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Abstract

It is predicted that, in the next years, wireless sensor networks could be massively
deployed in a wide variety of application areas, such as agriculture, logistics, au-
tomation, or infrastructure monitoring. An extremely low power consumption,
high dependability, and low cost are common requirements for sensor nodes in all
these applications. This can be achieved only by tiny, power-efficient microcon-
trollers and communication systems integrated on a single chip.

Formal description techniques, such as SDL (Specification and Description Lan-
guage), are suitable to formally prove properties of models designed in these lan-
guages. Code generators facilitate the automatic transformation of SDL models
into software implementations, while preserving the properties of the model and,
thus, achieving high system dependability. The implementations consist of the
translated state machine behavior and, additionally, require a run-time environ-
ment for model execution.

The objective of this work was to investigate an integrated design flow for
embedded systems, which should allow the development of efficient and dependable
system implementations from abstract SDL specifications. In this thesis, concepts
for minimal SDL run-time environment have been devised and realized by an
example implementation.

Not only pure software implementations should be considered, but starting
from these also the hardware/software (HW/SW) partitioning of the system should
be supported. For this purpose, a cosimulation framework that allows the coupling
of an instruction set simulator (ISS) with a functional SDL simulation has been
investigated and prototypically implemented within the scope of this thesis.

By shifting functionality to dedicated hardware components it is possible to
take computational load from the microcontroller and to decrease the overall en-
ergy consumption by reducing the clock frequency and lowering the supply voltage.
Due to the use of SDL, the design flow lends itself particularly to the implementa-
tion of communication protocols, and is limited to applications with soft real-time
requirements.

For an SDL-based design flow targeted to resource-constrained embedded sys-
tems, concepts and real implementations of minimal SDL run-time environments
were lacking. Available software tools, indeed, enable the transformation of SDL
models into C code, however for an efficient implementation, an integration into
existing real-time operating systems (RTOS) for small microcontrollers is essential.
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A prototypical implementation of a run-time library for the Reflex RTOS has
been created to validate our general concepts. It is about 30 % faster and con-
sumes less than half of the program memory compared to the operating system
independent run-time environment of the tool vendor Telelogic. For simple SDL
models, the application requires in total less than 8 kbytes program memory and
1 kbyte RAM.

For the evaluation of design alternatives that realize different hardware/software
partitionings, instruction set simulators are particularly suitable. They facilitate
the identification of performance bottlenecks of the HW/SW system.

Test stimuli are required in order to measure the performance and response
time of systems under design. The development of an environment that generates
such test signals can be a laborious task. Thus, it is reasonable, especially in
the design of protocols, to use an SDL simulation of a communication network to
generate these test stimuli. Such an SDL model already exists and is the basis
for the implementation. The protocol implementation simulated by the ISS then
becomes part of the network simulation. An efficient coupling of SDL simulations
with instruction set simulators had to be investigated, and a solution is presented
in this thesis.

Based on the general concepts, a cosimulation framework for the ISS TSIM for
the LEON2 processor was realized by the author. The joint SDL and instruction
set simulation is very fast, which could be demonstrated by connecting a software
implementation of the complex IEEE 802.15.3 medium access control (MAC) pro-
tocol with an SDL simulation of a network consisting of four devices. The real
execution time for 10 seconds of simulation time amounted to just 50 seconds.

The overall design flow was validated by means of a HW/SW implementation
of the IEEE 802.15.3 wireless MAC protocol. The author designed a complete
SDL model of the protocol and integrated it into Reflex. By using our cosimulation
environment for the TSIM simulator, the model was partitioned into hardware and
software. For the hardware part, a dedicated protocol accelerator was designed by
the author. This hardware component was integrated on a single chip with the
LEON2 processor and, finally, manufactured.

It could be shown that the presented methodology enables the design and
implementation of efficient HW/SW systems. Consequently, it can be applied to
the development of dependable and energy-efficient wireless sensor nodes and other
embedded systems.

Keywords: Model-based design, protocol engineering, cosimulation, IEEE
802.15.3.
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Zusammenfassung

Es wird vorausgesagt, dass in einigen Jahren eine riesige Menge von drahtlos kom-
munizierenden Sensorknoten in den verschiedensten Anwendungsgebieten, etwa
der Landwirtschaft, Logistik, Automatisierung oder der Überwachung von Infra-
struktur, Einzug halten könnten. Diesen Geräten ist gemeinsam, dass sie einen
äußerst geringen Stromverbrauch, hohe Zuverlässigkeit und geringe Kosten auf-
weisen müssen. Dies ist nur mit kleinen, Strom sparenden Mikrocontrollern und
auf einem einzigen Chip integrierten Kommunikationssystemen erreichbar.

Formale Beschreibungssprachen, wie SDL (Specification and Description Lan-
guage), eignen sich dazu, Eigenschaften von in dieser Sprache beschriebenen
Modellen formal zu beweisen. Durch Code-Generatoren wird die automa-
tische Umsetzung von SDL-Modellen in eine Software-Implementation unterstützt,
welche die Eigenschaften des Modells erhalten soll und somit eine hohe Zu-
verlässigkeit des Systems erreicht. Neben der Umsetzung des Zustandsmaschinen-
verhaltens wird auch eine Laufzeitumgebung zur Ausführung benötigt.

Die Zielstellung dieser Arbeit war es, einen durchgängigen Entwurfsprozess für
eingebettete Systeme auf der Basis von SDL zu untersuchen, der es erlaubt, von
abstrakten Spezifikationen in SDL zu effizienten und zuverlässigen Systemimple-
mentationen zu gelangen. Es wurden neue Konzepte für minimale Laufzeitumge-
bungen erarbeitet und beispielhaft umgesetzt.

