

fore, we just give a brief summary of the main results below. The rest of this thesis is organized as

follows.

• In Chapter 2, we consider the Temporal difference learning (TD) algorithm, which is a sim-

ple iterative method used to estimate the value function corresponding to a given policy in

a Markov decision process. Although widely used in reinforcement learning, theoretical

analysis of TD has proved challenging and few guarantees on its statistical efficiency are

available. We provide a simple and explicit finite time analysis of temporal difference learn-

ing with linear function approximation. Even though TD updates are not stochastic gradient

updates with respect to any fixed loss function, our analysis uncovers key insights which en-

able us to analyze TD mirroring standard techniques used for analyzing stochastic gradient

descent algorithms. We also show how all of our convergence results extend seamlessly to

the study of TD learning with eligibility traces, known as TD(_), and to Q-learning for a

class of high-dimensional optimal stopping problems.

• In Chapter 3, we consider policy gradients methods, which directly search for an optimal

policy by performing stochastic gradient descent over a parameterized class of polices. Re-

cently, these approaches have shown tremendous success with deep neural networks and

Monte Carlo approximations to the true gradient. Unfortunately, even for simple control

problems solvable by classical techniques, policy gradient algorithms face non-convex opti-

mization problems and are widely understood to converge only to a local minima, assuming

adequate smoothness properties. We present a simple and general understanding of global

convergence properties of policy gradient methods. We focus on studying the optimization

landscape and identify structural properties which guarantee despite non-convexity, any sta-

tionary point of the policy gradient objective is globally optimal. We then identify conditions

under which the policy gradient objective is gradient dominated. For many first-order opti-

2

mization methods, this gradient dominance conditions guarantees fast convergence rates to

globally optimal solutions for non-convex objectives. Our results apply to several classic

dynamic programming problems including finite MDPs, linear quadratic control, optimal

stopping and finite horizon inventory control, which provide an important benchmark for

studying theoretical properties of model free reinforcement learning algorithms.

• In Chapter 4, we extend our analysis of policy gradient methods for finite MDPs. We take a

different perspective than that of Chapter 3, where we view this (and other problems) as an

instance of smooth non-linear optimization and using gradient dominance, show sub-linear

convergence with small stepsizes. Our insights in this chapter show how for tabular MDPs,

different policy gradient algorithms with appropriately large step-sizes are in fact equivalent

to a soft-policy iteration update and therefore enjoy linear convergence guarantees. Our

analysis covers popular methods like projected policy gradient, Frank-Wolfe, mirror descent

and natural policy gradient methods which are widely used in practice.

3

Chapter 2: A Finite Time Analysis of Temporal Difference Learning With

Linear Function Approximation

Originally proposed by [6], temporal difference learning (TD) is one of the most widely used

reinforcement learning algorithms and a foundational idea on which more complex methods are

built. The algorithm operates on a stream of data generated by applying some policy to a poorly

understood Markov decision process. The goal is to learn an approximate value function, which

can then be used to track the net present value of future rewards as a function of the system’s

evolving state. TD maintains a parametric approximation to the value function, making a simple

incremental update to the estimated parameter vector each time a state transition occurs.

While easy to implement, theoretical analysis of TD is subtle. Reinforcement learning re-

searchers in the 1990s gathered both limited convergence guarantees [7] and examples of diver-

gence [8]. Many issues were then clarified in the work of [9], which establishes precise conditions

for the asymptotic convergence of TD with linear function approximation and gives examples of

divergent behavior when key conditions are violated. With guarantees of asymptotic convergence

in place, a natural next step is to understand the algorithm’s statistical efficiency. How much data

is required to guarantee a given level of accuracy? Can one give uniform bounds on this, or could

data requirements explode depending on the problem instance? Twenty years after the work of [9],

such questions remain largely unsettled.

2.1 Contributions

This chapter develops a simple and explicit non-asymptotic analysis of TD with linear function

approximation. The resulting guarantees provide assurances of robustness. They explicitly bound

the worst-case dependence on problem features like the discount factor, the conditioning of the

4

feature covariance matrix, and the mixing time of the underlying Markov chain. Our analysis

reveals rigorous connections between TD and stochastic gradient descent algorithms, provides

a template for finite time analysis of incremental algorithms with Markovian noise, and applies

without modification to analyzing a class of high-dimensional optimal stopping problems. We

elaborate on these contributions below.

• Links with gradient descent: Despite a cosmetic connection to stochastic gradient descent

(SGD), incremental updates of TD are not (stochastic) gradient steps with respect to any

fixed loss function. It is therefore difficult to show that it makes consistent, quantifiable,

progress toward its asymptotic limit point. Nevertheless, Section 2.7 shows that expected TD

updates obey crucial properties mirroring those of gradient descent on a particular quadratic

loss function. In a model where the observations are corrupted by i.i.d. noise, these gradient-

like properties of TD allow us to give state-of-the-art convergence bounds by essentially mir-

roring standard analyses of SGD. This approach may be of broader interest as SGD analyses

are commonly taught in machine learning courses and serve as a launching point for a much

broader literature on first-order optimization. Rigorous connections with the optimization

literature can facilitate research on principled improvements to TD.

• Non-asymptotic treatment with Markovian noise: TD is usually applied online to a single

Markovian data stream. However, to our knowledge, there has been no successful1 non-

asymptotic analysis in the setting with Markovian observation noise. Instead, many papers

have studied such algorithms under the simpler i.i.d. noise model mentioned earlier [12, 13,

14, 15, 16, 17]. One reason is that the dependent nature of the data introduces a substantial

technical challenge: the algorithm’s updates are not only noisy, but can be severely biased.

We use information theoretic techniques to control the magnitude of bias, yielding bounds

that are essentially scaled by a factor of the mixing time of the underlying Markov process

relative to those attained for the i.i.d. model. Our analysis in this setting applies only to a

1This was previously attempted by [10], but critical errors were shown by [11].

5

variant of TD that projects the iterates onto a norm ball. This projection step imposes a uni-

form bound on the noise of TD updates, which is needed for tractability. For similar reasons,

projection operators are widely used throughout the stochastic approximation literature [18,

Section 2].

• An extendable approach: Much of the paper focuses on analyzing the most basic tempo-

ral difference learning algorithm, known as TD(0). We also extend this analysis to other

algorithms. First, we establish convergence bounds for temporal difference learning with el-

igibility traces, known as TD(_). This is known to often outperform TD(0) [19], but a finite

time analysis is more involved. Our analysis also applies without modification to Q-learning

for a class of high-dimensional optimal stopping problems. Such problems have been widely

studied due to applications in the pricing of financial derivatives [20, 21, 22, 23, 24]. For

our purposes, this example illustrates more clearly the link between value prediction and

decision-making. It also shows our techniques extend seamlessly to analyzing an instance

of non-linear stochastic approximation. To our knowledge, no prior work has provided non-

asymptotic guarantees for either TD(_) or Q-learning with function approximation.

2.2 Related Literature

Non-asymptotic analysis of TD(0): There has been very little non-asymptotic analysis of TD(0).

To our knowledge, [10] provided the first finite time analysis. However, several serious errors in

their proofs were pointed out by [11]. A very recent work by [25] studies TD(0) with linear

function approximation in an i.i.d. observation model, which assumes sequential observations used

by the algorithm are drawn independently from their steady-state distribution. They focus on

analysis with problem independent step-sizes of the form 1/)f for a fixed f ∈ (0, 1) and establish

that mean-squared error converges at a rate2 of $ (1/)f). Unfortunately, while the analysis is

technically non-asymptotic, the constant factors in the bound display a complex dependence on

2In personal communication, the authors have told us their analysis also yields a $ (1/)) rate of convergence for
problem dependent step-sizes, though we have not been able to easily verify this.

6

the problem instance and scale with some unusual quantities which can be very large in cases of

practical interest.

Another interesting paper by [17] studies linear stochastic approximation algorithms under

i.i.d. noise, including TD(0), with constant step-sizes and iterate averaging. This approach dates

back to the works of [26, 27] and [28], which shows that the iterates of a constant step-size linear

stochastic approximation algorithm form an ergodic Markov chain and, in the case of i.i.d. observation

noise, their expectation in steady-state is equal to the true solution of the linear system. By a central

limit theorem for ergodic sequences, the average iterate converges to the true solution, with mean-

squared error decaying at rate $ (1/)). [29] give a sophisticated non-asymptotic analysis of the

least-mean-squares algorithm with constant step-size and iterate-averaging. [17] aim to understand

whether such guarantees extend to linear stochastic approximation algorithms more broadly. In the

process, their work provides $ (1/)) bounds for iterate-averaged TD(0) with constant step-size. A

remarkable feature of their approach is that the choice of step-size is independent of the condition-

ing of the features (although the bounds themselves do degrade if features become ill-conditioned).

It is worth noting that these results rely critically on the assumption that noise is i.i.d. This is not

due to any shortcoming in the techniques of [29] and [17]. Instead, under non-i.i.d. noise and a

linear stochastic approximation algorithm applied with any constant step-size, the averaged-iterate

might converge to the wrong limit as shown in a simple example by [28].

The recent works of [25] and [17] give bounds for TD(0) only under i.i.d. observation noise.

Therefore their results are most comparable to what is presented in Section 2.8. For the i.i.d. noise

model, the main argument in favor of our approach is that it allows for extremely simple proofs,

interpretable constant terms, and illuminating connections with SGD. Moreover, it is worth em-

phasizing that our approach gracefully extends to more complex settings, including more realistic

models with Markovian noise, the analysis of TD with eligibility traces, and the analysis of Q-

learning for optimal stopping problems as shown in Sections 2.9, 2.10 and 2.11.

While not directly comparable to our results, we point the readers to the excellent work of [30].

To facilitate theoretical analysis, they consider a slightly modified version of the TD(_) algorithm.

7

The authors provide a finite time analysis for this algorithm in an adversarial model where the

goal is to predict the discounted sum of future rewards from each state. Performance is measured

relative to the best fixed linear predictor in hindsight. The analysis is creative, but results depend

on a several unknown constants and on the specific sequence of states and rewards on which the

algorithm is applied. [30] also apply their techniques to study value function approximation in a

Markov decision process. In that case, the bounds are much weaker than what is established here.

Their bound scales with the size of the state space, which is enormous in most practical problems

– and applies only to TD(1), a somewhat degenerate special case of TD(_) in which it is equivalent

to Monte Carlo policy evaluation [19].

Asymptotic analysis of stochastic approximation: There is a well developed theory around

asymptotic analysis of stochastic approximation, a field that studies noisy recursive algorithms like

TD [31, 32, 33]. Most asymptotic convergence proofs in reinforcement learning use a technique

known as the ODE method [34]. Under some technical conditions and appropriate decaying step-

sizes, this method ensures the almost-sure convergence of stochastic approximation algorithms to

the invariant set of a certain ‘mean’ differential equation. The technique greatly simplifies asymp-

totic convergence arguments, since it completely circumvents issues with noise in the system and

issues of step-size selection. But this also makes it a somewhat coarse tool, unable to generate in-

sight into an algorithm’s sensitivity to noise, ill-conditioning, or step-size choices. A more refined

set of techniques begin to address these issues. Under fairly broad conditions, a central limit the-

orem for stochastic approximation algorithms characterizes their limiting variance. Such a central

limit theorem has been specifically provided for TD by [35] and [36].

In addition to such asymptotic techniques, the modern literature on first-order stochastic op-

timization also focuses heavily on non-asymptotic analysis [37, 38, 39]. One reason is that such

asymptotic analysis necessarily focuses on a regime where step-sizes are negligibly small relative

to problem features and the iterates have already converged to a small neighborhood of the opti-

mum. However, the use of a first-order method in the first place signals that a practitioner is mostly

8

interested in cheaply reaching a reasonably accurate solution, rather than the rate of convergence

in the neighborhood of the optimum. In practice, it is common to use constant step-sizes, so iter-

ates never truly converge to the optimum. A non-asymptotic analysis requires grappling with the

algorithm’s behavior in practically relevant regimes where step-sizes are still relatively large and

iterates are not yet close to the true solution.

Analysis of related algorithms: A number of papers analyze algorithms related to and inspired

by the classic TD algorithm. First, among others, [40, 41, 42, 43, 44] and [45] analyze least-

squares temporal difference learning (LSTD). [46] study the related least-squares policy iteration

algorithm. The asymptotic limit point of TD is a minimizer of a certain population loss, known

as the mean-squared projected Bellman error. LSTD solves a least-squares problem, essentially

computing the exact minimizer of this loss on the empirical data. It is easy to derive a central limit

theorem for LSTD. Finite time bounds follow from establishing uniform convergence rates of the

empirical loss to the population loss. Unfortunately, such techniques appear to be quite distinct

from those needed to understand the online TD algorithms studied in this paper. Online TD has

seen much wider use due to significant computational advantages [19].

Gradient TD methods are another related class of algorithms. These were derived by [13, 12]

to address the issue that TD can diverge in so-called “off-policy” settings, where data is collected

from a policy different from the one for which we want to estimate the value function. Unlike

the classic TD(0) algorithm, gradient TD methods are designed to mimic gradient descent with

respect to the mean squared projected Bellman error. [13, 12] propose asymptotically conver-

gent two-time scale stochastic approximation schemes based on this and more recently [16] give a

finite time analysis of two time scale stochastic approximation algorithms, including several vari-

ants of gradient TD algorithms. Alternatively, [47] and [14] propose to reformulate the original

gradient TD optimization as a primal-dual saddle point problem and leverage convergence analy-

sis form that literature to give a non-asymptotic analysis. This work was later revisited by [15],

who established a faster rate of convergence. The works of [16, 14] and [15] all consider only

9

i.i.d. observation noise. One interesting open question is whether our techniques for treating the

Markovian observation model will also apply to these analyses. Finally, it is worth highlighting

that, to the best of our knowledge, substantial new techniques are needed to analyze the widely

used TD(0), TD(_) and the Q-learning studied in this paper. Unlike gradient TD methods, they do

not mimic noisy gradient steps with respect to any fixed objective3.

2.3 Problem formulation

Markov reward process. We consider the problem of evaluating the value function +` of a

given policy ` in a Markov decision process (MDP). We work in the on policy setting, where data

is generated by applying the policy ` in the MDP. Because the policy ` is applied automatically

to select actions, such problems are most naturally formulated as value function estimation in a

Markov reward process (MRP). A MRP4 comprises of (S,P,R, W) [19] where S is the set of

finite states, P is the Markovian transition kernel, R is a reward function, and W < 1 is the discount

factor. For a discrete state-space S, P(B′|B) specifies the probability of transitioning from a state

B to another state B′. The reward function R(B, B′) associates a reward with each state transition.

We denote by R(B) = ∑
B′∈S P(B′|B)R(B, B′) the expected instantaneous reward generated from an

initial state B.

The value function associated with this MRP, +`, specifies the expected cumulative discounted

future reward as a function of the state of the system. In particular,

+` (B) = E
[∞∑
C=0

WCR(BC) | B0 = B

]
,

where the expectation is over sequences of states generated according to the transition kernel P.

This value function obeys the Bellman equation)`+` = +`, where the Bellman operator)` asso-

3This can be formally verified for TD(0) with linear function approximation. If the TD step were a gradient with
respect to a fixed objective, differentiating it should give the Hessian and hence a symmetric matrix. Instead, the
matrix one attains is typically not a symmetric one.

4We avoid ` from notation for simplicity.

10

ciates a value function + : S → R with another value function)`+ satisfying

()`+) (B) = R(B) + W
∑
B′∈S
P(B′|B)+ (B′) ∀ B ∈ S.

We assume rewards are bounded uniformly such that

|R(B, B′) | ≤ Amax ∀ B, B′ ∈ S.

Under this assumption, value functions are assured to exist and are the unique solution to Bellman’s

equation [48]. We also assume that the Markov reward process induced by following the policy `

is ergodic with a unique stationary distribution c. For any two states B, B′: c(B′) = limC→∞ P(BC =

B′|B0 = B).

Following common references [48, 49, 50], we will simplify the presentation by assuming

the state space S is a finite set of size = = |S|. Working with a finite state space allows for

the use of compact matrix notation, which is the convention in work on linear value function

approximation. It also avoids measure theoretic notation for conditional probability distributions.

Our proofs extend in an obvious way to problems with countably infinite state-spaces, as long the

uniform ergodicity condition stated in Section 2.9, Assumption 1, continues to hold. For problems

with general state-space, even the core results in dynamic programming hold only under suitable

technical conditions [51].

Value function approximation. Given a fixed policy `, the problem is to efficiently estimate the

corresponding value function +` using only the observed rewards and state transitions. Unfortu-

nately, due to the curse of dimensionality, most modern applications have intractably large state

spaces, rendering exact value function learning hopeless. Instead, researchers resort to parametric

approximations of the value function, for example by using a linear function approximator [19] or

a non-linear function approximation such as a neural network [52]. In this work, we consider a

11

linear function approximation architecture where the true value-to-go +` (B) is approximated as

+` (B) ≈ +\ (B) = q(B)>\,

where q(B) ∈ R3 is a fixed feature vector for state B and \ ∈ R3 is a parameter vector that is shared

across states. When the state space is the finite set S = {B1, . . . , B=}, +\ ∈ R= can be expressed

compactly as

+\ =


q(B1)>
...

q(B=)>


\ =


q1(B1) q: (B1) q3 (B1)
...

...
...

q1(B=) q: (B=) q3 (B=)


\ = Φ\,

where Φ ∈ R=×3 and \ ∈ R3 . We assume throughout that the 3 features vectors {q: }3:=1, forming

the columns of Φ are linearly independent.

Norms in value function and parameter space. For a symmetric positive definite matrix �,

define the inner product 〈G, H〉� = G>�H and the associated norm ‖G‖� =
√
G>�G. If � is positive

semi-definite rather than positive definite then ‖·‖� is called a semi-norm. Let � = diag(c(B1), . . . , c(B=)) ∈

R=×= denote the diagonal matrix whose elements are given by the entries of the stationary distribu-

tion c(·). Then, for two value functions + and + ′,

‖+ −+ ′‖� =
√∑
B∈S

c(B) (+ (B) −+ ′(B))2,

measures the mean-square difference between the value predictions under+ and+ ′, in steady-state.

This suggests a natural norm on the space of parameter vectors. In particular, for any \, \′ ∈ R3 ,

‖+\ −+\ ′‖� =
√∑
B∈S

c(B) (q(B)>(\ − \′))2 = ‖\ − \′‖Σ

12

where

Σ := Φ>�Φ =
∑
B∈S

c(B)q(B)q(B)>

is the steady-state feature covariance matrix.

Feature regularity. We assume that feature vectors are uniformly bounded, that is supB∈S ‖q(B)‖2 <

∞. For notational convenience, we assume features are normalized so that ‖q(B)‖2 ≤ 1 for all

B ∈ S. This is without loss of generality because the TD algorithm is invariant to feature re-

scaling. Precisely, TD applied with feature mapping q(·) and initial parameter \0 produces an

identical sequence of value functions to the TD algorithm with feature mapping q̃(·) = :q(·) and

initial parameter \̃0 = \0/: , for any scalar : > 0. Note that all our results bound the mean-squared

gap between value predictions. We also assume that any entirely redundant or irrelevant features

have been removed, so Σ has full rank. Let l > 0 be the minimum eigenvalue of Σ. From our

bound on the feature vectors, the maximum eigenvalue of Σ is less than 1, so 1/l bounds the condi-

tion number of the feature covariance matrix5. The following lemma is an immediate consequence

of our assumptions.

Lemma 1 (Norm equivalence). For all \ ∈ R3 ,
√
l‖\‖2 ≤ ‖+\ ‖� ≤ ‖\‖2.

One typical style of result in the study of strongly convex optimization gives fast rates of

convergence in terms of the number of iterations) . But these bounds degrade when l is very

small and generally require apriori knowledge of some good lower bound on l. We give some

results in that style, but also give results in the style of [53], where bounds and stepsizes have no

dependence on l.

2.4 Temporal difference learning

We consider the classic temporal difference learning algorithm [6]. The algorithm starts with

an initial parameter estimate \0 and at every time step C, it observes one data tuple $C = (BC , AC =
5Let _max (�) = max‖G ‖2=1 G

>�G denote the maximum eigenvalue of a symmetric positive-semidefinite matrix.
Since this is a convex function, _max (Σ) ≤

∑
B∈S c(B)_max (q(B)q(B)>) ≤

∑
B∈S c(B) = 1.

13

R(BC , B′C), B′C) consisting of the current state, the current reward and the next state reached by playing

policy ` in the current state. This tuple is used to define a loss function, which is taken to be the

squared sample Bellman error. The algorithm then proceeds to compute the next iterate \C+1 by

taking a gradient-like update. Some of our bounds guarantee accuracy of the average iterate,

denoted by \̄C = C−1 ∑C−1
8=0 \8. The version of TD presented in Algorithm 1 below also makes online

updates to the averaged iterate.

TD is not a true stochastic gradient method with respect to any fixed loss function, which

makes its analysis challenging. The TD update can be written as 6C (\) = (HC − +\ (BC)) 33\+\ (BC),

where HC = AC + W+\ (B′C) is a sample based estimate of the Bellman update to +\C . Then 6C (\C) =

− m
m\

1
2 (HC − +\ (BC))

2
��
\=\C

can be interpreted as the negative gradient of a certain squared loss func-

tion, but this calculation treats the target HC as fixed and ignores its implicit dependence on \C .

To emphasize the contrast with stochastic gradient methods, [19] refer to TD as a semi-gradient

method. Accordingly, we will refer to 6C (·) as negative semi-gradient throughout the paper.

We present in Algorithm 1 the simplest variant of TD, which is known as TD(0). It is also worth

highlighting that here we study online temporal difference learning, which makes incremental

semi-gradient updates to the parameter estimate based on the most recent data observations only.

Such algorithms are widely used in practice, but harder to analyze than so-called batch TD methods

like the LSTD algorithm of [54].

Algorithm 1: TD(0) with linear function approximation
Input : initial guess \0, step-size sequence {UC}C∈N.
Initialize: \̄0 ← \0.
for C = 0, 1, . . . do

Observe tuple: $C = (BC , AC = R(BC , B′C), B′C)
Define target: HC = R(BC , B′C) + W+\C (B′C) /* sample Bellman operator */

Loss function: 1
2 (HC −+\ (BC))

2 /* sample Bellman error squared */

Compute negative semi-gradient: 6C (\C) = − m
m\

1
2 (HC −+\ (BC))

2
��
\=\C

Take a semi-gradient step: \C+1 = \C + UC6C (\C) /* UC:step-size */

Update averaged iterate: \̄C+1 ←
(
C
C+1

)
\̄C +

(
1
C+1

)
\C /* \̄C+1 =

1
C+1

∑C
ℓ=0 \ℓ */

end

At time C, TD takes a step in the direction of the negative semi-gradient 6C (\C) evaluated at

14

the current parameter. As a general function of \ and the tuple $C = (BC , AC , B′C), the negative

semi-gradient can be written as

6C (\) =
(
AC + Wq(B′C)>\ − q(BC)>\

)
q(BC). (2.1)

The long-run dynamics of TD are closely linked to the expected negative semi-gradient step when

the tuple $C = (BC , AC , B′C) follows its steady-state behavior:

6̄(\) :=
∑
B,B′∈S

c(B)P(B′|B)
(
R(B, B′) + Wq(B′)>\ − q(B)>\

)
q(B) ∀ \ ∈ R3 .

This can be rewritten more compactly in several useful ways. One such way is,

6̄(\) = E [qA] + E
[
q(Wq′ − q)>

]
\, (2.2)

where q = q(B) is the feature vector of a random initial state B ∼ c, q′ = q(B′) is the feature

vector of a random next state drawn according to B′ ∼ P(· | B), and A = R(B, B′). In addition, since∑
B′∈S P(B′|B) (R(B, B′) + Wq(B′)>\) = ()`Φ\) (B), we can recognize that

6̄(\) = Φ>� ()`Φ\ −Φ\). (2.3)

See [9] for a derivation of this fact.

2.5 Asymptotic convergence of temporal difference learning

The main challenge in analyzing TD is that the semi-gradient steps 6C (\) are not true stochastic

gradients with respect to any fixed objective. The semi-gradient step taken at time C pulls the value

prediction+\C+1 (BC) closer to HC , but HC itself depends on+\C . So does this circular process converge?

The key insight of [9] was to interpret this as a stochastic approximation scheme for solving a

fixed point equation known as the projected Bellman equation. Contraction properties together

15

with general results from stochastic approximation theory can then be used to show convergence.

Should TD converge at all, it should be to a stationary point. Because the feature covariance

matrix Σ is full rank there is a unique6 vector \∗ with 6̄(\∗) = 0. We briefly review results that

offer insight into \∗ and proofs of the asymptotic convergence of TD.

Understanding the TD limit point. Tsitsiklis and Van Roy [9] give an interesting characteriza-

tion of the limit point \∗. They show it is the unique solution to the projected Bellman equation

Φ\ = Π�)`Φ\, (2.4)

where Π� (·) is the projection operator onto the subspace {ΦG | G ∈ R3} spanned by these features

in the inner product 〈·, ·〉� . To see why this is the case, note that by using 6̄(\∗) = 0 along with

Equation (2.3),

0 = G>6̄(\∗) = 〈ΦG ,)`Φ\∗ −Φ\∗〉� ∀ G ∈ R3 .

That is, the Bellman error at \∗, given by ()`Φ\∗−Φ\∗), is orthogonal to the space spanned by the

features in the inner product 〈·, ·〉� . By definition, this means Π�
(
)`Φ\

∗ −Φ\∗
)
= 0 and hence

\∗ must satisfy the projected Bellman equation.

The following lemma shows the projected Bellman operator,Π�)` (·) is a contraction, and so in

principle, one could converge to the approximate value functionΦ\∗ by repeatedly applying it. TD

appears to serve as a simple stochastic approximation scheme for solving the projected-Bellman

fixed point equation.

Lemma 2. [Tsitsiklis and Van Roy [9]] Π�)` (·) is a contraction with respect to ‖ · ‖� with

modulus W, that is,

Π�)`+\ − Π�)`+\ ′

� ≤ W‖+\ −+\ ′‖� ∀ \, \′ ∈ R3 .

Finally, the limit of convergence comes with some competitive guarantees. From Lemma 2, a short
6This follows formally as a consequence of Lemma 3 in this paper.

16

argument shows

+\∗ −+`

� ≤ 1√
1 − W2

Π�+` −+`

� . (2.5)

See Chapter 6 of [48] for a proof. The left hand side of Equation (2.5) measures the root-mean-

squared deviation between the value predictions of the limiting TD value function and the true

value function. On the right hand side, the projected value function Π�+` minimizes root-mean-

squared prediction errors among all value functions in the span of Φ. If +` actually falls within

the span of the features, there is no approximation error at all and TD converges to the true value

function.

Asymptotic convergence via the ODE method. Like many analyses in reinforcement learning,

the convergence proof of [9] appeals to a powerful technique from the stochastic approximation

literature known as the “ODE method”. Under appropriate conditions, and assuming a decaying

step-size sequence satisfying the Robbins-Monro conditions, this method establishes the asymp-

totic convergence of the stochastic recursion \C+1 = \C + UC6C (\C) as a consequence of the global

asymptotic stability of the deterministic ODE: ¤\C = 6̄(\C). The critical step in the proof of [9] is to

use the contraction properties of the Bellman operator to establish this ODE is globally asymptot-

ically stable with the equilibrium point \∗.

The ODE method vastly simplifies convergence proofs. First, because the continuous dynamics

can be easier to analyze than discretized ones, and more importantly, because it avoids dealing with

stochastic noise in the problem. At the same time, by side-stepping these issues, the method offers

little insight into the critical effect of step-size sequences, problem conditioning, and mixing time

issues on algorithm performance.

2.6 Outline of analysis

The remainder of this chapter focuses on a finite time analysis of TD. Broadly, we establish two

types of finite time bounds on E
[
‖+\̄) −+\∗ ‖

2
�

]
, which measures the mean-squared gap between

the value predictions under the averaged-iterate \̄) and under the TD limit point \∗. We first derive

17

bounds that depend on the condition number of the feature covariance matrix. These mirror what

one might expect from the literature on stochastic optimization of strongly convex functions: re-

sults showing that TD with constant step-sizes converges to within a radius of+\∗ at an exponential

rate, and $ (1/)) convergence rates with appropriate decaying step-sizes.

These results establish fast rates of convergence, but only if the problem is well conditioned.

The choice of step-sizes is also very sensitive to problem conditioning. Work on robust stochastic

approximation [53] argues instead for the use of comparatively large step-sizes together with iterate

averaging7. Following the spirit of this work, we also give explicit bounds on E
[
‖+\̄) −+\∗ ‖

2
�

]
with a slower $ (1/

√
)) convergence rates, but importantly both the bounds and step-sizes are

completely independent of problem conditioning.

Our approach is to start by developing insights from simple, stylized settings, and then incre-

mentally extend the analysis to more complex settings. The analysis is outlined below.

Noiseless case: Drawing inspiration from the ODE method discussed above, we start by analyz-

ing the Euler discretization of the ODE ¤\C = 6̄(\C), which is the deterministic recursion

\C+1 = \C + U6̄(\C). We call this method “mean-path TD”. As motivation, the section first

considers a fictitious gradient descent algorithm designed to converge to the TD fixed point.

We then develop striking analogues for mean-path TD of the key properties underlying the

convergence of gradient descent. Easy proofs then yield two bounds mirroring those given

for gradient descent.

Independent noise: Section 2.8 studies TD under an i.i.d. observation model, where the data-

tuples used by TD are drawn i.i.d. from the stationary distribution. The techniques used

to analyze mean-path TD(0) extend easily to this setting, and the resulting bounds mirror

standard guarantees for stochastic gradient descent.

Markov noise: In Section 2.9, we analyze TD in the more realistic setting where the data is col-

7This approach argues for using step-sizes of the order of 1/
√
C, where C is the current iteration. These are much

larger than the stepsizes, on the order of 1/C, that are suggested in the classical stochastic approximation literature.
This should not be confused with the approach of using even larger stepsizes that do not depend on C or the total
number of iterations) (for example see [17] as well as the related works of [26, 27] and [28]).

18

lected from a single sample path of an ergodic Markov chain. This setting introduces signif-

icant challenges due to the highly dependent nature of the data. For tractability, we assume

the Markov chain satisfies a certain uniform bound on the rate at which it mixes, and study

a variant of TD that uses a projection step to ensure uniform boundedness of the iterates. In

this case, our results essentially scale by a factor of the mixing time relative to the i.i.d. case.

Extension to TD(_): In Section 2.10, we extend the analysis under the Markov noise to TD with

eligibility traces, popularly known as TD(_). Eligibility traces are known to often provide

performance gains in practice, but theoretical analysis is more complex. Such analysis offers

some insight into the subtle tradeoffs in the selection of the parameter _ ∈ [0, 1].

Approximate optimal stopping: A final section extends our results to a class of high dimen-

sional optimal stopping problems. We analyze Q-learning with linear function approxima-

tion. Building on observations of [20], we show the key properties used in our analysis of TD

continue to hold for Q-learning in this setting. The convergence bounds shown in Sections

2.8 and 2.9 therefore apply without any modification.

2.7 Analysis of mean-path TD

All practical applications of TD involve observation noise. However, a great deal of insight can

be gained by investigating a natural deterministic analogue of the algorithm. Here we study the

recursion

\C+1 = \C + U6̄(\C) C ∈ N0 = {0, 1, 2, . . .},

which is the Euler discretization of the ODE described in Section 2.5. We will refer to this iterative

algorithm as mean-path TD. In this section, we develop key insights into the dynamics of mean-

path TD that allow for a remarkably simple finite time analysis of its convergence. Later sections

of the paper show how these ideas extend gracefully to analyses with observation noise.

The key to our approach is to develop properties of mean-path TD that closely mirror those of

gradient descent on a particular quadratic loss function. To this end, in the next subsection, we

19

review a simple analysis of gradient descent. In Subsection 2.7.2, we establish key properties of

mean-path TD mirroring those used to analyze this gradient descent algorithm. Finally, Subsection

2.7.3 gives convergence rates of mean-path TD, with proofs and rates mirroring those given for

gradient descent except for a constant that depends on the discount factor, W.

2.7.1 Gradient descent on a value function loss

Consider the cost function

5 (\) = 1
2
‖+\∗ −+\ ‖2� =

1
2
‖\∗ − \‖2Σ,

which measures the mean-squared gap between the value predictions under \ and those under

the stationary point of TD, \∗. Consider as well a hypothetical algorithm that performs gradient

descent on 5 , iterating \C+1 = \C − U∇ 5 (\C) for all C ∈ N0. Of course, this algorithm is not

implementable, as one does not know the limit point \∗ of TD. However, reviewing an analysis of

such an algorithm will offer great insights into our eventual analysis of TD.

To start, a standard decomposition characterizes the evolution of the error at iterate \C :

‖\∗ − \C+1‖22 = ‖\
∗ − \C ‖22 + 2U∇ 5 (\C)>(\∗ − \C) + U2‖∇ 5 (\C)‖22.

To use this decomposition, we need two things. First, some understanding of ∇ 5 (\C)>(\∗ − \C),

capturing whether the gradient points in the direction of (\∗ − \C). And second, we need an upper

bound on the norm of the gradient ‖∇ 5 (\C)‖22. In this case, ∇ 5 (\) = Σ(\ − \∗), from which we

conclude

∇ 5 (\)>(\∗ − \) = −‖\∗ − \‖2Σ = −‖+\∗ −+\ ‖2� . (2.6)

20

In addition, one can show8

‖∇ 5 (\)‖2 ≤ ‖+\∗ −+\ ‖� . (2.7)

Now, using (2.6) and (2.7), we have that for step-size U = 1,

‖\∗ − \C+1‖22 ≤ ‖\
∗ − \C ‖22 − ‖+\∗ −+\C ‖

2
� . (2.8)

The distance to \∗ decreases in every step, and does so more rapidly if there is a large gap between

the value predictions under \ and \∗. Combining this with Lemma 1 gives

‖\∗ − \C+1‖22 ≤ (1 − l)‖\
∗ − \C ‖22 ≤ . . . ≤ (1 − l)

C+1‖\∗ − \0‖22. (2.9)

Recall that l denotes the minimum eigenvalue of Σ. This shows that error converges at a fast

geometric rate. However the rate of convergence degrades if the minimum eigenvalue l is close to

zero. Such a convergence rate is therefore only meaningful if the feature covariance matrix is well

conditioned.

By working in the space of value functions and performing iterate averaging, one can also give

a guarantee that is independent of l. Recall the notation \̄) =)−1 ∑)−1
C=0 \C for the averaged iterate.

A simple proof from (2.8) shows

‖+\∗ −+\̄) ‖
2
� ≤

1
)

)−1∑
C=0
‖+\∗ −+\C ‖2� ≤

‖\∗ − \0‖22
)

. (2.10)

2.7.2 Key properties of mean-path TD

This subsection establishes analogues for mean-path TD of the key properties (2.6) and (2.7)

used to analyze gradient descent. First, to characterize the semi-gradient update, our analysis

8This can be seen from the fact that for any vector D with ‖D‖2 ≤ 1,

D>∇ 5 (\) = 〈D , \ − \∗〉Σ ≤ ‖D‖Σ‖\∗ − \‖Σ ≤ ‖\∗ − \‖Σ = ‖+\∗ −+\ ‖� .

21

builds on Lemma 7 of [9], which uses the contraction properties of the projected Bellman operator

to conclude that

6̄(\)>(\∗ − \) > 0 ∀ \ ≠ \∗. (2.11)

That is, the expected update of TD always forms a positive angle with (\∗ − \). Though only

Equation (2.11) was stated in their lemma, [9] actually reach a much stronger conclusion in their

proof itself. This result, given in Lemma 3 below, establishes that the expected updates of TD point

in a descent direction of ‖\∗ − \‖22, and do so more strongly when the gap between value functions

under \ and \∗ is large. We will show that this more quantitative form of (2.11) allows for elegant

finite time-bounds on the performance of TD.

Note that this lemma mirrors the property in Equation (2.6), but with a smaller constant of (1−

W). This reflects that expected TD must converge to \∗ by bootstrapping [6] and may follow a less

direct path to \∗ than the fictitious gradient descent method considered in the previous subsection.

Recall that the limit point \∗ solves 6̄(\∗) = 0.

Lemma 3. For any \ ∈ R3 ,

6̄(\)>(\∗ − \) ≥ (1 − W)‖+\∗ −+\ ‖2� .

Proof. We use the notation described in Equation (2.2) of Section 2.4. Consider a stationary

sequence of states with random initial state B ∼ c and subsequent state B′, which, conditioned

on B, is drawn from P(·|B). Set q = q(B), q′ = q(B′) and A = R(B, B′). Define b = +\∗ (B) −+\ (B) =

(\∗ − \)>q and b′ = +\∗ (B′) − +\ (B′) = (\∗ − \)>q′. By stationarity, b and b′ are two correlated

random variables with the same marginal distribution. By definition, E[b2] = ‖+\∗ − +\ ‖2� since B

is drawn from c.

Using the expression for 6̄(\) in Equation (2.2),

6̄(\) = 6̄(\) − 6̄(\∗) = E[q(Wq′ − q)>(\ − \∗)] = E[q(b − Wb′)] . (2.12)

22

Therefore

(\∗ − \)>6̄(\) = E [b (b − Wb′)] = E[b2] − WE[b′b] ≥ (1 − W)E[b2] = (1 − W)‖+\∗ −+\ ‖2� .

The inequality above uses Cauchy-Schwartz inequality together with the fact that b and b′ have the

same marginal distribution to conclude E[bb′] ≤
√
E[b2]

√
E[(b′)2] = E[b2] . �

Lemma 4 is the other key ingredient to our results. It upper bounds the norm of the expected

negative semi-gradient, providing an analogue of Equation (2.7).

Lemma 4. ‖6̄(\)‖2 ≤ 2‖+\ −+\∗ ‖� ∀ \ ∈ R3 .

Proof. Beginning from (2.12) in the Proof of Lemma 3, we have

‖6̄(\)‖2 = ‖E[q(b−Wb′)] ‖2 ≤
√
E

[
‖q‖22

]√
E

[
(b − Wb′)2

]
≤

√
E[b2]+W

√
E[(b′)2] = (1+W)

√
E[b2],

where the second inequality uses the assumption that ‖q‖2 ≤ 1 and the final equality uses that b

and b′ have the same marginal distribution. We conclude by recalling that E[b2] = ‖+\∗ − +\ ‖2�
and 1 + W ≤ 2. �

Lemmas 3 and 4 are quite powerful when used in conjunction. As in the analysis of gradient

descent reviewed in the previous subsection, our analysis starts with a recursion for the error term,

‖\C − \∗‖2. See Equation (2.13) in Theorem 1 below. Lemma 3 shows the first order term in this

recursion reduces the error at each time step, while using the two lemmas in conjunction shows the

first order term dominates a constant times the second order term. Precisely,

6̄(\)>(\∗ − \) ≥ (1 − W)‖+\∗ −+\ ‖2� ≥
(1 − W)

4
‖6̄(\)‖22.

This leads immediately to conclusions like Equation (2.14), from which finite time convergence

bounds follow. It is also worth pointing out that as TD(0) is an instance of linear stochastic ap-

proximation, these two lemmas can be interpreted as statements about the eigenvalues of the matrix

23

driving its behavior9.

2.7.3 Finite time analysis of mean-path TD

We now combine the insights of the previous subsection to establish convergence rates for

mean-path TD. These mirror the bounds for gradient descent given in Equations (2.9) and (2.10),

except for an additional dependence on the discount factor. The first result bounds the distance

between the value function under an averaged iterate and under the TD stationary point. This gives

a comparatively slow $ (1/)) convergence rate, but does not depend at all on the conditioning of

the feature covariance matrix. When this matrix is well conditioned, so the minimum eigenvalue

l of Σ is not too small, the geometric convergence rate given in the second part of the theorem

dominates.

Theorem 1. Consider a sequence of parameters (\0, \1, . . .) obeying the recursion

\C+1 = \C + U6̄(\C) C ∈ N0 = {0, 1, 2, . . .},

where U = (1 − W)/4. Then,

‖+\∗ −+\̄) ‖
2
� ≤

4‖\∗ − \0‖22
) (1 − W)2

and

‖+\∗ −+\) ‖2� ≤ exp
{
−

(
(1 − W)2l

4

)
)

}
‖\∗ − \0‖22.

Proof. With probability 1, for every C ∈ N0, we have

‖\∗ − \C+1‖22 = ‖\∗ − \C ‖22 − 2U(\∗ − \C)>6̄(\C) + U2‖6̄(\C)‖22. (2.13)

9Recall from Section 2.4 that 6̄(\) is an affine function. That is, it can be written as �\ − 1 for some � ∈ R3×3
and 1 ∈ R3 . Lemma 3 shows that � � −(1 − W)Σ, i.e. that � + (1 − W)Σ is negative definite. It is easy to show that
‖6̄(\)‖22 = (\ − \

∗)> (�>�) (\ − \∗), so Lemma 4 shows that �>� � Σ. Taking this perspective, the important part of
these lemmas is that they allow us to understand TD in terms of feature covariance matrix Σ and the discount factor W
rather than the more mysterious matrix �.

24

Applying Lemmas 3 and 4 and using a constant step-size of U = (1 − W)/4, we get

‖\∗ − \C+1‖22 ≤ ‖\
∗ − \C ‖22 −

(
2U(1 − W) − 4U2

)
‖+\∗ −+\C ‖2�

= ‖\∗ − \C ‖22 −
(
(1 − W)2

4

)
‖+\∗ −+\C ‖2� . (2.14)

Then,

(
(1 − W)2

4

))−1∑
C=0
‖+\∗ −+\C ‖2� ≤

)−1∑
C=0

(
‖\∗ − \C ‖22 − ‖\

∗ − \C+1‖22
)
≤ ‖\∗ − \0‖22.

Applying Jensen’s inequality gives the first result:

‖+\∗ −+\̄) ‖
2
� ≤

1
)

)−1∑
C=0
‖+\∗ −+\C ‖2� ≤

4‖\∗ − \0‖22
(1 − W)2)

.

Now, returning to (2.14), and applying Lemma 1 implies

‖\∗ − \C+1‖22 ≤ ‖\
∗ − \C ‖22 −

(
(1 − W)2

4

)
l‖\∗ − \C ‖22 =

(
1 − l(1 − W)

2

4

)
‖\∗ − \C ‖22

≤ exp
{
−l(1 − W)

2

4

}
‖\∗ − \C ‖22,

where the final inequality uses that
(
1 − l(1−W)2

4

)
≤ 4

−l (1−W)2
4 . Repeating this inductively and using

that ‖+\∗ −+\) ‖2� ≤ ‖\∗ − \) ‖22 as shown in Lemma 1 gives the desired result. �

2.8 Analysis for the i.i.d. observation model

This section studies TD under an i.i.d. observation model, and establishes three explicit guar-

antees that mirror standard finite time bounds available for SGD. Specifically, we study a model

where the random tuples observed by the TD algorithm are sampled i.i.d. from the stationary dis-

tribution of the Markov reward process. This means that for all states B and B′,

P
[
(BC , AC , B′C) = (B,R(B, B′), B′)

]
= c(B)P(B′|B), (2.15)

25

and the tuples {(BC , AC , B′C)}C∈N are drawn independently across time. Note that the probabilities

in Equation (2.15) correspond to a setting where the first state BC is drawn from the stationary

distribution, and then B′C is drawn from P(·|BC). This model is widely used for analyzing RL

algorithms. See for example [12], [13], [10], and [25].

Theorem 2 follows from a unified analysis that combines the techniques of the previous section

with typical arguments used in the SGD literature. All bounds depend on f2 = E[‖6C (\∗)‖22] =

E[‖6C (\∗)− 6̄(\∗)‖22], which roughly captures the variance of TD updates at the stationary point \∗.

The bound in part (a) follows the spirit of work on so-called robust stochastic approximation [53].

It applies to TD with iterate averaging and relatively large step-sizes. The result is a simple bound

on the mean-squared gap between the value predictions under the averaged iterate and the TD fixed

point. The main strength of this result is that the step-sizes and the bound do not depend at all on the

condition number of the feature covariance matrix. Note that the requirement that
√
) ≥ 8/(1− W)

is not critical; one can carry out analysis using the step-size U0 = min{(1 − W)/8,
√
)}, but the

bounds we attain only become meaningful in the case where) is sufficiently large, so we chose to

simplify the exposition.

Parts (b) and (c) provide faster convergence rates in the case where the feature covariance ma-

trix is well conditioned. Part (b) studies TD applied with a constant step-size, which is common

in practice. In this case, the value function +\C will never converge to the TD fixed point, but our

results show the expected distance to +\∗ converges at an exponential rate below some level that

depends on the choice of step-size. This is sometimes referred to as the rate at which the initial

point +\0 is “forgotten”. Bounds like this justify the common practice of starting with large step-

sizes, and sometimes dividing the step-sizes in half once it appears error is no-longer decreasing.

Part (c) attains an O(1/)) convergence rate for a carefully chosen decaying step-size sequence.

This step-size sequence requires knowledge of the minimum eigenvalue of the feature covariance

matrix Σ, which plays a role similar to a strong convexity parameter in the optimization literature.