Es sollte jedoch nicht nur die Generierung von reinen Software-Imple-
mentationen betrachtet werden, sondern von diesen ausgehend auch die
Hardware/Software- (HW/SW-) Partitionierung der Systeme unterstützt werden.
Zu diesem Zweck wurde im Rahmen dieser Arbeit ein Cosimulations-Ansatz zur
Kopplung eines Befehlssatzsimulators (Instruction Set Simulator, ISS) mit einer
abstrakten SDL-Simulation untersucht und prototypisch implementiert.

Durch die Verlagerung von Funktionen in eigens dafür entworfene HW-
Komponenten ist es möglich, Last vom Mikrocontroller zu nehmen und den
Gesamtenergieverbrauch des eingebetteten Systems durch das Absenken der Takt-
frequenz und Versorgungsspannung zu verringern. Wegen der Verwendung von
SDL eignet sich der Entwurfsprozess besonders für die Implementierung von Kom-
munikationsprotokollen und ist auf Anwendungen mit weichen Echtzeitanforde-
rungen beschränkt.

Für eine SDL-basierte Entwurfsmethodik ausgerichtet auf extrem ressourcen-
beschränkte eingebettete Systeme fehlten bislang Konzepte und tatsächliche Imple-
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mentationen von minimalen SDL-Laufzeitumgebungen. Verfügbare Werkzeuge er-
lauben zwar die Übersetzung von SDL-Modellen in C-Code, für eine effiziente
Implementation ist jedoch die Integration in vorhandene Mikrocontroller-Echtzeit-
betriebssysteme (RTOS) erforderlich.

Eine prototypische Implementation einer Laufzeitbibliothek für das RTOS
Reflex wurde entwickelt, um die allgemeinen Konzepte zu validieren. Verglichen
mit der betriebssystem-unabhängigen Laufzeitumgebung des Werkzeugherstellers
Telelogic ist diese Implementation um ca. 30 % schneller und benötigt weniger
als die Hälfte des Programmspeichers. Bei kleinen SDL-Systemen benötigt die
gesamte Applikation weniger als 8 kB Programmspeicher und 1 kB RAM.

Zur Bewertung von Entwurfsalternativen, die unterschiedliche HW/SW-
Partitionierungen realisieren, eignen sich besonders Befehlssatzsimulatoren. Diese
erlauben die taktgenaue Simulation der Ausführung von Programmen auf einem
Prozessor, häufig auch von Modellen eigener HW-Komponenten, und sind um
Größenordnungen schneller als reine HW-Simulationen. Mit ihnen lassen sich
zeitkritische Teile eines HW/SW-Systems identifizieren.

Um Reaktionen des zu evaluierenden Systems hervorzurufen und dessen Per-
formance messen zu können, werden Teststimuli benötigt. Die Entwicklung einer
Umgebung, welche solche Testsignale erzeugt, kann sehr aufwändig sein. Daher ist
es naheliegend, gerade im Bereich der Entwicklung von Protokollen, die Teststimuli
durch die Simulation eines Kommunikationnetzes in SDL zu erzeugen. Ein solches
SDL-Modell liegt ja bereits der Implementierung zu Grunde. Die im ISS aus-
geführte Protokollimplementierung wird dann Teil der Netzwerksimulation. Die
möglichst effiziente Kopplung von SDL-Simulationen mit dem ISS musste unter-
sucht werden und wurde im Rahmen dieser Arbeit gelöst.

Basierend auf den allgemeinen Konzepten wurde eine Cosimulation mit dem
ISS TSIM für den LEON2-Prozessor vom Autor realisiert. Die gemeinsame Simu-
lation ist sehr schnell, was anhand der Kopplung einer SW-Implementation des sehr
komplexen MAC-Protokolls IEEE 802.15.3 mit einer SDL-Simulation eines aus vier
Stationen bestehenden Netzes nachgewiesen wurde. Die reale Simulationszeit für
10 Sekunden simulierte Zeit betrug gerade einmal 50 Sekunden.

Der gesamte Entwurfsprozess wurde anhand einer HW/SW-Implementierung
des im Standard IEEE 802.15.3 festgelegten drahtlosen Medienzugriffsprotokolls
validiert. Dazu wurde vom Autor ein komplettes SDL-Modell des Protokolls ent-
wickelt, dieses in Reflex integriert und in einem HW/SW-Codesign-Prozess par-
titioniert. Dabei wurde die Cosimulationsumgebung mit dem TSIM-Simulator
verwendet. Für die HW-Partition wurde vom Autor ein Protokollbeschleuniger
entworfen. Dieser wurde gemeinsam mit dem LEON2-Prozessor auf einem Chip
integriert und gefertigt.

Somit wurde nachgewiesen, dass die vorgestellte Methodik geeignet ist, um
effiziente HW/SW-Systeme zu entwerfen und zu implementieren. Sie kann folglich
zur Entwicklung von zuverlässigen und Strom sparenden drahtlosen Sensorknoten
und anderen eingebetteten Systemen angewendet werden.

vi



Acknowledgements

I would like to express my gratitude to my supervisor Prof. Rolf Kraemer for
giving me the opportunity to conduct my research work at the IHP and for his
enormous support throughout the last years.

A special thanks to Prof. Peter Langendörfer for the scientific discussions and
guidance in the phase of writing the manuscript.

Many people from IHP’s Systems Department contributed to or supported me
in my work, without their help this thesis would not have been possible. I would
like to thank Dr Irina Babanskaja, Jerzy Ryman, and Dr Kai Dombrowski for con-
tributing to the design of the IEEE 802.15.3 MAC protocol and its validation. The
model architecture is largely inspired by previous work done by Klaus Tittelbach-
Helmrich, whom I would also like to thank for his efforts to apply this model to a
communication system in the 60GHz band and the valuable feedback that led to
many improvements.