In practice, this would need to be estimated, possibly by constructing a sample average approxima-

tion to the feature covariance matrix. The proof of part (c) closely follows an inductive argument

26

presented in [37]. Note that the bound in part (c) is only meaningful when) is large relative to

1/l and (1 − W)−1. We suspect this is due to fundamental challenges in applying TD to problems

with poor conditioning or long time horizons, but it would be interesting to formally validate this.

We should note that stepsizes were chosen to enable a convenient finite time analysis. Alterna-

tive choices may lead to stronger bounds and better practical performance. As in [37], our results

in parts (b) and (c) could be modified so that the stepsizes and final bound depend on some un-

derestimate l′ < l, of the true minimum eigenvalue l. However, the challenge of setting such

stepsizes is one of the major reasons [53] advocate instead for results like those in part (a) of Theo-

rem 2. It is also worth noting that our analysis in part (a) can be extended to decreasing stepsizes of

the form UC = min{(1 − W)/8, 1/
√
C}, at the expense of slightly worse constants. Such extensions

are common in the optimization literature. See for example Corollary 3.2.8 of [55]. Recall that

\̄) =)
−1 ∑)−1

C=0 \C denotes the averaged iterate. We show the following result.

Theorem 2. Suppose TD is applied under the i.i.d. observation model and set f2 = E
[
‖6C (\∗)‖22

]
.

(a) For any) ≥ (8/(1 − W))2 and a constant step-size sequence U0 = · · · = U) = 1√
)

,

E
[
‖+\∗ −+\̄) ‖

2
�

]
≤
‖\∗ − \0‖22 + 2f2

√
) (1 − W)

.

(b) For any constant step-size sequence U0 = · · · = U) ≤ l(1 − W)/8,

E
[
‖+\∗ −+\) ‖2�

]
≤

(
4−U0 (1−W)l)

)
‖\∗ − \0‖22 + U0

(
2f2

(1 − W)l

)
.

(c) For a decaying step-size sequence UC =
V

_+C with V = 2
(1−W)l and _ = 16

(1−W)2l ,

E
[
‖+\∗ −+\) ‖2�

]
≤ a

_ +) where a = max

{
8f2

(1 − W)2l2 ,
16‖\∗ − \0‖22
(1 − W)2l

}
.

Our proof is able to directly leverage Lemma 3, but the analysis requires the following exten-

sion of Lemma 4 which gives an upper bound to the expected norm of the semi-gradient.

27

Lemma 5. For any fixed \ ∈ R3 , E
[
‖6C (\)‖22

]
≤ 2f2 + 8‖+\ −+\∗ ‖2� where f2 = E

[
‖6C (\∗)‖22

]
.

Proof. For brevity of notation, set q = q(BC) and q′ = q(B′C). Define b = (\∗ − \)>q and b′ =

(\∗−\)>q′. By stationarity, b and b′ have the same marginal distribution and E[b2] = ‖+\∗−+\ ‖2� ,

following the same argument as in Lemma 3. Using the formula for 6C (\) in Equation (2.1), we

have

E
[
‖6C (\)‖22

]
≤ E

[
(‖6C (\∗)‖2 + ‖6C (\) − 6C (\∗)‖2)2

]
≤ 2E

[
‖6C (\∗)‖22

]
+ 2E

[
‖6C (\) − 6C (\∗)‖22

]
= 2f2 + 2E

[

q (q − Wq′)> (\∗ − \)

2
2

]
= 2f2 + 2E

[
‖q(b − Wb′)‖22

]
≤ 2f2 + 2E

[
|b − Wb′|2

]
≤ 2f2 + 4

(
E

[
|b |2

]
+ W2E

[
|b′|2

])
≤ 2f2 + 8‖+\∗ −+\ ‖2� ,

where we used the assumption that ‖q‖22 ≤ 1. The second inequality uses the basic algebraic

identity (G + H)2 ≤ 2 max{G, H}2 ≤ 2G2 +2H2, along with the linearity of expectation operators. �

Using this we give a proof of Theorem 2 below. Let us remark here on a consequence of the i.i.d

noise model that considerably simplifies the proof. Until now, we have often developed properties

of the TD updates 6C (\) applied to an arbitrary, but fixed, vector \ ∈ R3 . For example, we have

given an expression for 6̄(\) := E[6C (\)], where this expectation integrates over the random tuple

$C = (BC , AC , B′C) influencing the TD update. In the i.i.d noise model, the current iterate, \C , is

independent of the tuple $C , and so E[6C (\C) |\C] = 6̄(\C). In a similar manner, after conditioning

on \C , we can seamlessly apply Lemmas 3 and 5, as is done in inequality (2.16) of the proof below.

Proof of Theorem 2. The TD algorithm updates the parameters as: \C+1 = \C + UC6C (\C). Thus, for

28

each C ∈ N0, we have,

‖\∗ − \C+1‖22 = ‖\∗ − \C ‖22 − 2UC6C (\C)>(\∗ − \C) + U2
C ‖6C (\C)‖22.

Under the hypotheses of (a), (b) and (c), we have that UC ≤ (1 − W)/8. Taking expectations and

applying Lemma 3 and Lemma 5 implies,

E
[
‖\∗ − \C+1‖22

]
= E

[
‖\∗ − \C ‖22

]
− 2UCE

[
6C (\C)>(\∗ − \C)

]
+ U2

C E
[
‖6C (\C)‖22

]
= E

[
‖\∗ − \C ‖22

]
− 2UCE

[
E

[
6C (\C)>(\∗ − \C) | \C

]]
+ U2

C E
[
E

[
‖6C (\C)‖22 | \C

]]
≤ E

[
‖\∗ − \C ‖22

]
−

(
2UC (1 − W) − 8U2

C

)
E

[
‖+\∗ −+\C ‖2�

]
+ 2U2

C f
2 (2.16)

≤ E
[
‖\∗ − \C ‖22

]
− UC (1 − W)E

[
‖+\∗ −+\C ‖2�

]
+ 2U2

C f
2. (2.17)

The inequality (2.16) follows from Lemmas 3 and 5. The application of these lemmas uses that the

random tuple $C = (BC , AC , B′C) influencing 6C (·) is independent of the iterate, \C .

Part (a). Consider a constant step-size of U) = · · · = U0 = 1/
√
) . Starting with Equation (2.17)

and summing over C gives

E

[
)−1∑
C=0
‖+\∗ −+\C ‖2�

]
≤
‖\∗ − \0‖22
U0(1 − W)

+ 2U0)f
2

(1 − W) =
√
) ‖\∗ − \0‖22
(1 − W) + 2

√
)f2

(1 − W) .

We find

E
[
‖+\∗ −+\̄) ‖

2
�

]
≤ 1
)
E

[
)−1∑
C=0
‖+\∗ −+\C ‖2�

]
≤
‖\∗ − \0‖22 + 2f2

√
) (1 − W)

.

Part (b). Consider a constant step-size of U0 ≤ l(1 − W)/8. Applying Lemma 1 to Equation

(2.17) implies

E
[
‖\∗ − \C+1‖22

]
≤ (1 − U0(1 − W)l) E

[
‖\∗ − \C ‖22

]
+ 2U2

0f
2. (2.18)

29

Iterating this inequality establishes that for any) ∈ N0,

E
[
‖\∗ − \) ‖22

]
≤ (1 − U0(1 − W)l)) E

[
‖\∗ − \0‖22

]
+ 2U2

0f
2
∞∑
C=0
(1 − U0(1 − W)l)C .

The result follows by solving the geometric series and using that (1 − U0(1 − W)l) ≤ 4−U0 (1−W)l

along with Lemma 1.

Part (c). Note that by the definitions of a, _ and V, we have

a = max{2V2f2 , _‖\∗ − \0‖22}.

We then have ‖\∗−\0‖22 ≤
a
_

by the definition of a. Proceeding by induction, suppose E
[
‖\∗ − \C ‖22

]
≤

a
_+C . Then,

E
[
‖\∗ − \C+1‖22

]
≤ (1 − UC (1 − W)l) E

[
‖\∗ − \C ‖22

]
+ 2U2

C f
2

≤
(
1 − (1 − W)lV

Ĉ

)
a

Ĉ
+ 2V2f2

Ĉ2
[where Ĉ ≡ _ + C]

=

(
Ĉ − (1 − W)lV

Ĉ2

)
a + 2V2f2

Ĉ2

=

(
Ĉ − 1
Ĉ2

)
a + 2V2f2 − ((1 − W)lV − 1) a

Ĉ2

=

(
Ĉ − 1
Ĉ2

)
a + 2V2f2 − a

Ĉ2
[using V =

2
(1 − W)l]

≤ a

Ĉ + 1
,

where the final inequality uses that 2V2f2 − a ≤ 0, which holds by the definition of a and the fact

that Ĉ2 ≥ (Ĉ−1) (Ĉ+1). The final result follows by invoking the inequality ‖+\∗−+\) ‖2� ≤ ‖\∗−\) ‖22
as shown in Lemma 1. �

30

2.9 Analysis for the Markov chain observation model: Projected TD algorithm

In Section 2.8, we developed a method for analyzing TD under an i.i.d. sampling model in

which tuples are drawn independently from the stationary distribution of the underlying MDP.

But a more realistic setting is one in which the observed tuples used by TD are gathered from a

single trajectory of the Markov chain. In particular, if for a given sample path the Markov chain

visits states (B0, B1, . . . BC , . . .), then these are processed into tuples $C = (BC , AC = R(BC , BC+1), BC+1)

that are fed into the TD algorithm. Mathematical analysis is difficult since the tuples used by the

algorithm can be highly correlated with each other. We outline the main challenges below.

Challenges in the Markov chain noise model. In the i.i.d. observation setting, our analysis

relied heavily on a Martingale property of the noise sequence. This no longer holds in the Markov

chain model due to strong dependencies between the noisy observations. To understand this, recall

the expression of the TD update,

6C (\) =
(
AC + Wq(BC+1)>\ − q(BC)>\

)
q(BC). (2.19)

To make the statistical dependencies more transparent, we can overload notation to write this as

6(\, $C) ≡ 6C (\), where $C = (BC , AC , BC+1). Assuming the sequence of states is stationary, we have

defined the function 6̄ : R3 → R3 by 6̄(\) = E[6(\, $C)], where, since \ is non-random, this

expectation integrates over the marginal distribution of the tuple $C . However, E[6(\C , $C) | \C =

\] ≠ 6̄(\) because \C is a function of past tuples {$1, . . . , $C−1}, potentially introducing strong

dependencies between \C and $C . Similarly, in general E[6(\C , $C) − 6̄(\C)] ≠ 0, indicating bias in

the algorithm’s semi-gradient evaluation. A related challenge arises in trying to control the norm

of the semi-gradient step, E[‖6C (\C)‖22]. Lemma 5 does not yield a bound due to coupling between

the iterate \C and the observation $C .

Our analysis uses an information-theoretic technique to control for this coupling and explicitly

account for the semi-gradient bias. This technique may be of broader use in analyzing reinforce-

31

ment learning and stochastic approximation algorithms. However, our analysis also requires some

strong regularity conditions, as outlined below.

Projected TD algorithm. Our technique for controlling the semi-gradient bias relies critically

on a condition that, when step-sizes are small, the iterates (\C)C∈N0 do not change too rapidly. This

is the case as long as norms of the semi-gradient steps do not explode. For tractability, we modify

the TD algorithm itself by adding a projection step that ensures semi-gradient norms are uniformly

bounded across time. In particular, starting with an initial guess of \0 such that ‖\0‖2 ≤ ', we

consider the Projected TD algorithm, which iterates

\C+1 = Π2,' (\C + UC6C (\C)) ∀ C ∈ N0, (2.20)

where

Π2,' (\) = arg min
\ ′:‖\ ′‖2≤'

‖\ − \′‖2

is the projection operator onto a norm ball of radius ' < ∞. The subscript 2 on the operator

indicates that the projection is with respect the unweighted Euclidean norm. This should not be

confused with the projection operatorΠ� used earlier, which projects onto the subspace of approx-

imate value functions with respect to a weighted norm. One may wonder whether this projection

step is practical. We note that, from a computational perspective, it only involves rescaling of the

iterates, as Π2,' (\) = '\/‖\‖ if ‖\‖2 > ' and is simply \ otherwise. In addition, Subsection

2.9.2 suggests that by using aprori bounds on the value function, it should be possible to estimate

a projection radius containing the TD fixed point. However, at this stage, we view this mainly as a

tool that enables clean finite time analysis, rather than a practical algorithmic proposal.

It is worth mentioning that projection steps have a long history in the stochastic approximation

literature, and many of the standard analyses for stochastic gradient descent rely on projection

steps to control the norm of the gradient [18, 56, 38, 53].

32

Structural assumptions on the Markov reward process. To control the statistical bias in the

semi-gradient updates–which is the main challenge under the Markov observation model–we as-

sume that the Markov chain mixes at a uniform geometric rate, as stated below.

Assumption 1. There are constants < > 0 and d ∈ (0, 1) such that

sup
B∈S

dTV (P(BC ∈ ·|B0 = B), c) ≤ <dC ∀ C ∈ N0,

where dTV(%,&) denotes the total-variation distance between probability measures % and &. In

addition, the initial distribution of B0 is the steady-state distribution c, so (B0, B1, . . .) is a stationary

sequence.

This uniform mixing assumption always holds for irreducible and aperiodic finite-state Markov

chains [57]. See [58] or [59] for a discussion of uniform ergodicity and relaxations of this concept

in general state space Markov chains. We emphasize that the assumption that the chain begins

in steady-state is not essential: given the uniform mixing assumption, we can always apply our

analysis after the Markov chain has approximately reached its steady-state. However, adding this

assumption allows us to simplify many mathematical expressions. Another useful quantity for our

analysis is the mixing time which we define as

gmix(n) = min{C ∈ N0 | <dC ≤ n}. (2.21)

For interpreting the bounds, note that from Assumption 1,

gmix(n) ∼ log(</n)
log(1/d) as n → 0.

We can therefore evaluate the mixing time at very small thresholds like n = 1/) while only con-

tributing a logarithmic factor to the bounds.

33

A bound on the norm of the semi-gradient: Before proceeding, we also state a bound on the

Euclidean norm of the semi-gradient under TD(0) that follows from the uniform bound on rewards,

along with feature normalization10 and boundedness of the iterates through the projection step.

Under projected TD(0) with projection radius ', this lemma implies that ‖6C (\C)‖2 ≤ (Amax + 2').

This semi-gradient bound plays an important role in our convergence bounds.

Lemma 6. For all \ ∈ R3 , ‖6C (\)‖2 ≤ Amax + 2‖\‖2 with probability 1.

Proof. Using the expression of 6C (\) in Equation (2.19), we have

‖6C (\)‖2 ≤ |AC + (Wq(B′C) − q(BC))>\ | ‖q(BC)‖2 ≤ Amax + ‖Wq(B′C) − q(BC)‖2‖\‖2 ≤ Amax + 2‖\‖2.

�

2.9.1 Finite time bounds

Following Section 2.8, we state several finite time bounds on the performance of the Projected

TD algorithm. As before, in the spirit of robust stochastic approximation [53], the bound in part

(a) gives a comparatively slow convergence rate of Õ(1/
√
)), but where the bound and step-size

sequence are independent of the conditioning of the feature covariance matrix Σ. The bound in

part (c) gives a faster convergence rate in terms of the number of samples) , but the bound and as

well as the step-size sequence depend on the minimum eigenvalue l of Σ. Part (b) confirms that

for sufficiently small step-sizes, the value functions converge at an exponential rate to within some

radius of the TD fixed-point, +\∗ .

It is also instructive to compare the bounds for the Markov model vis-a-vis the i.i.d. model. One

can see that in the case of part (b) for the Markov chain setting, a O
(
�2gmix(U0)

)
term controls the

limiting error due to semi-gradient noise. This scaling by the mixing time is intuitive, reflecting that

roughly every cycle of gmix(·) observations provides as much information as a single independent

sample from the stationary distribution. We can also imagine specializing the results to the case of

10Recall that we assumed ‖q(B)‖2 ≤ 1 for all B ∈ S and |R(B, B′) | ≤ Amax for all B, B′ ∈ S

34

Projected TD under the i.i.d. model, thereby eliminating all terms depending on the mixing time.

We would attain bounds that mirror those in Theorem 2, except that the semi-gradient noise term

f2 there would be replaced by �2. This is a consequence using � as a uniform upper bound on the

semi-gradient norm in the proof, which is possible because of the projection step. Astute readers

may notice the stepsize choices in parts (b) and (c) differ from those in parts (b) and (c) of Theorem

2. For each result, we have aimed for stepsize choices that lead to the simplest proofs of strong

finite time bounds. In Theorem 3, the projection step allowed us to give a simple proof without

requiring as small a stepsize as in Theorem 2. This choice may reflect our analysis technique more

than any fundamental differences between the problems settings.

Theorem 3. Suppose the Projected TD algorithm is applied with parameter ' ≥ ‖\∗‖2 under the

Markov chain observation model with Assumption 1. Set � = (Amax + 2'). Then the following

claims hold.

(a) With a constant step-size sequence U0 = · · · = U) = 1/
√
) ,

E
[

+\∗ −+\̄)

2

�

]
≤
‖\∗ − \0‖22 + �2

(
9 + 12gmix(1/

√
))

)
2
√
) (1 − W)

.

(b) With a constant step-size sequence U0 = · · · = U) < 1/(2l(1 − W)),

E
[

+\∗ −+\)

2

�

]
≤

(
4−2U0 (1−W)l)

)
‖\∗ − \0‖22 + U0

(
�2 (

9 + 12gmix(U0)
)

2(1 − W)l

)
.

(c) With a decaying step-size sequence UC = 1/(l(C + 1) (1 − W)) for all C ∈ N0,

E
[

+\∗ −+\̄)

2

�

]
≤
�2 (

9 + 24gmix(U))
)

) (1 − W)2l
(1 + log)) ,

There are two noteworthy points here. First, the proof of part (c) also implies an Õ(1/))

convergence rate for the value function +\) itself; however the bound degrades by a factor of l.

We refer the readers to Equation (A.4) in Appendix A.1.2 for the complete result. Second, it is

35

likely possible to eliminate the log) term in the numerator of part (c) to get a O(1/)) convergence

rate. One approach is to use a different weighting of the iterates when averaging, as in [56]. For

brevity and simplicity, we do not pursue this direction.

2.9.2 Choice of the projection radius

We briefly comment on the choice of the projection radius, '. Note that Theorem 3 assumes

that ‖\∗‖2 ≤ ', so the TD limit point lies within the projected ball. How do we choose such an

' when \∗ is unknown? It turns out we can use Lemma 2, which relates the value function at the

limit of convergence +\∗ to the true value function, to give a conservative upper bound. This is

shown in the following lemma.

Lemma 7. ‖\∗‖Σ ≤ 2Amax
(1−W)3/2 and hence ‖\∗‖2 ≤ 2Amax√

l(1−W)3/2 .

Proof. See Appendix A.3 for a detailed proof. �

It is important to remark here that this bound is problem dependent as it depends on the min-

imum eigenvalue l of the steady-state feature covariance matrix Σ. We believe that estimating

l online would make the projection step practical to implement. We also remark that while we

have assumed for that feature vectors are bounded as ‖q(B)‖2 ≤ 1, this is not required for the

conclusion in Lemma 7. The required projection radius automatically reflects any scaling of the

feature vectors through the minimum eigenvalue l.

2.9.3 Analysis

We now present the key analysis used to establish Theorem 3. Throughout, we assume the

conditions of the theorem hold: we consider the Markov chain observation model with Assumption

1 and study the Projected TD algorithm applied with parameter ' ≥ ‖\∗‖2 and some step-size

sequence (U0, · · · , U)).

We fix some notation throughout the scope of this subsection. Define the set Θ' = {\ ∈ R3 :

‖\‖2 ≤ '}, so \C ∈ Θ' for each C because of the algorithm’s projection step. Set � = (Amax + 2'),

36

so ‖6C (\)‖2 ≤ � for all \ ∈ Θ' by Lemma 6. Finally, we set

ZC (\) ≡ (6C (\) − 6̄(\))> (\ − \∗) ∀ \ ∈ Θ',

which can be thought of as the error in the evaluation of semi-gradient-update under parameter \

at time C.

Referring back to the analysis of the i.i.d. observation model, one can see that an error de-

composition given in Equation (2.17) is the crucial component of the proof. The main objective

in this section is to establish two key lemmas that yield a similar decomposition in the Markov

chain observation model. The result can be stated cleanly in the case of a constant step-size. If

U0 = · · · = U) = U, we show

E
[
‖\∗ − \C+1‖22

]
≤ E

[
‖\∗ − \C ‖22

]
− 2U(1 − W)E

[
‖+\∗ −+\C ‖2�

]
+ 2E[UZC (\C)] + U2�2

≤ E
[
‖\∗ − \C ‖22

]
− 2U(1 − W)E

[
‖+\∗ −+\C ‖2�

]
+ 2U2

(
5 + 6gmix(U)

)
�2.

(2.22)

The first inequality follows from Lemma 8. The second follows from Lemma 11, which in the

case of a constant step-size U shows E[UZC (\C)] ≤ �2(4 + 6gmix(U))U2. Notice that bias in the

semi-gradient enters into the analysis as if by scaling the magnitude of the noise in semi-gradient

evaluations by a factor of the mixing time. From this decomposition, parts (a) and (b) of Theorem

3 follow by essentially copying the proof of Theorem 2. Similar, but messier, inequalities hold for

any decaying step-size sequence, which allows us to establish part (c).

Error decomposition under Projected TD

The next lemma establishes a recursion for the error under projected TD(0) that hold for each

sample path.

37

Lemma 8. With probability 1, for every C ∈ N0,

‖\∗ − \C+1‖22 ≤ ‖\
∗ − \C ‖22 − 2UC (1 − W)‖+\∗ −+\C ‖2� + 2UCZC (\C) + U2

C �
2.

Proof. From the projected TD(0) recursion in Equation (2.20), for any C ∈ N0,

‖\∗ − \C+1‖22 = ‖\
∗ − Π2,' (\C + UC6C (\C))‖22

= ‖Π2,' (\∗) − Π2,' (\C + UC6C (\C))‖22

≤ ‖\∗ − \C − UC6C (\C)‖22

= ‖\∗ − \C ‖22 − 2UC6C (\C)>(\∗ − \C) + U2
C ‖6C (\C)‖22

≤ ‖\∗ − \C ‖22 − 2UC6C (\C)>(\∗ − \C) + U2
C �

2.

= ‖\∗ − \C ‖22 − 2UC 6̄(\C)>(\∗ − \C) + 2UCZC (\C) + U2
C �

2.

≤ ‖\∗ − \C ‖22 − 2UC (1 − W)‖+\∗ −+\C ‖2� + 2UCZC (\C) + U2
C �

2.

The first inequality used that orthogonal projection operators onto a convex set are non-expansive11,

the second used Lemma 6 together with the fact that ‖\C ‖2 ≤ ' due to projection, and the third

used Lemma 3. �

By taking expectation of both sides, this inequality could be used to produce bounds in the

same manner as in the previous section, except that in general E[ZC (\C)] ≠ 0 due to bias in the

semi-gradient evaluations.

Information–theoretic techniques for controlling the semi-gradient bias

The uniform mixing condition in Assumption 1 can be used in conjunction with some informa-

tion theoretic inequalities to control the magnitude of the semi-gradient bias. This section presents

a general lemma, which is the key to this analysis. We start by reviewing some important properties

11Let PC (G) = arg minG′∈C ‖G ′ − G‖ denote the projection operator onto a closed, non-empty, convex set C ⊂ R3 .
Then ‖PC (G) − PC (H)‖ ≤ ‖G − H‖ for all vectors G and H.

38

of information-measures.

Information theory background. The total-variation distance between two probability mea-

sures is a special case of the more general 5 -divergence defined as

3 5 (% | |&) =
∫

5

(
3%

3&

)
3&,

where 5 is a convex function such that 5 (1) = 0. By choosing 5 (G) = |G − 1|/2, one recovers

the total-variation distance. A choice of 5 (G) = G log(G) yields the Kullback-Leibler divergence.

This yields a generalization of the mutual information between two random variables - and . .

The 5 -information between - and . is the 5 -divergence between their joint distribution and the

product of their marginals:

� 5 (-,.) = 3 5 (P(- = ·, . = ·) , P(- = ·) ⊗ P(. = ·)).

This measure satisfies several nice properties. By definition it is symmetric, so � 5 (-,.) = � 5 (., -).

It can be expressed in terms of the expected divergence between conditional distributions:

� 5 (-,.) =
∑
G

P(- = G)3 5 (P(. = ·|- = G), P(. = ·)). (2.23)

Finally, it satisfies the following data-processing inequality. If - → . → / forms a Markov chain,

then

� 5 (-, /) ≤ � 5 (-,.).

Here, we use the notation - → . → / , which is standard in information theory and the study of

graphical models, to indicate that the random variables / and - are independent conditioned on

. . Note that by symmetry we also have � 5 (-, /) ≤ � 5 (., /). To use these results in conjunction

with Assumption 1, we can specialize to total-variation distance (3TV) and total-variation mutual

information (�TV) using 5 (G) = |G − 1|/2. The total-variation is especially useful for our purposes

39

because of the following variational representation.

3TV(%,&) = sup
E:‖E‖∞≤ 1

2

����∫ E3% −
∫

E3&

���� . (2.24)

In particular, if % and & are close in total-variation distance, then the expected value of any

bounded function under % will be close to that under &.

Information theoretic control of coupling. With this background in place, we are ready to

establish a general lemma, which is central to our analysis. We use ‖ 5 ‖∞ = supG∈X | 5 (G) | to

denote the supremum norm of a function 5 : X → R.

Lemma 9 (Control of coupling). Consider two random variables - and . such that

- → BC → BC+g → .

for some fixed C ∈ {0, 1, 2, . . .} and g > 0. Assume the Markov chain mixes uniformly, as stated in

Assumption 1. Let -′ and . ′ denote independent copies drawn from the marginal distributions of

- and . , so P(-′ = ·, . ′ = ·) = P(- = ·) ⊗ P(. = ·). Then, for any bounded function E,

|E [E(-,.)] − E [E(-′, . ′)] | ≤ 2‖E‖∞(<dg).

Proof. Let % = P(- ∈ ·, . ∈ ·) denote the joint distribution of - and. and& = P(- ∈ ·)⊗P(. ∈ ·)

denote the product of the marginal distributions. Let ℎ = E
2‖E‖∞ , which is the function E rescaled to

take values in [−1/2, 1/2]. Then, by Equation (2.24)

E[ℎ(-,.)] − E[ℎ(-′, . ′)] =
∫

ℎ3% −
∫

ℎ3& ≤ 3TV(%,&) = �TV(-,.),

40

where the last equality uses the definition of the total-variation mutual information, �)+ . Then,

�TV(-,.) ≤ �TV(BC , BC+g) =
∑
B∈S
P(BC = B)3TV (P(BC+g = · | BC = B)) , P(BC+g = ·))

≤ sup
B∈S

3TV (P(BC+g = · | BC = B) , c)

≤ <dg,

where the steps follow, respectively, from the data-processing inequality, the property in Equation

(2.23), the stationarity of the Markov chain, and the the uniform mixing condition in Assumption

1. Combining these steps gives

|E [E(-,.)] − E [E(-′, . ′)] | ≤ 2‖E‖∞ �TV(-,.) ≤ 2‖E‖∞<dg .

�

Bounding the semi-gradient bias

We are now ready to bound the expected semi-gradient error E[ZC (\C)]. First, we establish

some basic regularity properties of the function ZC (·).

Lemma 10 (Semi-gradient error is bounded and Lipschitz). With probability 1,

|ZC (\) | ≤ 2�2 ∀ \ ∈ Θ'

and

|ZC (\) − ZC (\′) | ≤ 6�‖(\ − \′)‖2 ∀ \, \′ ∈ Θ' .

Proof. The result follows from a straightforward application of the bounds ‖6C (\)‖2 ≤ � and

‖\‖2 ≤ ' ≤ �/2, which hold for each \ ∈ Θ'. A full derivation is given in Appendix A.1.3. �

We now use Lemmas 9 and 10 to establish a bound on the expected semi-gradient error.

41

Lemma 11 (Bound on semi-gradient bias). Consider a non-increasing step-size sequence, U0 ≥

U1 . . . ≥ U) . Fix any C <) , and set C∗ ≡ max{0, C − gmix(U))}. Then,

E [ZC (\C)] ≤ �2
(
4 + 6gmix(U))

)
UC∗ .

The following bound also holds:

E [ZC (\C)] ≤ 6�2
C−1∑
8=0

U8 .

Proof. We break the proof down into three steps.

Step 1: Relate ZC (\C) and ZC (\C−g).

Note that for any 8 ∈ N0,

‖\8+1 − \8‖2 =

Π2,' (\8 + U868 (\8)) − Π2,' (\8)

2 ≤ ‖\8 + U868 (\8) − \8‖2 = U8‖68 (\8)‖2 ≤ U8�.

Therefore,

‖\C − \C−g‖2 ≤
C−1∑
8=C−g
‖\8+1 − \8‖2 ≤ �

C−1∑
8=C−g

U8 .

Applying Lemma 10, we conclude

ZC (\C) ≤ ZC (\C−g) + 6�2
C−1∑
8=C−g

U8 for all g ∈ {0, · · · , C}. (2.25)

Step 2: Bound E[ZC (\C−g)] using Lemma 9.

Recall that the semi-gradient 6C (\) depends implicitly on the observed tuple$C = (BC ,R(BC , BC+1), BC+1).

Let us overload notation to make this statistical dependency more transparent. Put

6(\, $C) := 6C (\) =
(
AC + Wq(BC+1)>\ − q(BC)>\

)
q(BC) \ ∈ Θ'

42

and

Z (\, $C) := ZC (\) = (6(\, $C) − 6̄(\))> (\ − \∗) \ ∈ Θ' .

We have defined 6̄ : Θ' → R3 as 6̄(\) = E[6(\, $C)] for all \ ∈ Θ', where this expectation

integrates over the marginal distribution of $C . Then, by definition, for any fixed (non-random)

\ ∈ Θ',

E[Z (\, $C)] = (E[6(\, $C)] − 6̄(\))> (\ − \∗) = 0.

Since \0 ∈ Θ' is non-random, it follows immediately that

E[Z (\0, $C)] = 0. (2.26)

We use Lemma 9 to bound E[Z (\C−g, $C)]. First, consider random variables \′C−g and $′C drawn

independently from the marginal distributions of \C−g and $C , so P(\′C−g = ·, $′C = ·) = P(\C−g =

·) ⊗ P($C = ·). Then E[Z (\′C−g, $′C)] = E[E[Z (\′C−g, $′C) | \′C−g]] = 0. Since |Z (\, $C) | ≤ 2�2 for

all \ ∈ Θ' by Lemma 10 and \C−g → BC−g → BC → $C forms a Markov chain, applying Lemma 9

gives

E[Z (\C−g, $C)] ≤ 2(2�2) (<dg) = 4�2<dg . (2.27)

Step 3: Combine terms.

The second claim follows immediately from Equation (2.25) together with Equation (2.26). We

focus on establishing the first claim. Taking the expectation of Equation (2.25) implies

E[ZC (\C)] ≤ E[ZC (\C−g)] + 6�2gUC−g ∀g ∈ {0, · · · , C}.

For C ≤ gmix(U)), choosing g = C gives

E[ZC (\C)] ≤ E[ZC (\0)]︸ ︷︷ ︸
=0

+6�2CU0 ≤ 6�2gmix(U))U0.

43

For C > gmix(U)), choosing g = g0 ≡ gmix(U)) gives

E[ZC (\C)] ≤ 4�2<dg0 + 6�2g0UC−g0 ≤ 4�2U) + 6�2g0UC−g ≤ �2 (4 + 6g0) UC−g0 .

where the second inequality used that <dg0 ≤ U) by the definition of the mixing time g0 ≡

gmix(U)) and the second inequality uses that step-sizes are non-increasing. �

Completing the proof of Theorem 3

Combining Lemmas 8 and 10 gives the error decomposition in Equation 2.22 for the case of

a constant step-size. As noted at the beginning of this subsection, from this decomposition, parts

(a) and (b) of Theorem 3 can be established by essentially copying the proof of Theorem 2. For

completeness, this is included in Appendix A.1. For part (c), we closely follow analysis of SGD

with decaying step-sizes presented in [56]. However, some headache is introduced because Lemma

11 includes terms of the form UC−gmix (U)) instead of the typical UC terms present in analyses of SGD.

A complete proof of part (c) is given in Appendix A.1 as well.

2.10 Extension to TD with eligibility traces

This section extends our analysis to provide finite time guarantees for temporal difference

learning with eligibility traces. We study a class of algorithms, denoted by TD(_) and param-

eterized by _ ∈ [0, 1], that contains as a special case the TD(0) algorithm studied in previous

sections12. For _ > 0, the algorithm maintains an eligibility trace vector, which is a geometric

weighted average of the negative semi-gradients at all previously visited states, and makes pa-

rameter updates in the direction of the eligibility vector rather than the negative semi-gradient.

Eligibility traces sometimes provide substantial performance improvements in practice [19]. Un-

fortunately, they also introduce subtle dependency issues that complicate theoretical analysis; to

our knowledge, this section provides the first non-asymptotic analysis of TD(_).

12TD(0) corresponds to _ = 0.

44

Our analysis focuses on the Markov chain observation model studied in the previous section

and we mirror the technical assumptions used there. In particular, we assume that the Markov chain

is stationary and mixes at a uniform geometric rate (Assumption 1). As before, for tractability, we

study a projected variant of TD(_).

2.10.1 Projected TD(_) algorithm

TD(_) makes a simple, but a highly consequential, modification to TD(0). The pseudo-code for

this algorithm is presented below in Algorithm 2. As with TD(0), it observes a tuple $C = (BC , AC =

R(BC , BC+1), BC+1) at each time-step C and computes the TD error XC (\C) = AC + W+\C (BC+1) − +\C (BC).

However, while TD(0) makes an update \C+1 = \C + UCXC (\C)q(BC) in the direction of the feature

vector at the current state, TD(_) makes the update \C+1 = \C + UCXC (\C)I0:C . The vector I0:C =∑C
:=0(W_):q(BC−:) is called the eligibility trace which is updated incrementally as shown below in

Algorithm 2. As the name suggests, the components of I0:C roughly capture the extent to which

each feature is eligible for receiving credit or blame for an observed TD error [19, 60].

Algorithm 2: Projected TD(_) with linear function approximation
Input : radius ', initial guess {\0 : ‖\0‖2 ≤ '}, and step-size sequence {UC}C∈N
Initialize: \̄0 ← \0, I−1 = 0, _ ∈ [0, 1].
for C = 0, 1, . . . do

Observe tuple: $C = (BC , AC , BC+1)
Get TD error: XC (\C) = AC + W+\C (BC+1) −+\C (BC) /* sample Bellman error */
Update eligibility trace: I0:C = (W_)I0:C−1 + q(BC) /* Geometric weighting */
Compute update direction: GC (\C , I0:C) = XC (\C)I0:C
Take a projected update step: \C+1 = Π2,' (\C + UCGC (\C , I0:C)) /* UC:step-size

*/

Update averaged iterate: \̄C+1 ←
(
C
C+1

)
\̄C +

(
1
C+1

)
\C+1 /* \̄C+1 =

1
C+1

∑C+1
ℓ=1 \ℓ */

end

Some new notation in Algorithm 2 should be highlighted. We use GC (\, I0:C) = XC (\)I0:C to

denote the update to the parameter vector \ at time C. This plays a role analogous to the negative

semi-gradient 6C (\) in TD(0).

45

2.10.2 Limiting behavior of TD(_)

We now review results on the asymptotic convergence of TD(_) due to [9]. This provides the

foundation of our finite time analysis and also offers insight into how the algorithm differs from

TD(0).

Before giving any results, let us note that just as the true value function +` (·) is the unique

solution to Bellman’s fixed point equation +` =)`+`, it is also the unique solution to a :-step

Bellman equation +` =) :`+`. This can be written equivalently as

+` (B) = E
[
:∑
C=0

WCR(BC) + W:+1+ (B:+1) | B0 = B

]
∀B ∈ (,

where the expectation is over states sampled when policy ` is applied to the MDP. The asymptotic

properties of TD(_) are closely tied to a geometrically weighted version of the :-step Bellman

equations described above. Define the averaged Bellman operator

() (_)` +) (B) = (1 − _)
∞∑
:=0

_:E

[
:∑
C=0

WCR(BC) + W:+1+ (B:+1) | B0 = B

]
. (2.28)

One interesting interpretation of this equation is as a :-step Bellman equation, but where the hori-

zon : itself is a random geometrically distributed random variable.

Tsitsiklis and Van Roy [9] showed that under appropriate technical conditions, the approximate

value function +\C = Φ\C estimated by TD(_) converges almost surely to the unique solution, \∗ of

the projected fixed point equation

Φ\ = Π�)
(_)
` Φ\.

TD(_) is then interpreted as a stochastic approximation scheme for solving this fixed point equa-

tion. The existence and uniqueness of such a fixed point is implied by the following lemma, which

shows thatΠ�) (_) (·) is a contraction operator with respect to the steady-state weighted norm ‖·‖� .

Throughout this section, we let \∗ denote be the unique fixed point of the projected TD(_) operator

as shown above.

46

Lemma 12. [Tsitsiklis and Van Roy [9]] Π�)
(_)
` (·) is a contraction with respect to ‖ · ‖� with

modulus

^ =
W(1 − _)
1 − W_ ≤ W < 1.

As with TD(0), the limiting value function under TD(_) comes with some competitive guaran-

tees. A short argument using Lemma 12 shows

+\∗ −+`

� ≤ 1
√

1 − ^2

Π�+` −+`

� . (2.29)

See for example Chapter 6 of [48] for a proof. It is important to note the distinction between

the convergence guarantee results for TD(_) and TD(0) in terms of the contraction factors. The

contraction factor ^ is always less than W, the contraction factor under TD(0). In addition, as

_ → 1, ^ → 0 implying that the limit point of TD(_) for large enough _ will be arbitrarily close

to Π�+`, which minimizes the mean-square error in value predictions among all value functions

representable by the features. This calculation suggests a choice of _ = 1 will offer the best

performance. However, the rate of convergence also depends on _, and may degrade as _ grows.

Disentangling such issues requires also a careful study of the statistical efficiency of TD(_), which

we undertake in the following subsection.

2.10.3 Finite time bounds for Projected TD(_)

Following Section 2.9, we establish three finite time bounds on the performance of the Pro-

jected TD(_) algorithm. The first bound in part (a) does not depend on any special regularity of

the problem instance but gives a comparatively slow convergence rate of Õ(1/
√
)). It applies with

the robust (problem independent) and aggressive step-size of 1/
√
) . Part (b) shows an exponential

rate of convergence to within some radius of the TD(_) fixed-point under a sufficiently small step-

size. Part (c) attains an improved dependence on) of Õ(1/)), but the step-size sequence requires

knowledge of the minimum eigenvalue l of Σ.

47

Compared to the results for TD(0), our bounds depend on a slightly different definition of the

mixing time that takes into account the geometric weighting in the eligibility trace term. Define

gmix
_ (n) = max{gMC(n), gAlgo(n)}, (2.30)

where we denote gMC(n) = min{C ∈ N0 | <dC ≤ n} and gAlgo(n) = min{C ∈ N0 | (W_)C ≤ n}.

As we show next, this definition of mixing time enables compact bounds for convergence rates of

TD(_).

Theorem 4. Suppose the Projected TD(_) algorithm is applied with parameter ' ≥ ‖\∗‖2 under

the Markov chain observation model with Assumption 1. Set � =
(Amax+2')
(1−W_) . Then the following

claims hold.

(a) With a constant step-size UC = U0 = 1/
√
) ,

E
[

+\∗ −+\̄)

2

�

]
≤
‖\∗ − \0‖22 + �2

(
13 + 28gmix

_
(1/
√
))

)
2
√
) (1 − ^)

.

(b) With a constant step-size UC = U0 < 1/(2l(1 − ^)) and) > 2gmix
_
(U0) ,

E
[

+\∗ −+\)

2

�

]
≤

(
4−2U0 (1−^)l)

)
‖\∗ − \0‖22 + U0

(
�2 (

13 + 24gmix
_
(U0)

)
2(1 − ^)l

)
.

(c) With a decaying step-size UC = 1/(l(C + 1) (1 − ^)),

E
[

+\∗ −+\̄)

2

�

]
≤
�2 (

13 + 52gmix
_
(U))

)
) (1 − ^)2l

(1 + log)) .

As was the case for TD(0), the proof of part (c) also implies an Õ(1/)) convergence rate for

the value function +\) itself; however the bound degrades by a factor of l. We refer the readers

to Equation (A.4) in Appendix A.2.2 for the complete result. Again, a different weighting of the

iterates as shown in [56] might enable us to eliminate the log) term in the numerator of part (c) to

48

give a O(1/)) convergence rate. For brevity, we do not pursue this direction.

We now compare the bounds for TD(_) with that of TD(0) ignoring the constant terms. It

should be emphasized that these are only upper bounds, so differences could be due to looseness

of the analysis rather than true differences in statistical performance. First, let us look at the results

for the robust step-size UC = 1/
√
) in part (a) of Theorems 3 and 4. Approximately, for the TD(_)

case, we have the term �2
√
) (1−^)

vis-a-vis the term �2
√
) (1−W)

for the TD(0) case. A simple argument

below clarifies the relationship between these two.

�2
√
) (1 − ^)

=
(Amax + 2')2

√
) (1 − ^) (1 − W_)2

=
�2

√
) (1 − ^) (1 − W_)2

≥ �2
√
) (1 − ^) (1 − W_)

=
�2

√
) (1 − W)

.

As we will see later, � is an upper bound to the norm of GC (\C , I0:C), the update direction for TD(_).

Correspondingly, from Section 2.9, we know that � is the upper bound on semi-gradient norm,

6C (\C) for TD(0). Intuitively, for TD(_), the bound � is larger (due to the presence of the eligibility

trace term) and more so as _ → 1. This calculation reveals that our bounds give a slower rate

of convergence for TD(_) than for TD(0). This means more data is required for our bound to

guarantee TD(_) is close to its limit point. In this context, however, the trade-off we remarked on

in Section 2.10.2 is noteworthy as the fixed point for TD(_) comes with a better error guarantee.

Interestingly, for decaying step-sizes UC = 1/(l(C + 1) (1− ^)), the bounds are qualitatively the

same. This follows as the terms that dominate part (c) of Theorems 3 and 4 are equal:

�2

) (1 − ^)2
=

(Amax + 2')2
) (1 − ^)2(1 − W_)2

=
�2

) (1 − ^)2(1 − W_)2
=

�2

) (1 − W)2
.

It is unclear whether the difference between the two stepsize regimes is an artifact of our analysis

technique.

49

2.11 Extension: Q-learning for high dimensional Optimal Stopping

So far, this chapter has dealt with the problem of approximating the value function of a fixed

policy in a computationally and statistically efficient manner. The Q-learning algorithm is one

natural extension of temporal-difference learning to control problems, where the goal is to learn

an effective policy from data. Although it is widely applied in reinforcement learning, in gen-

eral Q-learning is unstable and its iterates may oscillate forever. An important exception to this

was discovered by [20], who showed that &-learning converges asymptotically for optimal stop-

ping problems. In this section, we show how the techniques developed in Sections 2.8 and 2.9

can be applied in an identical manner to give finite time bounds for Q-learning with linear func-

tion approximation applied to optimal-stopping problems with high dimensional state spaces. To

avoid repetition, we only state key properties satisfied by Q-learning in this setting which establish

exactly the same convergence bounds as shown in Theorems 2 and 3.

2.11.1 Problem formulation

The optimal stopping problem is that of determining the time to terminate a process to max-

imize cumulative expected rewards accrued. Problems of this nature arise naturally in many set-

tings, most notably in the pricing of financial derivatives [21, 22, 23]. We first give a brief formu-

lation for a class of optimal stopping problems. A more detailed exposition can be found in [20],

or Chapter 5 of the thesis work of [61].

Consider a discrete-time Markov chain {BC}C≥0 with finite state space S and unique stationary

distribution distribution c. At each time C, the decision-maker observes the state BC and decides

whether to stop or continue. Let W ∈ [0, 1) denote the discount factor and let D(·) and * (·) denote

the reward functions associated with continuation and termination decisions respectively. Let the

stopping time g denote the (random) time at which the decision-maker stops. The expected total

50

discounted reward from initial state B associated with the stopping time g is

E

[
g−1∑
C=0

WCD(BC) + Wg* (Bg)
���� B0 = B

]
, (2.31)

where* (Bg) is defined to be zero for g = ∞. We seek an optimal stopping policy, which determines

when to stop as a function of the observed states so as to maximize (2.31).

For any Markov decision process, the optimal state-action value function &∗ : S × A → R

specifies the expected value to go from choosing an action 0 ∈ A in a state B ∈ S and following

the optimal policy in subsequent states. In optimal stopping problems, there are only two possible

actions at every time step: whether to terminate or to continue. The value of stopping in state B is

just* (B), which allows us to simplify notation by only representing the continuation value.

For the remainder of this section, we let &∗ : S → R denote the optimal continuation-value

function. It can be shown that &∗ is the unique solution to the Bellman equation &∗ = �&∗, where

the Bellman operator is given by

�&(B) = D(B) + W
∑
B′∈S

%(B′|B)max {* (B′), &(B′)}.

Given the optimal continuation values &∗(·), the optimal stopping time is simply

g∗ = min {C |* (BC) ≥ &∗(BC)}. (2.32)

2.11.2 Q-Learning for high dimensional Optimal Stopping

In principle, one could generate the optimal stopping time using Equation (2.32) by applying

exact dynamic programming algorithms to compute the optimal Q-function. However, such meth-

ods are only implementable for small state spaces. To scale to high dimensional state spaces, we

consider a feature-based approximation of the optimal continuation value function, &∗. We focus

51

on linear function approximation, where &∗(B) is approximated as

&∗(B) ≈ &\ (B) = q(B)>\,

where q(B) ∈ R3 is a fixed feature vector for state B and \ ∈ R3 is a parameter vector that is shared

across states. As shown in Section 2.3, for a finite state space, S = {B1, . . . , B=}, &\ ∈ R= can be

expressed compactly as &\ = Φ\, where Φ ∈ R=×3 and \ ∈ R3 . We also assume that the 3 feature

vectors {q: }3:=1, forming the columns of Φ are linearly independent.

We consider the Q-learning approximation scheme in Algorithm 3. The algorithm starts with

an initial parameter estimate of \0 and observes a data tuple $C = (BC , D(BC), B′C). This is used to

compute the target HC = D(BC) + Wmax {* (B′C), &\C (B′C)}, which is a sampled version of the � (·)

operator applied to the current &–function. The next iterate, \C+1, is computed by taking a semi-

gradient step with respect to a loss function measuring the distance between HC and predicted value-

to-go. An important feature of this method is that problem data is generated by the exploratory

policy that chooses to continue at all time-steps.

Algorithm 3: Q-Learning for Optimal Stopping problems.
Input : initial guess \0, step-size sequence {UC}C∈N and radius '.
Initialize: \̄0 ← \0.
for C = 0, 1, . . . do

Observe tuple: $C = (BC , D(BC), B′C)
Target: HC = D(BC) + Wmax{* (B′C), &\C (B′C)} /* sample Bellman operator */

Define loss function: 1
2 (HC −&\ (BC))2 /* sample Bellman error */

Compute negative semi-gradient: 6C (\C) = − m
m\

1
2 (HC −&\ (BC))2

��
\=\C

Take a semi-gradient step: \C+1 = \C + UC6C (\C) /* UC:step-size */

Update averaged iterate: \̄C+1 ←
(
C
C+1

)
\̄C +

(
1
C+1

)
\C /* \̄C+1 =

1
C+1

∑C
ℓ=1 \ℓ */

end

2.11.3 Asymptotic guarantees

Similar to the asymptotic results for TD algorithms, [20] show that the variant of Q-learning

detailed above in Algorithm 3 converges to the unique solution, \∗, of the projected Bellman equa-

52

tion,

Φ\ = Π��Φ\.

This results crucially relies on the fact that the projected Bellman operator Π�� (·) is a contraction

with respect to ‖·‖� with modulus W. The analogous result for our study of TD(0) was stated in

Lemma 2. [20] also give error bounds for the limit of convergence with respect to &∗, the optimal

Q-function. In particular, it can be shown that

‖Φ\∗ −&∗‖� ≤
1√

1 − W2
‖Π�&∗ −&∗‖�

where the left hand side measures the error between the estimated and the optimal Q-function

which is upper bounded by the representational power of the linear approximation architecture,

as given on the right hand side. In particular, if &∗ can be represented as a linear combination

of the feature vectors then there is no approximation error and the algorithm converges to the

optimal Q-function. Finally, one can ask whether the stopping times suggested by this approximate

continuation value function,Φ\∗, are effective. Let ˜̀ be the policy that stops at the first time C when

* (BC) ≥ (Φ\∗) (BC).

Then, for an initial state B0 drawn from the stationary distribution c,

E [+∗(B0)] − E
[
+ ˜̀ (B0)

]
≤ 2
(1 − W)

√
1 − W2

‖Π�&∗ −&∗‖� ,

where +∗ and + ˜̀ denote the value functions corresponding, respectively, to the optimal stopping

policy the approximate stopping policy `. Again, this error guarantee depends on the choice of

feature representation.

53

2.11.4 Finite time analysis

In this section, we show how our results in Sections 2.8 and 2.9 for TD(0) and its projected

counterpart can be extended, without any modification, to give convergence bounds for the Q-

function approximation algorithm described above. To this effect, we highlight that the key lemmas

which enable our analysis in Sections 2.8 and 2.9 also hold in this setting. The contraction property

of the � (·) operator will be crucial to our arguments here. Convergence rates for an i.i.d. noise

model, mirroring those established for TD(0) in Theorem 2, can be shown for Algorithm 3. Results

for the Markov chain sampling model, mirroring those established for TD(0) in Theorem 3, can be

shown for a projected variant of Algorithm 3.

First, we give mathematical expressions for the negative semi-gradient. As a general function

of \ and tuple $C = (BC , D(BC), B′C), the negative semi-gradient can be written as

6C (\) =
(
D(BC) + Wmax {* (B′C), q(B′C)>\} − q(BC)>\

)
q(BC). (2.33)

The negative expected semi-gradient, when the tuple (BC , D(BC), B′C) follows its steady-state behav-

ior, can be written as

6̄(\) =
∑
B,B′∈S

c(B)P(B′|B)
(
D(B) + Wmax {* (B′), q(B′)>\} − q(B)>\

)
q(B).

Additionally, using
∑
B′∈S P(B′|B) (D(B) + Wmax {* (B′), q(B′)>\}) = (�Φ\) (B), it is easy to show

6̄(\) = Φ>� (�Φ\ −Φ\).

Note the close similarity of this expression with its counterparts for TD learning (see Section

2.4 and Appendix A.2); the only difference is that the appropriate Bellman operator(s) for TD

learning,)` (·), has been replaced with the appropriate Bellman operator � (·) for this optimal

stopping problem.

54

Analysis with i.i.d. noise

In this section, we show how to analyze the Q-learning algorithm under an i.i.d. observation

model, where the random tuples observed by the algorithm are sampled i.i.d. from the stationary

distribution of the Markov process. All our ideas follow the presentation in Section 2.8, a careful

understanding of which reveals that Lemmas 3 and 5 form the backbone of our results. Recall that

Lemma 3 establishes how, at any iterate \, TD updates point in the descent direction of ‖\∗ − \‖22.

Lemma 5 bounds the expected norm of the stochastic semi-gradient, thus giving a control over

system noise.

In Lemmas 13 and 14, given below, we state exactly the same results for the Q-function ap-

proximation algorithm under the i.i.d. sampling model. With these two key lemmas, convergence

bounds shown in Theorem 2 follows by repeating the analysis in Section 2.8. Recall that &\∗

denotes the unique fixed point of Π�� (·), i.e. &\∗ = Π��&\∗ .

Lemma 13. [Tsitsiklis and Van Roy [20]] For any \ ∈ R3 ,

6̄(\)>(\∗ − \) ≥ (1 − W)‖&\∗ −&\ ‖2� .

Proof. This property is a consequence of the fact that Π�� (·) is a contraction with respect to

‖·‖� with modulus W. It was established by [20] in the process of proving their Lemma 8. For

completeness, we provide a standalone proof in Appendix A.3. �

Lemma 14. For any fixed \ ∈ R3 , E
[
‖6C (\)‖22

]
≤ 2f2+8‖&\−&\∗ ‖2� where f2 = E

[
‖6C (\∗)‖22

]
.

Proof. See Appendix A.3 for a detailed proof. �

Analysis under the Markov chain model

Analogous to Section 2.9, we analyze a projected variant of Algorithm 3 under the Markov

chain sampling model. Let Θ' = {\ ∈ R3 : ‖\‖2 ≤ '}. Starting with an initial guess of

\0 ∈ Θ', the algorithm updates to the next iterate by taking a semi-gradient step followed by

55

projection onto Θ', so iterates satisfy the stochastic recursion \C+1 = Π2,' (\C + UC6C (\C)). We

make the similar structural assumptions to those in Section 2.9. In particular, assume the feature

vectors and the continuation, termination rewards to be uniformly bounded, with ‖q(B)‖2 ≤ 1

and max{|D(B) |, |* (B) |} ≤ Amax for all B ∈ S. We assume Amax ≤ ', which can always be ensured

by rescaling rewards or the projection radius. We first state a uniform bound on the semi-gradient

norm.

Lemma 15. Define � = (Amax + 2'). With probability 1, ‖6C (\)‖2 ≤ � for all \ ∈ Θ'.

Proof. See Appendix A.3 for a detailed proof. �

If we assume the Markov process (B0, B1, . . .) satisfies Assumption 1, then Lemma 15 paves the

way to show exactly the same convergence bounds as given in Theorem 3. For this, we refer the

readers to Section 2.9 and Appendix A.1, where we show all the key lemmas and a detailed proof

of Theorem 3. One can mirror the same proof, using Lemmas 13 and 15 in place of Lemmas 3 and

11, which apply to TD(0). In particular, note that we can use Lemma 15 along with some basic

algebraic inequalities to show the semi-gradient bias, ZC (\), to be Lipschitz and bounded. This,

along with the information-theoretic arguments of Lemma 9 enables the exact same upper bound

on the semi-gradient bias as shown in Lemma 11. Combining these with standard proof techniques

for SGD [56, 53] shows the convergence bounds for Q-learning.

2.12 Conclusions

In this chapter we provide a simple finite time analysis of a foundational and widely used al-

gorithm known as temporal difference learning. Although asymptotic convergence guarantees for

the TD method were previously known, characterizing its data efficiency stands as an important

open problem. Our work makes a substantial advance in this direction by providing a number of

explicit finite time bounds for TD, including in the much more complicated case where data is

generated from a single trajectory of a Markov chain. Our analysis inherits the simplicity of and

elegance enjoyed by SGD analysis and can gracefully extend to different variants of TD, for exam-

56

ple TD learning with eligibility traces (TD(_)) and Q-function approximation for optimal stopping

problems. Owing to the close connection with SGD, we believe that optimization researchers can

further build on our techniques to develop principled improvements to TD.

There are a number of research directions one can take to extend our work. First, we use a

projection step for analysis under the Markov chain model, a choice we borrowed from the opti-

mization literature to simplify our analysis. It will be interesting to find alternative ways to add

regularity to the TD algorithm and establish similar convergence results; we think analysis without

the projection step is possible if one can show that the iterates remain bounded under additional

regularity conditions. Second, the Õ(1/)) convergence rate we showed used step-sizes which cru-

cially depends on the minimum eigenvalue l of the feature covariance matrix, which would need

to be estimated from samples. While such results are common in optimization for strongly convex

functions, very recently [17] showed TD(0) with iterate averaging and universal constant step-

sizes can attain an Õ(1/)) convergence rate in the i.i.d. sampling model. Extending our analysis

for problem independent, robust step-size choices is a research direction worth pursuing.

57

Chapter 3: Global Optimality Guarantees For Policy Gradient Methods

3.1 Introduction

Many recent successes in reinforcement learning are driven by a class of algorithms called

policy gradient methods. These methods search over a parameterized class of polices by per-

forming stochastic gradient descent on a cost function capturing the cumulative expected cost

incurred. Specifically, for discounted or episodic problems, they treat the scalar cost function

ℓ(c) =
∫
�c (B)3d(B), which averages the total cost-to-go function �c over a random initial state

distribution d. Policy gradient methods aim to optimize over a smooth, and often stochastic, class

of parameterized policies {c\}\∈Θ by performing stochastic gradient descent on ℓ(·),

\:+1 = \: − U:
(
∇\ℓ(c\:) + noise

)
.

This approach has several attractive features leading to its widespread adoption including in con-

junction with deep neural network based approaches [62, 63, 64]. It can be easily implemented

using simulation based Monte Carlo approximations to the true gradient in an end-to-end fashion,

directly optimizing the true decision objective rather than searching for approximate models of the

underlying problem or other dynamic programming methods which approximate value functions

that minimize Bellman error. Therefore, it can be useful in problems where there is an inductive

bias about the form of policy that might be effective, rather than the form of an approximate model

or value function. Gradient descent with finite stepsizes often makes small updates to the policy

in each iteration making this scheme more stable than say approximate policy iteration which is

prone to chattering.

Unfortunately, while policy gradient methods can be applied to a very broad class of problems,

58

it is not clear whether they adequately address even simple control problems solvable by classical

methods. The challenge is that total cost ℓ(·) is a non-convex function of the chosen policy. Typical

of results concerning black-box optimization of non-convex functions, policy gradient methods are

widely understood to converge asymptotically to a stationary point or a local minimum. Existing

optimization theory guarantees this under technical conditions [65, 66, 67] and it is widely repeated

in textbooks and surveys [68, 69, 1]. But the reinforcement learning literature seems to provide

almost no guarantees into the quality of the points to which policy gradient methods converge.

Worse yet, Example 1 clearly shows how policy gradient methods could get stuck in a bad local

minima for very simple examples where the policy class is rich enough to contain the optimal

policy.

Example 1 (Failure of policy gradient with a constrained policy class that contains the optimal

policy). Consider the MDP depicted in Figure 3.1 (a). There are two states, left ((!) and right

(('), and two possible actions, ! and ', which move the agent to the desired state in the next

period. Staying in the state ! incurs a cost, 6((! , !) = 1 per period, whereas staying in the

right state is cost-less, 6((', ') = 0. Moving between states incurs a per-period cost of 2. As

long as the discount factor exceeds 1/2, it is optimal policy to play action ' in either state1. For

W > 1/2, it is therefore reasonable to search in a constrained policy class, {c\ : \ ∈ [0, 1]} which

plays the action ' with probability \ ∈ [0, 1] regardless of the current state, as it contains the

optimal policy. Unfortunately, as shown in Figure 3.1 (b), the total discounted cost incurred ℓ(c\)

is a non-convex function of \. When initialized with small value of \, cost is locally increasing

as a function of \, and so a gradient method updates the policy toward a bad local minimum at

\ = 0. Once there, any local policy search approach gets stuck as there are no descent directions to

improve the total cost. It is worth noting here that in general, policy gradient methods face many

additional challenges, for instance due to unsophisticated exploration or policy parameterization.

This example however, clearly highlights the challenges presented by non-convexity of the objective

ℓ which is fundamental to gradient based policy search methods.

1Although it is always optimal to play ' in (', one can easily check that for W < 1/2, it is optimal to play ! in (! .

59

(! ('

6 ((! , !) = 1

6 ((! , ') = 2

6 ((' , ') = 0

6 ((' , !) = 2

0.0 0.2 0.4 0.6 0.8 1.0
1.2

2.6

4.0

5.3

6.7

(
)

Figure 3.1: Policy gradient fails with the constrained policy class for a simple deterministic MDP.
(a) Two state, two action MDP where the optimal policy, c∗ plays right in both states. (b) For
the constrained policy class, c\ (' |(!) = c\ (' |(') = \ ∈ [0, 1], policy gradient objective is non-
convex with two local minima. For (b), we took W = 0.8 and d = [0.6, 0.4]. We remark that
this example is not cherry picked. For any W > 1/2 and different initial distributions d which put
non-zero weight on both states, ℓ(\) has two local minima at \ = 0 and \ = 1.

In marked contrast to the example above, important recent work of [70] showed that for the

deterministic linear quadratic control problem, policy gradient method with the class of linear

policies converges to the global optimum, despite non-convexity of the objective. Here, the authors

provided an intricate analysis, leveraging a variety of closed form expressions available for linear-

quadratic problems. Separate from the Reinforcement learning literature, [71] propose a stochastic

approximation method for setting base-stock levels in inventory control. In this example too,

the objective is non-convex but surprisingly, the authors manage to establish convergence to the

globally optimal solution using a complex analysis quite different from that of [70]. How do we

reconcile these success stories with the simple counterexample given in Example 1?

3.1.1 Our Contribution

Our work aims to construct a simple and more general understanding of the global convergence

properties of policy gradient methods. As a consequence of our general framework, we can show

that for several classic dynamic programming problems, policy gradient methods performed with

respect to natural structured policy classes faces no suboptimal local minima. More precisely,

60

despite its non-convexity, any stationary point2 of the policy gradient cost function is a global

optimum. The examples we treat include:

1. Finite state and action MDPs with the class of all stochastic policies over the simplex.

2. Linear quadratic (LQ) control problems with the class of linear policies.

3. Optimal stopping problem with the class of threshold policies.

4. Finite horizon inventory control problem with the class of non-stationary base-stock policies.

These canonical control problems provide an important benchmark and sanity check for policy

gradient methods. The central question we are interested in is under what conditions do policy

gradient methods converge to globally optimal solutions? What is so special about the examples

listed above and why do policy gradient methods fail for Example 1?

Interestingly, these examples share some important structural properties. Consider a linear

quadratic control problem. Starting with a linear policy and performing a policy iteration step

yields another linear policy. That is, the policy class is closed under policy improvement. In ad-

dition, although the cost-to-go function is non-convex, the policy iteration update involves just

solving a quadratic minimization problem. These same properties apply to each of the first three

examples. The policy class is closed under policy improvement and the policy iteration problem is

solvable by first-order methods – it is either a convex optimization problem or can be easily shown

to have no suboptimal stationary points. A strikingly simple proof shows that these two proper-

ties, together with mild regularity conditions, imply that any stationary point of the policy gradient

loss function is globally optimal. We remark that our results also apply to the case of finite hori-

zon problems with non-stationary policy classes (in particular, the finite horizon inventory control

example) under weaker conditions; in this case we only require that the policy class contains an

optimal policy.

2For unconstrained problems, stationary points of a function 5 satisfy ∇ 5 (G) = 0. More generally, for constrained
optimization over some set X, any stationary point G satisfies the first order necessary conditions for optimality,
∇ 5 (G)> (G ′ − G) ≥ 0 ∀G ′ ∈ X.

61

We also generalize these results to the case where the policy class is closed under approximate

policy improvement — meaning that the policy iteration problem can be solved in the given policy

class upto a small error. We interpret this closure assumption as a requirement that the policy

class is sufficiently rich. Crucially, however, the (approximate) closure condition is much weaker

than requiring the policy class to contain (approximately) all possible policies. This is useful, for

example in problems where simple structured policy classes may be naturally aligned with the

problem objective. However, note that the closure property is stronger than only requiring the

policy class to contain (near) optimal policies. Indeed Example 1 shows that is necessary. In

that case, even though the policy class contains the optimal policy, it is not closed under policy

improvement and hence is susceptible to bad local minima.

Beyond studying the quality of stationary points, we also study stronger properties of the policy

gradient objective that lead to fast converge rates. In particular, we show conditions under which

the total cost function, ℓ(·), satisfies a Polyak-lojasiewicz condition [72, 73, 74] (also popularly

known as gradient dominance) which guarantees fast convergence rates for many first-order op-

timization algorithms for non-convex objectives. Essentially, for this case we require a weighted

policy iteration objective to be gradient dominated.

Scope of this work. There are many reasons why practitioners may find simple policy gradient

methods, like the classic REINFORCE algorithm [75], offer poor performance in practice. In an

effort to clarify the scope of our contribution, and its place in the literature, let us briefly review

some of these challenges.

1. Non-convexity of the loss function: Policy gradient methods apply (stochastic) gradient descent

on a non-convex loss function. Such methods are usually expected to converge toward a station-

ary point of the objective function. Unfortunately, a general non-convex function could have

many stationary points that are far from optimal.

2. Unnatural policy parameterization: It is possible for parameters that are far apart in Euclidean

distance to describe nearly identical polices. Precisely, this happens when the Jacobian matrix

62

of the policy c\ (· | B) vanishes or becomes ill conditioned. Researchers have addressed this

challenge through natural gradient algorithms [76, 77], which perform steepest descent in a

different metric. The issue can also be alleviated with regularized policy gradient algorithms

[62, 64].

3. Insufficient exploration: Although policy gradients are often applied with stochastic policies,

convergence with this kind of naive random exploration can require a number of iterations that

scales exponentially with the number of states in the MDP. [78] provide a striking example.

Combining efficient exploration methods with policy gradients algorithms is challenging, but is

an active area of research [see e.g. 79, 80].

4. Large variance of stochastic gradients: The variance of estimated policy gradients generally

increases with the problem’s effective time horizon, usually expressed in terms of a discount

factor or the average length of an episode. Considerable research is aimed at alleviating this

problem through the use of actor-critic methods [66, 81, 65] and appropriate baselines [63, 82].

We emphasize that this paper is primarily focused on the first challenge of studying the opti-

mization landscape rather than analyzing particular policy gradient algorithms and their practical

implementations. Such an investigation is relevant to many strategies for searching locally over the

policy space, including policy gradient methods, natural gradient methods [77] , finite difference

schemes [83], random search [84], and evolutionary strategies [85]. For most parts of this paper,

we will imagine applying policy gradient algorithms in simulation, where an appropriate restart

distribution d provides sufficient exploration and consider an idealized update with access to exact

gradient evaluations, \:+1 = \: − U:∇ℓ(\:).

3.2 Further Related Literature

Beyond reinforcement learning, this work connects to a large body of work on first-order meth-

ods in non-convex optimization. Under broad conditions, these methods are guaranteed to converge

asymptotically to stationary points of the objective function under a variety of noise models [86,

63

87]. The ubiquity of non-convex optimization problems in machine learning and especially deep

learning has sparked a slew of recent work [88, 89, 90, 91] giving rates of convergence and en-

suring convergence to approximate local minima rather than saddle points. A complementary line

of research studies the optimization landscape of specific problems to essentially ensure that local

minima are global, [92, 93, 94, 95, 96]. Taken together, these results show interesting non-convex

optimization problems can be efficiently solved using gradient descent. Our work contributes to the

second line of research, offering insight into the optimization landscape of ℓ(·) for classic dynamic

programming problems.

Related work along this direction includes the aforementioned work by [71] and [70]. For

tabular MDPs with softmax policy parameterization, [97] gives a simple argument that the gra-

dient of the policy gradient cost function is never exactly equal to zero. Work on conservative

policy iteration [78] laid some intellectual groundwork for studying policy gradient methods. An

under-appreciated paper by [98] extends the analysis of conservative policy iteration to study the

stationary points of policy gradient methods. Relative to that work, our results regarding the qual-

ity of stationary points in Section 5 are more general as they deal with (1) problems with infinite

action spaces and structured cost functions and (2) problems where the parameterized policy class

is not convex (see remark 2).

Concurrently with this work, [99] provide a detailed study of the rate of convergence of policy

gradient methods. Their work primarily focuses on natural gradient methods in problems with

finite action spaces, both for tabular environments and larger state spaces where a (sufficiently

accurate) function approximation architecture is employed. By contrast, our work gives a unified

treatment of several foundational dynamic programming problems – reaching beyond tabular set-

tings. This unified analysis seems to offer insight into when and why policy gradient methods can

succeed despite non-convexity.

64

3.3 Problem formulation

Consider a Markov decision process (MDP), which is a six-tuple (S,A, 6, %, W, d), consisting

of a state space S, action space A, cost function 6, transition kernel %, discount factor W ∈ (0, 1)

and initial distribution d. We assume the state space S is at most countably infinite, in which case

we can index the states as S = {B1, · · · , B=} where = is possibly infinite. For each state B ∈ S, let

AB ⊂ R: denote the set of feasible actions. We take A = ∪BAB. The transition kernel % specifies

the probability %(B′|B, 0) of transitioning to a state B′ upon choosing action 0 in state B. The cost

function 6(B, 0) denotes the instantaneous expected cost incurred when selecting action 0 in state

B. We assume that per-period costs are uniformly bounded, meaning supB∈S,0∈AB |6(B, 0) | < ∞.

Remark 1. The assumptions that state spaces are at most countably infinite and per-period costs

are bounded are standard in textbook treatments of dynamic programming [100, 101]. A rigorous

study of dynamic programming with uncountable state spaces and infinite actions spaces is pos-

sible, but it requires restrictions that ensure various functions are measurable [102] or through

the theory of universally measurable policies [103]. To avoid excessive technicality while being

rigorous, our general results are stated for countably infinite state spaces. In specific problems like

inventory control, there are no measurability issues and so we safety substitute infinite summations

for integrals.

Cost-to-go-functions and Bellman operators. A stationary policy c : S → A is a function

that prescribes a feasible action, c(B) ∈ AB for each state B ∈ S. Let Π denote the set of all

stationary policies. Let J = {� : S → R : ‖�‖∞ < ∞} denote the set of bounded functions on

the state space. The cost-to go function �c ∈ J associated with policy c is defined by �c (B) =

Ec
[∑∞

C=0 W
C6(BC , c(BC)) |B0 = B

]
. Define the Bellman operator)c : J → J under the policy c as

()c�) (B) := 6(B, c(B)) + W
∑
B′∈S

%(B′|B, c(B))� (B′).

65

The cost-to-go function under policy c is the unique solution to the Bellman equation �c =

)c�c. The Bellman optimality operator is denoted by) : J → J and defined by ()�) (B) =

minc∈Π()c�) (B). For simplicity of exposition, we assume throughout that this minimum is exists.

The unique fixed point of) , denoted by �∗, is called the optimal cost-to-go function and satisfies

�∗(B) = minc �c (B) for all B ∈ S. There is at least one optimal policy, c∗, that attains this min-

imum for every B ∈ S. It is well known that for uniformly bounded per-period costs,) and)c

are monotone and are contraction operators with respect to the maximum norm ‖ · ‖∞. Additional

background is given in Appendix B.1.

The state-action cost-to-go function corresponding to a policy c ∈ Π,

&c (B, 0) = 6(B, 0) + W
∑
B′∈S

%(B′ | B, 0)�c (B′), (3.1)

measures the cumulative expected cost of taking action 0 in state B and applying c thereafter.

The state-action value function provides an alternative notation for Bellman operators. Define

&∗(·, ·) = &c∗ (·, ·) for some optimal policy c∗. This is the same as (3.1) except the optimal cost-

to-go function �∗ appears on the right hand side. Notice that for any polices c, c′ ∈ Π, we have the

relations

&c (B, c(B)) = �c (B), &c (B, c′(B)) = ()c′�c) (B), min
0∈AB

&c (B, 0) = ()�c) (B). (3.2)

Vector notation. We use vector and matrix notation that is standard in the study of Markov

decision processes, including for problems with infinite state spaces. The readers can refer to [100,

Sections 5.5, 6.1–6.2, Appendix C] for background. For each stationary policy c ∈ Π, we use the

compact notation 6c ∈ J for the function 6c (B) = 6(B, c(B)) for all B ∈ S. We define %c to be a

transition operator associated with a policy c. It operates on elements � ∈ J on the right as

(%c�) (B) =
∑
B′∈S

%(B′|B, c(B))� (B′) = Ec [� (B1) | B0 = B] (3.3)

66

and operates on probability distributions d (viewed as row vectors) on the left as

(d%c) (B) =
∑
B′∈S

d(B′)%(B |B′, c(B′)) = Pc (B1 = B |B0 ∼ d) (3.4)

We let %Cc denote the C-step transition operator; the C-step counterparts to (3.3) and (3.4) can be

naturally written as a composition. When the state space is finite, %c = (%(B′|B, c(B)))B,B′∈S ∈ R=×=

denotes the usual transition matrix under c. In this notation, one can write the Bellman operator

concisely as)c� = 6c + W%c� and the cost to-go function as

�c = 6c + W%c�c = · · · =
∞∑
C=0

WC%Cc6c = (� − W%c)−16c .

where (� − W%c)−1 is invertible since W%c has operator norm less than one.

Performance difference. A helpful “variational form” the Bellman equation [101] is

�c − � = ()c� − �) + ()c�c −)c�) = ()c� − �) + W%c (�c − �)

= · · · = (� − W%c)−1 ()c� − �) , (3.5)

for any � ∈ J . A closely related expression is called the performance difference lemma in the

reinforcement literature, after [78].

State distributions. We define the discounted state-occupancy measure under any policy c and

initial state distribution d as:

[c = (1 − W)
∞∑
C=0

WCd%Cc = (1 − W)d(� − W%c)−1. (3.6)

When the state space is finite, [c and d are both row vectors. Recognize that d%Cc is the distribution

of the state at time C, so [c (B) evaluates the discounted fraction of time the system spends at state

B under policy c.

67

Scalar loss function. Although classical dynamic programming methods seek a policy that min-

imizes the expected cost incurred from every state, for policy gradient methods it is more natural

to study a scalar loss function

ℓ(c) = (1 − W)d�c = (1 − W)
∑
B∈S

�c (B) d(B),

in which the states are weighted by their initial probabilities under d and we have normalized costs

by (1 − W) for convenience.

Exploratory initial distributions. We assume throughout that d is supported on the entire state

space, i.e. d(B) > 0 for all B ∈ S. Our results critically rely on the use of an exploratory initial

distribution. This is not an artifact of the proof technique and it is well known that, in the absence

of strong assumptions on the transition kernel3, policy gradient methods have poor convergence

properties if applied without an exploratory initial distribution. See Appendix B.3 for a full dis-

cussion. While this aspect of policy gradient methods is not always highlighted in the literature,

many applied papers assume access to a diverse set of starting states using either explicit restarts

[104, 105] or some form of continual learning that aims to increase the support of the training

distribution [106, 107]. Since d(B) > 0 ∀ B ∈ S, note that c ∈ arg minc̄ ℓ(c̄) if and only if

c ∈ arg minc̄ �c̄ (B) ∀ B ∈ S.

Parameterized policies. Policy gradient methods search over a parameterized class of policies,

ΠΘ = {c\ (·) : \ ∈ Θ} ⊂ Π which have corresponding cost-to-go functions JΘ = {�c\ : \ ∈ Θ}.

To indicate that we are referring to a policy in the restricted policy class, rather than an arbitrary

stationary policy c ∈ Π, we typically either write c\ or specify that c ∈ ΠΘ. We assume that

Θ ⊂ R3 is convex and AB ⊂ R: is convex for each B ∈ S. In some cases, like inventory or linear

quadratic control problems, the set of actions is naturally taken to be convex. In others, like MDPs

3Our assumption that d(B) > 0 was is used in our analysis to ensure that the state occupancy measure is lower
bounded, meaning inf c [c (B) > 0. Some authors assume the environment automatically drives the agent into each
state.

68

with a finite set of base actions, the action set is convexified by takingA = Δ:−1 to the probability

simplex over : elements. See Example 3 in Section 3.5.

We overload notation, writing ℓ(\) = ℓ(c\). Policy gradient methods aim to minimize this loss

function using gradient descent or a related first-order method. We later state results on smoothness

conditions which ensure differentiability of ℓ(·).

Norms. For our results, we often consider the weighted 1-norm, ‖�‖1,F =
∑
B |� (B) | F(B) and the

weighted maximum norm ‖�‖∞,F = supB∈S |� (B) |F(B) for some F : S → R+. When F(B) = 1 for

all B ∈ S, we simplify notation and write ‖�‖1 and ‖�‖∞ respectively.

3.4 Convergence to stationary points in smooth optimization

Given that the policy gradient objective is almost always non-convex, optimization algorithms

generally will not converge to a global minimum. Instead, classical theory suggests many algo-

rithms converge to stationary points of the objective. This motivates our approach of studying

the landscape of the policy gradient objective — and in particular the quality of its (approximate)

stationary points — rather than studying convergence of specific algorithms.

We briefly review the theory of convergence to stationary points. A much more complete treat-

ment can be found in nonlinear optimization textbooks [see e.g 108]. As made formal by the

following definition, a stationary point satisfies the first-order necessary conditions for optimality.

We say that a function has no-suboptimal stationary points if all such points are global minima.

That is, the first-order necessary conditions are also sufficient. Note that, in unconstrained prob-

lems, where X = R3 , a stationary point G satisfies ∇ 5 (G) = 0.

Definition 1. Consider the optimization problem minG∈X 5 (G) where X ⊂ R3 is a closed convex

set and 5 is continuously differentiable on an open set containing X. A point G ∈ X is a stationary

point4 if 〈∇ 5 (G), G′ − G〉 ≥ 0 for all G′ ∈ X . We say 5 (·) has no suboptimal stationary points if

any stationary point G satisfies 5 (G) = infG ′∈X 5 (G′).
4These points are sometimes called first order stationary points, to distinguish them from points that also satisfy

second order necessary conditions for optimality. Throughout this paper, we refer only to first order stationary points.

69

Under appropriate smoothness and regularity conditions, many optimization algorithms are

guaranteed to converge to first-order stationary points. To make this concrete, we include an illus-

trative result that applies to the projected gradient descent algorithm. This result can be generalized

in numerous ways. One strengthening of this result provides finite time bound on the rate of con-

vergence to a stationary point, which we will review in Section 3.8. Another generalization, which

we do not consider here, would treat stochastic noise in gradient evaluations. A rich literature on

stochastic approximation shows that, under regularity conditions and appropriately decaying step-

sizes, most noisy iterative algorithms converge to the same limit as their deterministic counterparts.

See [32] for a very general treatment and [86] for a very readable introduction. A rapidly growing

literature also studies convergence of stochastic first order methods in non-convex optimization

[see e.g. 109, 110, 111, 112, 113, 114, 115, 116, 117].

The result below covers two cases. The first, which is standard in optimization literature

[118], assumes ∇ 5 is Lipschitz, or, for twice differentiable functions, that its Hessian is uniformly

bounded. The second relaxes this condition, only requiring regularity properties on the sub-level

set of the initial iterate. This is possible because projected gradient descent with sufficiently small

step-sizes is guaranteed to reduce cost in each iteration, so all iterates lie in certain sub-level sets.

The restriction that 5 has bounded sub-level sets is satisfied if the feasible region X is itself a

bounded set or if the function is coercive, meaning 5 (G) → ∞ as ‖G‖ → ∞. In problems where

this is not naturally satisfied, it can sometimes be enforced by adding a small penalty function

(e.g. an entropy regularizer) to the objective. Recall that a point G∞ is said to be a limit point of a

sequence {G: } if some sub-sequence converges to G∞.

Lemma 16. Consider the optimization problem minG∈X 5 (G) whereX ⊂ R3 is a closed convex set.

Assume 5 is bounded below and its U–sub-level sets {G ∈ X : 5 (G) ≤ U} are bounded for each

U ∈ R. Consider the sequence G:+1 = ProjX (G: − U∇ 5 (G:))

1. (Amir Beck, [119, 118]) Assume 5 is differentiable on an open set containing X and its

gradient ∇ 5 is Lipschitz continuous on X with Lipschitz constant !. If U ∈ (0, 1/!], the

sequence {G: } has at least one limit point and any limit point G∞ is a stationary point of 5 (·)

70

on X satisfying 5 (G:) ↓ 5 (G∞).

2. Suppose 5 (·) is continuously twice differentiable on an open set containing the sub-level set

{G ∈ X : 5 (G) ≤ 5 (G0)} and its gradient ∇ 5 is Lipschitz continuous on X with Lipschitz

constant !. Then, for a sufficiently small U > 0, the sequence {G: } has at least one limit

point and any limit point G∞ is a stationary point of 5 (·) on X satisfying 5 (G:) ↓ 5 (G∞).

Proof. Proof for the second part closely follows proof for the first part as shown in [119, 118] with

slight modifications. For completeness, we provide a sketch in Appendix B.2. �

3.5 Closed policy classes and the optimality of stationary points

We hope for results that suggest local policy search may succeed when the policy class is

well suited to the decision objective. In the next subsection, we look at the example of linear

quadratic control and identify structural properties that ensure policy gradient methods avoid bad

local minima despite non-convexity of the objective. With this as motivation, we proceed to show

these structural properties ensure the policy iteration loss function has no suboptimal stationary

points more broadly. Beyond linear quadratic control, we instantiate this theory for finite state and

action MDPs as well as for stopping problems with threshold policies.

3.5.1 Motivation from linear quadratic control

Leveraging many of the closed form expressions available for linear quadratic (LQ) control,

recent work of [70] showed that policy gradient methods with linear policies converge to the glob-

ally optimal policy under some technical conditions. This is true even though the total expected

cost incurred is a nasty non-convex function. The key to this result is that the loss function ℓ(·) has

no suboptimal stationary points (and in fact a stronger gradient dominance property holds). Given

the failure of policy gradient methods in Example 1, there must be some special problem structure

driving this, but what?

We identify two key properties for LQ control. First, as highlighted in Equation (3.8) below,

71

the class of linear policies is closed under policy improvement steps. Second, the policy iteration

problem as shown below in (3.10) could be solved to optimality by a gradient method, since it

is convex quadratic and hence has no suboptimal stationary points. Both properties relate to the

nice structure of the policy iteration objective in (3.10) which considers the impact of changing

the policy for only one time step. By contrast, the infinite horizon cost function ℓ(·) is non-convex

and difficult to analyze. Our approach will be to show that, despite non-convexity, ℓ(·) has nice

optimization structure as an immediate consequence of the two properties we’ve identified, leading

to a very simple understanding of policy gradient methods.

Like [70], we simplify the presentation by studying deterministic linear quadratic control5. It

is easy to extend our ideas to noisy dynamics of the form BC+1 = �BC + �0 + ZC for i.i.d noise ZC with

zero mean and finite second moment.

Example 2 (Linear Quadratic Control). For symmetric positive definite matrices ' and �, we face

the optimal control problem:

Minimize
∞∑
C=0

WC
(
0>C '0C + B>C �BC

)
Subject to BC+1 = �BC + �0C , B0 ∼ d

where BC ∈ R= is a continuous state variable and 0C ∈ R: is the action chosen at time C. We assume

per-step costs to be finite, ‖'‖2, ‖�‖2 < ∞, and that the second moment of the initial distribution,

EB∼d [BB>], is finite and positive definite.

A linear policy c\ (B) = \B is known to be optimal for some \ ∈ R:×=, see for example [101,

120, 121]. We consider the search for optimal \ via a gradient method. Unfortunately, the loss

function ℓ(\) = EB∼d
[
�c\ (B)

]
is non-convex (see Appendix B in [70] for a simple example), making

it unclear if gradient descent on ℓ(\) would reach the global minimum.

For LQ control, if a linear policy c\ is applied from a state B0 then from the linear dynamics

5This choice has several benefits. First, it gives an easy expression BC = (� + �\)C B0 for the state evolution helping
readers see the source of non-convexity in �c\ (B). Second, in the noisy case, the cost-to-go functions have an additional
constant term, �c\ (B) = B> \ B + E [Z> \ Z], as compared to the noiseless case, simplifying some expressions.

72

we have BC = (� + �\)BC−1 = · · · = (� + �\)CB0. From this, we can write the cost-to-go function as

�c\ (B0) =
∞∑
C=0

WC
(
B>C \
>'\BC + B>C �BC

)
= B>0

[∞∑
C=0

WC
(
(� + �\)C

)> (
\>'\ + �

)
(� + �\)C

]
︸ ︷︷ ︸

:= \

B0

A linear policy c\ , is said to be stable if all eigenvalues of the matrix
√
W(�+�\) lies strictly within

the unit circle. Let ΘS ⊂ R:×= denote the set of all parameters defining stable linear policies.

ΘS :=
{
\ ∈ R:×= | max

G:‖G‖2≤1

√W(� + �\)G

2 < 1
}

For a stable linear policy, \ is finite and positive definite, ensuring that the cost-to-go is finite.

We assume the system (�, �) is controllable so there exists at least one stable policy. Note that

when W = 1 our definition reduces to the more standard definition of a stable linear policy in

undiscounted problems. See [101] for further discussion of stability in discounted linear quadratic

control.

Even though the total cost function ℓ(\) is non-convex, classical dynamic programming theory

applies to the policy iteration algorithm for LQ control. This dates back at least to the works of

[122] and [123], who showed that even in the undiscounted case, beginning with a stable linear

policy, policy iteration produces a sequence of stable linear policies with strictly improving cost-

to-go and converges to an optimal policy. Essentially, the complexity in analyzing ℓ(\) is due to its

multi-period nature where any changes in the control, \, have a compounding influence on states

visited far out into the future. On the other hand, policy iteration converges to an optimal policy

by solving a sequence of much simpler single period decision problems. Beginning with a stable

linear policy c\ (B) = \B, applying the Bellman operator involves solving a quadratic optimization

73

problem, making it easy to plan over single period:

()�c\) (B) = min
0∈R:

[
0>'0 + B>�B + W�c\ (�B + �0)

]
= min
0∈R:

0
>'0 + B>�B + W(�B + �0)> \ (�B + �0)︸ ︷︷ ︸

=& c\ (B,0)

 . (3.7)

It is easy to see that for any state B, a minimizing action is 0∗ = −W(' + W�> \�)−1�> \�B.

Therefore, the linear feedback policy c
\

with \ = −W(' + W�> \�)−1�> \� is a policy iteration

update. In terms of Bellman operators, this can be expressed as

)c
\
�c\ =)�c\ (3.8)

where the Bellman operator corresponding to a linear policy is given by

()c
\
�) (B) = (\B)>'(\B) + B>�B + W� (�B + �\B). (3.9)

Thus, one can perform policy iteration for LQ control by searching over the restricted class of

linear policies. In other words, for LQ control, the class of linear polices is closed under policy

iteration which is the first key property we identified in the beginning of this section.

We can equivalently write (3.8) in terms of Q-functions as: &c\ (B, \B) = min0 &c\ (B, 0) for

all B. For a given B, this optimization problem depends on \ only though \B and hence there is an

entire subspace of optimal solutions. The solution becomes unique either by requiring optimality

at a set of states that span R= or by solving the weighted policy iteration problem

min
\

EB∼[
[
&c\ (B, c\ (B))

]
, (3.10)

where EB∼[[BB>] has full rank. Since &c\ (B, 0) is a convex quadratic function6 of 0, &c\ (B, \B) is

6Cost matrices ',� are assumed to be positive definite and it is easy to show that \ � 0 for all \ ∈ ΘS.

74

a quadratic function of \ (viewing \ is a stacked vector) and this property is preserved by taking

the expectation over B. This shows the weighted policy iteration problem in (3.10) is strongly

convex and hence can be solved efficiently by a gradient method which is the second key property

we identified.

Before giving a simple analysis of the stationary points of the policy gradient loss functions,

we need some basic preliminaries that are specialized to linear quadratic control. First, notice that

the LQ control example does not fit within our general problem formulation, which assumed sin-

gle period costs to be uniformly bounded. For linear quadratic control, costs tend to infinity as

the norm of the state grows and unstable policies will have infinite cost-to-go from some initial

states. However, by restricting to quadratic cost-to-go functions and stable linear policies, impor-

tant properties of Bellman operators still hold. The following lemma states the three properties

we use. These are standard results7 and the proofs is omitted. Define the set of strictly convex

quadratic cost-to-go functions, as

J@ = {� : B ∈ R= ↦→ B> B
�� ∈ R=×= , � 0 }.

Lemma 17 (Bellman operators for LQ control). Consider the linear quadratic control problem

formulated in Example 2. For �, �̄ ∈ J@ and a stable linear policy c\ , the following properties

hold:

1. (Closure on the set of quadratic cost functions))c\ � ∈ J@ and)� ∈ J@.

2. (Monotonicity) If � � �̄ then)c\ � �)c\ �̄ and)� �) �̄.

3. (Bellman equation) �c\ =)c\ �c\ and �c\ = lim:→∞) :c\ �. Moreover, � =)� if and only if

� = �∗.
7Many references state such results in terms of the cost matrices instead of the functions � ∈ J@ . For example, the

uniqueness of solutions to the Bellman optimality equation within J@ is identical to the more common statement that
the algebraic Riccatti equation has a unique positive definite solution.

75

The next lemma establishes smoothness properties of ℓ(·) on sub-level sets. If initialized with

some stable linear policy \0, first order algorithms that are descent methods — meaning they

reduce the cost function in each iteration — are assured to stay within the sub-level set, �ℓ(\0) , on

which these properties are satisfied. Known results in optimization, like Lemma 16, then imply that

gradient descent on ℓ(·) with sufficiently small stepsizes will converge to a first-order stationary

points. Some additional details are provided in Appendix B.4, but the properties in this lemma are

known in the control theory literature [124, 125].

Lemma 18. Consider the linear quadratic control problem formulated in Example 2. The set

ΘS is open and ℓ is twice continuously differentiable on ΘS. For any U ∈ R, the sublevel set

�U :=
{
\ ∈ R=×: : ℓ(\) ≤ U

}
is a compact subset of ΘS and sup\∈�U ‖∇

2ℓ(\)‖ < ∞.

With this background in place, a simple proof shows that for LQ control, the policy gradi-

ent loss function has no suboptimal stationary points despite being non-convex. Starting from a

suboptimal stable linear policy c\ , the policy iteration step produces a linear policy c
\

with re-

duced cost, i.e. ‖
\
‖2 < ‖ \ ‖2 < ∞ which is stable (following Lemma 18). Using the convexity

of the policy iteration objective along with standard dynamic programming arguments, we show

that a soft-policy iteration update forms a descent direction for loss ℓ(·), implying that \ is not

a stationary point. The argument here is strongly reminiscent of the standard analysis of policy

iteration.

Lemma 19. For the linear quadratic control problem formulated in Example 2, any stable linear

policy \ satisfies ∇ℓ(\) = 0 if and only if �c\ = �
∗.