Gerald Wagenknecht put a lot of effort into designing the first version of the
tight integration library for Reflex. His work and our discussions together with Dr
Jean-Pierre Ebert led us to a deeper understanding of the output of the CAdvanced
code generator and not to get lost in the dozens of macros. I very much appreciated
the support from the developers of Reflex, in particular from Karsten Walther from
BTU Cottbus and my colleague Marcin Brzozowski, on questions related to this
new operating system.

I owe special gratitude to a number of colleagues who made it possible that at
the end of many years of research and implementation work the results from the
application of our novel design flow to the IEEE 802.15.3 MAC protocol implemen-
tation have been turned into an ASIC and can be demonstrated on a prototyping
board: Dr Zoran Stamenkovic, Goran Panic, and Gunter Schoof for the design
and synthesis of the LEON2 processor system; Silvia Hinrich, Brigitte Cheuffa-
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Chapter 1

Introduction

The purpose of this chapter is to set the scene for the presentation of our research

work on an efficient protocol design flow for embedded systems and its applica-

tion for the implementation of the IEEE 802.15.3 medium access control (MAC)

protocol.

First, background on embedded systems is provided, characteristics of protocol

design as opposed to the design of other applications are presented, and the role

of an integrated design flow is highlighted.

Having introduced the main challenges in the design and implementation of

protocols for embedded systems, we state our scientific contributions that address

these problems. This thesis shall be useful as a guideline for engineers facing these

challenges.

Concluding this chapter, an overview on the structure of the thesis is given.

1.1 Scope of the thesis

Digital systems can be classified in general-purpose information processing systems

and application-specific systems. Personal computers (PCs) are a good example

of general-purpose systems. They are programmable and support a wide range of

applications.

Application-specific systems, on the other hand, are designed to fulfill a very

specific task, for instance to control the operation of a washing machine. It is

typical for such systems to be contained within a larger environment. Therefore,

application-specific systems are often referred to as embedded systems.

1
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Figure 1.1: Estimated growth of transistor density in SRAM and logic cells ac-

cording to the ITRS roadmap 2005 [ITR05]

In the past decades, embedded systems have replaced many non-computing

systems, such as car window openers, and are now ubiquitous. Their wide adop-

tion has become economically feasible by the mass production of digital hardware

components. Since embedded systems are often part of another product that may

be sold by the millions, they must be very cheap. The price of an integrated circuit

is determined by its die size; the less area a chip consumes the cheaper it is. So,

for economic reasons, embedded systems have only a fraction of the computing

and memory resources available that a modern PC has built in.

Another aspect that is important for many embedded system applications is

the need for low power consumption. Since a high clock frequency and a large chip

size lead to increased dynamic and static power dissipation, embedded system

designers must design systems that perform the required task using the lowest

clock frequency and smallest chip size possible.

Moore’s Law, which states the observation that the number of transistors on

integrated circuits doubles roughly every 18 months, still holds true today and

is reflected by the current ITRS roadmap [ITR05] that predicts the future de-

velopment of semiconductor technology. Consequently, more transistors can be

integrated on the same area (cf. Fig. 1.1) for roughly the same price. This leads

to a growing complexity of future embedded computing systems.

A further trend that can be observed and is predicted for the future is that

more and more electronic devices will be networked. The Wireless World Research

Forum (WWRF) assumes that by the year 2017 there will be one thousand wireless

devices at service for each individual. Already now, new applications making use
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of wireless personal area networks (WPAN) and wireless sensor networks (WSN)

are emerging. Application areas include, but are not limited to, home automation

and security, personal health care, logistics, traffic control, process and factory

automation, agriculture.

Communication protocols define rules for the interconnection of communica-

tion endpoints [Kön03]. Protocols are therefore the basis for the realization of

computer networks, in general, and for wireless sensor networks, in particular.

They can be implemented in hardware, in software, or as a mix between the two.

The implementation method influences the efficiency and other parameters, such

as the flexibility to introduce later protocol extensions or bug fixes. However, pro-

tocols are designed on an abstract level without having any specific implementation

method in mind.

What makes protocol design for embedded systems special in contrast to ap-

plication development in general? Even though one may find applications that

exhibit similar features as protocols, there are a number of reasons to treat proto-

col design as a special case. Protocol behavior is often controlled by the expiration

of timers, for instance to set a limit on the time to wait for a response from a

communication partner. In the next section, we will address the issue of real-time

requirements specifically.

Furthermore, there are complex interactions between one or more protocol in-

stances at communication partners that can be interleaved with each other. This

complexity, paired with the time dependency, causes a vast number of possible

protocol states and protocol runs. In any case, it must be guaranteed that the

protocol instance does not end up in a deadlock and that from each state that has

been reached any other state can be reached again, i.e. that there are no livelocks.

The required robustness and correctness, especially within the context of embed-

ded systems that must operate reliably for months or years without maintenance,

makes a tailored design approach, that is methods and tools, necessary.

1.2 Problem statement

Challenges in current embedded systems design methodologies Accord-

ing to the HiPEAC roadmap on embedded systems [V+06], the increased system

complexity makes new tools for verification and testing necessary. Up to the year

2009, an aggregated annual growth rate for design and test automation tools of
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nearly 20% is predicted. The current de facto situation in the semiconductor in-

dustry is that the validation of embedded systems and complex SoCs may consume

up to 80% of the total design cost and time [MED03]. This can potentially pre-

vent the embedded system product under development from being successful on

the market. Hence, a main challenge in the electronic design automation (EDA)

field is to provide new methods that can enable the rapid validation of embed-

ded systems leading to low-cost devices [V+06]. The aforementioned vision of the

WWRF can only be reached with appropriate tool support.