Proof. Consider a stable linear policy c\ and take c
\

to be a policy iteration update to c\ as shown

in (3.8). Set \U = (1 − U)\ + U\ for U ∈ [0, 1], which implies that c\U (B) = (1 − U)\B + U\B (both

76

c\ and c
\

are linear policies). For every B ∈ R=,

)c\U �c\ (B) = &c\ (B, c\U (B)) = &c\ (B, (1 − U)\B + U\B) ≤ (1 − U)&c\ (B, \B) + U&c\ (B, \B)

= (1 − U))c\ �c\ (B) + U)c\ �c\ (B)

= (1 − U)�c\ (B) + U)�c\ (B)

= �c\ (B) − U
(
�c\ (B) −)�c\ (B)

)
where the inequality uses that 0 ↦→ &c\ (B, 0) is convex as shown in the discussion of Example

(2). Repeatedly applying the Bellman operator and using the monotonicity property, �c\ �)�c\ ,

shown in Lemma 17 gives:

�c\ �)c\U �c\ �)2
c\U

�c\ � · · · � �c\U .

Notice that c\U is stable following Lemma 18, since its cost-to-go is always lower than that of c\ .

From this, we have
�c\U − �c\

U
�
)c\U �c\ − �c\

U
�

[
)�c\ − �c\

]
.

Multiplying each side by 1 − W, taking the expectation over B drawn from the initial distribution d,

and then taking U→ 0 gives

3

3U
ℓ(\U)

����
U=0
≤ (1 − W)EB∼d

[
)�c\ (B) − �c\ (B)

]
.

Consider the error in Bellman’s equation � (B) ,)�c\ (B) − �c\ (B). We know � (B) ≤ 0 for

all B. Since \ is suboptimal, � (B) < 0 for some state B. We use the assumption that Σ :=

EB∼d [BB>] � 0 to show that EB∼d [� (B)] < 0. To see this, note that as �c\ ,)�c\ ∈ J@, � (B)

is the difference in quadratic functions and can be written as � (B) = B> B for some symmet-

ric � 0 with ≠ 0. Taking the spectral decomposition, we can write =
∑=
8=1 _8@8@

>
8

,

where (@1, · · · , @=) is an orthonormal basis of eigenvectors, _8 ≤ 0 and min8 _8 < 0. Therefore,

77

EB∼d [� (B)] =
∑=
8=1 _8EB∼d [(@>8 B)2] =

∑=
8=1 _8@

>
8
Σ@8 < 0 as desired. �

Remark 2. This argument of constructing an improved policy using soft policy iteration updates

is strongly reminiscent of the idea underlying Conservative Policy Iteration (CPI) algorithm of

[78] for finite MDPs. A similar argument is given in [98] to study the stationary points of the

policy gradient loss function in problems with finite action spaces and convex policy classes. The

argument here is more general as it applies to problems with infinite action spaces and structured

cost functions.

While we find this proof to be intuitive, it relies not just on the closure property in (3.10) but on

convexity of the policy class and on convexity of the policy iteration cost function (3.10), which will

not hold in all of our examples8. One contribution of this paper is to find a clean generalization of

this intuitive but limited proof strategy, relaxing convexity conditions into Condition 2 in the next

subsection.

3.5.2 General results

Let us generalize (3.10) by introducing the weighted policy iteration, or “Bellman” objective,

B(c′ | [, �c) = EB∼[[()c′�c) (B)] = EB∼[[&c (B, c′(B))] , (3.11)

and overload notation to write B(\ | [, �c) = B(c\ | [, �c). Recall that ()c′�c) (B) ≡ &c (B, c′(B)),

which is the reason for the second equality in (3.11).

In order to speak meaningfully about the convergence of policy gradient methods, some regu-

larity conditions of the loss function ℓ(\) are needed. The following states smoothness conditions,

related to partial differentiability of B(·), that ensure ℓ(·) is differentiable and its gradients satisfy

a convenient formula used in practical implementations [126, 65, 1]. Subsection 3.5.3 will show

these conditions arise quite naturally and will discus basic smoothness conditions on the problem

under which it holds. We call this condition 0, because it is not related to global convergence of

8For example, the class of threshold policies, used in the optimal stopping problem in Example 4, is not convex. If
c\ (B) = 1(B ≤ \) for \ ∈ R is a threshold policy, then 1

2c\ +
1
2c\′ is not a threshold policy when \ ≠ \ ′.

78

policy gradient so much as whether the algorithms themselves are even well defined.

Condition 0 (Differentiability). For each \ ∈ Θ, the functions \ ↦→ B(\ |[c\ , �c\) and \ ↦→

B(\ |[c
\
, �c\) are continuously differentiable on an open set containing \.

Clearly, when [(B) > 0 ∀ B ∈ S, minimizing (3.11) over all policies c′ is equivalent to classical

policy iteration. Policy gradient methods are more closely related to the following weighted policy

iteration scheme:

\C+1 = arg min
\∈Θ

B(\ | [c\C , �c\C),

which preforms policy iteration style updates over the parameterized policy class, ΠΘ. In general,

this scheme may chatter endlessly. But, it is assured to converge to an optimal policy when the

policy class is closed under policy improvement. As explained in the introduction, this condition

is stronger than the requirement that ΠΘ contains an optimal policy. However, this condition is

necessary, since Example 1 shows policy gradient methods can get stuck in bad local minima even

in extremely simple examples in which ΠΘ contains an optimal policy but is not closed under

policy improvement. Note that Condition 1 is much weaker than requiring the policy class is rich

enough to contain nearly all policies, accommodating examples in which a certain class of policies

is naturally aligned with the decision task, for example linear policies in LQ control or threshold

policies in optimal stopping.

Condition 1 (Closure under policy improvement). For each c ∈ ΠΘ , there exists c+ ∈ ΠΘ such

that)c+�c =)�c. Equivalently, B(c+ |[, �c) = minc′∈Π B(c′|[, �c) for each probability distribu-

tion [over S.

As a first order method, policy gradients require additional local optimization structure to suc-

ceed. The following condition ensures that the weighted policy iteration problem is amenable to

first-order optimization. It is worth emphasizing that the total cost function ℓ(\) is complicated and

non-convex in all the examples we consider. This is due to the multi-period nature of the decision

79

problem, in which changes to the policy can have a compounding effect9 over time. On the other

hand, the weighted policy iteration objective \̄ ↦→ B(\̄ |[c\ , �c\) is typically much simpler as it

considers only a single period decision problem and often has a nice structure.

Condition 2 (Stationary points of the policy iteration objective). For each c ∈ ΠΘ, the function

\ ↦→ B(\ | [c, �c) has no sub-optimal stationary points.

Recall, we already noted that &c (B, c\ (B)) is a convex quadratic function of \ for the LQ

control problem, which by definition implies that \ ↦→ B(\ | [c, �c) is convex quadratic. Similarly,

for finite MDPs, we show it to be linear in Section 3.5.5. We also verify Condition 2 for the optimal

stopping problem in Section 3.5.5.

The next theorem offers a broad generalization of the result for LQ control shown in Lemma 19.

After developing some supporting results in the next subsection, we prove Theorem 5 in Section

3.5.4.

Theorem 5. Suppose Conditions 0, 1, and 2 hold. Then, ℓ is continuously differentiable and \ ∈ Θ

is a stationary point of ℓ(·) if and only if �c\ = �
∗.

3.5.3 A sharp connection between policy gradient and weighted policy iteration

The key to our approach is a sharp relationship between between policy gradient methods and

the weighted policy iteration scheme

\C+1 = arg min
\∈Θ

B(\ | [c\C , �c\C), (3.12)

which performs policy iteration style updates over ΠΘ. In light of the policy gradient theorem

below, when Θ = R3 is unconstrained, gradient descent for ℓ(\) with a constant stepsize U can be

shown to be equivalent to gradient updates with the weighted policy iteration objective.

\C+1 = \C − U∇\ B(\ | [c\C , �c\C)
����
\=\C

.

9In terms of the distribution of states and actions visited over a trajectory under the updated policy vs the old policy.

80

Policy gradients and weighted policy iteration differ in two ways. First, policy gradient methods are

incremental, making a parameter update based on a gradient of (3.11) rather than solving it exactly.

Second, the state-relevance weights [are updated over time to reflect the frequency of states visited

by the current policy. This idea is central to our main results presented subsequently. Under

suitable regularity conditions, allowing the exchange of differentiation and integration, gradients

of B can be rewritten as

∇\B(\ |[c, �c) = ∇\EB∼[c [&c (B, c\ (B))] = EB∼[c [∇\&c (B, c\ (B))] .

It is worth mentioning that, although policy gradient theorems are widely used in reinforcement

learning [66, 126, 127], our very general presentation of this result and the short proof does not

seem to be widely understood in the literature.

Lemma 20 (Policy gradient theorem). Under Condition 0, ℓ(\) is continuously differentiable and

∇ℓ(\) = ∇
\
B(\ | [c\ , �c\)

����
\=\

.

Proof. Denote �\ ≡ �c\ , %\ ≡ %c\ and [\ ≡ [c\ . The variational Bellman equation in (3.5) states

�
\
− �\ =

∞∑
C=0

WC%C
\
()
\
�\ − �\).

Recall the definition of the discounted state occupancy measure, [
\
= d

∑∞
C=0 W

C%C
\
, in (3.6) and the

81

definition of the policy iteration objective in (3.11). Then,

ℓ(\) − ℓ(\) = (1 − W)d (�
\
− �\) = (1 − W)d

∞∑
C=0

WC%C
\
()
\
�\ − �\)

= (1 − W)
∞∑
C=0

WCd%C
\
()
\
�\ − �\)

=
∑
B∈S

[
\
(B) ()

\
�\ − �\) (B)

= B(\ |[c
\
, �c\) − B(\ |[c\ , �c\)

Expanding the total derivative in terms of partial derivatives gives,

∇ℓ(\) = ∇
\
B(\ |[

\
, �\)

����
\=\

− ∇
\
B(\ |[

\
, �\)

����
\=\

= ∇
\
B(\ |[\ , �\)

����
\=\

.

�

Although Condition 0 may initially appear unnatural, the proof shows that it arises naturally

in calculating the derivative of ℓ(\). Let us briefly remark on what is required for the condition to

hold. The differentiability of \ ↦→ B(\ |[c\ , �c\) holds if ∇
\
&c\ (B, c\ (B)) exists at every B ∈ S

and EB∼[c\

��� m
m\8
&c\ (B, c\ (B))

��� < ∞. The second condition, that \ ↦→ B(\ |[c
\
, �c\) is related to the

existence of derivative of the state occupancy measure [128, 129].

There is a substantial literature in applied probability that studies technical sufficient conditions

which imply differentiability and the validity of particular estimators. See [130, 131, 132] for

broad introductions. We do not try to advance that literature, instead focusing on the convergence

of policy gradient methods when they are well defined.

3.5.4 Proof of Theorem 5

We first give a key lemma, which can be viewed as a Bellman-type equation that holds when

the single period objective \ ↦→ B(\ | [c\ , �c\) has no bad stationary points.

82

Lemma 21. Suppose Condition 2 is satisfied. If \ is a stationary point of ℓ : Θ→ R, then

E
[
�c\ (()

]
= min
c∈ΠΘ
E

[
()c�c\) (()

]
,

where the expectation is over (drawn from [c\ .

Proof. If \ is a stationary point of ℓ : Θ → R, then by Lemma 20, it is a stationary point of the

function \ ↦→ B(\ | [c\ , �c\). Since Condition 2 holds, this means

B(\ | [c\ , �c\) = min
\∈Θ
B(\ | [c\ , �c\).

Recalling the definition of B(\ | [, �c) in (3.11) lets us rewrite both sides of this equation. To

simplify the expressions, take (to be a random state drawn from [c\ . Then,

E
[
�c\ (()

]
= E

[
()c\ �c\) (()

]
= B(\ | [c\ , �c\) = min

\̄∈Θ
B(\̄ | [c\ , �c\) = min

\̄∈Θ
E

[
()c

\
�c\) (()

]
.

�

We now state an “average” form of Bellman’s equation in Lemma 22, which holds due to our

assumption that the initial distribution d places positive probability on every state, ensuring that

[c (B) ≥ (1 − W)d(B) > 0 for all B ∈ S and c ∈ ΠΘ. Using this, the average Bellman equation

reduces to a standard result in dynamic programming which argues that satisfying the Bellman’s

equation is necessary and sufficient for optimality, i.e. �c = �∗ ⇐⇒ �c =)�c. For completeness,

we give a proof in Appendix B.1.

Lemma 22 (On average Bellman equation). For any c ∈ Π and (∼ [c,

�c = �
∗ ⇐⇒ E[�c (()] = E[)�c (()]

The proof of Theorem 5 now follows as an immediate consequence of the closure assumption

as stated in Condition 1.

83

Completing the proof of Theorem 5. Suppose \ is a stationary point of ℓ(·). We have

E
[
�c\ (()

]
= min
c∈ΠΘ
E

[
)c�c\ (()

]
= E

[
)�c\ (()

]
where the first equality uses Condition 2 to invoke Lemma 21 and the second equality uses Con-

dition 1. Finally, Lemma 22 shows that satisfying the average Bellman equation implies optimal-

ity. �

3.5.5 Examples beyond LQ control

Having looked at the LQ control example in detail, we describe two other problem settings to

which our results will apply. We show how Conditions 1 and 2 continue to hold for these problems

as well.

Example 3 (Finite state action MDPs). Consider a problem with finite number of states, S =

{1, · · · , =}. For notational simplicity, assume the set of feasible actions AB is the same for every

state B and denote this by A. We also assume there is a finite set of : deterministic actions to

choose from and take A = Δ:−1 to be the set of all probability distributions over these actions.

That is, any action 0 ∈ A is a probability vector where each component 08 denotes the probability

of taking the 8th action. Cost and transition functions can be naturally extended to functions on the

probability simplex by defining:

6(B, 0) =
:∑
8=1

6(B, 48) 08 %(B′|B, 0) =
:∑
8=1

%(B′|B, 48) 08 . (3.13)

where 48 is the 8-th standard basis vector, representing one of the : possible deterministic actions.

For this tabular setting, a natural parametrization considers the policy c\ (B) = \B ∈ Δ:−1

which associates each state with a probability distribution over actions. Rather than track the

policy parameter \ = (\B : B = 1, · · · , =) ∈ R=×: we work directly with a stochastic policy

c ∈ R=×: , viewed as a matrix whose rows are probability vectors. In this case, the set of all

stationary randomized policies can be written as Π = {c ∈ R=×:+ :
∑:
8=1 cB,8 = 1 ∀B ∈ {1, · · · , =}}.

84

Since Π contains all stationary policies, it is clearly closed under policy improvement. It is also

worth noting that for any c ∈ Π, B ∈ S and 0 ∈ Δ:−1, the Q-function is linear in 0, as we can write:

&c (B, 0) =
∑:
8=1&c (B, 48)08 = 〈&c (B, ·), 0〉. Therefore, the weighted policy iteration objective,

B(c′|[c, �c) = EB∼[c [&c (B, c′(B))]

is convex (linear) in c′ and can be optimized efficiently using projected gradient descent, for ex-

ample.

Remark 3 (Regularized softmax policies). For tabular MDPs, it is quite common to use a softmax

policy parameterized by \ ∈ R=×: where for any state B, the policy c\ (B) ∈ Δ:−1 is a probability

distribution with components c\ (B) ≡ (c\ (B, 1), · · · , c\ (B, :)) such that

c\ (B, 8) =
4\B,8∑:
9=1 4

\B, 9
8 = 1, · · · , :

To avoid over parameterization, we assume \B,1 = 1 is fixed implying that each \ defines a unique

policy. It is important to note that our result about stationary points in Theorem 5 does not apply in

a meaningful way to the class of softmax policies as it is not closed. For non-degenerate values of

\, any policy c\ is suboptimal as all stationary points lie at corners of the probability simplex, i.e.

c\ (8 |B) = 1 for some 8 ∈ {1, 2, . . . , :} for every state B, which corresponds to some components

of \ becoming infinite. Convergence to stationary points can only occur in the limit as some

components of \ tend to infinity, sending the probability of certain actions to zero. This kind of

convergence is not treated in standard optimization results like Lemma 16.

One way to make our results meaningful for softmax policies is by adding a small regularizer to

the cost function that penalizes near-deterministic actions10. To sketch this idea, consider defining

6(B, 0) = ∑:
8=1 6(B, 48)08+'(0) where '(0) → ∞ if 08 → 0 for any 8. This is a feature, for example,

of the relative entropy function '(0) = �KL(* | |0) where * is the uniform distribution (*8 = 1/:
10An alternative is to regularize ℓ(\) directly. We do not consider this as as it does not lie within the scope of our

formulation.

85

for each 8). For such a regularizer, '(c\ (B)) → ∞ as ‖\B‖ → ∞, implying ℓ(\) is coercive.

Continuous and coercive functions are known to attain a global minimum, so arg min\ ℓ(\) is non-

empty and ℓ(·) has an interior minimizer. Our result in Theorem 5 can now be used to show ℓ(\)

has no suboptimal stationary points, and invoking Lemma 16, gradient descent converges to the

global optimum.

We now turn to an example with a structured policy class.

Example 4 (Optimal Stopping). The optimal stopping problem is most naturally formulated as a

reward maximization problem11. In each round the agent observes a state variable GC in a finite

set X, which evolves according to an uncontrolled Markov chain with time-homogenous transition

probabilities P(GC+1 = G′|GC = G) = ?(G′|G). Conditioned on GC , the agent receives an offer HC drawn

i.i.d from a probability distribution that has a density function @GC (·) supported overY. We assume

@GC has a continuous derivative and the offer setY = [Hmin, Hmax] is an interval in R with Hmin > 0.

If the offer is accepted in round C, the process terminates and the decision maker accrues a reward

of WCHC while rejecting the offer in any round is cost-less. The agent’s objective is to maximize the

expected revenue.

The problem can be formalized as a Markov decision process with the state-space S = SC ∪

{)}, consisting of a set of continuation states SC = (X × Y) and a terminal state) that is

cost-less, 6(), 0) = 0 and absorbing, %() |), 0) = 1. To simplify notation, we assume d is an

initial distribution over continuation states SC and there is zero probability of trivial problem

instances that start in the terminal state. We assume the initial distribution factors as d(G, H) =

a(G)@G (H) where a(G) > 0 ∀ G ∈ X. The action action 0 = 0 corresponds to accepting the

offer and terminating while action 0 = 1 continues the game by transitioning to a new state with

probabilities given by

P [BC+1 = (G′, 3H′) | BC = (G, H), 0 = 1] = ?(G′ | G)@G ′ (H′).
11We can imagine costs to be the negative reward in order to be consistent with our formulation.

86

We consider the class of threshold policies where the vector \ ∈ Θ := [Hmin, Hmax] |X| specifies

one stopping threshold per context. The policy c\ (G, H) = 1 (H < \G) rejects all offers below the

threshold.

It is easy to verify that the class of threshold policies is closed under policy improvement, i.e.

Condition 1. For any c ∈ ΠΘ, consider the policy iteration update for any state B = (G, H) ∈ SC:

c+(G, H) = arg max
0∈{0,1}

&c ((G, H), 0)

= arg max
0∈{0,1}

[
0H + (1 − 0)W

∑
G ′∈X

?(G′|G)
∫
Y
�c ((G′, H′))@G ′ (H′)3H′

]
.

Clearly, c+(G, H) = 1 if and only if H exceeds the continuation value which is defined as, 2c (G) :=

W
∑
G ′∈X ?(G′|G)

∫
Y �c (G

′, H′)@G (H′)3H′. Thus, c+ is itself a threshold policy.

We also verify Condition 2 to show that the weighted policy iteration objective has no subop-

timal stationary points and can be therefore solved to optimality by a gradient method. For any

c ∈ ΠΘ, the fundamental theorem of calculus implies

m

m\G
B(\ |[c, �c) = [′c (G)

m

m\G

∫
H∈Y

&c ((G, H), c\ (G, H)) @G (H)3H

= [′c (G)
m

m\G

∫
H∈Y
[1(H ≥ \G)H + 1(H < \G)2c (G)] @G (H)3H

= (2c (G) − \G) [′c (G)@G (\G). (3.14)

where [′c denotes the marginal distribution over X ∪ {)} under [c. As we formulate this as a

maximization problem, any stationary point of B(\ |[c, �c) satisfies,

max
\ ′G∈Y

m

m\G
B(\ |[c, �c) · (\′G − \G) ≤ 0 =⇒ max

\ ′G∈Y
(2c (G) − \G) · (\′G − \G) ≤ 0 (3.15)

Note that 2c (G) < Hmax for any c ∈ ΠΘ and G ∈ X,. This follows by assumption that @G (·) is

supported over Y and therefore W
∫
Y �c (G, H)@G (H)3H < Hmax. Using this with (3.15) implies that

87

if \ is a stationary point then

\G =


2c (G) if 2c (G) ∈ (Hmin, Hmax) ,

Hmin if Hmin ≥ 2c (G)
(3.16)

To show that \′ ↦→ B(\′|[c, �c) has no suboptimal stationary points, consider the policy iteration

update,

\ = arg max
\ ′∈Θ

B(\′|[c, �c) = arg max
\ ′∈Θ

E[c (G,H) [&c ((G, H), c\ ′ (G, H))]

= arg max
\ ′∈Θ

E[c (G,H)
[
1(H ≥ \′G)H + 1(H < \′G)2c (G)

]
For any state (G, H) ∈ S, the improved policy should accept only if the offer H is greater than the

continuation value 2c (G). Hence,

\G =


2c (G) if 2c (G) > Hmin,

Hmin if 2c (G) ≤ Hmin

(3.17)

From (3.16) and (3.17) its clear that any stationary point solves the weighted policy iteration

objective. We verify the additional smoothness properties in Condition 0 in Appendix B.5.

3.6 Beyond closed policy classes: the case of non-stationary policy classes

For finite horizon problems with non-stationary policy classes, we can show that policy gradient

methods face no spurious local minima under a much weaker condition. Rather than require the

policy class is closed under improvement, it is sufficient that the policy class contains the optimal

policy12. For this reason, our theory will cover as special cases a broad variety of finite horizon

dynamic programming problems for which structured policy classes are known to be optimal.

Interestingly, this result relies critically on the use of a non-stationary policy class. In particular,

12Closure of the policy class implies that it contains the optimal policy.

88

Example 1 shows that policy gradient performed with respect to stationary policy classes can get

stuck in bad local minima even if the policy class contains an optimal policy.

As motivation, consider the finite-horizon inventory control in Example 5 for which [71] pre-

viously showed through a somewhat intricate analysis that a stochastic approximation algorithm

converges to the optimal policy, despite non-convexity of the objective.

Example 5 (Finite horizon inventory control). We consider a multi-period inventory control prob-

lem (also popularly known as the newsvendor problem) with backlogged demands where at time

C, we denote BC to be the state of the seller’s inventory, 0C ≥ 0 to be the quantity of inventory

ordered (only non-negative orders are allowed) and FC to be the random demand (assumed to be

i.i.d for simplicity). We assume the demand distribution to have a density which is supported over

a bounded set [0, Fmax]. For a problem with horizon �, the seller’s objective is to minimize total

expected cost

E

[
�−1∑
C=0
(20C + 1max{BC + 0C − FC , 0} + ?max{−BC + 0C − FC , 0})

]
(3.18)

where 2, 1, ? > 0 denote the per unit costs of ordering, holding and backlogging items, respec-

tively. The inventory level evolves as: BC+1 = BC + 0C − FC ∀ C = {0, . . . , � − 1}. Negative inventory

levels correspond to backlogged demand that is filled when additional inventory becomes avail-

able.

It is well known that a base-stock policy is optimal for this setting [101]. Therefore, we consider

the class of base-stock-policies parameterized as ΠΘ =
{
\ = (\0, . . . , \�−1) ∈ R� : \C > 0

}
which

orders inventory c\ (BC) = max{0, \C − BC} at time C. That is, it orders enough inventory to reach a

target level \C , whenever feasible. We also assume that ? > 2. Otherwise, the optimal policy, \∗

never orders inventory.

We can state our formal result without introducing new notation for the finite horizon setting,

by a well known trick that treats finite-horizon time-inhomogenous MDPs as a special case of

infinite horizon MDPs (see e.g. [133]). Essentially, one can imagine that the state space factorizes

89

into � + 1 components as S = S1 ∪ · · · ∪ S� ∪ S�+1, thought of as stages or time periods of the

decision problem. For any policy, a state B ∈ S8 transitions to a state in S8+1 until stage � + 1 is

reached and the interaction effectively ends. We also assume the policy class factors into separate

components. This structure allows us to change the policy in stage ℎ without influencing the policy

at other stages and essentially encodes time-inhomogenous policies.

Condition 3. Suppose the state space factors as S = S1∪· · ·∪S�∪S�+1, where for a state B ∈ Sℎ

with ℎ ≤ �,
∑
B′∈Sℎ+1 %(B′|B, 0) = 1 for all 0 ∈ AB. The final subset S�+1 = {g} contains a single

cost-less absorbing state, with %(g |g, 0) = 1 and 6(g, 0) = 0 for any action 0. The parameter

space is the product set Θ = Θ1 × · · · ×Θ� , where a policy parameter \ = (\1, . . . , \�) ∈ Θ is the

concatenation of � sub-vectors.

Remark 4. As a remark on notation, we assume the state is always endowed with a time index for

simplicity. We write Bℎ or B ∈ Sℎ and therefore in the notation c\ (B) for B ∈ Sℎ or c\ (Bℎ), the

policy depends only on \ℎ. We assume the initial distribution to be supported over all time periods

implying that we can start from any subproblem. For each time period, ℎ ∈ {1, . . . , �}, we assume

d to have a density supported over Sℎ.

For the inventory control proble in Example 5, we assumed the demand distribution to be

bounded for the finite horizon inventory problem. Therefore, Sℎ = [−", "] and Θℎ = [0, "] for

some finite "13.

We now state the main result of this subsection, which applies under conditions much weaker

than those for Theorem 5. As opposed to Condition 1, we only require ΠΘ to contain the optimal

policy. We also need the following which is weaker than Condition 2, since it only treats the

weighted policy iteration objective corresponding to the optimal cost-to-go function, �∗.

Condition 4. The problem min\∈Θ B(\ |[c, �∗) has no suboptimal stationary points.

Recall that Condition 2 considers stationary points of single-period problems, \ → B(\ |[c, �c),

induced by any suboptimal policy c ∈ ΠΘ. For the inventory control problem in Example 5, a sim-
13We only need to search over the set of possible non-negative states to find the optimal threshold.

90

ple argument shown in Appendix B.6 verifies Condition 3. The result, essentially follows by using

convexity of &∗(B, 0) (see Chapter 3 in [101]).

Theorem 6. Suppose Conditions 3 and 4 hold. If the parameterized policy class ΠΘ contains an

optimal policy c∗, then any stationary point \ of ℓ : Θ→ R satisfies �c\ = �
∗.

The full proof is given in Appendix B.6 and proceeds by backward induction. We first show

how all stationary points must play according to an optimal policy at the final-period states B ∈ S� .

From this, we argue that at any stationary point, the policy must also act optimally from any state

B ∈ Sℎ for all ℎ < �.

3.7 The exploratory initial distribution and concentrability coefficients

This section defines a constant, which we call the effective concentrability coefficient, that

measures the efficacy of an exploratory initial distribution. This constant will impact the quality

of the convergence rates in established in Section 3.8 and the approximation results established in

Section 3.9.

To motivate this definition, let us first recall some of our results in Section 3.5 which show that

any stationary point of the policy gradient loss function has a corresponding cost-to-go function

which satisfies an average form of Bellman’s equation. Crucially, as confirmed in Lemma 22,

this implies such policies are optimal. Extending our analysis requires connecting the magnitude

of errors in Bellman’s equation to the optimality gap. As an example, if the Bellman optimality

operator) is a contraction in a norm ‖ · ‖ then

‖� − �∗‖ ≤ 1
(1 − W) ‖� −)�‖ ∀ � ∈ J . (3.19)

See [101] or (B.3) in Appendix B.1. Here it is critical that) is a contraction in the same norm that

is used to measure distance from the optimal cost-to-go function.

We define a constant, ^d, which enables the same inequality as in (3.19) in the weighted norm

‖ · ‖1,d, in which) is typically not contractive. Intuitively, ^d captures how errors in the cost-to-go

91

functions manifest in Bellman errors when sampling from the exploratory initial distribution d.

Recall that JΘ = {�c\ : \ ∈ Θ} is the set of cost-to-go functions induced by the parameterized

policy class. It is critical, at least for some of our results (Lemma 26 for example), that we measure

^d only on this subclass of cost-to-go functions and not all functions � : S → R.

Definition 2. Define the effective concentrability coefficient ^d of the class of cost-to-go functions

JΘ to be the smallest scalar such that

‖� − �∗‖1,d ≤
^d

(1 − W) ‖� −)�‖1,d ∀� ∈ JΘ. (3.20)

If no such scalar exists then we say ^d = ∞.

This definition is motivated by two important factors. First, the optimality gap under ℓ(·) can

be written as ℓ(c\) − minc∈Π ℓ(c) = (1 − W)‖�c\ − �∗‖1,d, mirroring the left hand side of (3.20)

modulo a constant factor. Second, due to the policy gradient formula in Lemma 20, our results

naturally depend on errors Bellman equation weighted under the state occupancy measure [c. See

Lemma 22, for example. As [c (B) ≥ (1−W)d(B), it makes sense to therefore measure the Bellman

errors in ‖ · ‖1,d.

We call ^d the effective concentrability coefficient, since it plays a role similar to the concentra-

bility coefficients ([134, 135]) that are widely used in the analysis of approximate value and policy

iteration algorithms [134, 135, 136, 137, 78, 98, 138]. See [139] for a detailed comparison on

different notions of the concentrability coefficient. Note, instead of stating a more restrictive regu-

larity assumption on the MDP or the initial distribution, our definition of ^d in (3.20) is precisely

the quantity we need in our analysis. We now give various bounds on ^d below.

The first bound depends on the likelihood ratio between the state occupancy measure under the

optimal policy and the initial distribution. This yields the simple bound ^d < 1/minB d(B) in any

finite state problem, but it could also be finite in some infinite state problems.

92

Lemma 23. Let c∗ denote any optimal stationary policy. Then,

^d ≤ sup
B∈S

[c∗ (B)
d(B)

This result is, essentially, a restatement of a key observation in [78] and can be derived using

the variational form of the Bellman equation (see (B.5) in Appendix B.1), also known as the per-

formance difference lemma [78]. For completeness, we give a short proof in Appendix B.7. Such

distributional mismatch terms also appears in the works of [98, 99].

An alternative approach to bounding ^d is to relate the weighted 1-norm to a different norm in

which the Bellman operator is a contraction.

Lemma 24 (Concentrability via norm equivalence). If) is a contraction with modulus W in a norm

‖ · ‖ that satisfies

2‖�‖ ≤ ‖�‖1,d ≤ �‖�‖ ∀ � ∈ J , (3.21)

then ^d ≤ �/2.

Proof. Using that) is contraction with modulus W in ‖ · ‖ implies that ‖� − �∗‖ ≤ 1
(1−W) ‖� −)�

∗‖

(see (B.3) in Appendix B.1). Then,

‖� − �∗‖1,d ≤ �‖� − �∗‖ ≤
�

(1 − W) ‖� −)�‖ ≤
�

2(1 − W) ‖� −)�‖1,d

�

Lemma 24 is potentially useful for many problems where the Bellman operator is a contraction

with respect to a certain weighed norm, as it suggests d should be chosen in a manner that aligns

with that norm’s state weighting. Optimal stopping problem is one such special case in which a

very natural choice of d is suggested by the contraction properties of) . In particular, if d is chosen

to be the stationary distribution of the underlying Markov chain – assuming it is never interrupted

by stopping – then ^d ≤ 1. In practical problems, one could easily sample initial states from d by

simulating this Markov process.

93

Lemma 25 (Concentrability in optimal stopping). For the optimal stopping problem in Example

4 consider the policy c� that never stops (c� (B) = 1 for each B ∈ S�) and suppose the induced

Markov process has stationary distribution ` = `%c� . Then, for the choice d = `, ^d ≤ 1.

Proof. The analysis in [140] shows) is a contraction in ‖ · ‖2,`. Similarly, it is easy to show) is a

contraction with modulus W in ‖ · ‖1,`. The result then follows immediately from Lemma 24. �

Note that the definition of ^d in (3.20) allows for bounds that depend on regularity properties

in the cost-to-go functions of interest. This is potentially useful in cases where generic bounds, for

example in Lemma 23, are pessimistic.

Take the case of linear quadratic control, where the cost-to-go functions induced by the class

of linear policies are quadratic. As a result, we need only the initial distribution to explore the

basis of the state space sufficiently, rather than requiring it to almost perfectly mimic the steady

state distribution of the (unknown) optimal policy. In this case, the following lemma bounds ^d.

One term depends on the condition number of the second moment matrix under initial distribution

d while the other depends on ‖� + �\∗‖2 for the optimal linear policy \∗. Recall, we assumed

the system to be controllable. This implies the optimal policy is stable and satisfies ‖� + �\∗‖2 <

1/√W, which ensures that the first term (1−W)
1−W‖�+�\∗‖22

is finite, less than 1 when ‖� + �\∗‖2 ≤ 1, and

becomes large in problems where \∗ is only barely stable.

Lemma 26 (Concentrability in LQ control). Consider the linear quadratic control problem in

Example 2. Suppose Σd := EB0∼d [B0B
>
0] � 0 and let \∗ ∈ R=×: denote the parameter of an optimal

policy. Then,

^d ≤
(1 − W)

1 − W‖� + �\∗‖22
·
_max

(
Σd

)
_min

(
Σd

) .
3.8 Convergence rates for policy gradient methods

Our result in Theorem 5 guarantees that any stationary point of the policy gradient objective,

ℓ(·) is globally optimal assuming (i) the policy class is closed in policy improvement and (ii)

the weighted policy iteration objective function, \ ↦→ B(\ | [c, �c) has no sub-optimal stationary

94

points for any c ∈ ΠΘ and distribution [supported over the entire state space S. This however

only implies an asymptotic result: optimizing the policy gradient objective with first order methods

converges asymptotically to a stationary point which is also globally optimal. From a practitioners

perspective however, we also care about finite time convergence rates which provide bounds on the

optimality gap after say a finite number of policy gradient updates.

Our main insight in this section is to identify conditions which guarantee that the policy gradi-

ent objective is gradient dominated. The result follows if the weighted policy iteration objective,

\ ↦→ B(\ | [c, �c) is gradient dominated and the policy class is closed (condition 1). We use the

policy gradient theorem in Lemma 20 to show how these conditions translate to gradient domi-

nance of ℓ(·). This is useful as under suitable smoothness assumptions, it is well known that first

order methods converge rapidly to the globally optimal solutions if the objective is gradient dom-

inated [see e.g 141]. Such gradient dominance conditions also underly the proof of [70] for linear

quadratic control.

We remark that assuming the weighted policy iteration objective to be gradient dominated is

not entirely impractical. As noted before in Section 3.5, \ ↦→ B(\ | [c, �c), is linear for finite

MDPs and quadratic for LQ control problem and therefore our results in this section immediately

apply to these examples.

3.8.1 Background on Gradient Dominance

Throughout this section, we consider the optimization problem minG∈X 5 (G) where X ⊆ R3 .

When X ⊂ R3 , we assume it to be a closed convex set and let 5 be differentiable on an open set

containing X. Recall that the defining feature of a convex function is that it lies above its tangents,

that is for each G ∈ X, 5 (G′) ≥ 5 (G) + 〈∇ 5 (G) , G′−G〉 for every G′ ∈ X. In analysis of optimization

algorithms, this property not only implies that 5 (·) has no suboptimal stationary points, it can be

used to bound the optimality gap by a measure of distance from stationarity, as

min
G ′∈X

5 (G′) ≥ 5 (G) + min
G ′∈X
〈∇ 5 (G) G′ − G〉.

95

Assuming ‖G − G′‖ ≤ ' for all G, G′ ∈ X, one can deduce that minG ′∈X 5 (G′) ≥ 5 (G) + '‖∇ 5 (G)‖,

indicating that the gradient norm bounds sub optimality. When 5 (·) is strongly convex, this con-

clusion can be strengthened, leading to faster convergence rates. In particular, if 5 is `–strongly

convex, then

min
G ′∈X

5 (G′) ≥ 5 (G) + min
G ′∈X

[
〈∇ 5 (G), G′ − G〉 + `

2
‖G − G′‖22

]
.

When X = R3 , this says minG ′∈X 5 (G′) ≥ 5 (G) − `

2 ‖∇ 5 (G)‖
2
2, so the optimality gap is bounded by

the squared norm of the gradient in this case.

Below, we introduce a notion of gradient dominance. This definition, essentially, assumes a

critical implication of convexity or strong convexity rather than assuming these properties them-

selves. According to the definition below, a convex function is (1, 0)–gradient dominated. A

`–strongly convex function is (1, `)–gradient dominated.

Definition 3. For X ⊆ R3 , we say 5 is (2, `)–gradient dominated over X if there exists a constant

2 > 0 and ` ≥ 0 such that

min
G ′∈X

5 (G′) ≥ 5 (G) + min
G ′∈X

[
2 〈∇ 5 (G), G′ − G〉 + `

2
‖G − G′‖22

]
∀ G ∈ X. (3.22)

The function is said to be gradient dominated with degree 1 if ` = 0 and gradient dominated of

degree two if ` > 0.

For X ⊂ R3 , the definition above may seem somewhat non-standard as authors typically con-

sider unconstrained optimization (see [74, 70] for example), in which case the definition reduces

to the well known Polyak-Lojasiewicz (PL) inequality [72],

min
G ′∈X

5 (G) ≥ 5 (G) − 2
2

2`
‖∇ 5 (G)‖22.

Under gradient dominance conditions, popular first order optimization algorithms are assured

to converge to the global minimum and a simple analysis provides finite time rates of convergence

as shown in Lemma 27 below. The first result focuses on projected gradient descent, strengthening

96

Lemma 16 by providing a convergence rate. This result is obtained by using a well known fact

that projected gradient descent reaches an approximate stationary point rapidly (approximately at

O(1/
√
)) rate), and then using the definition of gradient dominance to relate approximate station-

arity to the optimality gap. The second case considers an unconstrained problem shows a geometric

convergence rate. The analysis here is essentially identical to the typical analysis of gradient de-

scent for strongly convex objectives. Recall that a differentiable function is said to be !-smooth if

∇ 5 (G) is Lipschitz with constant ! with respect to the Euclidean norm.

Lemma 27 (Convergence rates for gradient dominated smooth functions). Consider the problem,

minG∈X 5 (G) where X ⊆ R3 . Assume 5 be !–smooth on X and a non-empty solution set. Denote

5 (G∗) = minG ′∈X 5 (G′). Consider the sequence GC+1 = ProjX (GC − U∇ 5 (GC)).

1. Let X ⊂ R3 such that ‖G − G′‖2 ≤ ' < ∞ for all G, G′ ∈ X. Assume 5 is :-lipschitz and

(2, 0)–gradient-dominated and where U ≤ min{ 1
:
, 1
!
}. Then,

min
C≤)
{ 5 (GC) − 5 (G∗)} ≤

√
2'22 (5 (G0) − 5 (G∗))

U)

2. Karimi et. al. [74], Polyak [72] Assume X = R3 and U = 1/!. If 5 is (2, `)–gradient-

dominated for ` > 0, then,

5 (GC) − 5 (G∗) ≤
(
1 − `

22!

) C
(5 (G0) − 5 (G∗))

Proof. See Appendix B.2 for a detailed proof of Part (1). �

Remark 5. Part (2) of Lemma 27 assumes X = R3 , in which case the sequence GC is produced by

gradient descent with a fixed stepsize. It is likely possible to show geometric rates for projected

gradient descent on constrained subsets X ≠ R3 . We do not consider this case for brevity.

97

3.8.2 Gradient dominance of the policy gradient objective

We continue to assume that the policy class is closed under policy improvement, as stated in

Condition 1. But now, instead of assuming the policy improvement objective has no sub-optimal

stationary points, we impose a stronger property that it is gradient dominated. This condition holds

whenever the single period objective solved by policy iteration is convex and therefore immediately

applies to the LQ control problem as well as for tabular MDPs.

Condition 5 (Gradient dominance of the weighted policy iteration objective). For any c ∈ ΠΘ, the

function \ ↦→ B(\ | [c, �c) is (2, `)–gradient-dominated over Θ.

This gradient dominance condition ensures the single-period objective optimized by policy

iteration problem could be solved efficiently by first order methods. Our main result in Theorem 7

shows that for closed policy classes, this gradient dominance condition is automatically inherited

by the multi-period objective ℓ(·), implying convergence rates for first-order methods applied to

ℓ(·). Notice that the constants degrade with the horizon and the concentrability coefficient ^d

stated in Definition 3.20. The Corollary 1 provides a more interpretable statement, which follows

because any convex B(\ |[c, �c) is (1, 0)–gradient-dominated any `–strongly–convex B(\ |[c, �c)

is (1, `)–gradient-dominated.

Theorem 7. If Conditions 0, 1, and 5 hold, then ℓ(·) is
(

1−W
^d
· 2 , 1−W

^d
· `

)
–gradient dominated.

Corollary 1. Suppose Conditions 0 and 1 hold. If, for every c ∈ ΠΘ, the function \ ↦→ B(\ |

[c, �c) is convex, then ℓ(\) is gradient dominated of degree one. If \ ↦→ B(\ | [c, �c) is strongly

convex then ℓ(\) is gradient dominated of degree two.

The proof can be divided into two key steps. First, we use closure property of the policy

class to upper bound the optimality gap of the policy gradient objective with that of the weighted

policy iteration objective. Essentially, this result shows that the current policy is nearly optimal if

the weighted policy iteration step offers little improvement over the current policy; assuming the

policy iteration step can be performed exactly and there is sufficient exploration, d(B) > 0 ∀ B ∈ S.

98

It is important to note how optimality here crucially depends on the use of an exploratory initial

distribution under which ^d < ∞. The second step of the proof translates gradient dominance of

the policy iteration objective to that of ℓ(·) by using the policy gradient theorem in Lemma 20.

Proof of Theorem 7. We first derive a consequence of the closure condition. Let (denote a random

draw from [c\ . We have,

ℓ(c\) −min
c
ℓ(c) = (1 − W)

∑
B∈S

d(B)
(
�c\ (B) − �∗(B)

)
(0)
= (1 − W)‖�c\ − �∗‖1,d
(1)
≤ ^d‖�c\ −)�c\ ‖1,d
(2)
≤

^d

(1 − W) ‖�c\ −)�c\ ‖1,[c\

=
^d

(1 − W)E
[
�c\ (() −)�c\ (()

]
(3)
=

^d

(1 − W)E
[
�c\ (() − min

c′∈ΠΘ
)c′�c\ (()

]
(4)
=

^d

(1 − W)

(
B(\ | [c\ , �c\) −min

\ ′∈Θ
B(\′ | [c\ , �c\)

)
Here (a) uses that �c\ �)�c\ , (b) directly applies the definition of ^d in Definition 3.20, (c) uses

that [c\ � (1 − W)d (by definition, see (3.6)), (d) directly applies the policy closure condition in

Condition 1, and (e) uses definition of the weighted policy iteration objective in (3.11).

As we assume \ ↦→ B(\ | [c, �c) is (2, `)–gradient dominated for each c ∈ ΠΘ, we have that

for all \ ∈ Θ,

B(\ | [c\ , �c\) −min
\ ′∈Θ
B(\′ | [c\ , �c\) ≤ −min

E∈Θ

[
2 〈∇

\
B(\ | [c\ , �c\)

���
\=\
, E − \〉 + `

2
‖E − \‖22

]
≤ −min

E∈Θ

[
2 〈∇\ℓ(\), E − \〉 +

`

2
‖E − \‖22

]
,

which gives our desired result. The second inequality above uses the policy gradient theorem in

Lemma 20. �

99

3.8.3 Gradient dominance and smoothness for examples 2-4

As noted earlier, the gradient dominance condition for LQ control and finite MDPs follows

from (strong) convexity of the weighted policy iteration objective. However, the weighted policy

iteration cost function is not convex for the optimal stopping problem as described in Example

4. Nevertheless, we show below in Lemma 28 that the total cost function, ℓ(·) is in fact gradient

dominated using a more direct argument.

Recall that for the optimal stopping problem we assume a(G) > 0 for all contexts G ∈ X and

@G (·) to be a density supported over the offer set Y such that the initial distribution factorizes

as d(G, H) = a(G)@G (H). The gradient dominance constants depend on a measure of the degree

of uniformity in the initial distribution d(G, H). For a general start state distribution, Lemma 23

bounds ^d but Lemma 25 shows that we get a tighter bound of ^d ≤ 1 is possible when d is chosen

to be the stationary distribution.

Lemma 28 (Gradient dominance for optimal stopping). Denote ^d to be the concentrability co-

efficient of the initial distribution d(G, H) = a(G)@G (H). Define k := min(G,H)∈SC a(G) @G (H) and

V := max(G,H)∈SC a(G) @G (H). Then, ℓ(·) is (V

^dk
, 0) gradient dominated.

Proof. See Appendix B.5 for details. �

In addition to gradient dominance, the convergence rates described in Lemma 27 apply to

smooth objectives. We refer the readers to Lemma E.3 in [99] which shows smoothness of ℓ(·) for

tabular MDPs. For the LQ control problem, recall how Lemma 18 shows that ℓ(·) is smooth on sub-

level sets. As the gradient update, \′ = \ − ∇ℓ(\), stays in the sub-level set with an appropriately

small step-size (see proof of Lemma 16 in Appendix B.2), a rate result simlar to Lemma 27 can

therefore be shown for LQ control. We omit this for simplicity.

A smoothness results also holds for the optimal stopping objective as shown below. The proof

follows by showing that ℓ(\) is twice continuously differentiable and leveraging that continuous

functions are bounded on compact sets. See Appendix B.5 for details.

100

Lemma 29 (Cost function for optimal stopping). In the optimal stopping problem in Example 4,

max\∈Θ ‖∇2ℓ(\)‖ < ∞.

3.9 Policy classes closed under approximate policy improvement

So far, we have studied some classical dynamic programming problems that are ideally suited

to policy iteration. The key property we used is that certain structured policy classes are closed

under policy improvement, so that exact policy iteration can be performed when only considering

that policy class. Although simple structured policy classes are common in some applications

of stochastic approximation based policy search [e.g. 142, 143, 144], they are not widely used

in the reinforcement learning literature. Instead, flexible policy classes like those parameterized

by a deep neural network, a Kernel method [145], or using state aggregation [146, 147, 148]

are preferred. We conclude this chapter by presenting some preliminary but interesting progress

toward understanding why, for highly expressive policy classes, any local minimum of the policy

gradient cost function might be near-optimal. We conjecture this theory can at least be clearly

instantiated in special case of state aggregation given in Appendix B.8.

Given an expressive policy class ΠΘ,

inf
c∈ΠΘ

)c�c\ −)�c\

1,[c\
(3.23)

measures the approximation error of the best approximate policy iteration update in the policy class

to the current policy c\ . If ΠΘ were closed under policy improvement steps, the approximation

error would be zero since there would exist a c ∈ ΠΘ such that)c�c\ (B) =)�c\ (B) for every

B ∈ S. Equation (3.23) measures the deviation from this ideal case, in a norm that weights states

by the discounted-state-occupancy distribution [c\ under the policy c\ . Our formal result stated

below in Theorem 8 bounds the optimality gap at a stationary point by the approximation error in

(3.23). Our result in Theorem 8 is reminiscent of results in the study of approximate policy iteration

methods, pioneered by [86, 134, 40, 136, 120], among others. The primary differences are that (1)

101

we directly consider an approximate policy class whereas that line of work considers the error in

parametric approximations to the &-function and (2) we make a specific link with the stationary

points of a policy gradient method. The abstract framework of [78] is also closely related, though

they do not study the stationary points of ℓ(·). Recall the definition of the effective concentrability

coefficient, ^d, which relates errors in the Bellman equation to errors in the cost-to-go functions

weighted under the initial distribution d.

Theorem 8. Suppose Condition 2 holds. If \ is a stationary point of ℓ(·), then

ℓ(c\) −min
c∈Π

ℓ(c) ≤
^d

(1 − W) min
c∈ΠΘ
‖)c�c\ −)�c\ ‖1,[c\

Proof. Suppose \ is a stationary point of ℓ : Θ→ R. Let (denote a random draw from [c\ . Since

condition 2 holds, Lemma 21 implies

E
[(
�c\ −)�c\

)
(()

]
≤

(
min
c∈ΠΘ
E

[
)c�c\ (()

]
− E[)�c\ (()]

)
= min
c∈ΠΘ
‖)c�c\ −)�c\ ‖1,[c\ := n .

where the final equality uses that)c�c\ �)�c\ for any c ∈ ΠΘ. Then, we have

ℓ(c\) −min
c
ℓ(c) = (1 − W)

∑
B∈S

d(B)
(
�c\ (B) − �∗(B)

)
= (1 − W)‖�c\ − �∗‖1,d

≤ ^d‖�c\ −)�c\ ‖1,d

≤
^d

(1 − W) ‖�c\ −)�c\ ‖1,[c\

=
^d · n
(1 − W) ,

where the first inequality follows from the definition of ^d as given in (3.20) and the second in-

equality uses that [c\ � (1 − W)d (by definition, see (3.6)). �

3.10 Notation

102

Table 3.1: Table of Notation for our general problem formulation

W , Discount factor
S , State space

AB ⊂ R: , Convex set of feasible actions when in state B.
Π , Set of all stationary policies
J , Set of bounded real-valued functions on S.

6(B, 0) , Single period expected cost of action 0 in state B
%(B′|B, 0) , Transition probability

6c , Single period cost function under policy c
%c , Markov transition matrix under policy c.

�c ∈ J , cost-to-go function under policy c
&c : S × A → R , state-action cost-to-go function under policy c

�∗ ∈ J , optimal cost-to-go function
c∗ , An optimal policy (satisfying �c∗ = �∗).

&∗ = &c∗ , state-action cost-to go function associated with an op-
timal policy.

)c : J → J , Bellman operator associated with policy c.
) : J → J , Bellman optimality operator.

d , initial distribution with d(B) > 0 ∀B ∈ S. A column
vector.

[c = (1 − W)d(� − W%c)−1 , The discounted state occupancy measure under policy
c.

ℓ(c) = d�c , Expected discounted cost under a random initial state,
policy c.

Θ ⊂ R3 , Convex set of policy parameters
ΠΘ = {c\ : \ ∈ Θ} , Parameterized policy class.
JΘ = {�c : c ∈ cΘ} , Set of cost-to-go functions under parameterized poli-

cies.
ℓ(\) = ℓ(c\) , Overloaded notation for ℓ(cΘ).
B(c′|[, �c) , Policy iteration objective defined in (3.11)

^d , Effective concentrability coefficient described in Sec-
tion 3.7

‖�‖∞ , Max-norm supB |� (B) |
‖�‖1,[, Weighted 1-norm

∑
B [(B) |� (B) |.

∇\ , Gradient operator with respect to \
U , Free step-size parameter in iterative algorithms

103

Chapter 4: On the Linear Convergence of Policy Gradient Methods

In this chapter, we revisit the finite time analysis of policy gradient methods in the simplest

setting: finite state and action problems with a policy class consisting of all stochastic policies

and with exact gradient evaluations. This setting was recently studied by by [99] and [149], who

view these problems as instances of smooth nonlinear optimization problems and suggest small

stepsizes to control for the error due to local linearization. Despite non-convexity of the objective,

their proofs show policy gradient methods find an n–optimal policy within either $
(

1
n

)
or $

(
1
n2

)
iterations, depending on the precise algorithm used.

Instead of viewing the problem through the lens of nonlinear optimization, we take a policy

iteration perspective. We highlight that many forms of policy gradient can work with extremely

large stepsizes and attain a linear rate of convergence, meaning they require only $ (log(1/n))

iterations to reach an n–optimal policy. Our results cover many first order methods applied to the

policy gradient loss function, including projected gradient descent, Frank-Wolfe, mirror descent,

and natural gradient descent. In an idealized setting where stepsizes are set by line search, a one

paragraph proof applies to all algorithms. For natural gradient algorithms, a longer calculation

studies a specific stepsize sequence.

Many caveats apply to these results. The literature claims to effectively approximate natural

policy gradient updates with complex deep neural networks [62], but it is unclear whether un-

derstanding of other first order algorithms contributes to developing practical algorithms. Small

stepsizes may be critical in practice for controlling certain approximation errors and for stabilizing

algorithms. None of these issues are present in simple tabular RL problems, however, and given

the flurry of interest in policy gradient convergence rates, we believe it is valuable for researchers

to have a clear understanding in this idealized case.

104

On concurrent work. Concurrent to this work, two other sets of authors [150, 151] also show

that policy gradient methods for finite MDPs converge linearly. Both these papers contain so-

phisticated analysis of particular policy gradient algorithms. In contrast, by making a more direct

connection to policy iteration, we give simple proofs to show results that apply to a broad range of

algorithms and may give readers a clear understanding of why one would expect policy gradient

methods to converge geometrically for tabular MDPs.

4.1 Problem Formulation

The problem formulation follows that of Chapter 2 but is specialized to the settings of tabular

MDPs. We choose to reproduce it here for convenience of readers. Consider a Markov decision

process (MDP), which is a six-tuple (S,A, 6, %, W, d), consisting of a state space S, action space

A, cost function 6, transition kernel %, discount factor W ∈ (0, 1) and initial distribution d. We

assume the state space S to be finite and index the states as S = {B1, · · · , B=}. For each state B ∈ S,

we assume that there are is finite set of : deterministic actions to choose from and take the action

space,A = Δ:−1 to be the set of all probability distributions over the : deterministic actions. That

is, any action 0 ∈ A is a probability vector where each component 08 denotes the probability of

taking the 8th action. The transition kernel % specifies the probability %(B′|B, 0) of transitioning to

a state B′ upon choosing action 0 in state B. The cost function 6(B, 0) denotes the instantaneous

expected cost incurred when selecting action 0 in state B. Cost and transition functions can be

naturally extended to functions on the probability simplex by defining:

6(B, 0) =
:∑
8=1

6(B, 48) 08 %(B′|B, 0) =
:∑
8=1

%(B′|B, 48) 08 . (4.1)

where 48 is the 8-th standard basis vector, representing one of the : possible deterministic actions.

We assume that per-period costs are non-negative and uniformly bounded, meaning 0 ≤ 6(B, 48) <

∞ for all B ∈ S and 8 ∈ {1, . . . , :}. The assumption that costs are non-negative is without loss

of generality, as one can always add the same large constant to the cost of each state and action

105

without changing the decision problem.

Cost-to-go functions and Bellman operators. A stationary policy c : S → A selects a distri-

bution over the : − 1 dimensional simplex, Δ:−1 for each state B ∈ S. We use the notation c(B, 8)

to denote the probability of selecting action 8 in state B under policy c. Let Π denote the set of all

stationary policies over the simplex, Π = {c ∈ R=×:+ :
∑:
8=1 cB,8 = 1 ∀B ∈ S} and �c : S → R be

the cost-to-go function for any policy c ∈ Π defined as:

�c (B) = Ec

[∞∑
C=0

WC6(B, c(B))
���� B0 = B

]
.

Define the Bellman operator)c : R= → R= under the policy c as

()c�) (B) := 6(B, c(B)) + W
∑
B′∈S

%(B′|B, c(B))� (B′).

The cost-to-go function under policy c is the unique solution to the Bellman equation, �c =)c�c.

Similarly, the Bellman optimality operator, denoted by) : R= → R= is defined as ()�) (B) =

minc∈Π()c�) (B). The optimal cost-to-go function, �∗ which satisfies �∗(B) = minc �c (B) for all

B ∈ S is the unique fixed point of) and that there is at least one optimal policy, c∗ ∈ Π that attains

this minimum for every B ∈ S.

The state-action cost-to-go function corresponding to a policy c ∈ Π,

&c (B, 0) = 6(B, 0) + W
∑
B′∈S

%(B′ | B, 0)�c (B′),

measures the cumulative expected cost of taking action 0 in state B and applying c thereafter. For

any polices c, c′ ∈ Π, we have the relations

&c (B, c(B)) = �c (B), &c (B, c′(B)) = ()c′�c) (B), min
0∈A

&c (B, 0) = ()�c) (B).

Note that for any c ∈ Π, B ∈ S and 0 ∈ Δ:−1, the Q-function is linear in 0, as we can write,

106

&c (B, 0) =
∑:
8=1&c (B, 48)08 = 〈&c (B, ·), 0〉.

Loss function and initial distribution. Policy gradient methods seek to minimize the scalar loss

function

ℓ(c) = (1 − W)
∑
B∈S

�c (B) d(B),

in which the states are weighted by their initial probabilities under d and we have normalized costs

by (1−W) for convenience. We assume throughout that d is supported on S, meaning that d(B) > 0

for all B ∈ S which implies that c ∈ arg minc̄ ℓ(c̄) if and only if c ∈ arg minc̄ �c̄ (B) ∀ B ∈ S.

State distributions. We define the discounted state-occupancy measure under any policy c and

initial state distribution d as:

[c = (1 − W)
∞∑
C=0

WCd%Cc = (1 − W)d(� − W%c)−1.

where [c and d are both row vectors and %c ∈ R=×= denotes the Markov transition matrix under

c, i.e. %c = (%(B′|B, c(B)))B,B′∈S . Note that we have [c (B) ≥ (1 − W)d(B) > 0 as we assumed

d(B) > 0 for all B ∈ S.

4.2 Linear convergence of policy iteration

We briefly revisit the classic policy iteration algorithm as our analysis of policy gradient meth-

ods is intricately tied to it. At the same time, we review some basic properties related to Bellman

operators (see [101] or [100] for proofs). Starting with an initial policy c, policy iteration first

evaluates the corresponding cost-to-go function &c, and then finds the policy c+ with

c+(B) ∈ arg min
0∈A

&c (B, 0) ∀ B ∈ S.

Expressed in terms of Bellman operators, c+ is defined by the property)c+�c =)�c. Analysis of

policy iteration follows from a few basic properties of Bellman operators. First, they are monotone,

107

meaning the element-wise inequality � � �′ implies)� �)�′ and)c� �)c�′. Next, they are

contraction operators contraction operators with respect to the maximum norm. That is, ‖)� −

)�′‖∞ ≤ W‖� − �′‖∞ and ‖)c� −)c�′‖∞ ≤ W‖� − �′‖∞ hold for for any �, �′ ∈ R=. The unique

fixed points of) and)c are �∗ and �c, respectively.

Let us now apply these properties to analyze policy iteration. Observe that

�c =)c�c �)�c =)c+�c . (4.2)

Inductively applying)c+ to each side and using the monotonicity property yields the following

policy improvement property,

�c �)c+�c �)2
c+�c � · · · � �c+ . (4.3)

Since �c �)�c � �c+ � �∗ we have,

‖�c+ − �∗‖∞ ≤ ‖)�c − �∗‖∞ = ‖)�c −)�∗‖∞ ≤ W‖�c − �∗‖∞. (4.4)

From this, we conclude that policy iteration converges at least linearly. Let {cC}C≥0 be the set of

policies produced by policy iteration. Then iterating over (4.4) shows

‖�cC − �∗‖∞ ≤ W‖�cC−1 − �∗‖∞ ≤ · · · ≤ WC ‖�c0 − �∗‖∞.

In fact, sometimes policy iteration converges quadratically in the limit [100].

4.3 A sharp connection between policy gradient and policy iteration

We specialize the presentation of the policy gradient theorem in Chapter 2 to tabular problems.

Recall that 48 denotes the 8-th standard basis vector, representing one of the : possible deterministic

108

actions. Define the weighed policy iteration or "Bellman" objective:

B(c̄ |[, �c) =
∑
B∈S

[(B)&c (B, 48)c̄(B, 8) = 〈&c , c
′〉[×1

where 〈E, D〉, =
∑=
B=1

∑:
8=1 E(B, 8)D(B, 8), (B, 8) denotes the ,-weighted inner product and [c × 1

denotes a weighting that places weight [c (B) · 1 on any state-action pair (B, 8). For a probability

distribution [with [(B) > 0 for each B ∈ S, the policy iteration update to c is a minimizer

c+ ∈ arg minc̄∈Π B(c̄ |[, �c).

The policy gradient theorem connects gradients of the infinite horizon cost function ℓ(·) to

gradients of the single period cost function underlying policy iteration. In particular, we have

∇ℓ(c) = ∇B(c̄ |[c, �c)
����
c̄=c

= ([c (B)&c (B, 48))B∈S,8∈[:]

Equivalently, we can write a first order Taylor expansion of ℓ(·) as

ℓ(c̄) = ℓ(c) + 〈∇ℓ(c) , c̄ − c〉 +$ (‖c̄ − c‖2)

= ℓ(c) + 〈&c , c̄ − c〉[c×1 +$ (‖c̄ − c‖2).

Essentially, we interpret policy gradient ∇ℓ(c) as the gradient of a weighted policy iteration ob-

jective. For tabular MDPs, the policy iteration step is simple as it reduces to solving a linear

optimization problem over the probability simplex, and the solution is to select the best action for

each state. First order methods applied to B(·|[c, �c) can essentially solve such a problem in a

single iteration using a large stepsize and we show that for this reason several first order methods

applied to ℓ(·) will converge as rapidly as policy iteration.

4.4 Policy gradient methods for finite MDPs

We write all algorithms in terms of their evolution in the space of policies Π. Several of them

could instead be viewed as operating in the space of parameters for some parameterized policy

109

class. We discuss this in Remark 6, but keep our formulation and results focused on the space of

policies Π. Note that Π = Δ:−1 × · · · × Δ:−1 is the =-fold product of the probability simplex. This

form of the policy class will cause certain policy gradient updates to decouple across states.

Frank-Wolfe. Starting with some policy c ∈ Π, an iteration of the Frank-Wolfe algorithm com-

putes

c+ = arg min
c̄∈Π

〈∇ℓ(c), c̄〉 = arg min
c̄∈Π

〈&c, c̄〉[c×1 (4.5)

and then updates the policy to c′ = (1 − U)c + Uc+. We use the notation c′ in (4.5) as it is

exactly a policy iteration update to c so Frank-Wolfe mimics a soft-policy iteration step, akin

to the conservative policy iteration update in [78]. Note, the minimization problem in (4.5)

decouples across states to optimize a linear objective over the probability simplex, so

c+(B) ∈ arg min
3∈Δ:−1

3>&c (B, ·)

is a point-mass that places all weight on arg min8 &c (B, 48).

Projected Gradient Descent. Starting with some policy c ∈ Π, an iteration of the projected gra-

dient descent algorithm with constant stepsize U updates to the solution of a regularized

problem

c′ = arg min
c̄∈Π

〈∇ℓ(c), c̄〉 + 1
2U
‖c̄ − c‖22 = arg min

c̄∈Π
〈&c, c̄〉[c×1 +

1
2U
‖c̄ − c‖22.

As U → ∞ (the regularization term tends to zero), c′ converges to the solution of (4.5),

which is exactly the policy iteration update as noted above. For intermediate values of U, the

projected gradient update decouples across states and takes the form:

c′B = Proj2,Δ:−1 (cB − U&c (B, ·))

110

which is a gradient step followed by a projection onto the probability simplex. Note that

from an implementation perspective, projections onto the probability simplex involves a

computationally efficient (O(: log :)) soft-thresholding operation [152].

Mirror-descent. The mirror descent method adapts to the geometry of the probability simplex by

using a non-euclidean regularizer. We focus on using the Kullback Leibler (KL) divergence,

a natural choice for the regularizer, under which an iteration of mirror descent updates policy

c to c′ as:

c′ = arg min
c̄∈Π

〈∇ℓ(c), c̄〉 + 1
U

=∑
B=1

�KL(c̄B | | cB) = arg min
c̄∈Π

〈&c, c̄〉[c×1 +
1
U

=∑
B=1

�KL(c̄B | | cB),

where KL divergence is defined as �KL(? | |@) =
∑:
8=1 ?8 log(?8/@8). It is well know that the

solution to this optimization problem is the exponentiated gradient update [38, Section 6.3],

c′B,8 =
cB,8 · exp{−U[c (B)&c (B, 48)}∑:
9=1 cB, 9 · exp{−U[c (B)&c (B, 4 9)}

.

Again, we can see that c′ converges to a policy iteration update as U→∞.

Natural policy gradient and TRPO. We consider the natural policy gradient (NPG) algorithm of

[77] which is closely related to the widely used TRPO algorithm of [62]. We focus on NPG

applied to the softmax parameterization for which it is actually an instance of mirror descent

with a specific regularizer. In particular, beginning with some policy c ∈ Π, an iteration of

NPG updates to c′:

c′ = arg min
c̄∈Π

〈∇ℓ(c), c̄〉 + 1
U

=∑
B=1

[c (B)�KL(c̄B | | cB)

= arg min
c̄∈Π

〈&c, c̄〉[c×1 +
1
U

=∑
B=1

[c (B)�KL(c̄B | | cB),

=

(
cB,8 · exp{−U&c (B, 48)}∑:
9=1 cB, 9 · exp{−U&c (B, 4 9)}

)
B∈{1,··· ,=},8∈{1,··· ,:}

(4.6)

111

Here, we have used a natural regularizer that penalizes changes to the the action distribution

at states in proportion to their occupancy measure [c. This yields a type of soft policy

iteration update at each state. As discussed above, it is well known that this KL divergence

regularized problem is solved by an exponential weights update [38, Section 6.3].

A potential source of confusion is that natural policy gradient is usually described as steepest

descent in a variable metric defined by a certain fisher information matrix1. In this case,

readers can check that the exponentiated update in (4.6) matches the explicit formula for the

NPG update with softmax policies as given in [77] and [99].

The choice of stepsizes is an important issue for most first order methods. Each of the algo-

rithms above can be applied with a sequence of stepsizes {UC}C≥0 to produce a sequence of policies

{cC}C≥0. We define one stepsize selection rule below.

Exact line search. At iteration C, the update rules for each of the algorithms described above

actually specify a new policy cC+1U for a range of stepsizes, U ≥ 0. We consider an idealized

stepsize rule using exact line search, which directly optimizes over this choice of stepsize at each

iteration, selecting cC+1 = cC+1
U∗ where U∗ = arg minU ℓ(cC+1U) whenever this minimizer exists. More

generally, we define

cC+1 = arg min
c∈ΠC+1

ℓ(c). (4.7)

where ΠC+1 = Closure({cC+1U }) denotes the closed curve of policies traced out by varying U. For

Frank-Wolfe, ΠC+1 = {UcC + (1 − U)cC+ : U ∈ [0, 1]} is the line segment connecting the current

policy cC and its policy iteration update cC+. Under NPG, ΠC+1 = {cC+1U } is a curve where cC+10 = cC

and cC+1U → cC+ as U→∞. Since cC+ is not attainable under any fixed U, this curve is not closed. By

taking the closure, and defining line search via (4.7), certain formulas become cleaner. Of course,

it is also possible to nearly solve (4.7) without taking the closure and obtain essentially the same

1This is equivalent to mirror descent under some conditions [153].

112

results2.

Remark 6 (Policy parameterization and infima vs minima). Algorithms for policy gradients are

usually presented for parameterized policies. For example, a policy gradient algorithm might

search over the parameter \ ∈ R=×: of a softmax policy c\ ∈ Π, defined by c\ (B, 8) ∝ 4\B,8 . Many

of the algorithms described above could equivalently be viewed as searching over the parameter

space. For example, NPG updates the softmax policy c\ by solving

arg min
\

〈&c\ , c\〉[c\×1 +
1
U

=∑
B=1

[c\ (B)�KL(c\ (B, ·) | | c\ (B, ·)).

That is, it solves the same minimization problem as described above, but over the parameterized

policy class. The class of softmax policies ΠΘ := {c\ : \ ∈ R=×3} can approximate any policy

over the simplex to arbitrary precision, so there is no practical distinction between defining Frank-

Wolfe, Projected Gradient Descent, Mirror Descent or NPG iterations as optimizing over the policy

parameter or over the policy c ∈ Π. But mathematical analysis is much cleaner over Π because

it is closed. For example, it contains an optimal policy, whereas any softmax policy c\ ∈ ΠΘ can

only come infinitesimally close to an optimal policy. In practice, optimization problems are never

solved beyond machine precision, so we don’t view the distinction between infimum and minimum

to be relevant to the paper’s main insights.

4.5 Main result: geometric convergence

So far, we have described variants of policy gradients for tabular MDPs. All of these algorithms

essentially make policy iteration updates when their stepsizes are large. Intuitively, it makes sense

to expect that their convergence behavior closely resemble results for policy iteration rather than

the analysis of gradient descent. We quantify this precisely in Theorem 9 below.

Our first result confirms that all of the algorithms we presented in the previous section converge

2For example, if we select a parameter U that offers half the possible improvement, meaning ℓ(cC) − ℓ(cC+1U) ≤
(1/2) (ℓ(cC) − infU′ ℓ(cC+1U′)), then our results follows with some extra factors of 2 in the bounds. One essentially needs
to modify Equation (4.8) in the proof and the rest is the same.

113

geometrically if stepsizes are set by exact line search on ℓ(·). Again, the idea is that a policy

gradient is a policy iteration update for an appropriate choice of stepsize. Our proof effectively

shows that exact line search updates make at least as much progress in reducing ℓ(·) as a policy

iteration update. The mismatch between the policy gradient loss ℓ(·), which governs the stepsize

choice, and the maximum norm, which governs policy iteration convergence, is the source of the

term minB∈S d(B) in the bound.

Our second and third results show that dependence on the initial distribution can be avoided

by forcing the algorithm to use appropriately large stepsizes. The simplest result applies to the

Frank-Wolfe algorithm with a constant stepsize, which we already showed to be exactly equivalent

to a soft policy iteration update. For softmax policies and exact gradient evaluations, we show that

NPG with an adaptive stepsize sequence will reach an n optimal policy in $ (log(1/n)) iterations.

The error term, n , is inversely related to the stepsize and reflects the fact that NPG updates with

finite stepsizes only approximately resemble the policy iteration updates. As we take stepsizes to

infinity, we recover the same result as one would expect for policy iteration. As compared to the

first result in part (a) which applies with exact line search, the result in part (c) is useful in the sense

that it gives a quantification of how large the stepsizes need to be for linear convergence to hold.

Theorem 9 (Geometric convergence). Suppose one of the first-order algorithms in Section 4.4 is

applied to minimize ℓ(c) over c ∈ Π with stepsize sequence (UC : C ∈ {0, 1, 2, · · · }). Let c0 denote

the initial policy and (cC : C ∈ {0, 1, 2, · · · }) denote the sequence of iterates. The following bounds

apply:

(a) Exact line search. If either Frank-Wolfe, projected gradient descent, mirror descent, or NPG

is applied with stepsizes chosen by exact line search as in (4.7), then

‖�cC − �∗‖∞ ≤
(
1 −min

B∈S
d(B) (1 − W)

) C ‖�c0 − �∗‖∞
minB∈S d(B)

.

114

(b) Constant stepsize Frank-Wolfe. Under Frank-Wolfe with constant stepsize U ∈ (0, 1],

‖�cC − �∗‖∞ ≤ (1 − U(1 − W))C ‖�c0 − �∗‖∞.

(c) Natural policy gradient with softmax policies and adaptive stepsize. Fix any n > 0. Let

cC (B, 8∗) be the probability of the optimal action according to the current policy cC . That is,

8∗ = arg min8 &cC (B, 8). Suppose that NPG is performed with an adaptive stepsize sequence

UC (B) ≥
2

(1 − W)n log
(

2
cC (B, 8∗)

)
Then,

‖�cC − �∗‖∞ ≤
(
1 + W

2

) C
‖�c0 − �∗‖∞ + n .

Remark 7. Note that for the softmax parameterization, c\ (B, 8) > 0 for any \ ∈ R=×: . So,

cC (B, 8∗) > 0 for all C. In fact, the result in part (a) suggests that cC (B, 8∗) → 1 geometrically fast.

Although an explicit proof is not given here, we expect a simple argument to show that cC (B, 8∗)

increases monotonically.

Proof of Theorem 9. Throughout the proof, we use some standard properties of the Bellman op-

erator as described in Section 4.2. We denote cC+ to be the policy iteration update to any policy

cC ∈ Π.

Part (a): Exact line-search: Under each algorithm and at each iteration C, the policy iteration

update cC+ is contained in the class ΠC+1 introduced in (4.7). Therefore, for each algorithm,

ℓ(cC+1) = min
c∈ΠC

ℓ(c) ≤ ℓ(cC+) (4.8)

115

Recall policy improvement property in (4.3), which shows �∗ � �cC+ �)�cC � �cC . Denote

dmin := minB∈S d(B). We have,

ℓ(cC) − ℓ(cC+1) ≥ ℓ(cC) − ℓ(cC+) =
∑
B

d(B)
(
�cC (B) − �cC+ (B)

)
≥ dmin‖�cC − �cC+ ‖∞

≥ dmin‖�cC −)�cC ‖∞

= dmin‖�cC − �∗ − ()�cC − �∗) ‖∞

≥ dmin (‖�cC − �∗‖∞ − ‖ ()�cC − �∗) ‖∞)

= dmin (‖�cC − �∗‖∞ − ‖)�cC −)�∗‖∞)

≥ dmin (1 − W) ‖�cC − �∗‖∞

≥ dmin (1 − W)
(
ℓ(cC) − ℓ(c∗)

)
.

Rearranging terms gives,

ℓ(cC+1) − ℓ(c∗) ≤ (1 − dmin(1 − W))
(
ℓ(cC) − ℓ(c∗)

)
≤ · · · ≤ (1 − dmin(1 − W))C

(
ℓ(c0) − ℓ(c∗)

)
,

where the later inequalities follow by inductively applying the first one. We immediately have the

looser bound ℓ(cC+1) − ℓ(c∗) ≤ (1 − dmin(1 − W))C ‖�c0 − �∗‖∞. The final result follows from

observing ‖�cC − �∗‖∞ ≤
(
ℓ(cC+1) − ℓ(c∗)

)
/dmin.

Part (b): Constant stepsize Frank-Wolfe: The proof makes simple modifications to the classic

policy iteration analysis review in Section 4.2. Recall from Section 4.4 that a Frank-Wolfe update

is equivalent to a soft-policy iteration update:

cC+1(B) = (1 − U)cC (B) + UcC+(B)

116

where cC+ is the policy iteration update to cC . Thus, starting from a feasible policy c0 ∈ Π, we

always maintain feasibility for U ∈ (0, 1]. By the linearity in (4.1), for any state B,

)cC+1�cC (B) = 6(B, cC+1(B)) + W
∑
B′∈S

%(B′|B, cC+1(B))�cC (B)

= (1 − U)
[
6(B, cC (B)) + U6(B, cC+(B))

]
+ W

∑
B′∈S

{
(1 − U)%(B′|B, cC (B)) + U%(B′|B, cC+(B)

}
�cC (B′)

= (1 − U)�cC (B) + U)�cC (B),

where the last step uses that)cC+�cC =)�cC by definition of the policy iteration update. Using

)�cC � �cC as in (4.2), we get

)cC+1�cC = (1 − U)�cC + U)�cC � �cC .

Monotonicity of)cC+1 implies �cC �)cC+1�cC �)2
cC+1
�cC � . . . � �cC+1 using that �cC+1 = lim=→∞)=cC+1�cC .

Therefore,

�cC+1 �)cC+1�cC = (1 − U) [�cC −)�cC] .

Subtracting �∗ from both sides shows

�cC+1 − �∗ � (1 − U) (�cC − �∗) + U ()�cC − �∗) .

Since the above inequality holds element wise,

‖�cC+1 − �∗‖∞ ≤ (1 − U)‖�cC − �∗‖∞ + U‖)�cC − �∗‖∞ ≤ [(1 − U) + WU] ‖�cC − �∗‖∞,

where we again use that �∗ =)�∗ and ‖)�cC −)�∗‖∞ ≤ W‖�cC − �∗‖∞ as) (·) is a contraction.

Iterating over the above equation gives us our final result:

‖�cC+1 − �∗‖∞ ≤ (1 − U(1 − W)) ‖�cC − �∗‖∞ ≤ (1 − U(1 − W))C ‖�c0 − �∗‖∞.

117

Part (c): Proof for natural policy gradient with adaptive stepsizes: Recall that for \ ∈ R=×: ,

the softmax policy parameterization takes action 8 in state B with probability c\ (B, 8):

c\ (B, 8) =
4\B,8∑:
9=1 4

\B, 9
8 = 1, . . . , : .

As shown in Section 4.4, the natural policy gradient (NPG) updates with a stepsize sequence

{UC}C≥0 take the simple form:

cC+1(B, 8) = cC (B, 8) · 4−UC (B)&C (B,8)∑:
9=1 c

C (B, 9) · 4−UC (B)&C (B, 9)
,

where we use the shorthand notation cC (·) to denote c\C (·) and &C (B, 8) to denote &c\C
(B, 8). For

simplicity, we let 2 := 2
(1−W) which implies, UC (B) ≥ 2

n
log

(
2

cC (B,8∗)

)
.

Our proof strategy follows essentially shows that for any state B ∈ S, the NPG update stepsize

UC (B) decreases the probability of sub-optimal actions by a multiplicative factor. Informally, the

set of sub-optimal actions (per state) can be understood as the set of actions with action gap3 larger

than some threshold. Essentially, this shows the NPG update is equivalent to a soft policy iteration

update upto some small additive error. We divide the proof into three steps.

Step 1: NPG update for sub-optimal actions: Fix some state B ∈ S. Without loss of generality,

we assume the following ordering on the Q-values: &C (B, 1) < &C (B, 2) . . . < &C (B, :) which

implies that action 1 is optimal in state B under policy cC . For error tolerance n > 0, define $−C (B)

and $+C (B) as:

$−C (B) :=
{
8 | &C (B, 8) −&C (B, 1) ≥ n

2

}
$+C (B) :=

{
8 | &C (B, 8) −&C (B, 1) < n

2

}
3The action gap of any action 8 ∈ {1, . . . , :} is the difference between Q-values of the action and Q-value of the

optimal action.

118

The set $−C (B) can be interpreted as the set of sub-optimal actions with the action gap, &C (B, 8) −

&C (B, 1), larger than the threshold n . Similarly, $+C (B) can be interpreted to be the set of nearly

optimal actions according to policy cC . The following lemma shows that the NPG updates decrease

the probability of playing sub-optimal actions by a multiplicative factor.

Lemma 30. For any state B, c
C+1 (B,8)
cC (B,8) ≤

1
2 ∀ 8 ∈ $

−
C (B).

Proof. The proof follows a simple argument. By definition, for any 8 ∈ $−C (B):

(
&C (B, 8) −&C (B, 1)

)
≥ n
2

⇒ UC (B)
(
&C (B, 8) −&C (B, 1)

)
≥ log

2
cC (B, 1)

which follows by the definition, UC (B) ≥ 2
n

log 2
cC (B,1) which implies n

2
≥ 1

UC (B) log 2
cC (B,1) . Rearrang-

ing, we get

log
(
cC (B, 1)4−UC (B)&C (B,1)

)
+ log

(
1
2

)
≥ −UC (B)&C (B, 8)

This implies,

log ©­«
:∑
9=1

cC (B, 9)4−UC (B)&C (B, 9)ª®¬ + log
(
1
2

)
≥ log

(
cC (B, 1)4−UC (B)&C (B,1)

)
+ log

(
1
2

)
≥ −UC (B)&C (B, 8).

which holds as all the terms in the summation are positive, cC (B, 9)4−UC (B)&C (B, 9) > 0 ∀ 9 ∈ {1, 2, . . . , :}

and log(·) is a monotonic transformation. Our result holds by noting

1
2

:∑
9=1

cC (B, 9)4−UC (B)&C (B, 9) ≥ 4−UC (B)&C (B,8) ⇒ cC+1(B, 8)
cC (B, 8) =

4−UC (B)&
C (B,8)∑:

9=1 c
C (B, 9)4−UC (B)&C (B, 9)

≤ 1
2
.

�

Step 2: NPG updates as soft policy iteration: Recall that the policy iteration update, cC+(B) =

arg min8∈{1,2,...,:} &C (B, 8), which puts the entire mass on the best action (according to Q-values)

and zeros out the probability of playing other actions. On the other hand, Lemma 30 shows how

119

an NPG update with appropriate stepsize decays the probabilities of sub-optimal actions (in the

set $−C (B)) by a multiplicative factor instead of zeroing them out4. This resembles a soft policy

iteration update for the set of actions $−C (B). We formalize this intuition in the following lemma

which characterizes the progress made by an NPG update vis-a-vis a policy iteration update.

Lemma 31 (Progress quantification). Let �cC (B) denote the cost-to-go function for policy cC from

any starting state B. Then,

)cC+1�cC (B) − �cC (B) ≤
1
2
· ()�cC (B) − �cC (B)) +

n

2

Proof. Recall, we assumed that: &C (B, 1) < &C (B, 2) . . . < &C (B, :) which implies that the policy

iteration update, c+C puts the entire mass on action 1. That is, cC+(B, 1) = 1 and cC+(B, 8) = 0 ∀ 8 ≠ 1.

4This defintion of sub-optimal actions based on action gap threshold, n/2, is essentially an artifact that we are
taking gradient steps with finite stepsizes. As UC (B) → ∞ ∀ B, NPG update equivalent to a soft-policy iteration update.

120

Consider,

)cC+1�cC (B) −)�cC (B) = 〈cC+1(B, ·) − c+C (B, ·), &C (B, ·)〉

= (cC+1(B, 1) − 1)&C (B, 1) +
:∑
9=2

cC+1(B, 9)&C (B, 9)

= −
:∑
9=2

cC+1(B, 9)&C (B, 1) +
:∑
9=2

cC+1(B, 9)&C (B, 9)

=

:∑
9=2

cC+1(B, 9)
(
&C (B, 9) −&C (B, 1)

)
=

∑
9∈O−C

cC+1(B, 9)
(
&C (B, 9) −&C (B, 1)

)
+

∑
9∈O+C

cC+1(B, 9)
(
&C (B, 9) −&C (B, 1)

)
=

∑
9∈O−C

cC+1(B, 9)
cC (B, 9) c

C (B, 9)
(
&C (B, 9) −&C (B, 1)

)
+

∑
9∈O+C

cC+1(B, 9)
(
&C (B, 9) −&C (B, 1)

)︸ ︷︷ ︸
< n
2

≤ 1
2

∑
9∈O−C

cC (B, 9)
(
&C (B, 9) −&C (B, 1)

)
+ n
2

≤ 1
2

©­«
:∑
9=2

cC (B, 9) (&C (B, 9) −&C (B, 1))ª®¬ + n2
=

1
2

©­«
:∑
9=2

cC (B, 9)&C (B, 9) −
:∑
9=2

cC (B, 9)&C (B, 1)ª®¬ + n2
=

1
2

©­«
(
cC (B, 9) − 1

)
&C (B, 1) +

:∑
9=2

cC (B, 9)&C (B, 9)ª®¬ + n2
=

1
2
〈cC (B, ·) − c+C (B, ·), &C (B, ·)〉 +

n

2

=
1
2
(�cC (B) −)�cC (B)) +

n

2
(4.9)

where we used that c
C+1 (B, 9)
cC (B, 9) ≤

1
2 ∀ 9 ∈ O

−
C (B) as shown above in Lemma 30 along with the fact that(

&C (B, 9) −&C (B, 1)
)
≤ n

2
∀ 9 ∈ O+C (B) which follows by definition. Subtracting �cC (B) from both

sides in Equation (4.9) and rearranging terms gives our desired result

)cC+1�cC (B) − �cC (B) ≤
1
2
· ()�cC (B) − �cC (B)) +

n

2

121

�

Step 3: Completing the proof: Lemma 31 clearly quantifies the relationship between an NPG

update with adaptive stepsize UC and a soft policy iteration update with an additive error n
2
. With

this connection, we give a simple proof of geometric convergence for the natural policy gradient

method. First, we claim that �cC+1 (B) ≤ �cC (B). To see this, note that for any stepsize U(B), the

NPG update for state B can be equivalently written as:

cC+1(B) = arg min
0∈Δ:−1

[
&C (B, 0) +

[cC (B)
U(B) �KL(0 | |cC (B))

]
As 0 = cC (B) is feasible for the optimization problem above,

)cC+1�cC (B) = &C (B, cC+1(B)) ≤ &C (B, cC (B)) = �cC (B)

By monotonicity property of)cC+1 , we have �cC �)cC+1�cC �)2
cC+1
�cC � . . . � �cC+1 by noting that

�cC+1 = lim=→∞)=cC+1�cC . From Lemma 31, we get that

�cC+1 − �cC �)cC+1�cC − �cC �
1
2
· ()�cC − �cC) +

n

2

Subtracting �∗ from both sides and rearranging terms,

�cC+1 − �∗ �
1
2
�cC +

1
2
)�cC − �∗ +

n

2
=

1
2
(�cC − �∗) +

1
2
()�cC − �∗) +

n

2
.

As the above inequality holds element wise, this implies,

‖�cC+1 − �∗‖∞ ≤
1
2
‖�cC − �∗‖∞ +

1
2
‖)�cC − �∗‖∞ +

n

2
≤

[
1
2
+ W

2

]
‖�cC − �∗‖∞ +

n

2

122

where we used that ‖)�cC − �∗‖∞ = ‖)�cC −)�∗‖∞ ≤ W‖�cC − �∗‖∞ as shown in (4.4). Rewriting(
1
2 +

W

2

)
=

(
1 − 1

2 (1 − W)
)

and iterating over the above equation gives us our final result.

‖�cC+1 − �∗‖∞ ≤
(
1 − (1 − W)

2

)
‖�cC − �∗‖∞ +

n

2

≤
(
1 − (1 − W)

2

) C
‖�c0 − �∗‖∞ +

n

2

C−1∑
8=0

(
1 − (1 − W)

2

) 8
≤

(
1 − (1 − W)

2

) C
‖�c0 − �∗‖∞ +

2
(1 − W)

n

2
.

�

123

References

[1] R. S. Sutton and A. G. Barto, Reinforcement learning: An introduction. 2018.

[2] D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. Van Den Driessche, J. Schrit-
twieser, I. Antonoglou, V. Panneershelvam, M. Lanctot, et al., “Mastering the game of Go
with deep neural networks and tree search,” Nature, vol. 529, no. 7587, pp. 484–489, 2016.

[3] B. R. Kiran, I. Sobh, V. Talpaert, P. Mannion, A. A. A. Sallab, S. Yogamani, and P.
Pérez, “Deep reinforcement learning for autonomous driving: A survey,” arXiv preprint
arXiv:2002.00444, 2020.

[4] J. Kober, J. A. Bagnell, and J. Peters, “Reinforcement learning in robotics: A survey,” The
International Journal of Robotics Research, vol. 32, no. 11, pp. 1238–1274, 2013.

[5] M. Popova, O. Isayev, and A. Tropsha, “Deep reinforcement learning for de novo drug
design,” Science advances, vol. 4, no. 7, eaap7885, 2018.

[6] R. S. Sutton, “Learning to predict by the methods of temporal differences,” Machine Learn-
ing, vol. 3, no. 1, pp. 9–44, 1988.

[7] T. Jaakkola, M. I. Jordan, and S. P. Singh, “Convergence of stochastic iterative dynamic
programming algorithms,” in Advances in Neural Information Processing Systems 7, 1994,
pp. 703–710.

[8] L. Baird, “Residual algorithms: Reinforcement learning with function approximation,” in
Machine Learning Proceedings, 1995, pp. 30–37.

[9] J. N. Tsitsiklis and B. Van Roy, “An analysis of temporal-difference learning with function
approximation,” IEEE Transactions on Automatic Control, vol. 42, no. 5, pp. 674 –690,
1997.

[10] N. Korda and P. L.A., “On TD(0) with function approximation: Concentration bounds and
a centered variant with exponential convergence,” in Proceedings of the 32nd International
Conference on Machine Learning, 2015, pp. 626–634.

[11] C. Lakshminarayanan and C. Szepesvári, “Finite Time Bounds for Temporal Difference
Learning with Function Approximation: Problems with some “state-of-the-art” results,”
https://sites.ualberta.ca/ szepesva/papers/TD-issues17.pdf, 2017.

124

[12] R. S. Sutton, C. Szepesvári, and H. R. Maei, “A Convergent O(n) Temporal-difference
Algorithm for Off-policy Learning with Linear Function Approximation,” in Advances in
Neural Information Processing Systems, 2009, pp. 1609–1616.

[13] R. S. Sutton, H. R. Maei, D. Precup, S. Bhatnagar, D. Silver, C. Szepesvári, and E. Wiewiora,
“Fast gradient-descent methods for temporal-difference learning with linear function ap-
proximation,” in Proceedings of the 26th International Conference on Machine Learning,
2009, pp. 993–1000.

[14] B. Liu, J. Liu, M. Ghavamzadeh, S. Mahadevan, and M. Petrik, “Finite-sample Analysis of
Proximal Gradient TD Algorithms,” in Proceedings of the 31st Conference on Uncertainty
in Artificial Intelligence, 2015, pp. 504–513.

[15] A. Touati, P.-L. Bacon, D. Precup, and P. Vincent, “Convergent TREE BACKUP and RE-
TRACE with function approximation,” in Proceedings of the 35th International Confer-
ence on Machine Learning, 2018, pp. 4962–4971.

[16] G. Dalal, B. Szörényi, G. Thoppe, and S. Mannor, “Finite Sample Analysis of Two-Timescale
Stochastic Approximation with Applications to Reinforcement Learning,” in Proceedings
of the 31st Conference On Learning Theory, 2018, pp. 1199–1233.

[17] C. Lakshminarayanan and C. Szepesvári, “Linear stochastic approximation: How far does
constant step-size and iterate averaging go?” In Proceedings of the 21st International Con-
ference on Artificial Intelligence and Statistics, 2018, pp. 1347–1355.

[18] H. Kushner, “Stochastic approximation: A survey,” Wiley Interdisciplinary Reviews: Com-
putational Statistics, vol. 2, no. 1, pp. 87–96, 2010.

[19] R. S. Sutton and A. G. Barto, Reinforcement learning: An introduction. MIT press, 1998.