System-level design languages have the potential of shortening product devel-

opment cycles by providing validation and system simulation at an early design

phase, as reported in [V+06]. For this reason, an increase of projects that rely on

system-level design languages has been predicted. Similarly, a recent study [Cel05]

by Celoxica on system design trends has revealed that there is currently a tran-

sition from paper-based system specifications to electronic specification languages

such as UML, Matlab or C taking place in the industry. Model-based design and

the use of hardware/software partitioning tools are not yet common, though they

promise to speed up the development process and reduce the number of design

errors.

Not only models and architectures are important for developing new imple-

mentations within a short time, but also a tailored design flow and corresponding

tools that support various steps of the design flow. As outlined in the previous sec-

tion, reliability and energy efficiency must be addressed in the design of embedded

systems.

SDL-based protocol design flow for embedded systems Specification and

Description Language (SDL) is a popular high-level language to formally spec-

ify system behavior. In particular, it has been successfully applied to protocol

engineering and has attracted a lot of attention from the research community of

this field. SDL not only allows the simulation of models, but also their formal

verification. The purpose of verification is to identify and eliminate incorrect be-

havior, such as deadlocks or livelocks, that may occur under a particular sequence

of events.

In the past, a number of tools [IAJ94], [ÖBE+97], [DMTS00] have been pro-

posed that support an integrated design flow from high-level SDL specifications

to system implementations. It is possible to automatically transform SDL spec-
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ifications into executable software and even generate hardware designs from the

specification by special-purpose compilers. These approaches will be discussed in

Chapter 3 in more detail.

In this work, the author has focused on adapting and extending the protocol

engineering design flow based on SDL to the requirements of deeply embedded

systems. The motivation for choosing SDL was its suitability to formal verification

as well as mature tool support for simulation and implementation.

The existing approaches, however, are not targeted specifically to embedded

systems and the tight processing and memory requirements of, for instance, 16-bit

microcontrollers with less than 64 kbytes of memory. Rather, the previous work

has focused on high-performance communication processors or rapid prototyping

systems.

The adaptation of the SDL-based design methodology for communication pro-

tocols to the requirements of embedded systems demands for solutions to the

research problems listed below.

• General concepts for an efficient use of real-time operating systems and em-

bedded systems hardware platforms as run-time environments for SDL mod-

els have to be investigated.

• Mechanisms for connecting an instruction set simulator with an SDL simu-

lator have to be studied.

These items will be motivated and further explained in the remainder of this

section by discussing the limitations of the current approaches. The feasibility of

the new concepts has to be shown experimentally. This is achieved by

• a prototypical implementation of an SDL run-time environment for a target

operating system, its validation and performance comparison with existing

approaches, and

• a proof of concept for the cosimulation framework by realizing an interface

between a particular instruction set simulator and Telelogic’s SDL simulator.

Figure 1.2 shows the integrated SDL-based design flow. The novel elements

that have to be introduced to target resource-limited embedded systems are high-

lighted. They comprise an optimized run-time environment for embedded systems

(denoted as tight integration library in the figure) and a cosimulation framework.
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Figure 1.2: Overview of the complete design flow starting from an initial SDL

model to a hardware/software implementation.

For resource-constrained embedded systems, designers typically choose operat-

ing systems with a very small memory footprint and, consequently, a very limited

set of features and available services. TinyOS [LMP+05], Contiki [DGV04], or

Reflex [WN07] are examples of the most commonly used operating systems for

wireless sensor nodes, a particular kind of deeply embedded system. One of the

challenges in targeting SDL specifications to such operating systems is to map SDL

concepts to the available mechanisms of the operating system. Furthermore, the

features of the hardware platform, such as programmable timers, must be exploited

as efficiently as possible.

So far, no general framework for targeting SDL models to operating systems
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for deeply embedded systems has been presented. Our objective was to close this

gap by investigating concepts for a mapping that has a small memory footprint

and little run-time overhead. We base our work upon the output of the very

successful commercial code generator CAdvanced from Telelogic, as the generated

code facilitates the integration with a target operating system.

With our conceptual ideas and their realization as a software framework for

lightweight SDL run-time environments, it should be easily possible to create inte-

gration models for different real-time operating systems and hardware platforms.

The performance of system implementations that are developed on the basis of our

concepts will be significantly better than with the standard approach which uses

a generic SDL run-time environment.

Embedded systems may consist of general-purpose microcontrollers and ded-

icated hardware blocks. Since the dedicated hardware is designed for a specific

purpose, its performance is typically several magnitudes higher than that of mi-

crocontrollers if hardware parallelism can be exploited and required operations are

not directly supported by the instruction set of the processor. Hence, a mixed

hardware/software implementation may provide the best tradeoff between the re-

quired flexibility, which can be ensured by the use of software, and performance.

By using dedicated hardware for time-critical and processing-intensive tasks, the

general-purpose processor has less strict performance requirements and its clock

frequency could be reduced. This way, the energy efficiency of the system is in-

creased. This is particularly important for battery-powered devices.

Hardware/software codesign tools support the designer in finding optimal sys-

tem partitionings with respect to user-defined constraints such as real-time be-

havior, power consumption or resource usage. Some tools allow the automatic

generation of hardware from high-level specifications. Such a tool, which uses

annotated SDL as system specification language, was proposed by Muth [Mut02]

for rapid prototyping applications. The designer has to specify which SDL pro-

cesses shall be generated as hardware based on their computational complexity

and timing requirements. A worst-case real-time analysis is conducted by the tool

and checked against the requirements. This way, the designer can be sure that a

chosen partitioning satisfies the timing specification. We consider this work as the

most advanced integrated design flow based on SDL.

The granularity of mapping complete SDL processes to either hardware or

software is rather coarse in this approach. It causes significant overhead in terms
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of hardware area and signal exchange delay, because of required buffer space for

hardware signal queues and the time needed to transfer signal parameters into

the buffers. For this reason, we discard the automatic generation of hardware

from SDL specifications from our design flow. Instead, we prefer a fine-grained

partitioning of SDL processes into hardware and software. The manual design of

dedicated hardware and its interfaces to the software partition promises to yield

more efficient systems, however increases the design effort.

During design space exploration, i.e. the process where the designer investi-

gates different system architectures and hardware/software partitionings, usually

a profiling of the system is performed. The objective of the profiling is to obtain

information about the execution time and bottlenecks of the current design alter-

native. The profiling information can be gathered either by using a real execution

of the system, which may require significant design effort to create such a sys-

tem, or by simulations. Simulations can be conducted with more or less accuracy

depending on the chosen system model. Naturally, the closer the profiling results

reflect the reality, the better decisions can be made in the design exploration phase.

Our work particularly addresses the design flow for communication protocols.

In this case, the designer must analyze whether a given hardware/software imple-

mentation model of the protocol interacts with its environment, i.e. the upper and

lower protocol layers, according to the timing specification, and analyze what parts

of the implementation model are bottlenecks. This can be concluded from a static

worst-case execution analysis or, as stated above, by simulating and profiling the

design. A worst-case analysis might yield too pessimistic results and, hence, lead

to an implementation which is overdesigned. While such an approach is necessary

for hard real-time systems, it is likely to require more resources and computing

power for the average case.

A short note on real-time behavior with respect to wireless communication

protocols: A computer system that must react on external stimuli and produce

a result within a certain time is called a real-time system. If missing a deadline

could possibly cause catastrophic consequences, this computer system is said to

have hard (or safety-critical) real-time requirements. Otherwise, it is called a soft

real-time system.

In wireless communications, loss of messages over the wireless channel is quite

common due to the presence of noise and interference. Therefore, other devices

will not see a difference between missing a deadline in one protocol instance or a
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transmission error. Protocols are designed to tolerate and recover from transmis-

sion errors. Even if a message is occasionally sent late and interferes with another

message, this will only lower the performance, but not break the system. If an ap-

plication with hard real-time constraints shall relies on a wireless communication

system, the application designer must account for the occasional loss of messages

and provide a fail-save operation. Hence, the application and the protocol im-

plementation could just as well be in two different domains, where the protocol

implementation has less strict requirements with respect to timing.

Therefore, the design flow presented in this thesis targets soft real-time embed-

ded systems only. Still, the designer shall be supported in identifying where the

implementation fails to meet the specified timing constraints and what are the bot-

tlenecks. This is an important requirement for the hardware/software partitioning

process.

Obtaining profiling information from system simulations is a viable and better

suited approach than a static worst-case analysis, in the area of communication

protocol design, as long as there are no hard real-time requirements. The perfor-

mance of implementation models can be estimated by different methods.

One possibility is to annotate transitions in SDL processes with a user-defined

duration. Additionally, fixed process scheduling and signal exchange overhead can

be included. The performance of the SDL system is then measured by simulating

the model and advancing the simulation time according to the timing annotations.

Since these annotations are only more or less accurate estimations, the performance

results obtained from the simulations may not correspond well to the real execution

times.

An improvement would be to use the real execution time of the SDL model on

the host computer as a basis and scale the simulation results to the computational

performance of the target embedded system microcontroller. Again, the confi-

dence in the accuracy of the performance measurements is low due to the different

instruction set architectures, effects caused by caches, etc. In particular when sim-

ulating systems with external components that trigger interrupts, accuracy can be

low.

The most accurate profiling results can be obtained by simulating the execution

of a hardware/software system on the target processor. A tool that allows such

kind of performance measurements is an instruction set simulator. They are freely

or commercially available for many microcontrollers. Though the simulation runs
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require more time than the previously described methods, the profiling results are

very accurate, especially for cycle-true simulations.

When simulating a particular communication protocol implementation, there

must be a test bench that creates stimuli for the system under test. The test bench

reflects the behavior of the peer communication entities as well as the lower and

upper protocol layers.

The development of a comprehensive test bench for a communication protocol

implementation is a time-consuming task. This development time can be saved by

reusing the SDL model of the communication system. In order to validate the pro-

tocol functionality before starting the implementation phase, designers typically

create a simulation environment that can instantiate and interconnect several pro-

tocol entities in a network model. This can be easily done in SDL by introducing

models for the lower protocol layers and a physical network. Stimuli for a sim-

ulation of the protocol implementation model can be directly obtained from the

simulation of the network model by using the SDL signals exchanged with a par-

ticular protocol instance.

Ideally, these signals could be used as an input for the protocol implementation

model simulated by an instruction set simulator (ISS). The signals generated as

output by the implementation model could be directly introduced back into the

SDL simulation of the communication network. This way, an interactive cosimu-

lation run can be performed. As a result, profiling results for the implementation

model are gathered, and it can be checked whether the model satisfies all timing

requirements of the protocol.

The concept of integrating an instruction set simulation of a protocol imple-

mentation into the functional network simulation in SDL is shown schematically

in Fig. 1.3

To support the designer in detecting all cases where the implementation model

did not respond to a received stimulus in time, i.e. missed a real-time requirement,

the author has created the concept of a timing rules monitor. This is an SDL

process that receives all SDL signals that are sent as stimuli to the implementation

model and all of its responses, which are also SDL signals. The designer may specify

a set of rules describing the acceptable behavior of the implementation model. The

reason for the introduction of the timing rules monitor is the weak semantics of

SDL with respect to specifying real-time requirements as will be outlined in more

detail later in this thesis. The only way to observe a deviation from the acceptable
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Figure 1.3: The instruction set simulation of the target system including models

of the hardware partition is embedded in the overall network simulation based on

SDL.

timing behavior without the timing rules monitor would be to notice differences

in the protocol runs. Such differences, however, are difficult to spot, especially

when long test benches are used and, possibly, communication failures leading to

timeouts are part of the normal behavior in the simulated protocol run.