[20] J. N. Tsitsiklis and B. Van Roy, “Optimal stopping of markov processes: Hilbert space
theory, approximation algorithms, and an application to pricing high-dimensional financial
derivatives,” IEEE Transactions on Automatic Control, vol. 44, no. 10, pp. 1840 –1851,
1999.

[21] L. Andersen and M. Broadie, “Primal-dual simulation algorithm for pricing multidimen-
sional american options,” Management Science, vol. 50, no. 9, pp. 1222–1234, 2004.

[22] M. B. Haugh and L. Kogan, “Pricing American options: A duality approach,” Operations
Research, vol. 52, no. 2, pp. 258–270, 2004.

[23] V. V. Desai, V. F. Farias, and C. C. Moallemi, “Pathwise optimization for optimal stopping
problems,” Management Science, vol. 58, no. 12, pp. 2292–2308, 2012.

125

[24] D. A. Goldberg and Y. Chen, “Beating the curse of dimensionality in options pricing and
optimal stopping,” arXiv preprint arXiv:1807.02227, 2018.

[25] G. Dalal, B. Szörényi, G. Thoppe, and S. Mannor, “Finite Sample Analyses for TD(0) With
Function Approximation,” in AAAI, 2018.

[26] D. Ruppert, “Efficient estimations from a slowly convergent robbins-monro process,” Cor-
nell University Operations Research and Industrial Engineering, Tech. Rep., 1988.

[27] B. T. Polyak and A. B. Juditsky, “Acceleration of stochastic approximation by averaging,”
SIAM Journal on Control and Optimization, vol. 30, no. 4, pp. 838–855, 1992.

[28] L. Györfi and H. Walk, “On the averaged stochastic approximation for linear regression,”
SIAM Journal on Control and Optimization, vol. 34, no. 1, pp. 31–61, 1996.

[29] F. Bach and E. Moulines, “Non-strongly-convex smooth stochastic approximation with
convergence rate O(1/n),” in Advances in Neural Information Processing Systems 26, 2013,
pp. 773–781.

[30] R. E. Schapire and M. K. Warmuth, “On the worst-case analysis of temporal-difference
learning algorithms,” Machine Learning, vol. 22, no. 1-3, pp. 95–121, 1996.

[31] H. Kushner and G. G. Yin, Stochastic approximation and recursive algorithms and appli-
cations. Springer Science & Business Media, 2003, vol. 35.

[32] V. S. Borkar, Stochastic approximation: a dynamical systems viewpoint. Springer, 2009,
vol. 48.

[33] A. Benveniste, M. Métivier, and P. Priouret, Adaptive algorithms and stochastic approxi-
mations. Springer Science & Business Media, 2012, vol. 22.

[34] V. S. Borkar and S. P. Meyn, “The ODE method for convergence of stochastic approxi-
mation and reinforcement learning,” SIAM Journal on Control and Optimization, vol. 38,
no. 2, pp. 447–469, 2000.

[35] V. R. Konda, “Actor-Critic Algorithms,” Ph.D. dissertation, Massachusetts Institute of
Technology, 2002.

[36] A. M. Devraj and S. P. Meyn, “Zap Q-Learning,” in Advances in Neural Information Pro-
cessing Systems 30, 2017, pp. 2235–2244.

[37] L. Bottou, F. E. Curtis, and J. Nocedal, “Optimization methods for large-scale machine
learning,” SIAM Review, vol. 60, no. 2, pp. 223–311, 2018.

126

[38] S. Bubeck, “Convex optimization: Algorithms and complexity,” Foundations and Trends®
in Machine Learning, vol. 8, no. 3-4, pp. 231–357, 2015.

[39] P. Jain and P. Kar, “Non-convex optimization for machine learning,” Foundations and
Trends® in Machine Learning, vol. 10, no. 3-4, pp. 142–336, 2017.

[40] A. Antos, C. Szepesvári, and R. Munos, “Learning near-optimal policies with Bellman-
residual minimization based fitted policy iteration and a single sample path,” Machine
Learning, vol. 71, no. 1, pp. 89–129, 2008.

[41] A. Lazaric, M. Ghavamzadeh, and R. Munos, “Finite-sample analysis of LSTD,” in Pro-
ceedings of the 27th International Conference on Machine Learning, 2010, pp. 615–622.

[42] M. Ghavamzadeh, A. Lazaric, O. Maillard, and R. Munos, “LSTD with Random Projec-
tions,” in Advances in Neural Information Processing Systems 23, 2010, pp. 721–729.

[43] B. Á. Pires and C. Szepesvári, “Statistical linear estimation with penalized estimators: An
application to reinforcement learning,” in Proceedings of the 29th International Coference
on International Conference on Machine Learning, 2012, pp. 1755–1762.

[44] P. L.A., N. Korda, and R. Munos, “Fast LSTD using stochastic approximation: Finite
time analysis and application to traffic control,” in Joint European Conference on Machine
Learning and Knowledge Discovery in Databases, 2013, pp. 66–81.

[45] S. Tu and B. Recht, “Least-squares temporal difference learning for the linear quadratic
regulator,” in Proceedings of the 35th International Conference on Machine Learning,
2018, pp. 5012–5021.

[46] H. Yu and D. P. Bertsekas, “Convergence results for some temporal difference methods
based on least squares,” IEEE Transactions on Automatic Control, vol. 54, no. 7, pp. 1515–
1531, 2009.

[47] S. V. Macua, J. Chen, S. Zazo, and A. H. Sayed, “Distributed policy evaluation under
multiple behavior strategies,” IEEE Transactions on Automatic Control, vol. 60, no. 5,
pp. 1260–1274, 2014.

[48] D. P. Bertsekas, Dynamic programming and optimal control. Athena Scientific, 2012,
vol. 2.

[49] C. Dann, G. Neumann, and J. Peters, “Policy evaluation with temporal differences: A sur-
vey and comparison,” The Journal of Machine Learning Research, vol. 15, no. 1, pp. 809–
883, 2014.

[50] D. P. De Farias and B. Van Roy, “The linear programming approach to approximate dy-
namic programming,” Operations research, vol. 51, no. 6, pp. 850–865, 2003.

127

[51] D. P. Bertsekas and S. Shreve, Stochastic optimal control: the discrete-time case. Athena
Scientific Belmont, MA, 2004.

[52] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G. Bellemare, A. Graves,
M. Riedmiller, A. K. Fidjeland, G. Ostrovski, et al., “Human-level control through deep
reinforcement learning,” Nature, vol. 518, no. 7540, p. 529, 2015.

[53] A. Nemirovski, A. Juditsky, G. Lan, and A. Shapiro, “Robust stochastic approximation ap-
proach to stochastic programming,” SIAM Journal on Optimization, vol. 19, no. 4, pp. 1574–
1609, 2009.

[54] S. J. Bradtke and A. G. Barto, “Linear least-squares algorithms for temporal difference
learning,” Machine learning, vol. 22, no. 1-3, pp. 33–57, 1996.

[55] J. C. Duchi, “Introductory lectures on stochastic optimization,” The Mathematics of Data,
vol. 25, p. 99, 2018.

[56] S. Lacoste-Julien, M. Schmidt, and F. Bach, “A simpler approach to obtaining an O(1/t)
convergence rate for the projected stochastic subgradient method,” arXiv preprint arXiv:1212.2002,
2012.

[57] D. A. Levin and Y. Peres, Markov chains and mixing times. American Mathematical Soci-
ety, 2017, vol. 107.

[58] S. P. Meyn and R. L. Tweedie, Markov chains and stochastic stability. Springer Science &
Business Media, 2012.

[59] G. O. Roberts and J. S. Rosenthal, “General state space markov chains and mcmc algo-
rithms,” Probability surveys, vol. 1, pp. 20–71, 2004.

[60] H. van Seijen and R. S. Sutton, “True online TD(_),” in Proceedings of the 31st Interna-
tional Conference on Machine Learning, 2014, pp. 692–700.

[61] B. Van Roy, “Learning and value function approximation in complex decision processes,”
Ph.D. dissertation, Massachusetts Institute of Technology, 1998.

[62] J. Schulman, S. Levine, P. Abbeel, M. Jordan, and P. Moritz, “Trust region policy opti-
mization,” in International Conference on Machine Learning, 2015, pp. 1889–1897.

[63] J. Schulman, P. Moritz, S. Levine, M. Jordan, and P. Abbeel, “High-dimensional contin-
uous control using generalized advantage estimation,” arXiv preprint arXiv:1506.02438,
2015.

[64] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov, “Proximal policy opti-
mization algorithms,” arXiv preprint arXiv:1707.06347, 2017.

128

[65] P. Marbach and J. N. Tsitsiklis, “Simulation-based optimization of markov reward pro-
cesses,” IEEE Transactions on Automatic Control, vol. 46, no. 2, pp. 191–209, 2001.

[66] R. S. Sutton, D. A. McAllester, S. P. Singh, and Y. Mansour, “Policy gradient methods for
reinforcement learning with function approximation,” in Advances in Neural Information
Processing Systems, 2000, pp. 1057–1063.

[67] J. Baxter and P. L. Bartlett, “Infinite-horizon policy-gradient estimation,” Journal of Artifi-
cial Intelligence Research, vol. 15, pp. 319–350, 2001.

[68] J. Peters and S. Schaal, “Policy gradient methods for robotics,” in 2006 IEEE/RSJ Interna-
tional Conference on Intelligent Robots and Systems, IEEE, 2006, pp. 2219–2225.

[69] I. Grondman, L. Busoniu, G. A. Lopes, and R. Babuska, “A survey of actor-critic rein-
forcement learning: Standard and natural policy gradients,” IEEE Transactions on Systems,
Man, and Cybernetics, Part C (Applications and Reviews), vol. 42, no. 6, pp. 1291–1307,
2012.

[70] M. Fazel, R. Ge, S. Kakade, and M. Mesbahi, “Global convergence of policy gradient meth-
ods for the linear quadratic regulator,” in Proceedings of the 35th International Conference
on Machine Learning, 2018, pp. 1467–1476.

[71] S. Kunnumkal and H. Topaloglu, “Using stochastic approximation methods to compute
optimal base-stock levels in inventory control problems,” Operations Research, vol. 56,
no. 3, pp. 646–664, 2008.

[72] B. T. Polyak, “Gradient methods for the minimisation of functionals,” USSR Computa-
tional Mathematics and Mathematical Physics, vol. 3, no. 4, pp. 864–878, 1963.

[73] Y. Nesterov and B. T. Polyak, “Cubic regularization of newton method and its global per-
formance,” Mathematical Programming, vol. 108, no. 1, pp. 177–205, 2006.

[74] H. Karimi, J. Nutini, and M. Schmidt, “Linear convergence of gradient and proximal-
gradient methods under the polyak-łojasiewicz condition,” in Joint European Conference
on Machine Learning and Knowledge Discovery in Databases, Springer, 2016, pp. 795–
811.

[75] R. J. Williams, “Simple statistical gradient-following algorithms for connectionist rein-
forcement learning,” Machine learning, vol. 8, no. 3-4, pp. 229–256, 1992.

[76] S. Amari, “Natural gradient works efficiently in learning,” Neural computation, vol. 10,
no. 2, pp. 251–276, 1998.

[77] S. M. Kakade, “A natural policy gradient,” in Advances in Neural Information Processing
Systems, 2002, pp. 1531–1538.

129

[78] S. Kakade and J. Langford, “Approximately optimal approximate reinforcement learning,”
in Proceedings of the 19th International Conference on Machine Learning, vol. 2, 2002,
pp. 267–274.

[79] O. Nachum, M. Norouzi, and D. Schuurmans, “Improving policy gradient by exploring
under-appreciated rewards,” CoRR, vol. abs/1611.09321, 2017.

[80] M. Plappert, R. Houthooft, P. Dhariwal, S. Sidor, R. Y. Chen, X. Chen, T. Asfour, P.
Abbeel, and M. Andrychowicz, “Parameter space noise for exploration,” arXiv preprint
arXiv:1706.01905, 2017.

[81] V. R. Konda and J. N. Tsitsiklis, “Actor-critic algorithms,” in Advances in neural informa-
tion processing systems, 2000, pp. 1008–1014.

[82] V. Mnih, A. P. Badia, M. Mirza, A. Graves, T. Lillicrap, T. Harley, D. Silver, and K.
Kavukcuoglu, “Asynchronous methods for deep reinforcement learning,” in Proceedings
of the 33rd International Conference on Machine Learning, 2016, pp. 1928–1937.

[83] M. Riedmiller, J. Peters, and S. Schaal, “Evaluation of policy gradient methods and vari-
ants on the cart-pole benchmark,” in 2007 IEEE International Symposium on Approximate
Dynamic Programming and Reinforcement Learning, IEEE, 2007, pp. 254–261.

[84] H. Mania, A. Guy, and B. Recht, “Simple random search of static linear policies is compet-
itive for reinforcement learning,” in Advances in Neural Information Processing Systems,
2018, pp. 1800–1809.

[85] T. Salimans, J. Ho, X. Chen, S. Sidor, and I. Sutskever, “Evolution strategies as a scalable
alternative to reinforcement learning,” arXiv preprint arXiv:1703.03864, 2017.

[86] D. P. Bertsekas and J. N. Tsitsiklis, Neuro-dynamic programming. Athena Scientific Bel-
mont, MA, 1996, vol. 5.

[87] D. P. Bertsekas and J. N. Tsitsiklis, “Gradient convergence in gradient methods with er-
rors,” SIAM Journal on Optimization, vol. 10, no. 3, pp. 627–642, 2000.

[88] J. D. Lee, M. Simchowitz, M. I. Jordan, and B. Recht, “Gradient descent only converges to
minimizers,” in Conference on Learning Theory, 2016, pp. 1246–1257.

[89] N. Agarwal, Z. Allen-Zhu, B. Bullins, E. Hazan, and T. Ma, “Finding approximate local
minima faster than gradient descent,” in Proceedings of the 49th Annual ACM SIGACT
Symposium on Theory of Computing, ACM, 2017, pp. 1195–1199.

[90] C. Jin, R. Ge, P. Netrapalli, S. M. Kakade, and M. I. Jordan, “How to escape saddle points
efficiently,” in Proceedings of the 34th International Conference on Machine Learning-
Volume 70, 2017, pp. 1724–1732.

130

[91] Y. Carmon, J. C. Duchi, O. Hinder, and A. Sidford, “Accelerated methods for nonconvex
optimization,” SIAM Journal on Optimization, vol. 28, no. 2, pp. 1751–1772, 2018.

[92] R. Ge, F. Huang, C. Jin, and Y. Yuan, “Escaping from saddle points—online stochastic
gradient for tensor decomposition,” in Conference on Learning Theory, 2015, pp. 797–
842.

[93] J. Sun, Q. Qu, and J. Wright, “Complete dictionary recovery over the sphere i: Overview
and the geometric picture,” IEEE Transactions on Information Theory, vol. 63, no. 2,
pp. 853–884, 2017.

[94] S. Bhojanapalli, B. Neyshabur, and N. Srebro, “Global optimality of local search for
low rank matrix recovery,” in Advances in Neural Information Processing Systems, 2016,
pp. 3873–3881.

[95] R. Ge, J. D. Lee, and T. Ma, “Matrix completion has no spurious local minimum,” in
Advances in Neural Information Processing Systems, 2016, pp. 2973–2981.

[96] K. Kawaguchi, “Deep learning without poor local minima,” in Advances in Neural Infor-
mation Processing Systems, 2016, pp. 586–594.

[97] P. Thomas, “Bias in natural actor-critic algorithms,” in Proceedings of the 31st Interna-
tional Conference on Machine Learning, 2014, pp. 441–448.

[98] B. Scherrer and M. Geist, “Local policy search in a convex space and conservative policy
iteration as boosted policy search,” in Joint European Conference on Machine Learning
and Knowledge Discovery in Databases, Springer, 2014, pp. 35–50.

[99] A. Agarwal, S. M. Kakade, J. D. Lee, and G. Mahajan, “Optimality and approximation with
policy gradient methods in markov decision processes,” arXiv preprint arXiv:1908.00261,
2019.

[100] M. L. Puterman, Markov decision processes: discrete stochastic dynamic programming.
John Wiley & Sons, 2014.

[101] D. P. Bertsekas, Dynamic programming and optimal control. Athena scientific Belmont,
MA, 1995.

[102] O. Hernández-Lerma and J. B. Lasserre, Discrete-time Markov control processes: basic
optimality criteria. Springer Science & Business Media, 2012, vol. 30.

[103] S. E. Shreve and D. P. Bertsekas, “Universally measurable policies in dynamic program-
ming,” Mathematics of Operations Research, vol. 4, no. 1, pp. 15–30, 1979.

131

[104] J. Fu, A. Singh, D. Ghosh, L. Yang, and S. Levine, “Variational inverse control with events:
A general framework for data-driven reward definition,” in Advances in Neural Information
Processing Systems, 2018, pp. 8538–8547.

[105] T. Haarnoja, A. Zhou, K. Hartikainen, G. Tucker, S. Ha, J. Tan, V. Kumar, H. Zhu, A.
Gupta, P. Abbeel, et al., “Soft actor-critic algorithms and applications,” arXiv preprint
arXiv:1812.05905, 2018.

[106] T. Lesort, V. Lomonaco, A. Stoian, D. Maltoni, D. Filliat, and N. Díaz-Rodríguez, “Con-
tinual learning for robotics: Definition, framework, learning strategies, opportunities and
challenges,” Information Fusion, vol. 58, pp. 52–68, 2020.

[107] H. Zhu, J. Yu, A. Gupta, D. Shah, K. Hartikainen, A. Singh, V. Kumar, and S. Levine, “The
ingredients of real-world robotic reinforcement learning,” arXiv preprint arXiv:2004.12570,
2020.

[108] D. P. Bertsekas, “Nonlinear programming,” Journal of the Operational Research Society,
vol. 48, no. 3, pp. 334–334, 1997.

[109] S. Ghadimi and G. Lan, “Stochastic first-and zeroth-order methods for nonconvex stochas-
tic programming,” SIAM Journal on Optimization, vol. 23, no. 4, pp. 2341–2368, 2013.

[110] L. Xiao and T. Zhang, “A proximal stochastic gradient method with progressive variance
reduction,” SIAM Journal on Optimization, vol. 24, no. 4, pp. 2057–2075, 2014.

[111] A. Defazio, F. Bach, and S. Lacoste-Julien, “Saga: A fast incremental gradient method with
support for non-strongly convex composite objectives,” in Advances in Neural Information
Processing Systems, 2014, pp. 1646–1654.

[112] S. J. Reddi, A. Hefny, S. Sra, B. Póczos, and A. Smola, “Stochastic variance reduction for
nonconvex optimization,” in Proceedings of the 33rd International Conference on Machine
Learning, 2016, pp. 314–323.

[113] S. Ghadimi and G. Lan, “Accelerated gradient methods for nonconvex nonlinear and stochas-
tic programming,” Mathematical Programming, vol. 156, no. 1-2, pp. 59–99, 2016.

[114] S. J. Reddi, S. Sra, B. Poczos, and A. J. Smola, “Proximal stochastic methods for nons-
mooth nonconvex finite-sum optimization,” in Advances in Neural Information Processing
Systems, 2016, pp. 1145–1153.

[115] S. J. Reddi, S. Sra, B. Póczos, and A. Smola, “Stochastic frank-wolfe methods for noncon-
vex optimization,” in 2016 54th Annual Allerton Conference on Communication, Control,
and Computing (Allerton), IEEE, 2016, pp. 1244–1251.

132

[116] D. Davis and B. Grimmer, “Proximally guided stochastic subgradient method for nons-
mooth, nonconvex problems,” SIAM Journal on Optimization, vol. 29, no. 3, pp. 1908–
1930, 2019.

[117] D. Davis, D. Drusvyatskiy, S. Kakade, and J. D. Lee, “Stochastic subgradient method
converges on tame functions,” Foundations of computational mathematics, vol. 20, no. 1,
pp. 119–154, 2020.

[118] A. Beck, First-order methods in optimization. SIAM, 2017, vol. 25.

[119] A. Beck, “Convergence rate analysis of gradient based algorithms,” Ph.D. dissertation, Tel-
Aviv University, 2002.

[120] D. P. Bertsekas, “Approximate policy iteration: A survey and some new methods,” Journal
of Control Theory and Applications, vol. 9, no. 3, pp. 310–335, 2011.

[121] L. C. Evans, “An introduction to mathematical optimal control theory,” Lecture Notes,
University of California, Department of Mathematics, Berkeley, 2005.

[122] D. Kleinman, “On an iterative technique for riccati equation computations,” IEEE Trans-
actions on Automatic Control, vol. 13, pp. 114 –115, 1 1968.

[123] G Hewer, “An iterative technique for the computation of the steady state gains for the dis-
crete optimal regulator,” IEEE Transactions on Automatic Control, vol. 16, no. 4, pp. 382–
384, 1971.

[124] H. T. Toivonen, “A globally convergent algorithm for the optimal constant output feedback
problem,” International Journal of Control, vol. 41, no. 6, pp. 1589–1599, 1985.

[125] T. Rautert and E. W. Sachs, “Computational design of optimal output feedback controllers,”
SIAM Journal on Optimization, vol. 7, no. 3, pp. 837–852, 1997.

[126] D. Silver, G. Lever, N. Heess, T. Degris, D. Wierstra, and M. Riedmiller, “Deterministic
policy gradient algorithms,” in Proceedigs of the 31st International Conference on Machine
Learning, 2014.

[127] K. Ciosek and S. Whiteson, “Expected policy gradients for reinforcement learning.,” Jour-
nal of Machine Learning Research, vol. 21, no. 52, pp. 1–51, 2020.

[128] G. C. Pflug, “Derivatives of probability measures-concepts and applications to the op-
timization of stochastic systems,” in Discrete Event Systems: Models and Applications,
Springer, 1988, pp. 252–274.

[129] G. C. Pflug, “On-line optimization of simulated markovian processes,” Mathematics of
Operations Research, vol. 15, no. 3, pp. 381–395, 1990.

133

[130] S. Mohamed, M. Rosca, M. Figurnov, and A. Mnih, “Monte carlo gradient estimation in
machine learning,” arXiv preprint arXiv:1906.10652, 2019.

[131] M. C. Fu, “Gradient estimation,” Handbooks in operations research and management sci-
ence, vol. 13, pp. 575–616, 2006.

[132] S. Asmussen and P. W. Glynn, Stochastic simulation: algorithms and analysis. Springer
Science & Business Media, 2007, vol. 57.

[133] I. Osband, B. Van Roy, D. Russo, and Z. Wen, “Deep exploration via randomized value
functions,” arXiv preprint arXiv:1703.07608, 2017.

[134] R. Munos, “Error bounds for approximate policy iteration,” in Proceedings of the 20th
International Conference on Machine Learning, vol. 3, 2003, pp. 560–567.

[135] R. Munos, “Performance bounds in l_p-norm for approximate value iteration,” SIAM jour-
nal on control and optimization, vol. 46, no. 2, pp. 541–561, 2007.

[136] R. Munos and C. Szepesvári, “Finite-time bounds for fitted value iteration,” Journal of
Machine Learning Research, vol. 9, no. May, pp. 815–857, 2008.

[137] A. Farahmand, C. Szepesvári, and R. Munos, “Error propagation for approximate pol-
icy and value iteration,” in Advances in Neural Information Processing Systems, 2010,
pp. 568–576.

[138] M. Geist, B. Piot, and O. Pietquin, “Is the bellman residual a bad proxy?” In Advances in
Neural Information Processing Systems, 2017, pp. 3205–3214.

[139] B. Scherrer, “Approximate policy iteration schemes: A comparison,” in Proceedings of the
31st International Conference on Machine Learning, 2014, pp. 1314–1322.

[140] J. N. Tsitsiklis and B. Van Roy, “Regression methods for pricing complex american-style
options,” IEEE Transactions on Neural Networks, vol. 12, no. 4, pp. 694–703, 2001.

[141] Y. Nesterov, Lectures on convex optimization. Springer, 2018, vol. 137.

[142] P. L’Ecuyer and P. W. Glynn, “Stochastic optimization by simulation: Convergence proofs
for the gi/g/1 queue in steady-state,” Management Science, vol. 40, no. 11, pp. 1562–1578,
1994.

[143] I. Karaesmen and G. Van Ryzin, “Overbooking with substitutable inventory classes,” Op-
erations Research, vol. 52, no. 1, pp. 83–104, 2004.

[144] G. Van Ryzin and G. Vulcano, “Simulation-based optimization of virtual nesting controls
for network revenue management,” Operations Research, vol. 56, no. 4, pp. 865–880, 2008.

134

[145] A. Rajeswaran, K. Lowrey, E. V. Todorov, and S. M. Kakade, “Towards generalization and
simplicity in continuous control,” in Advances in Neural Information Processing Systems,
2017, pp. 6550–6561.

[146] S. P. Singh, T. Jaakkola, and M. I. Jordan, “Reinforcement learning with soft state aggre-
gation,” in Advances in neural information processing systems, 1995, pp. 361–368.

[147] N. Ferns, P. Panangaden, and D. Precup, “Metrics for finite markov decision processes,” in
Proceedings of the 20th conference on Uncertainty in Artificial Intelligence, AUAI Press,
2004, pp. 162–169.

[148] D. P. Bertsekas, “Feature-based aggregation and deep reinforcement learning: A survey
and some new implementations,” IEEE/CAA Journal of Automatica Sinica, vol. 6, no. 1,
pp. 1–31, 2019.

[149] L. Shani, Y. Efroni, and S. Mannor, “Adaptive trust region policy optimization: Global con-
vergence and faster rates for regularized mdps,” arXiv preprint arXiv:1909.02769, 2019.

[150] S. Cen, C. Cheng, Y. Chen, Y. Wei, and Y. Chi, “Fast global convergence of natural policy
gradient methods with entropy regularization,” arXiv preprint arXiv:2007.06558, 2020.

[151] J. Mei, C. Xiao, C. Szepesvari, and D. Schuurmans, “On the global convergence rates of
softmax policy gradient methods,” arXiv preprint arXiv:2005.06392, 2020.

[152] J. Duchi, S. Shalev-Shwartz, Y. Singer, and T. Chandra, “Efficient projections onto the l_1-
ball for learning in high dimensions,” in Proceedings of the 25th International Conference
on Machine Learning, 2008, pp. 272–279.

[153] G. Raskutti and S. Mukherjee, “The information geometry of mirror descent,” IEEE Trans-
actions on Information Theory, vol. 61, no. 3, pp. 1451–1457, 2015.

[154] R. A. Howard, Dynamic programming and markov processes. John Wiley, 1960.

[155] S. B. Thrun, “Efficient exploration in reinforcement learning,” Technical Report CMU-CS-
92-102, School of Computer Science, Carnegie Mellon, Tech. Rep., 1992.

[156] A. L. Strehl and M. L. Littman, “An analysis of model-based interval estimation for markov
decision processes,” Journal of Computer and System Sciences, vol. 74, no. 8, pp. 1309–
1331, 2008.

[157] I. Osband, D. Russo, and B. Van Roy, “More efficient reinforcement learning via posterior
sampling,” in Advances in Neural Information Processing Systems, 2013, pp. 3003–3011.

[158] S. Koenig and R. G. Simmons, “Complexity analysis of real-time reinforcement learning,”
in AAAI, 1993, pp. 99–107.

135

[159] M. G. Azar, R. Munos, M. Ghavamzadeh, and H. Kappen, “Reinforcement learning with a
near optimal rate of convergence,” 2011.

[160] A. L. Peressini, F. E. Sullivan, and J. J. Uhl, The mathematics of nonlinear programming.
Springer-Verlag, New York, 1988.

[161] Y. Fang, K. A. Loparo, and X. Feng, “Inequalities for the trace of matrix product,” IEEE
Transactions on Automatic Control, vol. 39, no. 12, pp. 2489–2490, 1994.

[162] G. J. Gordon, “Stable function approximation in dynamic programming,” in Machine Learn-
ing Proceedings 1995, Elsevier, 1995, pp. 261–268.

[163] J. N. Tsitsiklis and B. Van Roy, “Feature-based methods for large scale dynamic program-
ming,” Machine Learning, vol. 22, no. 1-3, pp. 59–94, 1996.

[164] B. Van Roy, “Performance loss bounds for approximate value iteration with state aggrega-
tion,” Mathematics of Operations Research, vol. 31, no. 2, pp. 234–244, 2006.

[165] W. Whitt, “Approximations of dynamic programs,” Mathematics of Operations Research,
vol. 3, no. 3, pp. 231–243, 1978.

[166] J. Rust, “Using randomization to break the curse of dimensionality,” Econometrica: Jour-
nal of the Econometric Society, pp. 487–516, 1997.

[167] R. Ortner and D. Ryabko, “Online regret bounds for undiscounted continuous reinforce-
ment learning,” in Advances in Neural Information Processing Systems, 2012, pp. 1763–
1771.

136

Appendix A: Proofs for Chapter 2

A.1 Analysis of Projected TD(0) under Markov chain sampling model

In this section, we complete the proof of Theorem 3. The first subsection restates the theorem,

as well as the two key lemmas from Section 2.9 that underly the proof. The second subsection

contains a proof of Theorem 3. Finally, Subsection A.1.3 contains the proof of a technical result,

Lemma 10, which was omitted from the main text but we need for the proof.

A.1.1 Restatement of the theorem and key lemmas from the main text

Theorem 3. Suppose the Projected TD algorithm is applied with parameter ' ≥ ‖\∗‖2 under the

Markov chain observation model with Assumption 1. Set � = (Amax + 2'). Then the following

claims hold.

(a) With a constant step-size sequence U0 = · · · = U) = 1/
√
) ,

E
[

+\∗ −+\̄)

2

�

]
≤
‖\∗ − \0‖22 + �2

(
9 + 12gmix(1/

√
))

)
2
√
) (1 − W)

.

(b) With a constant step-size sequence U0 = · · · = U) < 1/(2l(1 − W)),

E
[

+\∗ −+\)

2

�

]
≤

(
4−2U0 (1−W)l)

)
‖\∗ − \0‖22 + U0

(
�2 (

9 + 12gmix(U0)
)

2(1 − W)l

)
.

(c) With a decaying step-size sequence UC = 1/(l(C + 1) (1 − W)) for all C ∈ N0,

E
[

+\∗ −+\̄)

2

�

]
≤
�2 (

9 + 24gmix(U))
)

) (1 − W)2l
(1 + log)) ,

137

The key to our proof is the following lemmas, which were establish in Section 2.9. Recall the

definition of the semi-gradient error ZC (\) ≡ (6C (\) − 6̄(\))> (\ − \∗).

Lemma 8. With probability 1, for every C ∈ N0,

‖\∗ − \C+1‖22 ≤ ‖\
∗ − \C ‖22 − 2UC (1 − W)‖+\∗ −+\C ‖2� + 2UCZC (\C) + U2

C �
2.

Lemma 11 (Bound on semi-gradient bias). Consider a non-increasing step-size sequence, U0 ≥

U1 . . . ≥ U) . Fix any C <) , and set C∗ ≡ max{0, C − gmix(U))}. Then,

E [ZC (\C)] ≤ �2
(
4 + 6gmix(U))

)
UC∗ .

The following bound also holds:

E [ZC (\C)] ≤ 6�2
C−1∑
8=0

U8 .

A.1.2 Proof of Theorem 3.

We now complete the proof of Theorem 3. The proof directly uses Lemma 8 and Lemma 11.

Proof. From Lemma 8, we have

E
[
‖\∗ − \C+1‖22

]
≤ E

[
‖\∗ − \C ‖22

]
− 2UC (1 − W)E

[

+\∗ −+\C

2
�

]
+ 2UCE [ZC (\C)] + U2

C �
2. (A.1)

Proof of part (a): We first show the analysis for a constant step-size and iterate averaging. Con-

sidering UC = U0 = 1/
√
) in Equation (A.1), rearranging terms and summing from C = 0 to C =)−1,

we get

2U0(1−W)
)−1∑
C=0
E

[

+\∗ −+\C

2
�

]
≤
)−1∑
C=0

(
E

[
‖\∗ − \C ‖22

]
− E

[
‖\∗ − \C+1‖22

])
+�2+2U0

)−1∑
C=0
E [ZC (\C)] .

138

Using Lemma 11 (in which UC∗ = U0 in this case) and simplifying, we find

)−1∑
C=0
E

[

+\∗ −+\C

2
�

]
≤
‖\∗ − \0‖22 + �2

2U0(1 − W)
+) · 2�

2(2 + 3gmix(1/
√
)))U0

(1 − W)

=

√
)

(
‖\∗ − \0‖22 + �2

)
2(1 − W) +

√
) · 2�2(2 + 3gmix(1/

√
)))

(1 − W) .

This gives us our desired result,

E
[

+\∗ −+\̄)

2

�

]
≤ 1
)

)−1∑
C=0
E

[

+\∗ −+\C

2
�

]
≤
‖\∗ − \0‖22 + �2

(
9 + 12gmix(1/

√
))

)
2
√
) (1 − W)

.

Proof of part (b): The proof is analogous to part (b) of Theorem 2. Consider a constant step-

size of U0 < 1/(2l(1 − W)). Starting with Equation (A.1) and applying Lemma 1, which showed

‖+\∗ −+\ ‖2� ≥ l‖\∗ − \‖22 for all \, we get

E
[
‖\∗ − \C+1‖22

]
≤ (1 − 2U0(1 − W)l) E

[
‖\∗ − \C ‖22

]
+ U2

0�
2 + 2U0E [ZC (\C)]

≤ (1 − 2U0(1 − W)l) E
[
‖\∗ − \C ‖22

]
+ U2

0�
2
(
9 + 12gmix(U0)

)
,

where we used Lemma 11 to go to the second inequality. Iterating over this inequality gives us our

final result. For any) ∈ N0,

E
[
‖\∗ − \) ‖22

]
≤ (1 − 2U0(1 − W)l)) ‖\∗ − \0‖22 + U2

0�
2
(
9 + 12gmix(U0)

) ∞∑
C=0
(1 − 2U0(1 − W)l)C

≤
(
4−2U0 (1−W)l)

)
‖\∗ − \0‖22 +

U0�
2 (

9 + 12gmix(U0)
)

2(1 − W)l .

Final inequality follows by solving the geometric series and using that (1 − 2U0(1 − W)l) ≤

4−2U0 (1−W)l along with Lemma 1.

Proof of part (c): We now show the analysis for a linearly decaying step-size using Equation

(A.1) as our starting point. We again use Lemma 1, which showed ‖+\∗ −+\ ‖2� ≥ l‖\∗ − \‖22 for

139

all \, to get,

E
[

+\∗ −+\C

2

�

]
≤ 1
(1 − W)UC

(
(1 − (1 − W)lUC)E

[
‖\∗ − \C ‖22

]
− E

[
‖\∗ − \C+1‖22

]
+ U2

C �
2
)
+

2
(1 − W)E [ZC (\C)] .

Consider a decaying step-size UC = 1
l(C+1) (1−W) , simplify and sum from C = 0 to) − 1 to get

)−1∑
C=0
E

[

+\∗ −+\C

2
�

]
≤ −l)E

[
‖\∗ − \) ‖22

]
︸ ︷︷ ︸

<0

+ �2

l(1 − W)2
)−1∑
C=0

1
C + 1

+ 2
(1 − W)

)−1∑
C=0
E [ZC (\C)] .

(A.2)

To simplify notation, for the remainder of the proof put g = gmix(U)). We can decompose the sum

of semi-gradient errors as

)−1∑
C=0
E [ZC (\C)] =

g∑
C=0
E [ZC (\C)] +

)−1∑
C=g+1

E [ZC (\C)] . (A.3)

We will upper bound each term. In each case we use that, since UC = 1
l(C+1) (1−W) ,

)−1∑
C=0

UC =
1

l(1 − W)

)−1∑
C=0

1
(C + 1) ≤

1 + log)
l(1 − W) .

Combining this with Lemma 11 gives,

g∑
C=0
E [ZC (\C)] ≤

g∑
C=0

(
6�2

C−1∑
8=0

U8

)
≤ g

(
6�2

)−1∑
8=0

U8

)
≤ 6�2g

l(1 − W) (1 + log)).

Similarly, using Lemma 11, we have

)−1∑
C=g+1

E [ZC (\C)] ≤ 2�2 (2 + 3g)
)−1∑
C=g+1

UC−g ≤ 2�2 (2 + 3g)
)−1∑
C=1

UC ≤
2�2 (2 + 3g)
l(1 − W) (1 + log)) .

140

Combining the two parts, we get

)−1∑
C=0
E [ZC (\C)] ≤

4�2 (1 + 3g)
l(1 − W) (1 + log)).

Using this in conjunction with Equation (A.2) we get,

E
[

+\∗ −+\̄)

2

�

]
≤ 1
)

)−1∑
C=0
E

[

+\C −+\∗

2
�

]
≤ �2

l) (1 − W)2
(1 + log)) + 2

) (1 − W)

)−1∑
C=0
E [ZC (\C)] .

Simplifying and substituting g = gmix(U)), we give final result.

E
[

+\∗ −+\̄)

2

�

]
≤ �2

l) (1 − W)2
(1 + log)) +

8�2 (
1 + 3gmix(U))

)
l) (1 − W)2

(1 + log))

≤
�2 (

9 + 24gmix(U))
)

l) (1 − W)2
(1 + log)) .

�

We remark that Equation (A.2) also gives us a convergence rate of O(log)/)) for the iterate \)

itself (and hence on the value function +\)) but the bound degrades by a factor of l. In particular,

we have

E
[

+\∗ −+\)

2

�

]
≤ E

[
‖\∗ − \) ‖22

]
≤
�2 (

9 + 24gmix(U))
)

l2) (1 − W)2
(1 + log)) . (A.4)

where the first inequality follows using Lemma 1.

A.1.3 Proof of Lemma 10

Lemma 10 (Semi-gradient error is bounded and Lipschitz). With probability 1,

|ZC (\) | ≤ 2�2 ∀ \ ∈ Θ'

141

and

|ZC (\) − ZC (\′) | ≤ 6�‖(\ − \′)‖2 ∀ \, \′ ∈ Θ' .

Proof. The first claim follows from a simple argument using Lemma 6.

|ZC (\) | =
��(6C (\) − 6̄(\))> (\ − \∗)�� ≤ (‖6C (\)‖2 + ‖6̄(\)‖2) (‖\‖2 + ‖\∗‖2) ≤ 4�' ≤ 2�2,

where the first inequality follows from the triangle inequality and the Cauchy-Schwartz inequality,

and the final inequality uses that ' ≤ �/2 by definition of � = Amax + 2'.

To establish the second claim, consider the following inequality for any vectors (01, 11, 02, 12):

��0>1 11 − 0>2 12
�� = ��0>1 (11 − 12) + 1>2 (01 − 02)

�� ≤ ‖01‖‖11 − 12‖ + ‖12‖‖01 − 02‖.

This follows as a direct application of Cauchy-Schwartz. It implies that for any \, \′ ∈ Θ',

|ZC (\) − ZC (\′) | =
��(6C (\) − 6̄(\))> (\ − \∗) − (6C (\′) − 6̄(\′))> (\′ − \∗)��
≤ ‖6C (\) − 6̄(\)‖2‖\ − \′‖2 + ‖\′ − \∗‖2‖(6C (\) − 6̄(\)) − (6C (\′) − 6̄(\′))‖2

≤ 2�‖\ − \′‖2 + 2' (‖6C (\) − 6C (\′)‖2 + ‖6̄(\) − 6̄(\′)‖2)

≤ 2�‖\ − \′‖2 + 8'‖\ − \′‖2

≤ 6�‖\ − \′‖2.

where we used that ' ≤ �/2 by the definition of �. We also used that both 6C (·) and 6̄(·) are

2-Lipschitz functions which is easy to see. Starting with 6C (\) = (AC + Wq(B′C)>\ − q(BC)>\)q(BC),

consider

‖6C (\) − 6C (\′)‖2 =

q(BC) (Wq(B′C) − q(BC))> (\ − \′)

2

≤ ‖q(BC)‖2

(Wq(B′C) − q(BC))

2‖(\ − \

′)‖2

≤ 2‖(\ − \′)‖2.

142

Similarly, following Equation (2.2), we have ‖6̄(\) − 6̄(\′)‖2 =

E [q (Wq′ − q)]> (\ − \′)

2,

where q = q(B) is the feature vector of a random initial state B ∼ c, q′ = q(B′) is the feature

vector of a random next state drawn according to B′ ∼ P(· | B). Therefore,

‖6̄(\) − 6̄(\′)‖2 ≤

q (Wq′ − q)> (\ − \′)

 ≤ 2‖(\ − \′)‖2.

�

143

A.2 Analysis of Projected TD(_) under Markov chain sampling model

In this section, we give a detailed proof of the convergence bounds presented in Theorem

4. Subsection A.2.1 details our proof strategy along with key lemmas which come together in

Subsection A.2.2 to establish the results. We begin by providing mathematical expressions for

TD(_) updates.

Stationary distribution of TD(_) updates: Recall that the projected TD(_) update at time C is

given by:

\C+1 = Π2,' (\C + UCGC (\C , I0:C))

where Π2,' (·) denotes the projection operator onto a norm ball of radius ' < ∞ and GC (\C , I0:C)

is the update direction. Let us now give explicit mathematical expressions for GC (\, I0:C) and its

steady-state mean Ḡ(\). Note that these are analogous to the expressions for the negative semi-

gradient 6C (\) and its steady-state expectation 6̄(\) for TD(0). At time C, as a general function of

(non-random) \ and the tuple OC = (BC , AC , B′C) along with the eligibility trace term I0:C , we have

GC (\, I0:C) =
(
AC + Wq(B′C)>\ − q(BC)>\

)
I0:C = XC (\)I0:C ∀ \ ∈ R3 .

The asymptotic convergence of TD(_) is closely related to the expected value of GC (\, I0:C) under

the steady-state behavior of ($C , I0:C),

Ḡ(\) = lim
C→∞
E [XC (\)I0:C] .

Rather than take this limit, it will be helpful in our analysis to think of an equivalent backward

view by constructing a stationary process with mean Ḡ(\). Consider a stationary sequence of states

(. . . , B−1, B0, B1, . . .) and set I−∞:C =
∑∞
:=0(W_):q(BC−:). Then the sequence (G0(\, I−∞:0), G1(\, I−∞:1), . . .)

144

is stationary, and we have

Ḡ(\) = E [XC (\)I−∞:C] . (A.5)

It should be emphasized that Ḡ(\) and the states (. . . , B−2, B−1) are introduced only for the purposes

of our analysis and are never used by the algorithm itself. However, this turns out to be quite useful

as it is easy to show [61] that

Ḡ(\) = Φ>�
(
)
(_)
` Φ\ −Φ\

)
, (A.6)

where Φ is the feature matrix and () (_)` Φ\ − Φ\) denotes the Bellman error defined with respect

to the Bellman operator) (_)` (·), corresponding to a policy `. Careful readers will notice the stark

similarity between Equation (A.6) and Equation (2.3). Exploiting the property that Π�)_` (·) is also

a contraction operator, one can easily show a result equivalent to Lemma 3, thus quantifying the

progress we make by taking steps in the direction of Ḡ(\). The rest of our proof essentially shows

how to control for the observation noise, i.e. the fact that we use GC (\, I0:C) rather than Ḡ(\) to

make updates. To remind the readers of the results, we first restate Theorem 4 below.

Theorem 4. Suppose the Projected TD(_) algorithm is applied with parameter ' ≥ ‖\∗‖2 under

the Markov chain observation model with Assumption 1. Set � =
(Amax+2')
(1−W_) . Then the following

claims hold.

(a) With a constant step-size UC = U0 = 1/
√
) ,

E
[

+\∗ −+\̄)

2

�

]
≤
‖\∗ − \0‖22 + �2

(
13 + 28gmix

_
(1/
√
))

)
2
√
) (1 − ^)

.

(b) With a constant step-size UC = U0 < 1/(2l(1 − ^)) and) > 2gmix
_
(U0) ,

E
[

+\∗ −+\)

2

�

]
≤

(
4−2U0 (1−^)l)

)
‖\∗ − \0‖22 + U0

(
�2 (

13 + 24gmix
_
(U0)

)
2(1 − ^)l

)
.

145

(c) With a decaying step-size UC = 1/(l(C + 1) (1 − ^)),

E
[

+\∗ −+\̄)

2

�

]
≤
�2 (

13 + 52gmix
_
(U))

)
) (1 − ^)2l

(1 + log)) .

A.2.1 Proof strategy and key lemmas

We now describe our proof strategy and give key lemmas used to establish Theorem 4. Through-

out, we consider the Markov chain observation model with Assumption 1 and study the Projected

TD (_) algorithm applied with parameter ' ≥ ‖\∗‖2 and step-size sequence (U0, . . . , U)). To

simplify our exposition, we introduce some notation below.

Notation: We specify the notation used throughout this section. Define the set Θ' = {\ ∈ R3 :

‖\‖2 ≤ '}, so \C ∈ Θ' for each C because of the algorithm’s projection step. Next, we generically

define I;:C =
∑C−;
:=0(W_):q(BC−:) for any lower limit ; ≤ C. Thus, I;:C denotes the eligibility trace as

a function of the states (B; , . . . , BC). Next, we define ZC (\, I;:C) as a general function of \ and I;:C ,

ZC (\, I;:C) = (XC (\)I;:C − Ḡ(\))> (\ − \∗). (A.7)

Here, the subscript C in ZC encodes the dependence on the tuple $C = (BC , AC , B′C) which is used to

compute the Bellman error, XC (·) at time C. Finally, we set � := (Amax+2')/(1−W_) which implies

� > 2', a fact we use many times in our proofs to simplify constant terms. As a reminder, note

that our bounds depend on the mixing time, which we defined in Section 2.10 as

gmix
_ (n) = max{gMC(n), gAlgo(n)},

where gMC(n) = min{C ∈ N0 | <dC ≤ n} and gAlgo(n) = min{C ∈ N0 | (W_)C ≤ n}.

Proof outline: The analysis for TD(_) can be broadly divided into three parts and closely mimics

the steps used to prove TD(0) results.

146

1. As a first step, we do an error decomposition, similar to the result shown in Lemma 8. This

is enabled by two key lemmas, which are analogues of Lemma 3 and Lemma 6 for Projected

TD(0). The first one spells out a clear relationship of how the updates following Ḡ(\) point

in the descent direction of ‖\∗ − \‖22 while the second one upper bounds the norm of the

update direction, GC (\, I0:C), by the constant � (as defined above).

2. The error decomposition that we obtain from Step 1 can be stated as:

E[‖\∗ − \C+1‖22] ≤ E[‖\∗ − \C ‖
2
2] − 2UC (1 − ^)E[

+\∗ −+\C

2
�
] + 2UCE[ZC (\C , I0:C)] + U2

C �
2.

In the second step, we establish an upper bound on the bias term, E [ZC (\C , I0:C)], which is

the main challenge in our proof. Recall that the dependent nature of the state transitions may

result in strong coupling between the tuples OC−1 and OC under the Markov chain observation

model. Therefore, this bias in update direction can potentially be non-zero. Presence of the

eligibility trace term, I0:C , which is a function of the entire history of states, (B0, . . . , BC),

further complicates the analysis by introducing subtle dependencies.

To control for this, we use information-theoretic techniques shown in Lemma 9 which exploit

the geometric ergodicity of the MDP, along with the geometric weighting of state features

in the eligibility trace term. Our result essentially shows that the bias scales the noise in

update direction by a factor of the mixing time. Mathematically, for a constant step-size U,

we show that E [UZC (\C , I0:C)] ≈ �2(6+12gmix
_
(U))U2. We show a similar result for decaying

step-sizes as well.

3. In the final step, we combine the error decomposition from Step 1 and the bound on the

bias from Step 2, to establish finite time bounds on the performance of Projected TD(_) for

different step-size choices. We closely mimic the analysis of [53] for a constant, aggressive

step-size of (1/
√
)) and the proof ideas of [56] for decaying step-sizes.

147

Error decomposition under Projected TD(_)

We first state two important lemmas below which enable the error decomposition shown in

Lemma 34.

Lemma 32. [Tsitsiklis and Van Roy [9]] Let +\∗ be the unique fixed point of Π�)
(_)
` (·) i.e. +\∗ =

Π)
(_)
` +\∗ . For any \ ∈ R3 ,

(\∗ − \)>Ḡ(\) ≥ (1 − ^)‖+\∗ −+\ ‖2� .

Proof. We use the definition of Ḡ(\) = 〈Φ>,) (_)` Φ\ − Φ\〉� as shown in Equation (A.6) along

with the fact that Π�)
(_)
` (·) is a contraction with respect to ‖ · ‖� with modulus ^. See Appendix

A.3 for a complete proof. �

Lemma 33. For all \ ∈ Θ', ‖GC (\, I0:C)‖2 ≤ � with probability 1. Additionally, ‖Ḡ(\)‖2 ≤ �.

Proof. See Subsection A.2.3 for a complete proof. �

The above two lemmas can be easily combined to establish a recursion for the error under

projected TD(_) that holds for each sample path.

Lemma 34. With probability 1, for every C ∈ N0,

‖\∗ − \C+1‖22 ≤ ‖\∗ − \C ‖
2
2 − 2UC (1 − ^)

+\∗ −+\C

2
�
+ 2UCZC (\C , I0:C) + U2

C �
2.

Proof. The Projected TD(_) algorithm updates the parameter as: \C+1 = Π2,' [\C+UCGC (\C , I0:C)] ∀ C ∈

148

N0. This implies,

‖\∗ − \C+1‖22 =

\∗ − Π2,' (\C + UCGC (\, I0:C))

2
2

=

Π2,' (\∗) − Π2,' (\C + UCGC (\C , I0:C))

2
2

≤ ‖\∗ − \C − UCGC (\C , I0:C)‖22

= ‖\∗ − \C ‖22 − 2UCGC (\C , I0:C)>(\∗ − \C) + U2
C ‖GC (\C , I0:C)‖22

≤ ‖\∗ − \C ‖22 − 2UCGC (\C , I0:C)>(\∗ − \C) + U2
C �

2

= ‖\∗ − \C ‖22 − 2UC Ḡ(\C)>(\∗ − \C) + 2UCZC (\C , I0:C) + U2
C �

2.

≤ ‖\∗ − \C ‖22 − 2UC (1 − ^)‖+\∗ −+\ ‖2� + 2UCZC (\C , I0:C) + U2
C �

2.

The first inequality used that orthogonal projection operators onto a convex set are non-expansive,

the second used Lemma 33 together with the fact ‖\C ‖2 ≤ ' due to projection, and the third

used Lemma 32. Note that we used ZC (\C , I0:C) to simplify the notation for the error in the update

direction. Recall the definition of the error function from Equation (A.7) which implies,

ZC (\C , I0:C) = (XC (\C)I0:C − Ḡ(\C))>(\C − \∗) = (GC (\C , I0:C) − Ḡ(\C))>(\C − \∗).

�

Upper bound on the bias in update direction.

We give an upper bound on the expected error in the update direction, E[ZC (\C , I0:C)], which

as explained above, is the key challenge for our analysis. For this, we first establish some basic

regularity properties of the error function ZC (·, ·) in Lemma 35 below. In particular, part (a) shows

boundedness, part (b) shows that it is Lipschitz in the first argument and part (c) bounds the error

due to truncation of the eligibility trace. Recall that I;:C denotes the eligibility trace as a function

of the states (B; , . . . , BC).

Lemma 35. Consider any ; ≤ C and any \, \′ ∈ Θ'. With probability 1,

149

(a) |ZC (\, I;:C) | ≤ 2�2.

(b) |ZC (\, I;:C) − ZC (\′, I;:C) | ≤ 6�‖(\ − \′)‖2.

(c) The following two bounds also hold,

|ZC (\, I0:C) − ZC (\, IC−g:C) | ≤ �2(W_)g for all g ≤ C,

|ZC (\, I0:C) − ZC (\, I−∞:C) | ≤ �2(W_)C .

Proof. We essentially use the uniform bound on GC (\, I0:C) and Ḡ(\) as stated in Lemma 33 to show

this result. See Subsection A.2.3 for a detailed proof. �

Lemma 35 can be combined with Lemma 9 to give an upper bound on the bias term, E [ZC (\C , I0:C)],

as shown below.

Lemma 36. Consider a non-increasing step-size sequence, U0 ≥ U1 . . . ≥ U) . Then the following

hold.

(a) For 2gmix
_
(U)) < C ≤) ,

E [ZC (\C , I0:C)] ≤ 6�2(1 + 2gmix
_ (U)))UC−2gmix

_
(U)) .

(b) For 0 ≤ C ≤ 2gmix
_
(U)),

E [ZC (\C , I0:C)] ≤ 6�2
(
1 + 2gmix

_ (U))
)
U0 + �2(W_)C .

(c) For all C ∈ N0,

E [ZC (\C , I0:C)] ≤ 6�2
C−1∑
8=0

U8 + �2(W_)C

150

Proof. We proceed in two cases below. Throughout the proof, results from Lemma 35 are applied

using the fact that \C ∈ Θ', because of the algorithm’s projection step.

Case (a): Let C > 2g and consider the following decomposition for all g ∈ {0, 1, . . . , C/2}. We

show an upper bound on each of the three terms separately.

E [ZC (\C , I0:C)] ≤ |E [ZC (\C , I0:C)] − E[ZC (\C−2g, I0:C)] | + |E[ZC (\C−2g, I0:C)] − E[ZC (\C−2g, IC−g:C)] |

+|E[ZC (\C−2g, IC−g:C)] |.

Step 1: Use regularity properties of the error function to bound first two terms.

We relate ZC (\C , I0:C) and ZC (\C−g, I0:C) using the Lipschitz property shown in part (b) of Lemma 35

to get,

|ZC (\C , I0:C) − ZC (\C−2g, I0:C) | = 6�‖\C − \C−2g‖2 ≤ 6�2
C−1∑

8=C−2g
U8 . (A.8)

Taking expectations on both sides gives us the desired bound on the first term. The last inequality

used the norm bound on update direction as shown in Lemma 33 to simplify,

‖\C − \C−2g‖2 ≤
C−1∑

8=C−2g

Π2,' (\8+1 + U8G8 (\8, I0:8)) − \8

2 ≤
C−1∑

8=C−2g
U8‖G8 (\8, I0:8)‖2 ≤ �

C−1∑
8=C−2g

U8 .

Similarly, by part (c) of Lemma 35, we have a bound on the second term.

|E[ZC (\C−2g, I0:C)] − E[ZC (\C−2g, IC−g:C)] | ≤ �2(W_)g . (A.9)

Step 2: Use information-theoretic arguments to upper bound E[ZC (\C−2g, IC−g:C)].

We will essentially use Lemma 9 to upper bound E[ZC (\C−2g, IC−g:C)]. We first introduce some nota-

tion to highlight subtle dependency issues. Note that ZC (\C−2g, IC−g:C) is a function of (\C−2g, BC−g, . . . , BC−1, $C).

151

To simplify, let .C−g:C = (BC−g, . . . , BC−1, $C). Define,

5 (\C−2g, .C−g:C) := ZC (\C−2g, IC−g:C).

Consider random variables \′
C−2g and . ′C−g:C drawn independently from the marginal distributions of

\C−2g and .C−g:C , so P(\′
C−2g = ·, .

′
C−g:C = ·) = P(\C−g = ·) ⊗ P(.C−g:C = ·). By Lemma 35 we have that

| 5 (\,.C−g:C) | ≤ 2�2 for all \ ∈ Θ' with probability 1. As

\C−2g → BC−2g → BC−g → BC → $C

form a Markov chain, a direct application of Lemma 9 gives us:

��E[5 (\C−2g, .C−g:C)] − E[5 (\′C−2g, .
′
C−g:C)]

�� ≤ 4�2<dg . (A.10)

We also have the following bound for all fixed \ ∈ Θ'. Using Ḡ(\) = E[XC (\)I−∞:C], we get

E[5 (\,.C−g:C)] = (E[XC (\)IC−g:C] − Ḡ(\))> (\ − \∗) ≤
��(XC (\)I−∞:C−g)> (\ − \∗)

�� ≤ �2(W_)g

(A.11)

Combining the above with Equation (A.10), we get

|E[ZC (\C−2g, IC−g:C)] | = |E[5 (\C−2g, .C−g:C)] |

≤
��E[5 (\C−2g, .C−g:C)] − E[5 (\′C−2g, .

′
C−g:C)]

�� + ��E[5 (\′C−2g, .
′
C−g:C)]

��
≤ 4�2<dg +

��E[E[5 (\′C−2g, .
′
C−g:C) |\′C−2g]]

��
≤ 4�2<dg + �2(W_)g . (A.12)

Step 3. Combine terms to show part (a) of our claim.

152

Taking g = gmix
_
(U)) and combining Equations (A.8), (A.9) and (A.12) establishes the first claim.

E [ZC (\C , I0:C)] ≤ 6�2
C−1∑

8=C−2g
U8 + 4�2<dg + 2�2(W_)g ≤ 12�2gmix

_ (U))UC−2gmix
_
(U)) + 6�2U)

≤ 6�2(1 + 2gmix(U)))UC−2gmix
_
(U)) .

Here we used that letting g = gmix
_
(U)) implies: max{<dg, (W_)g} ≤ U) . Two additional facts

which we also use follow from a non-increasing step-size sequence,
∑C−1
8=C−2g U8 ≤ 2gUC−2g and

U) ≤ UC−2g.

Case (b): Consider the following decomposition for all C ∈ N0,

E [ZC (\C , I0:C)] ≤ |E [ZC (\C , I0:C)] − E[ZC (\0, I0:C)] |+|E[ZC (\0, I0:C)] − E[ZC (\0, I−∞:C)] |+|E[ZC (\0, I−∞:C)] |.

Step 1: Use regularity properties of the error function to upper bound the first two terms.

Using parts (b), (c) of Lemma 35 and following the arguments shown in Step 1, 2 of case (a) above,

we get

|E [ZC (\C , I0:C)] − E[ZC (\0, I0:C)] | + |E[ZC (\0, I0:C)] − E[ZC (\0, I−∞:C)] | ≤ 6�2
C−1∑
8=0

U8 + �2(W_)C .(A.13)

Step 2: Characterizing E[ZC (\, I−∞:C)] for any fixed (non-random) \.

Recall the definition of Ḡ(\) from Equation (A.5). For any fixed \, we have Ḡ(\) = E[XC (\)I−∞:C].

Therefore,

E[ZC (\0, I−∞:C)] = (E[XC (\0)I−∞:C] − Ḡ(\0))> (\0 − \∗) = 0. (A.14)

Step 3. Combine terms to show parts (b), (c) of our claim.

153

Combining Equations (A.13) and (A.14) establishes part (c) which states,

E [ZC (\C , I0:C)] ≤ 6�2
C−1∑
8=0

U8 + �2(W_)C ∀ C ∈ N0.

We establish part (b) by using that the step-size sequence is non-increasing which implies:
∑C−1
8=0 U8 ≤

CU0. For all C ≤ 2gmix
_
(U)), we have the following loose upper bound.

E [ZC (\C , I0:C)] ≤ 6�2CU0 + �2(W_)C ≤ 6�2
(
1 + 2gmix

_ (U)))
)
U0 + �2(W_)C .

�

A.2.2 Proof of Theorem 4

In this subsection, we establish convergence bounds for Projected TD(_) as stated in Theorem

4 using Lemmas 34 and 36. From Lemma 34 we have,

E
[
‖\∗ − \C+1‖22

]
≤ E

[
‖\∗ − \C ‖22

]
− 2UC (1 − ^)E

[

+\∗ −+\C

2
�

]
+ 2UCE [ZC (\C , I0:C)] + U2

C �
2.(A.15)

Equation (A.15) will be used as a starting point for analyzing different step-size choices.

Proof of part (a): Fix a constant step-size of U0 = . . . = UC = 1/
√
) in Equation (A.15), rearrange

terms and sum from C = 0 to C =) − 1, we get

2U0(1 − ^)
)−1∑
C=0
E

+\∗ −+\C

2

�
≤
)−1∑
C=0

(
E‖\∗ − \C ‖22 − E‖\∗ − \C+1‖

2
2

)
+ �2 + 2U0

)−1∑
C=0
E [ZC (\C , I0:C)] .

154

Using Lemma 36 where UC−2gmix
_
(U)) = U0 along with the fact that (W_) < 1, we simplify to get

)−1∑
C=0
E

+\∗ −+\C

2

�
≤
‖\∗ − \0‖22 + �2

2U0(1 − ^)
+

6�2) (1 + 2gmix
_
(1/
√
)))U0

(1 − ^) + 1
(1 − ^)

2gmix
_
(1√
)
)∑

C=0
�2(W_)C

≤

√
)

(
‖\∗ − \0‖22 + �2

)
2(1 − ^) +

6�2√) (1 + 2gmix
_
(1/
√
)))

(1 − ^) +
2�2gmix

_
(1/
√
))

(1 − ^) .

Adding these terms, we conclude

E
[

+\∗ −+\̄)

2

�

]
≤ 1
)

)−1∑
C=0
E

[

+\∗ −+\C

2
�

]
≤
‖\∗ − \0‖22 + �2

(
13 + 28gmix

_
(1/
√
))

)
2
√
) (1 − ^)

.

Proof of part (b): For a constant step-size of U0 < 1/(2l(1 − ^)), we show that the expected

distance between the iterate \) and the TD(_) limit point, \∗ converges at an exponential rate

below some level that depends on the choice of step-size and _. Starting with Equation (A.15) and

applying Lemma 1 which shows that ‖+\∗ −+\ ‖2� ≥ F‖\∗ − \‖22 for any \, we have that for all

C > 2gmix
_
(U0),

E
[
‖\∗ − \C+1‖22

]
≤ (1 − 2U0(1 − ^)l) E

[
‖\∗ − \C ‖22

]
+ U2

0�
2 + 2U0E [ZC (\C , I0:C)]

≤ (1 − 2U0(1 − ^)l) E
[
‖\∗ − \C ‖22

]
+ U2

0�
2
(
13 + 24gmix

_ (U0)
)
,

where we used part (a) of Lemma 36 for the second inequality. Iterating over it gives us our final

result. For any) > 2gmix
_
(U0),

E
[
‖\∗ − \) ‖22

]
≤ (1 − 2U0(1 − ^)l)) ‖\∗ − \0‖22 + U2

0�
2
(
13 + 24gmix

_ (U0)
) ∞∑
C=0
(1 − 2U0(1 − ^)l)C

≤
(
4−2U0 (1−^)l)

)
‖\∗ − \0‖22 +

�2U0
(
13 + 24gmix

_
(U0)

)
2(1 − ^)l .

Final inequality follows by solving the geometric series and using that (1 − 2U0(1 − ^)l) ≤

4−2U0 (1−^)l along with Lemma 1.

155

Proof of part (c): Consider a decaying step-size of UC = 1/(l(C + 1) (1 − ^)). We start with

Equation (A.15) and use Lemma 1 which showed E
[
‖+\∗ −+\ ‖2�

]
≥ FE

[
‖\∗ − \‖22

]
for all \ to

get,

E
[

+\∗ −+\C

2

�

]
≤ 1
(1 − ^)UC

(
(1 − (1 − ^)lUC)E

[
‖\∗ − \C ‖22

]
− E

[
‖\∗ − \C+1‖22

]
+ U2

C �
2
)
+

2
(1 − ^)E [ZC (\C , I0:C)] .

Substituting UC = 1
l(C+1) (1−^) , simplify and sum from C = 0 to) − 1 to get,

)−1∑
C=0
E

[

+\∗ −+\C

2
�

]
≤ −l)E

[
‖\∗ − \) ‖22

]
+ �2

l(1 − ^)2
)−1∑
C=0

1
C + 1

+ 2
(1 − ^)

)−1∑
C=0
E [ZC (\C , I0:C)]

≤ −l)E
[
‖\∗ − \) ‖22

]
︸ ︷︷ ︸

<0

+�
2(1 + log))
l(1 − ^)2

+ 2
(1 − ^)

)−1∑
C=0
E [ZC (\C , I0:C)] ,

(A.16)

where we use that
∑)−1
C=0

1
C+1 ≤ (1 + log)). To simplify notation, we put g = gmix

_
(U)) for the

remainder of the proof. We use Lemma 36 to upper bound the total bias,
∑)−1
C=0 E [ZC (\C , I0:C)]

which can be decomposed as:

)−1∑
C=0
E [ZC (\C , I0:C)] =

2g∑
C=0
E [ZC (\C , I0:C)] +

)−1∑
C=2g+1

E [ZC (\C , I0:C)] . (A.17)

First, note that for a decaying step-size UC = 1
l(C+1) (1−W) we have

)−1∑
C=0

UC =
1

l(1 − W)

)−1∑
C=0

1
(C + 1) ≤

1 + log)
l(1 − W) .

156

We will combine this with Lemma 36 to upper bound each term separately. First,

2g∑
C=0
E [ZC (\C , I0:C)] ≤

2g∑
C=0

(
6�2

C−1∑
8=0

U8

)
+

2g∑
C=0

�2(W_)C

≤ 6�2

l(1 − ^)

2g∑
C=0

)−1∑
8=0

1
(8 + 1) + 2�2g ≤ 14�2g

l(1 − ^) (1 + log)),

where we used the fact that l, ^, (W_) < 1. Similarly,

)−1∑
C=2g+1

E [ZC (\C , I0:C)] ≤ 6�2(1 + 2g)
)−1∑
C=2g+1

UC−2g ≤ 6�2(1 + 2g)
)−1∑
C=0

UC ≤
6�2(1 + 2g)
l(1 − ^) (1 + log)) .

Combining the two parts, we get

)−1∑
C=0
E [ZC (\C , I0:C)] ≤

�2(6 + 26g)
l(1 − ^) (1 + log)).

Using this in conjunction with Equation (A.16) we get,

E
[

+\∗ −+\̄)

2

�

]
≤ 1
)

)−1∑
C=0
E

[

+\C −+\∗

2
�

]
≤ �

2 (1 + log))
l) (1 − ^)2

+ 2
) (1 − ^)

)−1∑
C=0
E [ZC (\C , I0:C)] .

Simplifying and putting back g = gmix
_
(U)), we get our final result.

E
[

+\∗ −+\̄)

2

�

]
≤ �2

l) (1 − ^)2
(1 + log)) +

2�2 (
6 + 26gmix

_
(U))

)
l) (1 − ^)2

(1 + log))

≤
�2 (

13 + 52gmix(U))
)

l) (1 − ^)2
(1 + log)).

We remark that Equation (A.16) implies a convergence rate of O(log)/)) for the iterate \) (and

hence the value function +\)) itself but the bounds degrade by a factor of l. In particular, we have

E
[

+\∗ −+\)

2

�

]
≤ E

[
‖\∗ − \) ‖22

]
≤
�2 (

13 + 52gmix
_
(U))

)
l2) (1 − ^)2

(1 + log)) (A.18)

where the first inequality follows using Lemma 1.

157

A.2.3 Proof of supporting lemmas.

In this subsection, we provide standalone proofs of Lemma 33 and 35 used above.

Lemma 33. For all \ ∈ Θ', ‖GC (\, I0:C)‖2 ≤ � with probability 1. Additionally, ‖Ḡ(\)‖2 ≤ �.

Proof. We start with the mathematical expression for GC (\, I0:C).

GC (\, I0:C) = XC (\)I0:C ⇒ ‖GC (\, I0:C)‖2 = |XC (\) |‖I0:C ‖2.

We give an upper bound on both |XC (\) | and ‖I0:C ‖2. Starting with the definition of XC (\) and using

that ‖q(BC)‖2 ≤ 1 ∀ C along with ‖\‖2 ≤ ', we get

|XC (\) | =
��AC + Wq(B′C)>\ − q(BC)>\�� ≤ Amax +

q(B′C)

2‖\‖2 + ‖q(BC)‖2‖\‖2 ≤ (Amax + 2') .

Next,

‖I0:C ‖22 =

 C∑
:=0
(W_):q(BC−:)

2

2

≤
(
C∑
:=0
(W_):

)2

≤
(∞∑
:=0
(W_):

)2

=
1

(1 − W_)2
.

Combining these two implies the first part of our claim.

‖GC (\, I0:C)‖2 = |XC (\) |‖I0:C ‖2 ≤
(Amax + 2')
(1 − W_) = �.

Note that can easily show an upper bound ‖XC (\)I;:C ‖2 ≤ � for any pair (\, I;:C) with ; ≤ C.

Consider,

‖I;:C ‖22 ≤ ‖I−∞:C ‖22 ≤
(∞∑
:=0
(W_):

)2

=
1

(1 − W_)2

⇒ ‖XC (\)I;:C ‖2 = |XC (\) |‖I;:C ‖2 ≤
(Amax + 2')
(1 − W_) = �.

Taking ; → −∞ implies that ‖XC (\)I−∞:C ‖2 ≤ �. As Ḡ(\) = E [XC (\)I−∞:C], we also have a uniform

158

norm bound on the expected updates, ‖Ḡ(\)‖2 ≤ �, as claimed. �

Lemma 35. Consider any ; ≤ C and any \, \′ ∈ Θ'. With probability 1,

(a) |ZC (\, I;:C) | ≤ 2�2.

(b) |ZC (\, I;:C) − ZC (\′, I;:C) | ≤ 6�‖(\ − \′)‖2.

(c) The following two bounds also hold,

|ZC (\, I0:C) − ZC (\, IC−g:C) | ≤ �2(W_)g for all g ≤ C,

|ZC (\, I0:C) − ZC (\, I−∞:C) | ≤ �2(W_)C .

Proof. Throughout, we use the assumption that basis vectors are normalized i.e. ‖q(BC)‖2 ≤ 1 ∀ C.

Part (a): We show a uniform norm bound on ZC (\, I;:C) ∀ \ ∈ Θ'. First consider the following:

‖XC (\)I;:C ‖2 = |XC (\) |‖I;:C ‖2 ≤
��AC + Wq(B′C)>\ − q(BC)>\��

 C−;∑

:=0
(W_):q(BC−:)

2

≤
��AC +

q(B′C)

2‖\‖2 + ‖q(BC)‖2‖\‖2

��

 ∞∑
:=0
(W_):q(BC−:)

2

≤ (Amax + 2')
(1 − W_) = �.

Using this along with the fact that ‖\ − \∗‖2 ≤ 2' ≤ � and ‖Ḡ(\)‖2 ≤ � for all \ ∈ Θ', we get

|ZC (\, I;:C) | =
��(XC (\)I;:C − Ḡ(\))> (\ − \∗)�� ≤ ‖XC (\)I;:C − Ḡ(\)‖2‖(\ − \∗)‖2

≤ (‖XC (\)I;:C ‖2 + ‖Ḡ(\)‖2) ‖(\ − \∗)‖2

≤ 2�‖(\ − \∗)‖2 ≤ 2�2.

159

Part (b): To show that ZC (·, I;:C) is !-Lipschitz, consider the following inequality for any four

vectors (01, 11, 02, 12), which follows as a direct application of Cauchy-Schwartz.

��0>1 11 − 0>2 12
�� = ��0>1 (11 − 12) + 1>2 (01 − 02)

�� ≤ ‖01‖2‖11 − 12‖2 + ‖12‖2‖01 − 02‖2.

This implies,

|ZC (\, I;:C) − ZC (\′, I;:C) | =
��(XC (\)I;:C − Ḡ(\))> (\ − \∗) − (XC (\′)I;:C − Ḡ(\′))> (\′ − \∗)��
≤ ‖XC (\)I;:C−Ḡ(\)‖2‖\−\′‖2+‖\′−\∗‖2‖(XC (\)I;:C−Ḡ(\)) − (XC (\′)I;:C−Ḡ(\′))‖2

≤ 2�‖\ − \′‖2 + 2'
[
‖I;:C (XC (\) − XC (\′))‖2 + ‖Ḡ(\) − Ḡ(\′)‖2

]
≤ 2�‖\ − \′‖2 +

8'
(1 − W_) ‖\ − \

′‖2

≤ 6�‖\ − \′‖2,

where the last inequality follows as '
1−W_ ≤ �/2 by definition. In the penultimate inequality, we

used that ‖I;:C (XC (\) − XC (\′))‖2 ≤ 2
(1−W_) ‖\ − \

′‖2 which is easy to prove. Consider,

‖I;:C (XC (\) − XC (\′))‖2 ≤ ‖I;:C ‖2 | (XC (\) − XC (\′)) |

≤

 ∞∑
:=0
(W_):q(BC−:)

2

| (XC (\) − XC (\′)) |

≤ 1
(1 − W_)

��� (Wq(B′C) − q(BC))> (\ − \′)���
≤

(

q(B′C)

2 + ‖q(BC)‖2
)

(1 − W_) ‖\ − \′‖2 ≤
2

(1 − W_) ‖\ − \
′‖2.

As Ḡ(\) = E [XC (\)I−∞:C], this also implies ‖Ḡ(\) − Ḡ(\′)‖2 ≤ 2
(1−W_) ‖\ − \

′‖2 which completes

the proof.

160

Part (c): To show that |ZC (\, I0:C) − ZC (\, IC−g:C) | ≤ �2(W_)g for all \ ∈ Θ' and g ≤ C, we use

that ‖\ − \∗‖2 ≤ 2' ≤ �.

|ZC (\, I0:C) − ZC (\, IC−g:C) | =
��(XC (\)I0:C − XC (\)IC−g:C)> (\ − \∗)

��
≤ |XC (\) |‖I0:C − IC−g:C ‖2‖\ − \∗‖2

≤
��AC + Wq(B′C)>\ − q(BC)>\��

 ∞∑

:=g

(W_):q(BC−:)

2

�

≤ |AC + 2‖\‖2 | ·
(W_)g
(1 − W_) · �

≤ � (Amax + 2')
(1 − W_) (W_)

g

= �2(W_)g .

Similarly,

|ZC (\, I0:C) − ZC (\, I−∞:C) | ≤
��XC (\) (I0:C − I−∞:C)>(\ − \∗)

��
≤ |XC (\) |‖I0:C − I−∞:C ‖2‖\ − \∗‖2

≤
�� (AC + Wq(B′C)>\ − q(BC)>\) ��

 ∞∑

:=C

(W_):q(BC−:)

2

�

≤ � (Amax + 2')
(1 − W_) (W_)

C

≤ �2(W_)C .

�

161

A.3 Proofs of Additional Lemmas

In this section, prove some additional lemmas stated and used in other parts of the paper. We

first give a proof of Lemma 7 which gives an upper bound on the projection radius, '.

Lemma 7. ‖\∗‖Σ ≤ 2Amax
(1−W)3/2 and hence ‖\∗‖2 ≤ 2Amax√

l(1−W)3/2 .

Proof. Because rewards are uniformly bounded, |+` (B) | ≤ Amax/(1 − W) for all B ∈ S. Recall that

+` denotes the true value function of the Markov reward process. This implies that

+`

� ≤

+`

∞ ≤ Amax
(1 − W) .

Lemma 2 along with simple matrix inequalities enable a simple upper bound on ‖\∗‖2. We have

+\∗ −+`

� ≤ 1√
1 − W2

+` − Π�+`

� ≤ 1√
1 − W2

+`

� ≤ 1√
1 − W

+`

� ,
where the penultimate inequality holds by the Pythagorean theorem. By the reverse triangle in-

equality we have
��‖+\∗ ‖� −

+`

� �� ≤

+\∗ −+`

� . Thus,

‖+\∗ ‖� ≤

+\∗ −+`

� +

+`

� ≤ 2√

1 − W

+`

� ≤ 2√

1 − W
Amax
(1 − W) .

Recall from Section 2.3 we have, ‖+\∗ ‖� = ‖\∗‖Σ which establishes first part of the claim. The

second claim uses that ‖\∗‖Σ ≥ l‖\∗‖2 which follows by Lemma 1. �

Next, we give a combined proof of Lemmas 13 and 32 which quantify the progress of the

expected updates towards the limit point \∗ for TD(_) and the Q-function approximation algo-

rithm. These lemmas can be restated more generally as shown below, instead of using the Bellman

operators � (·) and) (_) (·).

Lemma 37. Consider a linear function approximation such that �\ = Φ\. Let Π�� (·) be a

contraction with respect to ‖·‖� with modulus W and let �\∗ be the unique fixed point of Π�� (·),

162

i.e. �\∗ = Π���\∗ . Define 6̄(\) = Φ>� (�Φ\ −Φ\) for all \ ∈ R3 to be the expected update.

Then,

6̄(\)>(\∗ − \) ≥ (1 − W)‖�\∗ − �\ ‖2� .

Proof. We have

(\∗ − \)>6̄(\) = (\∗ − \)>Φ>� (�Φ\ −Φ\)

= 〈Φ(\∗ − \), (�Φ\ −Φ\)〉�

= 〈Π�Φ(\∗ − \), (�Φ\ −Φ\)〉� (A.19)

= 〈Φ(\∗ − \),Π� (�Φ\ −Φ\)〉� (A.20)

= 〈Φ(\∗ − \),Π��Φ\ −Φ\〉�

= 〈Φ(\∗ − \),Π��Φ\ −Φ\∗ +Φ\∗ −Φ\〉�

= ‖Φ(\∗ − \)‖2� − 〈Φ(\∗ − \),Φ\∗ − Π��Φ\〉�

≥ ‖Φ(\∗ − \)‖2� − ‖Φ(\∗ − \)‖� · ‖Π��Φ\ −Φ\∗‖�

≥ ‖Φ(\∗ − \)‖2� − W · ‖Φ(\∗ − \)‖
2
� (A.21)

= (1 − W) · ‖Φ(\∗ − \)‖2� = (1 − W) · ‖�\∗ − �\ ‖2� ,

where in going to Equation (A.19), we used that ∀ x ∈ Span(Φ), we have Π� x = x. In Equation

(A.20), we used that the projection matrix Π� is symmetric. In going to Equation (A.21), we

used that that Π�� (·) is a contraction operator with modulus W with Φ\∗ as its fixed point, which

implies that ‖Π��Φ\ −Φ\∗‖� = ‖Π��Φ\ − Π��Φ\∗‖� ≤ W‖Φ\ −Φ\∗‖� . �

Finally, we restate and prove Lemmas 14 and 15 used in Section 2.11 to analyze Q-learning for

optimal stopping problems under a linear approximation model.

Lemma 14. For any fixed \ ∈ R3 , E
[
‖6C (\)‖22

]
≤ 2f2+8‖&\−&\∗ ‖2� where f2 = E

[
‖6C (\∗)‖22

]
.

Proof. We use notation and proof strategy mirroring the proof of Lemma 5. Set q = q(BC), q′ =

q(B′C) and *′ = * (B′). Define b = (\∗ − \)>q and b′ = (\∗ − \)>q′. By stationarity b and b′ have

163

the same marginal distribution and E[b2] = ‖&\∗ −&\ ‖2� . Using the formula for 6C (\) in Equation

(2.33), we have

E
[
‖6C (\)‖22

]
≤ 2E

[
‖6C (\∗)‖22

]
+ 2E

[
‖6C (\) − 6C (\∗)‖22

]
= 2f2 + 2E

[

q (
q>(\∗ − \) − W

[
max

(
*′, q′>\∗

)
−max

(
*′, q′>\

)])

2
2

]
≤ 2f2 + 2E

[

q (��q>(\∗ − \)�� + W��max
(
*′, q′>\∗

)
−max

(
*′, q′>\

) ��)

2
2

]
≤ 2f2 + 2E

[

q (��q>(\∗ − \)�� + W��q′>(\∗ − \)��)

2
2

]
(A.22)

≤ 2f2 + 2E[|b + Wb′|2]

≤ 2f2 + 4
(
E

[
|b |2

]
+ W2E

[
|b′|2

])
= 2f2 + 4(1 + W2)‖&\ −&\∗ ‖2� ≤ 2f2 + 8‖&\ −&\∗ ‖2� ,

where we used the assumption that features are normalized so that ‖q‖22 ≤ 1 almost surely. Ad-

ditionally, in going to Equation (A.22), we used that |max (21, 23) −max (22, 23) | ≤ |21 − 22 | for

any scalars 21, 22 and 23. �

Lemma 15. Define � = (Amax + 2'). With probability 1, ‖6C (\)‖2 ≤ � for all \ ∈ Θ'.

Proof. We start with the mathematical expression for the semi-gradient,

6C (\) =
(
D(BC) + Wmax {* (B′C), q(B′C)>\} − q(BC)>\

)
q(BC).

As Amax ≤ ', we have: max {* (B′C), q(B′C)>\} ≤ max {* (B′C),

q(B′C)

2‖\‖2} ≤ '. Then,

‖6C (\)‖22 =
(
D(BC) + Wmax {* (B′C), q(B′C)>\} − q(BC)>\

)2 ‖q(BC)‖2

≤
(
Amax + W' − q(BC)>\

)2

≤ (Amax + W' + ‖q(BC)‖2‖\‖2)2 ≤ (Amax + 2')2 = �2.

We used here that the basis vectors are normalized, ‖q(BC)‖2 ≤ 1 for all C. �

164

Appendix B: Additional details for Chapter 3

B.1 Background on Bellman operators and policy iteration

We make repeated use of the basic element-wise inequalities

)� �)c� and)�c � �c (B.1)

which hold for any policy c. The first inequality follows since) minimizes over actions,)� (B) =

min0∈A &(B, 0) (see Equation (3.2)). The second inequality follows by the first since �c =)c�c.

An important property that we repeatedly make use of is that for bounded cost-to-go functions,

�, �′, both the Bellman optimality operator) and the Bellman operator)c for a stationary policy

c are contraction operators with respect to the maximum norm with modulus W. Precisely,

‖� − �′‖∞ ≤ W‖� − �′‖∞ ‖)c� −)c�′‖∞ ≤ W‖� − �′‖∞. (B.2)

These operators are also monotone, meaning the element-wise inequality � � �′ implies)� �)�′

and)c� �)c�′. A simple argument using contractivity of) and)c together with the triangle

inequality shows that for any bounded cost function �c,

‖�c − �∗‖∞ ≤
1

1 − W ‖�c −)�c‖∞ (B.3)

165

where �∗ is the optial cost-to-go function. Equation (B.3) can be shown using the definitions:

�c =)c�c and �∗ =)�∗,

‖�c − �∗‖∞ = ‖)c�c −)�c +)�c − �∗‖∞ ≤ ‖)c�c −)�c‖∞ + ‖)�c −)�∗‖∞

≤ ‖)c�c −)�c‖∞ + W‖�c − �∗‖∞

The result in (B.3) is very useful for our analysis as it indicates that near-solutions to the the

Bellman equation �∗ =)�∗ must themselves be close to the optimal cost-to-go function �∗. The

reinforcement learning literature widely uses versions of this inequality that are sensitive to the

state distribution. For each bounded function �,

� − �c = � −)c� +)c� −)c�c = � −)c� + W%c (� − �c) = · · · =
∞∑
C=0

WC%Cc · (� −)c�) . (B.4)

This expresses the difference of � from �c in terms of the gap in Bellman’s equations at the states

visited by the policy c. An especially useful case of this result arises when c = c∗ is an optimal

policy in which case,

� − �∗ �
∞∑
C=0

WC%Cc∗ · (� −)�) , (B.5)

where the inequality uses (B.1) to conclude)� �)c∗�. Related inequalities are sometimes called

the Performance difference lemma [78] in the reinforcement learning literature.

The classic policy iteration algorithm due to [154] can be expressed compactly in terms of

Bellman operators. Starting with an initial policy c, the algorithm first evaluates the corresponding

cost to go function �c, and then finds the policy c+ that attains the minimum in the Bellman update,

c+ = arg minc̃)c̃�c. Equivalently, this can be written as)c+�c =)�c. This implies,

�c �)c+�c �)2
c+�c � · · · � �c+

where the first inequality applies (B.1) and the rest follow by inductively applying)c+ to each side

and using the monotonicity property of the Bellman operator. The first inequality is strict unless

166

�c =)c+�c =)�c, in which case �c = �∗ and c is an optimal policy. From Equation (B.4) or its

more refined variant (B.5), we can see that each step of policy iteration leads to a substantial cost

reduction unless the policy is near optimal. We conclude with the proof of a basic extension of

Bellman’s equation used in our analysis, which we restate here. Recall, [c to be the discounted

state-occupancy measure under policy c (see (3.6)).

Lemma 22 (On average Bellman equation). For any c ∈ Π and (∼ [c,

�c = �
∗ ⇐⇒ E[�c (()] = E[)�c (()]

Proof. First note that standard results in dynamic programming imply �c �)�c and �c � �∗

(these in fact hold for any arbitrary policy c and not just for c ∈ ΠΘ).

Let � : S → R be an arbitrary cost-to-go function such that � � 0. Then, we have E[� (()] =

0 ⇐⇒ � = 0. To see this, note that the non-negativity of � implies we must have � (() = 0

almost surely. Since (∼ [c � (1 − W)d and by assumption, the initial distribution d is supported

over S, � (() = 0 almost surely if and only if � (B) = 0 for all B ∈ S. Applying this with choice

of � = �c − �∗ or � = �c −)�c shows the average Bellman equation above is equivalent to the

standard result,

�c = �
∗ ⇐⇒ �c =)�c .

�

B.2 Background: First order methods

To start, let us define some standard notions from first order optimization. For a convex set

X ⊂ R3 , we say a function 5 : X → R is :-Lipshitz if ‖ 5 (G) − 5 (H)‖2 ≤ : ‖G − H‖2 for every

G, H ∈ X. We say a function is !-smooth if 5 is differentiable throughout X and ∇ 5 is !-Lipschitz.

A consequence of smoothness that will be useful throughout our proofs is often called the de-

scent lemma. It implies a quadratic upper bound on function values. The proof follows by Taylor

expansion and the mean-value theorem [108].

167

Lemma 38 (Descent Lemma). If the function 5 : D → R is !-smooth over a set X ⊆ D, then for

any (G, H) ∈ X:

5 (H) ≤ 5 (G) + 〈∇ 5 (G), H − G〉 + !
2
‖H − G‖22.

The following interpretation of projected gradient updates will be very useful for our proof.

Recall the notation for orthogonal projection. ProjX (G) = arg minH∈X ‖H − G‖22. The projected

gradient descent iteration can be written as

GC+1 = ProjX (GC − UC∇ 5 (GC)) = arg min
G∈X

[
5 (GC) + 〈∇ 5 (GC), G − GC〉 +

1
2UC
‖G − GC ‖22

]
. (B.6)

The first equality is the usual definition of projected gradient descent. The second gives a “proxi-

mal” interpretation of projection as minimizing a local quadratic approximation. See [eg. 118] for

a simple proof.

B.2.1 Asymptotic convergence to stationary points: proof of Lemma 16

For convenience, we first restate the claim.

Lemma 16. Consider the optimization problem minG∈X 5 (G) whereX ⊂ R3 is a closed convex set.

Assume 5 is bounded below and its U–sub-level sets {G ∈ X : 5 (G) ≤ U} are bounded for each

U ∈ R. Consider the sequence G:+1 = ProjX (G: − U∇ 5 (G:))

1. (Amir Beck, [119, 118]) Assume 5 is differentiable on an open set containing X and its

gradient ∇ 5 is Lipschitz continuous on X with Lipschitz constant !. If U ∈ (0, 1/!], the

sequence {G: } has at least one limit point and any limit point G∞ is a stationary point of 5 (·)

on X satisfying 5 (G:) ↓ 5 (G∞).

2. Suppose 5 (·) is continuously twice differentiable on an open set containing the sub-level set

{G ∈ X : 5 (G) ≤ 5 (G0)} and its gradient ∇ 5 is Lipschitz continuous on X with Lipschitz

constant !. Then, for a sufficiently small U > 0, the sequence {G: } has at least one limit

point and any limit point G∞ is a stationary point of 5 (·) on X satisfying 5 (G:) ↓ 5 (G∞).

168

Proof. We refer the readers to the simple proofs in [119, 118] for part 1. To show the claim in

part 2, note that the sub-level set (:= {G ∈ X : 5 (G) ≤ 5 (G0)} is compact (continuity of 5 (·)

implies its closed and we assumed it to be bounded). Also, for a sufficiently small n , 5 (·) is twice

continuously differentiable over the compact set,

(n := {G + H : G ∈ (1, ‖H‖ ≤ n}.

which follows by our assumption that 5 (·) is twice continuously differentiable on an open set

containing (. We denote � = maxG∈(‖∇ 5 (G)‖2 and ! = maxG∈(n ‖∇2 5 (G)‖2. Note that �, ! < ∞

as ∇ 5 is continuous by assumption and (, (n are compact sets. For any G ∈ (1, define G+ =

ProjX (G − U∇ 5 (G)). For the step-size U = min{n/�, 1/!}, it is easy to see that G+ ∈ (n

‖G+ − G‖2 = ‖ProjX (G − U∇ 5 (G)) − ProjX (G)‖2 ≤ ‖U∇ 5 (G)‖2 ≤ n,

which follows as projection operators are non-expansive. By using a standard property of projec-

tion operators [See Theorem A.1.3 in 119], we get

〈G − U∇ 5 (G) − G+, G − G+〉 ≤ 0 ⇒ ‖G − G+‖2 − U〈∇ 5 (G), G − G+〉 ≤ 0.

As G+ ∈ (n , using smoothness of 5 (·) over (n implies,

5 (G+) ≤ 5 (G) + 〈∇ 5 (G) , G+ − G〉 + !
2
‖G+ − G‖2

≤ 5 (G) +
(
!

2
− 1
U

)
‖G+ − G‖2

which implies 5 (G+) ≤ 5 (G) as we choose1 U ≤ 1
!

. Therefore, for a small enough step-size, the

projected gradient update reduces cost monotonically, 5 (G+) ≤ 5 (G) and therefore stays in the

sub-level set, G+ ∈ (. Repeating this argument inductively shows that {G: } ⊂ (and 5 (G:+1) ≤
1It is easy to see that whenG is not a stationary point, i.e. G+ ≠ G, the inequality is strict.

169

5 (G:) ∀ : .

Since {G: } is contained in a compact set (, it has a convergent sub-sequence, {G:8 } with some

limit point G∞. We have

lim
:→∞

5 (G:) = lim
8→∞

5 (G:8) = 5 (G∞),

where the final inequality uses continuity of 5 (·). Note, the limit of 5 (GC) is assured to exist

because the sequence is monotone decreasing and bounded below. The proof to show that any

limit point, G∞ is a stationary point, follows exactly the same argument as shown in [119]. We

omit this for brevity. �

B.2.2 Convergence rates under gradient dominance: Proof of Lemma 27.