To our knowledge, the cosimulation of SDL specification models and imple-

mentation models in an ISS has not been treated before. Therefore, mechanisms

for an efficient coupling, which also preserve the semantics of SDL, have to be

investigated. Furthermore, based on the general considerations, a prototypical im-

plementation is needed to prove the validity of the concept and to serve as a tool

in the design flow.

Validation of our work The SDL-based protocol design flow has been vali-

dated by applying it to an implementation of the IEEE 802.15.3 medium access

control protocol [IEE03a]. This implementation is part of a generic wireless com-

munication platform, which has an IEEE 802.15.3-compliant physical layer offering

data rates between 11 and 55 Mbit/s. The MAC protocol can be considered as very

complex. Among other features, it provides an asynchronous and isochronous data

service.

From a practical point of view, we had to answer the question if and how

it would be possible to implement such a complex MAC protocol for a battery-

powered sensor node. In tackling this problem we had the freedom to develop

protocol software as well as to design dedicated hardware as a protocol accelerator.
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As will be reported later in Chapter 7, our concepts for an embedded sys-

tems design methodology and the tools implementing these concepts supported

the hardware/software design process and led to an efficient system-on-chip imple-

mentation of the above mentioned MAC protocol. This example shows that the

methodology can also be successfully applied to other protocols that are typically

used within the area of wireless sensor networking or embedded systems. They will

likely have lower complexity and data rates compared to IEEE 802.15.3. Examples

of such protocols are S-MAC [YHE02], T-MAC [vDL03], IEEE 802.15.4 [IEE03b]

or Bluetooth [IEE05].

1.3 Contributions

The author has addressed the design challenges presented in the previous section

by

• creating an integrated design flow that is based on SDL,

• studying concepts for an efficient tight integration layer, i.e. an SDL run-time

environment, for the CAdvanced code generator from Telelogic,

• investigating general problems of connecting an instruction set simulator

with an SDL simulation,

• implementing the theoretical concepts for an efficient run-time environment

and using the real-time operating system for extremely resource-constrained

devices Reflex [Nol09] as an example,

• implementing a cosimulation framework that couples the Telelogic SDL sim-

ulator with the LEON2 instruction set simulator TSIM, and

• successfully applying the methodology and newly developed tools to the de-

sign and implementation of the IEEE 802.15.3 MAC protocol.

Throughout the proposed design flow, an initial SDL model is gradually re-

fined and optimized. Our work builds upon mature software tools and provides

links between them to create an integrated design flow. For performance analysis

and exploration of design alternatives, a concept for coupling the high-level SDL

simulator with an instruction set simulator has been elaborated. This approach
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shortens the protocol development time by reusing the original SDL model as a

test bench for the hardware/software system simulation.

In order to validate our design methodology it has been applied to a hard-

ware/software implementation of the IEEE 802.15.3 MAC protocol for a low-power

wireless communication platform. For this purpose, an SDL model for this proto-

col has been designed. Due to the complexity of the protocol, an architecture for

the model and suitable abstractions had to be found in a first step. After identi-

fying all SDL processes with their specific responsibilities and services provided to

other processes, the complete protocol functionality has been modeled in SDL.

Following the methodology, the author used the CAdvanced code generator

from Telelogic to generate C code from the MAC protocol model. Our run-time

environment for the Reflex operating system has been used to obtain a first all-

software implementation of the protocol on the basis of the generated C code.

The author partitioned the automatically generated and optimized implemen-

tation model into hardware and software parts with the help of the cosimulation

framework. Finally, a protocol accelerator was designed in VHDL.

With this design effort, which has been achieved by the author of this thesis,

we have proved that our approach can serve as a general guideline and template

for future embedded systems protocol implementations. The software layer to

integrate SDL models into Reflex and the cosimulation framework can be directly

reused for other systems designed using SDL. Both can be easily adapted to other

operating systems or instruction set simulators.

Being a sophisticated and complex protocol, the IEEE 802.15.3 MAC protocol

includes various features and functionalities, such as contention access and reserved

time slots, that are also present in similar wireless MAC protocols. Therefore, the

SDL model of the protocol and its architecture can serve as a blueprint for other

MAC protocol designs. Similarly, the architecture of the protocol accelerator, that

has been designed to perform time-critical and processing-intensive tasks, can be

adapted to other protocol implementations. The SDL model and the protocol ac-

celerator are important results of this thesis and will be thoroughly presented. Our

theoretical concepts and design results have been presented at several international

conferences, and the architecture of the protocol accelerator has been submitted

as a patent.
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1.4 Overview

The thesis is structured in nine chapters. In Chapter 2, the wider context of

our work is presented. It includes background on typical protocol design and

implementation methods, an overview on common MAC protocols for wireless

personal area networks, as well as a general overview on the design methodology

for embedded systems.

In Chapter 3 we highlight alternative protocol design methodologies that have

been proposed in the literature and discuss their advantages and weaknesses.

Chapter 3 concludes the introductory part of the thesis.

Chapter 4 presents the concepts of our novel contributions to an integrated

protocol design flow for embedded systems. Prototypical implementations of two

important building blocks of our design flow, the tight integration layer for Reflex

and the cosimulation framework, are then covered in detail in Chapters 5 and 6,

respectively.

Results from the design of the IEEE 802.15.3 MAC protocol are summarized

in Chapter 7. The main results, which are also templates for similar design tasks,

are our high-level SDL model and the protocol accelerator architecture.

We present a critical discussion of our work and an outlook on future work in

Chapter 8. Finally, the thesis is concluded in Chapter 9.