We first restate the claim.

Lemma 27 (Convergence rates for gradient dominated smooth functions). Consider the problem,

minG∈X 5 (G) where X ⊆ R3 . Assume 5 be !–smooth on X and a non-empty solution set. Denote

5 (G∗) = minG ′∈X 5 (G′). Consider the sequence GC+1 = ProjX (GC − U∇ 5 (GC)).

1. Let X ⊂ R3 such that ‖G − G′‖2 ≤ ' < ∞ for all G, G′ ∈ X. Assume 5 is :-lipschitz and

(2, 0)–gradient-dominated and where U ≤ min{ 1
:
, 1
!
}. Then,

min
C≤)
{ 5 (GC) − 5 (G∗)} ≤

√
2'22 (5 (G0) − 5 (G∗))

U)

2. Karimi et. al. [74], Polyak [72] Assume X = R3 and U = 1/!. If 5 is (2, `)–gradient-

dominated for ` > 0, then,

5 (GC) − 5 (G∗) ≤
(
1 − `

22!

) C
(5 (G0) − 5 (G∗))

Proof of Lemma 27. Recall, by Definition 3 that a function 5 is defined to be (2, `)–gradient dom-

170

inated over X if there exists a constant 2 > 0 and ` ≥ 0 such that

5 (G∗) ≥ 5 (G) +min
H∈X

[
2 〈∇ 5 (G), H − G〉 + `

2
‖H − G‖22

]
∀ G ∈ X.

Proof of Part (a): We assume ` = 0 in which case for any G ∈ X, we have

min
H∈X
[2 〈∇ 5 (G), H − G〉] ≤ 5 (G∗) − 5 (G) (B.7)

Therefore, for any G ≠ G∗, we have minH∈D 〈∇ 5 (GC), H − G〉 < 0. Let {GC} be the iterates produced

by projected gradient descent. At iterate GC , let H̄ = arg minH∈X 〈∇ 5 (GC), H − GC〉 and denote XC =

minH∈X 〈∇ 5 (GC), H − GC〉. Note that XC ≤ 0 and |XC | ≤ ‖∇ 5 (GC)‖‖H − GC ‖ ≤ :' as 5 is assumed to

be :-Lipschitz. We take a constant stepsize, UC = U ≤ min{ 1
:
, 1
!
}. Then,

5 (GC+1) − 5 (GC)
(0)
≤ min

H∈D

[
〈∇ 5 (GC), H − GC〉 +

1
2U
‖H − GC ‖22

]
(1)
= min

V∈[0,1]

[
〈∇ 5 (GC), GC + V(H̄ − GC) − GC〉 +

1
2U
‖GC + V(H̄ − GC) − GC ‖22

]
= min
V∈[0,1]

[
V〈∇ 5 (GC), (H̄ − GC)〉 +

V2

2U
‖ H̄ − GC ‖22

]
≤ min

V∈[0,1]

[
VXC +

V2'2

2U

]
=
−UX2

C

2'2 (B.8)

where the minimizer V∗ = −XCU/'2 ≤ :U/' ≤ 1 as U ≤ min{ 1
:
, 1
!
} (we assume ' > 1 without

loss of generality as we can take any upper bound while minimizing in (B.8)). Here (a) follows by

using the equivalence shown in (B.6) and the quadratic upper bound on the function values implied

by the descent lemma. Equality (b) uses the fact that right hand side of (a) can be optimized by

searching over the steepest descent direction GC → H. Using (B.7), we get

5 (GC+1) − 5 (GC) ≤
−U

2'222 (5 (G
∗) − 5 (GC))2

171

Rearraning, we get our desired result

min
C≤)
(5 (GC) − 5 (G∗))2 ≤

1
)

)−1∑
C=0
(5 (GC) − 5 (G∗))2 ≤

2'222

U)

)−1∑
C=0

5 (GC) − 5 (GC+1)

≤ 2'222

U)
(5 (G0) − 5 (G)))

≤ 2'222

U)
(5 (G0) − 5 (G∗))

Therefore,

min
C≤)
{ 5 (GC) − 5 (G∗)} ≤

√
2'222 (5 (G0) − 5 (G∗))

U)

Proof of Part (b): Please see the proof in [74] which can be dated back to the work of [72]. �

B.3 On the necessity of an exploratory initial distribution

The following example is sometimes called a “chain” MDP [155, 78] or the “river swim” prob-

lem [156, 157]. Many other examples in the reinforcement learning literature, like the “combina-

tion lock” problem [158] and the “grid world” problem [159] highlight the same issue. While these

examples are typically used to highlight a statistical challenge, here we focus on the optimization

landscape. This example is partly inspired by one in [78]. A similar discussion appears also in

[99]. We include this discussion to keep the paper self contained. In addition, it does not seem

that past work has shown clearly that ℓ(c) may have suboptimal local minima in the absense of an

exploratory initial distribution, instead showing the existence of suboptimal polices with small but

nonzero gradient norm.

Example 6. Consider the MDP depicted below. There are # states and from each state the agent

can move either left or right from each state. The decision-maker (DM) always begins in the

leftmost state (i.e. d(B1) = 1). The DM incurs a cost of 2 per-period when in any state other than

the leftmost or rightmost state, a cost 6(B1) = 1 from the leftmost state and a cost of 6(B#) = 0

per period in when in the rightmost state. A stationary policy c ∈ [0, 1]# is a vector where c(B)

172

specifies the probability of choosing the action R in state (. When the horizon is sufficiently long,

the optimal policy moves right in each period. From Lemma 20, one can calculate the policy

gradient as
mℓ(c)
mc(B) = [c (B) (&c (B, ') −&c (B, !)) .

A suboptimal policy c that always moves left is a local minimum of ℓ(·). To see this, first note

that the agent will always start and stay in the leftmost state, so [c (B8) = 0 when 8 ≥ 2. The only

possible nonzero component of ∇ℓ(c) is the first term corresponding to state B1. Therefore, for any

policy c′ ∈ [0, 1]# ,

〈∇ℓ(c), c′ − c〉 = [c (B1) (&c (B1, ') −&c (B1, !)) (c′(B1) − c(B1)) ≥ 0,

which follows as &c (B1, ') > &c (B1, !), given that moving to B2 for a single period is more costly

than staying in B1 and the fact that c(B1) = 0, so c′(B1) − c(B1) ≥ 0 for any feasible policy c′.

Similar issues arise under a (non-degenerate) stochastic policy. The main idea is that policies

that are more likely to move left from every are expected to require exponentially (in #) many

periods to reach the rightmost state. An explicitly bound confirming that the policy gradient can

be exponentially small in # is given in [99].

B1 B2 . . . B#−1 B#6(B1) = 1

!

! ! ! !

' ' '' '

'

6(B#) = 0

B.4 Details for LQ control

Throughout this section, we consider the linear quadratic control problem as described in Ex-

ample 2, continuing with the notation and assumptions introduced there.

173

Smoothness. We first show that the policy gradient objective for LQ control is smooth over sub-

level sets.

Lemma 18. Consider the linear quadratic control problem formulated in Example 2. The set

ΘS is open and ℓ is twice continuously differentiable on ΘS. For any U ∈ R, the sublevel set

�U :=
{
\ ∈ R=×: : ℓ(\) ≤ U

}
is a compact subset of ΘS and sup\∈�U ‖∇

2ℓ(\)‖ < ∞.

Proof. We first show that any sub-level set only contains stable policies, �U ⊂ ΘS. Recall, we

assumed Σ := EB∼d [BB>] � 0. As shown in Section 3.5.1, we can write the total cost function

corresponding to a linear policy, c\ , as:

ℓ(\) = EB∼d
[
�c\ (B)

]
= EB∼d

[
B> \B

]
≥ ‖ \ ‖2 _min(Σ)

where \ ∈ R=×= is defined in Example 2. Therefore, ℓ(\) < ∞ implies that ‖ \ ‖2 < ∞. Then,

=‖ \ ‖2 ≥ Tr(\) = Tr

(∞∑
C=0

WC
[
(� + �\)C

]> (\>'\ + �) [(� + �\)C])
≥ _min(\>'\ + �)

∞∑
C=0

WCTr
([
(� + �\)C

]> [
(� + �\)C

])
≥ _min(\>'\ + �)

∞∑
C=0

WC ‖� + �\‖2C2

where we use standard properties of the trace operator. Clearly,
∑∞
C=0 W

C ‖� + �\‖2C2 → ∞ for any

\ ∉ ΘS. As ',� � 0, this implies that ‖ \ ‖2 →∞ for any \ ∉ ΘS.

With a little bit of algebra ([125]), it is easy to see that ℓ(\) is twice continuously differentiable

for any \ ∈ ΘS and hence over sublevel sets as �U ⊂ ΘS. We show that sub-level sets are compact

by showing that they are closed and bounded. As ℓ is continuous, by definition its sub-level sets

are closed. For the class of linear policies, c\ (B) = \B, we can show ℓ(\) is a coercive function,

that is lim‖\‖2→∞ ℓ(\) = +∞. To see this, consider

ℓ(\) = EB0∼d

[∞∑
C=0

WCB>C (\>'\ + �)BC

]
174

where BC evolves according to linear dynamics, BC = (� + �\) BC−1. Define Σ\ := EB0∼d
[∑∞

C=0 W
CBCB
>
C

]
.

Clearly, Σ\ � Σ = EB0∼d
[
B0B
>
0
]
� 0. Therefore,

ℓ(\) = Trace
(
(\>'\ + �)Σ\

)
≥ _min(Σ\)Trace

(
\>'\ + �

)
≥ _min(Σ\)‖\>'\ + �‖2

⇒ ‖\>'\‖2 ≤
ℓ(\)

_min(Σ\)
+ ‖�‖2. (B.9)

As we assume ‖'‖2, ‖�‖2 < ∞ and _min(Σ\) is uniformly lower bounded (_min(Σ\) > _min(Σ) >

0), it is clear by (B.9) that lim‖\‖2→∞ ℓ(\) = +∞. By definition, the sub-level sets of a coercive

function are bounded (see [160] for example) which completes our argument.

Now, it is easy to show that ℓ(·) is smooth over sub-level sets. By definition, any twice dif-

ferentiable function 5 : X → R is smooth on a subset � ⊆ X if ∇2 5 (G) � !� for some

constant ! < ∞. As ℓ(·) is twice continuously differentiable and sub-level sets of ℓ(·) are

compact, by Extreme Value Theorem, we get that ‖∇2ℓ(\)‖ is bounded on sub-level sets, i.e.

sup\∈�U ‖∇
2ℓ(\)‖ < ∞. �

Concentrability coefficient.

Lemma 26 (Concentrability in LQ control). Consider the linear quadratic control problem in

Example 2. Suppose Σd := EB0∼d [B0B
>
0] � 0 and let \∗ ∈ R=×: denote the parameter of an optimal

policy. Then,

^d ≤
(1 − W)

1 − W‖� + �\∗‖22
·
_max

(
Σd

)
_min

(
Σd

) .
Proof. First observe that by monotonicity of the Bellman operator as shown in Lemma 17, we

have �c\ �)�c\ . Following Lemma 17,)�c\ ∈ J@ and therefore �c\ −)�c\ ∈ J@. Then,

‖�c\ −)�c\ ‖1,d = EB∼d
[
�c\ (B) −)�c\ (B)

]
= EB∼d

[
B> B

]
= Trace(Σd). (B.10)

for some ∈ R=×=, � 0 which simplifies the right hand side in the definition of ^d in (3.20). To

175

simplify the left hand side, we use the variational Bellman equation in (3.5) to show

(�c\ − �c\∗) (B0) =
∞∑
C=0

WC
(
�c\ −)c\∗ �c\

)
(B∗C)

where B∗C = (� + �\∗)CB0 is the state at time C if c\∗ is applied from initial state B0. To see this,

recall that by definition,

()c\ �) (B) = (\B)>'(\B) + B>�B + W� (�B + �\B). (B.11)

From this, and the Bellman equation, we have

�c\ − �c\∗ =)c\ �c\ −)c\∗ �c\∗ =
(
)c\ �c\ −)c\∗ �c\

)
+

(
)c\∗ �c\ −)c\∗ �c\∗

)
Applying this from a particular state B0, and using (B.11) gives

�c\ (B0) − �c\∗ (B0) =
(
)c\ �c\ (B0) −)c\∗ �c\ (B0)

)
+ W

(
�c\ ((� + �\∗)B0) − �c\∗ ((� + �\

∗)B0
)

=
(
)c\ �c\ (B0) −)c\∗ �c\ (B0)

)
+ W

(
�c\ (B∗1) − �c\∗ (B

∗
1)

)
.

The variation Bellman formula follows by iterating over this recursion. Note that as)�c\ =

infc)c�c\ �)c\∗ �c\ , we have

(�c\ − �c\∗) (B0) ≤
∞∑
C=0

WC
(
�c\ −)�c\

)
(B∗C) =

∞∑
C=0

WC (B∗C)> B∗C = Trace

(

∞∑
C=0

WCB∗C (B∗C)>
)

Taking expectations gives

‖�c\ − �c\∗ ‖1,d = EB∼d
[
(�c\ − �c\∗) (B0)

]
≤ 1

1 − W · Trace
(
 Σ[\∗

)
, (B.12)

176

where we define

Σ[\∗ = (1 − W)EB0∼d

[∞∑
C=0

WCB∗C
(
B∗C

)>]
= (1 − W)

∞∑
C=0

WC
[
(� + �\∗)C

]
Σd

[
(� + �\∗)C

]>
.

Combining (B.10) and (B.12) gives

‖�c\ − �c\∗ ‖1,d ≤ ‖�c\ −)�c\ ‖1,d ·
Trace

(
 Σ[\∗

)
(1 − W)Trace

(
 Σd

) ≤ ‖�c\ −)�c\ ‖1,d · _max
(
Σ[\∗

)
(1 − W)_min

(
Σd

)
The last inequality uses a standard property of the trace operator that for any two positive semidefi-

nite symmetric matrices �, �: _min(�)Trace(�) ≤ Trace(��) ≤ _max(�)Trace(�), where _min(�), _max(�)

are the minimum and maximum eigenvalues of A respectively. See [161] for example. Comparing

to (3.20) gives us our desired result

^d ≤
_max

(
Σ[\∗

)
_min

(
Σd

) ≤ (1 − W)
1 − W‖� + �\∗‖22

·
_max

(
Σd

)
_min

(
Σd

) .
where the final inequality uses that

‖Σ[\∗ ‖2 ≤ (1 − W)
∞∑
C=0

WC ‖� + �\∗‖2C2 ‖Σd‖2 =
(1 − W)

1 − W‖� + �\∗‖22
· ‖Σd‖2

�

B.5 Details for Optimal Stopping

In this section, we first verify Condition 0 for the policy gradient lemma to hold for the optimal

stopping problem as described in Example 4. Recall, we assume the context set X to be finite and

the offer set to be bounded, Y = [Hmin, Hmax] and we take Hmin > 0 without loss of generality. We

consider the class of threshold policies, ΠΘ = {c\ : \ ∈ Θ = [Hmin, Hmax] |X|} and assume that the

offer distribution has a density @G (·) supported over Y.

177

Notation. For any policy c\ ∈ ΠΘ, we simplify notation to write [\ := [c\ ,)\ :=)c\ , �\ := �c\

and %\ := %c\ . Clearly, for any \ ∈ Θ, the discounted state occupancy measure [\ factorizes

as [\ (G, H) = [′
\
(G)@G (H), where [′

\
denotes the marginal distribution over X ∪ {)}. We find it

more convenient to directly work with [′
\
(G) and @G (H). We denote %′

\
∈ R(|X|+1)×(|X|+1) to be the

transition matrix over X ∪ {)} under c\ , defined as

%′\ (G′|G) = ?(G′|G)
∫
Y
1(H < \G)@G (H)3H, %′\ () |G) = 1 −

∑
G ′∈X

%′\ (G′|G), %′\ () |)) = 1 (B.13)

for all G′, G ∈ X.

Twice Continuous Differentiability. We verify the differentiability properties in Condition 0.

for the policy gradient lemma to hold. We actually verify stronger twice differentiability results

that will be helpful later. For any \, \ ∈ Θ, we first show that B(\ |[\ , �\) = EB∼[\
[(
)
\
�\ − �\

)
(B)

]
is a twice continuously differentiable function of \. Let 2c (G) denote the continuation value of

policy c as 2c (G) = W
∑
(G ′,H′)∈S ?(G′|G)@G (H′)�c (G′, H′). Then, in (3.14) we showed,

m

m\G
B(\ |[\ , �\) = [′\ (G)@G (\G)

(
2c\ (G) − \G

)
(B.14)

Note that (B.14) is itself continuously differentiable because of the assumption that @G (·) is con-

tinuously differentiable.

Next, we show B(\ |[
\
, �\) to be twice continuously differentiable in \. Using that the contin-

uation value from the terminal state) is zero, we can write

B(\ |[
\
, �\) =

∑
G∈X

[′
\
(G)

∫
�\ (G, H)@G (H)3H

We show [′
\
∈ R|X|+1 is twice differentiable, which establishes the result. Note that for any G ∈

X ∪ {)},

[′
\
(G) = (1 − W)

∞∑
C=0

WCd(%′
\
)C = (1 − W)d(� − W%′

\
)−1

178

By our definition of %′
\

in (B.13), its easy to see that %′
\

is twice differentiable in \ (using our

assumption on @G (·)). Also note that (� − W%′
\
) is invertible as %′

\
is a stochastic matrix, i.e.

‖%′
\
‖∞ ≤ 1. Therefore, the inverse function theorem implies that [′

\
(·) is twice continuously

differentiable which establishes our claim for B(\ |[
\
, �\).

Gradient Dominance. Next, we show that the total reward function, ℓ(\), for the optimal stop-

ping problem is gradient dominated We first recall the claim.

Lemma 28 (Gradient dominance for optimal stopping). Denote ^d to be the concentrability co-

efficient of the initial distribution d(G, H) = a(G)@G (H). Define k := min(G,H)∈SC a(G) @G (H) and

V := max(G,H)∈SC a(G) @G (H). Then, ℓ(·) is (V

^dk
, 0) gradient dominated.

Proof. Recall that we formulate the optimal stopping problem in Example 4 as a maximization

problem. Therefore, to show that ℓ(·) is (2, 0)-gradient dominated for some 2 > 0, we need to

show:

ℓ(\∗) − ℓ(\) ≤ 2 ·max
\ ′∈Θ

ℓ(\)>(\′ − \) (B.15)

where \∗ denotes the optimal threshold and c\∗ is the corresponding policy. The initial distribution

factors as d(G, H) = a(G)@G (H) where a(G) > 0 ∀ G ∈ X. Then, the total cost function can be

written as:

ℓ(\) = (1 − W)
∑
G∈X

a(G)
[∫
H∈Y

�\ (G, H)@G (H)3H
]

for any c\ ∈ ΠΘ. Similarly, the cost-to-go functions from any continuation state (G, H) ∈ SC can

be written as:

�∗(G, H) = 1
(
H > \∗G

)
· H + 1

(
H < \∗G

)
· 2c∗ (G)

�\ (G, H) = 1 (H > \G) · H + 1 (H < \G) · 2c\ (G)

where 2c (G) = W
∑
G ′∈X ?(G′|G)

∫
Y �c (G

′, H′)@G (H′)3H′ denotes the continuation value for any policy

179

c ∈ ΠΘ.

We use two important facts for optimal stopping. First, for any context G ∈ X, we have

2c\ (G) < 2c∗ (G) for all \ ≠ \∗ as �\ (G, H) < �∗(G, H) ∀ (G, H) ∈ SC. Second, by definition, for the

optimal policy c\∗ , we have the threshold equal to the continuation value2: \∗G = 2c∗ (G). To show

gradient dominance, we start with the left hand side in (B.15),

ℓ(\∗) − ℓ(\) = (1 − W)
∑
G∈X

a(G)
[∫
H∈Y

(
�c∗ (G, H) − �c\ (G, H)

)
@G (H)3H

]
= (1 − W)‖�c∗ − �c\ ‖1,d

≤ ^d‖)�c\ − �c\ ‖1,d (B.16)

where the last inequality follows from the definition of the concentrability coefficient. Recall the

policy iteration step for optimal stopping as shown in Example 4. For any c\ ∈ ΠΘ, the improved

policy accepts offers above the continuation value 2c\ (G)

c+\ (G, H) =


1 if H < 2c\ (G),

0 if H ≥ 2c\ (G)

Therefore,

�\ (G, H) = 1 (H ≥ \G) · H + 1 (H < \G) · 2c\ (G)

)�\ (G, H) = 1
(
H ≥ 2c\ (G)

)
· H + 1

(
H < 2c\ (G)

)
· 2c\ (G)

which implies,

∫
Y
()�\ (G, H) − �\ (G, H)) @G (H)3H =

∫ \G

2c\ (G)
H · @G (H)3H +

∫ 2c\ (G)

\G

2c\ (G) · @G (H)3H (B.17)

2It is easy to see that for our problem setting with positive offers, i.e. Y = [Hmin, Hmax] with Hmin > 0, setting
\∗ = Hmin is never optimal as the offer distribution, @G (H) is assumed to be a density supported over Y. An optimal
threshold must correspond to a stationary policy. Hence, by our arguments in Example 4, it must hold that \∗G = 2c∗ (G).

180

Case (1): We first assume that \G < \∗G . As we can improve the total cost by moving towards \∗

(i.e. by increasing the value of \G), it must be true that m
m\G
ℓ(\) > 0. Using the gradient expression

in (3.14) along with the policy gradient lemma implies that 2c\ (G) > \G . Then, we get

∫
Y
()�\ (G, H) − �\ (G, H)) @G (H)3H =

∫ 2c\ (G)

\G

2c\ (G) · @G (H)3H −
∫ 2c\ (G)

\G

H · @G (H)3H

≤
∫ 2c\ (G)

\G

(
2c\ (G) − \G

)
· @G (H)3H

≤ <(G)
(
2c\ (G) − \G

)2

where <(G) = maxH∈Y @G (H) < ∞, as @G (H) is assumed to be a density over the bounded set Y.

Therefore,

‖)�\ − �\ ‖1,d =
∑
G∈X

a(G)
∫
Y
()�\ (G, H) − �\ (G, H)) @G (H)3H ≤ V

∑
G∈X

(
2c\ (G) − \G

)2

≤ V
∑
G∈X

(
2c\ (G) − \G

)
(2c∗ − \G)

(B.18)

where we define V = max(G,H)∈SC a(G) @G (H) and the final inequality uses that 2c\ < 2c∗ as argued

above. Policy gradient lemma and (3.14) also imply

max
\ ′∈Θ
∇ℓ(\)>(\′ − \) =

∑
G∈X

[
max
\ ′G∈Y

{(
\′G − \G

)
·
(
2c\ (G) − \G

)
[′\ (G)@G (\G)

}]
≥

∑
G∈X

(
2c\ (G) − \G

)
(2c∗ − \G) [′\ (G)@G (\G)

≥ min
G∈X

[
[′\ (G)@G (\G)

]
·
∑
G∈X

(
2c\ (G) − \G

)
(2c∗ − \G)

≥ min
(G,H)∈SC

a(G) @G (H)︸ ︷︷ ︸
=k

∑
G∈X

(
2c\ (G) − \G

)
(2c∗ − \G) (B.19)

181

Combining equations (B.15), (B.16), (B.18) and (B.19), we conclude that ℓ(·) is (2, 0)-gradient

dominated for 2 = V

^dk
.

Case (2): For \G < \∗G , a similar argument as given for case (1) shows that 2c\ (G) < \G as we can

improve the total cost by moving towards \∗, i.e. by decreasing the value of \G . Therefore, we get

∫
Y
()�\ (G, H) − �\ (G, H)) @G (H)3H =

∫ \G

2c\ (G)
H · @G (H)3H −

∫ \G

2c\ (G)
2c\ (G) · @G (H)3H

≤
∫ \G

2c\ (G)

(
\G − 2c\ (G)

)
· @G (H)3H

≤ <(G)
(
2c\ (G) − \G

)2

as before. Following exactly the same steps as for case (1) confirms our result. �

Smoothness. Next, we show that the policy gradient objective ℓ(·) for the optimal stopping prob-

lem is smooth over the parameter space, Θ = [Hmin, Hmax] |X| by showing that max\∈Θ ‖∇2ℓ(\)‖ <

∞.

Lemma 29 (Cost function for optimal stopping). In the optimal stopping problem in Example 4,

max\∈Θ ‖∇2ℓ(\)‖ < ∞.

Proof. Using the policy gradient theorem as shown in Lemma 20 and the derivative calculations

above, we have

m

m\G
ℓ(\) = m

m\G
B(\ |[\ , �\)

����
\=\

=
(
2c\ (G) − \G

)
[′\ (G)@G (\G).

We showed above that [′
\

is continuously differentiable, and we have that @G (\G) is continuously

differentiable in \G by assumption. Therefore, the gradient ∇ℓ(\) has a continuous derivative if

the continuation value 2c\ (G) is continuously differentiable in \. To show this, recall that by

182

definition3,

2c\ (G) = W
∑
G ′∈X

?(G′|G)
∫

�\ (G′, H′)@G (H′)3H = W
∑
G ′∈X

?(G′|G)�′\ (G) (B.20)

where we define �′
\
(G) :=

∫
�\ (G′, H′)@G (H′)3H to be the expected cost-to-go function from context

G. Let us also define 6′
\
(G) :=

∫
Y 1 (H ≥ \G) H@G (H)3H as the expected reward earned from context

G. Clearly, 6′
\

is continuously differentiable. Then, by definition, for all G ∈ X

�′\ (G) = [′\ (G)6′\ (G).

As both [′
\

and 6′
\

are continuously differentiable, so is �′
\

and hence using (B.20) we find that 2c\

is continuously differentiable in \. Therefore, ∇2ℓ(\) exists and is continuous. SinceΘ is compact,

the extreme value theorem ensures max\∈Θ ‖∇2ℓ(\)‖ exists and is finite. �

Concentrability coefficient.

Lemma 25 (Concentrability in optimal stopping). For the optimal stopping problem in Example

4 consider the policy c� that never stops (c� (B) = 1 for each B ∈ S�) and suppose the induced

Markov process has stationary distribution ` = `%c� . Then, for the choice d = `, ^d ≤ 1.

Proof. We show that the Bellman operator) is a contraction with modulus W in ‖ · ‖1,`. The proof

then follows immediately using Lemma 24.

As we consider a policy that never stops, the stationary distribution over continuation states,

(G, H) ∈ SC factorizes as `(G, H) = `′(G)@G (H) where `′ is the marginal stationary distribution over

context states X such that `′(G′) = ∑
G∈X `

′(G)?(G′|G). Then,

‖)� −)�′‖1,` =
∑
G∈X

`′(G)

������
∫
Y

()� (G, H) −)�′(G, H)) @G (H)3H

������
3Clearly, the terminal state {)} has zero continuation value, 2c\ ()) = 0 for any policy c\ ∈ ΠΘ.

183

By definition,

)� (G, H) = max{H, W
∑
G ′∈X

?(G′|G)
∫
Y

� (G′, H′)@G ′ (H′)3H′}

Note that for any scalars (G1, G2, H), we have |max{H, G1} −max{H, G2}| ≤ |G1 − G2 |. Therefore,

|)� (G, H) −)�′(G, H) | ≤ W

������∑G ′∈X ?(G′|G)
∫
Y

(� (G′, H′) − �′(G′, H′)) @G ′ (H′)3H′
������

≤ W
∑
G ′∈X

?(G′|G)
∫
Y

|� (G′, H′) − �′(G′, H′) | @G ′ (H′)3H′ (B.21)

As the right hand side in (B.21) is independent of H, clearly

∫
Y

|)� (G, H) −)�′(G, H) | @G (H)3H ≤ W
∑
G ′∈X

?(G′|G)
∫
Y

|� (G′, H′) − �′(G′, H′) | @G ′ (H′)3H′

Thus,

‖)� −)�′‖1,` =
∑
G∈X

`′(G)
∫
Y

|)� (G, H) −)�′(G, H) | @G (H)3H

≤ W
∑
G∈X′

`′(G)
∑
G ′∈X

?(G′|G)
∫
Y

|� (G′, H′) − �′(G′, H′) | @G ′ (H′)3H′

(0)
= W

∑
G ′∈X′

`′(G′)
∫
Y

|� (G′, H′) − �′(G′, H′) | @G ′ (H′)3H′

= W‖� − �′‖1,`

where (a) follows as `′ is the stationary distribution over X. For d = `, we have �, 2 = 1 in

Lemma 24 implying ^d ≤ 1. �

B.6 Details for finite horizon inventory control

Recall the setting in Example 5 where the inventory level evolves as: BC+1 = BC + 0C − FC ∀ C =

{0, . . . , �−1} for non-negative inventory orders 0C and i.i.d demands FC ∈ [0, Fmax]. We consider

184

the class of base-stock-policies parameterized as ΠΘ =
{
\ = (\0, . . . , \�−1) ∈ R� : \C > 0

}
which

orders inventory c\ (BC) = max{0, \C − BC} at time C. We treat finite-horizon time-inhomogenous

MDPs as a special case of infinite horizon MDP using the following factorization.

Condition 3. Suppose the state space factors as S = S1∪· · ·∪S�∪S�+1, where for a state B ∈ Sℎ

with ℎ ≤ �,
∑
B′∈Sℎ+1 %(B′|B, 0) = 1 for all 0 ∈ AB. The final subset S�+1 = {g} contains a single

cost-less absorbing state, with %(g |g, 0) = 1 and 6(g, 0) = 0 for any action 0. The parameter

space is the product set Θ = Θ1 × · · · ×Θ� , where a policy parameter \ = (\1, . . . , \�) ∈ Θ is the

concatenation of � sub-vectors.

Recall that for inventory control problem in Example 5, Sℎ = [−", "] as well as Θℎ = [0, "]

are bounded intervals of R for all ℎ ∈ {0, 1, . . . , � − 1}.

Differentiability. We first verify Condition 0 required for the policy gradient theorem to hold.

Throughout, we will appeal to the Leibniz rule which states conditions for differentiating an inte-

gral. Let Θ′,S′ ⊂ R be bounded intervals. Consider the function � : Θ′ ↦→ R given by,

� (\) = E[5 (\, B)] =
∫
S′
5 (\, B)%(3B)

where S is the state space, 5 : Θ′ × S′ ↦→ R is a real valued function, % is a probability measure

supported over S′ and for each \ ∈ Θ′, the function 5 (\, ·) is %-integrable, i.e. E[| 5 (\, B) |] < ∞.

Let DB (\) be the set of points B ∈ S′ such that 5 (·, B) is non-differentiable at \. By Leibniz rule,

� is differentiable at \ if (i) DB (\) has zero measure under %, i.e. %[DB (\)] = 0 and (ii) 5 ′(\, ·)

is %-integrable. This is useful in context of the inventory control problem as a threshold policy,

c\ (B), for a fixed \ is differentiable everywhere except at B = \.

To verify Condition 0, we first argue differentiability of [c\ . Note that for any ℎ ≤ � − 1, state

Bℎ ∈ Sℎ and a measurable set � ∈ Sℎ+1, the probability transition operator under c\ , %\ℎ (Bℎ, �) =

EFℎ [1(Bℎ + c\ (Bℎ) − Fℎ ∈ �)] is clearly differentiable for any Bℎ ≠ \ℎ and |m/m\ℎc\ (Bℎ) | ≤

185

1 ∀ Bℎ ≠ \ℎ. Therefore, the left linear operator

_%\ℎ (�) =
∫
(ℎ

%\ℎ (Bℎ, �)_(Bℎ)3Bℎ

is differentiable for any \ℎ ∈ Θℎ for assuming _ is a probability density supported over Sℎ. A

similar argument holds for the t-step counterparts, _%C
\ℎ
(�) for all ℎ ≤ � − 1, which are defined

as the product of transition kernels. Hence, for any � ∈ Sℎ, the state-occupancy measure [\ (�) =∑ℎ
8=0 d%

ℎ−8
\8
(�) is differentiable in \. It is noteworthy to see that [\ is supported over each Sℎ for

ℎ ≤ � − 1 as the initial distribution d.

Next we argue that \ ↦→ B(\ |[c\ , �\) is a continuously differentiable function of \. For any

\, \ ∈ Θ, consider the Bellman update)
\
�\ . For any Bℎ ∈ Sℎ, ℎ ≤ � − 1, we use expression for

the cost-to-go function as shown in (3.18) to write,

)
\
�\ (Bℎ) =

[
2c

\
(Bℎ) +

�∑
8=ℎ+1

6(B8, 08)
]

where for 8 = {ℎ+1, . . . , �−1}, the per step cost function is denoted by 6(B8, 08) := 208+EF8 [A (B8+

08 − F8)] for inventory orders 08 = c\ (B8) and holding/backlogging costs A : R → R defined as

A (G) = 1max(0, G) + ?max(0,−G). Note that we do not allows for inventory orders in the final

period, i.e. 0� = 0. Using the above, we have

m

m\ℎ
)
\
�\ (Bℎ) =

[
2

m

m\ℎ
c
\
(Bℎ) +

�∑
8=ℎ+1

m

m\ℎ
6(B8, 08)

]
Note that,

m

m\ℎ
6(B8, 08) =

m

m\ℎ
EF8 [A (B8 + 08 − F8)] =

m

mH8
EF8 [A (H8 − F8)]

����
H8=B8+08

mB8

m\ℎ

As B8 = Bℎ + 0ℎ − Fℎ +
∑8−1
:=ℎ+1(0: − F:) with 0ℎ = c\ (Bℎ), we have B8 to be a differential function

of \ℎ except for Bℎ = \ℎ. Similarly, A (·) is a differentiable function of H8 except at H8 = F8 and by

186

definition, |m/mH8A (H8 − F8) | ≤ max{1, ?}. As we assumed the demand distribution has a density

over [0, Fmax], we conclude that)
\
�\ is a differentiable function of \ except at finite number of

points, DB (\) = {Bℎ ∈ Sℎ : B = \ℎ ∀ ℎ ≤ � − 1}. As argued above, [c\ is supported over each Sℎ

for ℎ ≤ � − 1 which implies B(\ |[c\ , �\) =
∫
S)\�\ (B)[c\ (B)3B is differentiable for all \ ∈ Θ.

Condition 4 for inventory control. The following lemma shows how Condition 4 holds for the

finite horizon inventory control problem.

Lemma 39. Consider the finite horizon inventory control problem in Example 5. Let �∗ be the

cost-to-go function corresponding to the optimal policy. Then, for any c, c\ ∈ ΠΘ, the weighted

policy iteration objective B(\ |[c, �∗) has no suboptimal stationary points.

Proof. Let &∗(B, 0) be the Q-function corresponding to the optimal policy. It can be easily shown

that &∗(B, 0) is strictly convex in 0 which follows as the optimal cost-to go function, �∗(·) is

convex and the per step costs (of ordering and holding/backlogging) are strictly convex, see results

in chapter 3 of [101]. We want to show that for any stationary point \ ∈ Θ, the corresponding

base-stock policy c\ is optimal. Note that c\ (Bℎ) = \ℎ − Bℎ for all Bℎ < \ℎ and c\ (Bℎ) = 0 for all

Bℎ > \ℎ. By Leibniz rule and the fact that [c is supported over Sℎ for each ℎ ≤ � − 1 (i.e. its not

a delta function),

m

m\ℎ
B(\ |[c, �∗) =

m

m\ℎ

∫
Bℎ∈Sℎ

&∗(Bℎ, c\ (Bℎ)) [c (Bℎ) 3Bℎ

=
m

m\ℎ

[∫
Bℎ<\ℎ

&∗(Bℎ, \ℎ − Bℎ) [c (Bℎ) 3Bℎ +
∫
Bℎ>\ℎ

&∗(Bℎ, 0) [c (Bℎ) 3Bℎ
]

=

∫
Bℎ<\ℎ

m

m\ℎ
&∗(Bℎ, \ℎ − Bℎ) [c (Bℎ) 3Bℎ

=

∫
Bℎ<\ℎ

m

m0
&∗(Bℎ, 0)

���
0=c\ (Bℎ)

[c (Bℎ) 3Bℎ

Consider any \ such that \ℎ ≠ \∗
ℎ
. Let \U

ℎ
= \ℎ + U(\∗ℎ − \ℎ). Then, 3

3U
B(\U

ℎ
|[c, �∗) |U=0 < 0.

This follows as &∗(Bℎ, 0) is strictly convex with a minimum at 0 = c\∗ (Bℎ) and therefore we can

reduce cost by moving \ℎ in the direction of \∗
ℎ

(which is feasible as Θℎ is a bounded interval of

187

R). Therefore, \ cannot be a stationary point. �

B.7 Miscellaneous Proofs

Proof of Theorem 6. For the reader’s convenience, we restate Theorem 6.

Theorem 6. Suppose Conditions 3 and 4 hold. If the parameterized policy class ΠΘ contains an

optimal policy c∗, then any stationary point \ of ℓ : Θ→ R satisfies �c\ = �
∗.

Proof. For simplicity, assume there is a unique optimal policy, c∗. For any ℎ ∈ {1, · · · , �} and

\ℎ ∈ Θℎ, let c\ℎ : Sℎ → A denote the policy for period ℎ. Similarly, c\∗
ℎ

denotes the optimal

policy for period ℎ. Let \ is a stationary point of ℓ(·). The product structure of the policy class,

Θ = Θ1 × · · ·Θ� implies that for all ℎ ≤ �,

〈 m

m\ℎ
B(\ |[c\ , �c\)

���
\=\
, \′ℎ − \ℎ

〉
≥ 0 ∀ \′ℎ ∈ Θℎ

using the policy gradient theorem in Lemma 20. By definition, �c\ (B) = �∗(B) = 0 for B ∈ S�+1 (as

S�+1 contains a single, cost-less absorbing state). Our argument follows by backward induction.

Base Case: We first show that �c\ (B) = �∗(B) for B ∈ S� . To see this, note that for any B ∈ S�

and action 0, we have &c\ (B, 0) = &∗(B, 0) = 6(B, 0). This is because �c\ (g) = �∗(g) = 0.

Therefore, 〈 m

m\�
B(\ |[c\ , �∗)

���
\=\
, \′� − \�

〉
≥ 0 ∀ \′� ∈ Θ�

Hence, for (∼ [c\ such that (∈ S�

E[�c\ (()] = min
\� ∈Θ�

E[&∗((, c
\�
(())] = E[&∗((, c\∗

�
(())] = E[�∗(()]

where the first equality follows by assumption that \ → B(\ |[c\ , �∗) has no suboptimal stationary

points and the second equality uses the assumption that policy classΠΘ contains the optimal policy.

As we assumed that d is a density supported over S� , our desired result follows.

188

Induction step: We now show that if �c\ (B) = �∗(B) ∀ B ∈ Sℎ+1 for any ℎ < �, then �c\ (B) =

�∗(B) for all B ∈ Sℎ. By the definition, for any state B ∈ Sℎ and action 0,

&c\ (B, 0) = 6(B, 0) + W
∑

B′∈Sℎ+1

%(B′|B, 0)�c\ (B′)

= 6(B, 0) + W
∑

B′∈Sℎ+1

%(B′|B, 0)�∗(B′)

= &∗(B, 0).

As \ is a stationary point,

〈 m

m\ℎ
B(\ |[c\ , �c\)

���
\=\
, \′ℎ − \ℎ

〉
≥ 0 ∀ \ℎ ∈ Θℎ

=⇒
〈 m

m\ℎ
B(\ |[c\ , �∗)

���
\=\
, \′ℎ − \ℎ

〉
≥ 0 ∀ \ℎ ∈ Θℎ

By exactly the same argument as above,

E[�c\ (()] = min
\ℎ∈Θℎ

E[&∗((, c
\ℎ
(())] = E[&∗((, c\∗

ℎ
(())] = E[�∗(()]

for any (∼ [c\ such that (∈ Sℎ. Our result follows by again noting that d is assumed to be a

density supported over Sℎ. �

Concentrability coefficients.

Lemma 23. Let c∗ denote any optimal stationary policy. Then,

^d ≤ sup
B∈S

[c∗ (B)
d(B)

Proof. Fix some �c ∈ �Θ, where dependence on c is there to make transparent that this must be

a cost-to-go function for some policy c ∈ ΠΘ. Denotes �∗ = �c∗ , Then, the variational form of

189

Bellman’s inequality in (3.5) gives

�c − �∗ = (� − W%c∗)−1 (�c −)c∗�c) � (� − W%c∗)−1 (�c −)�c)

Left multiplying by d, using the definition [c∗ = (1 − W)d(� − W%c∗)−1 (see Equation (3.6) in

Section 3.3) and that �c −)�c � 0 and �c � �∗ gives us the desired result.

‖�c − �∗‖1,d = d (�c − �∗) ≤
1

(1 − W) [c
∗ (�c −)�c) ≤

(
supB∈S

[c∗ (B)
d(B)

)
(1 − W) d (�c −)�c)

=

(
supB∈S

[c∗ (B)
d(B)

)
(1 − W) ‖�c −)�c‖1,d .

�

B.8 An example of state aggregation

State aggregation is the simplest form of value function approximation employed in reinforce-

ment learning and comes with strong stability properties [162, 163, 164]. It is common across

several academic communities [e.g 165, 166]. Numerous theoretical papers carefully construct

classes of MDPs with sufficient smooth dynamics, and upper bound the error from planning on a

discretized state space [e.g 167]. The following example considers a continuous state, finite action

problem which reduces to the tabular MDP case (in Example 3) with state aggregation. It is not

unreasonable to expect that an appropriate partitioning of the state space results in the policy class

(class of stochastic policies over finite aggregated states) being approximately closed under policy

improvement.

Example 7 (State aggregation). We consider a problem with finite number of deterministic actions

: and take A = Δ:−1 to be the set of probability distributions over actions. Let the state space,

S ⊂ R=, be a bounded convex subset of euclidean space where the dimension = is thought to be

small. We consider a partition of the state space into < disjoint subsets, S = ∪<
8=1S8 and the set of

190

stochastic policies over these subsets Π = {c ∈ R<×:+ :
∑:
8=1 c(S 9 , 8) = 1 ∀ 9 = {1, · · · , <}} such

that c(B, 8) = c(S 9 , 8) ∀ B ∈ S 9 . Our result applies by assuming the partition is effective such that

the approximation error in the policy iteration update, infc′∈Π ‖)c′�c −)�c‖1,[c , is small for any

policy c ∈ Π.

191

	Title Page
	Table of Contents
	List of Tables
	List of Figures
	Acknowledgments
	Dedication
	Introduction
	A Finite Time Analysis of Temporal Difference Learning With Linear Function Approximation
	Contributions
	Related Literature
	Problem formulation
	Temporal difference learning
	Asymptotic convergence of temporal difference learning
	Outline of analysis
	Analysis of mean-path TD
	Gradient descent on a value function loss
	Key properties of mean-path TD
	Finite time analysis of mean-path TD

	Analysis for the i.i.d.observation model
	Analysis for the Markov chain observation model: Projected TD algorithm
	Finite time bounds
	Choice of the projection radius
	Analysis

	Extension to TD with eligibility traces
	Projected TD() algorithm
	Limiting behavior of TD()
	Finite time bounds for Projected TD()

	Extension: Q-learning for high dimensional Optimal Stopping
	Problem formulation
	Q-Learning for high dimensional Optimal Stopping
	Asymptotic guarantees
	Finite time analysis

	Conclusions

	Global Optimality Guarantees For Policy Gradient Methods
	Introduction
	Our Contribution

	Further Related Literature
	Problem formulation
	Convergence to stationary points in smooth optimization
	Closed policy classes and the optimality of stationary points
	Motivation from linear quadratic control
	General results
	A sharp connection between policy gradient and weighted policy iteration
	Proof of Theorem 5
	Examples beyond LQ control

	Beyond closed policy classes: the case of non-stationary policy classes
	The exploratory initial distribution and concentrability coefficients
	Convergence rates for policy gradient methods
	Background on Gradient Dominance
	Gradient dominance of the policy gradient objective
	Gradient dominance and smoothness for examples 2-4

	Policy classes closed under approximate policy improvement
	Notation

	On the Linear Convergence of Policy Gradient Methods
	Problem Formulation
	Linear convergence of policy iteration
	A sharp connection between policy gradient and policy iteration
	Policy gradient methods for finite MDPs
	Main result: geometric convergence

	References
	Proofs for Chapter 2
	Analysis of Projected TD(0) under Markov chain sampling model
	Restatement of the theorem and key lemmas from the main text
	Proof of Theorem 3.
	Proof of Lemma 10

	Analysis of Projected TD() under Markov chain sampling model
	Proof strategy and key lemmas
	Proof of Theorem 4
	Proof of supporting lemmas.

	Proofs of Additional Lemmas

	Additional details for Chapter 3
	Background on Bellman operators and policy iteration
	Background: First order methods
	Asymptotic convergence to stationary points: proof of Lemma 16
	Convergence rates under gradient dominance: Proof of Lemma 27.

	On the necessity of an exploratory initial distribution
	Details for LQ control
	Details for Optimal Stopping
	Details for finite horizon inventory control
	Miscellaneous Proofs
	An example of state aggregation