Chapter 2

Design of Embedded

Communication Systems

Similar to the way how humans communicate with each other using languages and

rules of conversation, computer communication systems require the definition of

messages and of the order in which they may be exchanged. These definitions con-

stitute (communication) protocols. Protocols have been standardized to achieve

interoperability between devices of different manufactures. The standards do not

prescribe an implementation method, they are abstract syntactical and functional

descriptions.

Protocol engineering is a discipline of computer science which deals with the

modeling and specification of communication systems and protocols. It also puts

special emphasis on quality and, therefore, formal languages have been developed

that facilitate verification as well as methods for the test of protocol implemen-

tations. Protocol engineering also comprises efficient implementation models for

protocol specifications.

Significant research effort has been devoted in the academia and EDA industry

to the development of methodologies for embedded systems and system-on-chip

(SoC) design. Similar to the protocol engineering area, system specification lan-

guages and design tools were proposed to improve the quality of the design and

to accelerate the product development cycle. Many researchers are working on

tool support for the computer-aided exploration of design alternatives and the

translation of high-level behavioral system descriptions to low-level physical rep-

resentations.

15
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The work presented in this thesis can be treated as a contribution to bring to-

gether the established protocol engineering methodology with the tools and meth-

ods developed for embedded system and SoC design. This concerns, in particular,

hardware/software partitioning. Our methodology enables the design and imple-

mentation of power-efficient, severely resource-limited and wirelessly networked

devices and sensor nodes.

The chapter is structured into two main sections that introduce the main re-

sults and concepts of the protocol engineering and hardware/software codesign

disciplines.

2.1 Protocol engineering

Communication protocol entities provide one or more services to other protocol

entities or applications and may use services from other protocols for this purpose.

The International Standards Organization (ISO) has defined an Open Systems In-

terconnection basic reference model [ISO94] (OSI reference model) that structures

communication functionality in seven protocol layers—from the physical layer up

to the application layer—as depicted in Fig. 2.1. This layering approach has been

adopted with great success as it provides a common basis for the coordination of

standards development, breaks the complexity of communication systems, and fa-

cilitates modular implementations where building blocks may come from different

vendors.

Protocol entities interact with their peer entities at the communication part-

ners. This interaction follows strict rules. A communication protocol is a con-

vention that specifies possible temporal sequences of interactions between the

involved protocol entities and defines the format of the messages that are ex-

changed [Kön03]. These messages are known as protocol data units (PDU). By

defining the structure of PDUs in the protocol, it is ensured that there is a common

interpretation of the data units among the peer entities.

Even though there is a plethora of different communication protocols, one can

find recurring mechanisms in their design. Section 2.1.1 highlights some of the

most commonly used protocol mechanisms, such as connection management, error

control and flow control. We will then introduce popular wireless MAC protocols

for short-range communication in Section 2.1.2. The methods and languages em-

ployed by designers to specify protocol behavior will be covered in Section 2.1.3.
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Figure 2.1: Seven layer OSI reference model and peer protocols [ISO94]

Finally, Section 2.1.4 will cover the development process for communication pro-

tocols with emphasis on verification, implementation, and test.

2.1.1 Protocol mechanisms

When comparing the behavior of different protocols, it becomes apparent that

they are often composed of similar temporal sequences and logical functions, also

known as protocol mechanisms or protocol functions. We will present some of the

most common protocol functions in this section. This will provide a deeper insight

into the diversity and complexity of protocol operation.

Connection management

In telecommunications, one can distinguish between connection-oriented and con-

nectionless protocols. Connection-oriented protocols require the establishment of a

logical connection between the communication partners before data transfer can be

started. With connectionless protocols, on the contrary, data transfer is initiated

without prior connection setup. A connection can be viewed as a shared state

between the peer protocol entities and as an agreement about the communica-
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tions relationship, whereas connectionless protocols are also described as stateless.

Transmission Control Protocol (TCP) is a well-known example of a connection-

oriented protocol while Internet Protocol (IP) is a connectionless protocol.

Connection management as a protocol mechanism refers to all the activities

necessary for setting up, maintaining, and terminating a connection. In the con-

nection establishment phase, the involved protocol entities often negotiate param-

eters, such as the quality of service (QoS) of the connection. During the data

transfer phase, when the connection is already established, there might be service

disruptions in the lower protocol layers. To prevent any loss of user data and

provide an uninterrupted service, the protocol may try to resynchronize with the

communication partner or reassign resources in the network.

For the termination of a connection one has to consider that there still may

be data packets belonging to the connection traveling in the communications net-

work. There is the possibility of deferring the termination until all packets have

been delivered or timed out, or to release the connection abruptly. When reusing

connection identifiers of old connections for new ones too soon, there is the chance

that old packets that arrive late will be related to the new connection.

Error control

Error control is one of the most important and commonly used protocol functions.

Since the physical media and intermediate relay nodes in communication networks

cannot guarantee error-free forwarding of PDUs, protocols need to be able to detect

and correct transmission errors in order to provide a reliable data transfer service.

It is not only that individual bits of the transmitted data may be corrupted, but

messages are sometimes lost or duplicated. The error control techniques that are

typically found in protocols are reviewed below.

For error detection purposes, protocols often utilize check sums. This means

that the bits of the PDU are used to calculate an error check sequence by means

of a mathematical algorithm, for example modulo-16 addition. The error check

sequence becomes part of the PDU. Its receivers can run the same algorithm on

the PDU. If individual bits have been altered in transmission, there is a high

probability that the check sum calculated over the received data does not match

the received check sum. Thus, the receiver is able to detect transmission errors.

Cyclic redundancy check (CRC) algorithms are commonly used in lower proto-

col layers because of their ability to detect burst errors and their simple hardware
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implementation. With forward error correction (FEC) coding it is possible to re-

cover the original bit stream even in the case of transmission errors (provided their

number does not exceed a certain limit) by utilizing redundancy information in

the bit stream.

If a protocol entity has detected a transmission error or loss of a PDU, au-

tomatic repeat request (ARQ) mechanisms are commonly used to initiated the

retransmission of the lost PDU. ARQ mechanisms rely on the transmission of

(positive or negative) acknowledgment (ACK) messages by the receiver and on the

detection of timeouts at the sender.

Stop-and-Wait is the simplest form of ARQ. In this scheme, the sender waits

for a positive acknowledgment from the receiver before sending out the next PDU

to that receiver. If the sender does not receive the acknowledgment within a

fixed time or receives a negative ACK (in some protocols), it will retransmit the

message. During the time when the sender is waiting for an ACK, data transfer

cannot proceed.

The Go-Back-N scheme offers a more efficient use of bandwidth. It allows the

sender to transmit data without receiving an ACK up to a maximum window size

(number of not yet acknowledged PDUs). The receiver acknowledges the reception

of all PDUs up to a sequence number given in the ACK message. If a transmission

error occurs and the ACK from the receiver is not received in time, the sender will

retransmit all PDUs starting from the first one that has not been acknowledged,

even if the receiver has already correctly received some of them.

An alternative to the Go-Back-N scheme is Selective Repeat. It provides the

possibility to selectively repeat only those PDUs that had transmission errors and

also operates with a transmission window. Selective Repeat requires the receiver

to provide buffer space for received PDUs in order to deliver the messages in the

correct sequence.

The operation of the three presented ARQ schemes is visualized in Fig. 2.2 by

means of Message Sequence Charts (MSC) showing an example data transfer and

the use of timers.

Not only data PDUs are subject to transmission errors, but also acknowledg-

ment PDUs. If an ACK is lost, the sender will retransmit the data PDU. Hence,

the receiver must detect when it has received a duplicate. Again, sequence numbers

can be used for this purpose. The sender must use the same sequence number for

the retransmitted PDU as for the original one.
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Figure 2.2: Illustration of the three ARQ schemes Stop-and-Wait (a), Go-Back-N

(b), and Selective Repeat (c).

Sequence numbering can be considered a separate protocol mechanism. As

with any numbers represented in computers, their range is limited by the amount

of bits used to represent their value. To reduce protocol overhead, only few bits are

normally used for the encoding of sequence numbers and so it must be considered

in the design of protocols that sequence numbers will be reused after a certain

number of PDUs have been transmitted.

Time monitoring is essential for error control. It is used for timeout-driven

retransmissions, but also to detect if the communication peer is still active. This

becomes more important in networks with dynamic topologies, for example wireless

networks where nodes may go out of communication range of each other.

Flow control

Telecommunication networks are often heterogeneous networks. This means that

the communication nodes differ with respect to their capabilities and performance.
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There may be nodes that are not capable to process data at a rate at that other

nodes transmit data, or there is not enough free buffer space at the receiver node

to hold received messages.

In order to avoid overloading of receiving nodes by excessive data transmissions,

flow control is applied. With this protocol function, the rate at which nodes

transmit PDUs is adjusted. There are two basic flow control mechanisms: window-

based and rate-based flow control.

Window-based flow control is an end-to-end protocol mechanism where the

receiver grants the sender a certain amount of data—the transmission window—

to be transmitted before the sender must wait for a window update from the

receiver. The well-known sliding window protocol is part of TCP. In this variant,

the window size is negotiated when a TCP connection is established. With each

acknowledgment PDU the receiver implicitly allows the sending protocol entity to

transmit more data, up to the previously negotiated window size, which is a fixed

number of bytes.

This window-based scheme has some disadvantages in networks with very high

data rates, because the window buffer can be filled within a very short time. The

relatively long transmission latency that occurs from the receiver to the sender

will slow down the sender and lead to bursty traffic. An alternative approach that

alleviates these problems is to allocate a desired transmission rate on all links of

the path from source to destination through the network, at connection setup time.

This is then called rate-based flow control, but is not described here further.

Coding and decoding of PDUs

Coding and decoding of PDUs is a protocol function that is performed locally

at each protocol entity and, therefore, is not visible in the interactions between

protocol entities. Its role is to create properly formatted PDUs (conforming to the

protocol syntax) from user data and additional protocol control information.

Conversely, received PDUs must be parsed and decoded to extract the infor-

mation conveyed over the network. The structure of PDUs, which is defined by the

protocol, determines how efficiently the coding and decoding can be implemented

in software using standard microprocessors. For this reason, some new protocols,

like IPv6, use 32-bit aligned fields. On the other hand, PDUs are formatted as

terse as possible with the least number of bits to reduce protocol overhead, increase

bandwidth efficiency, and lower the energy required for transmission and reception.
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The last point is particularly important in networks with battery-powered devices

such as wireless sensor networks.

Assembly and disassembly of PDUs

Service data units (SDU) passed for transmission from an application or higher

protocol layer do not always fit in size into the PDU structure of a protocol.

In this case, the SDU must be split over multiple PDUs. This process is called

segmentation, the inverse function at the peer entity is called reassembly.

It is also possible to collect multiple smaller SDUs to form a single PDU. This

is done to reduce protocol overhead as fixed per-PDU overhead is required only

once. Hence, the efficiency of the protocol can be increased. The corresponding

protocol functionality at the sender and at the receiver is termed blocking and

unblocking, respectively.

2.1.2 Wireless medium access control protocols

Wireless communications have experienced an enormous growth in the last 10 to

15 years. This development has been driven by the wide deployment of mobile

phone networks and wireless local area networks (WLAN). Users enjoy the feeling

of being anytime and anywhere connected, whereas WLANs helped to avoid costly

and annoying wiring in homes or large buildings.

The trend in wireless communications goes into the direction of sensor and

actuator networks for a variety of application areas: building and industrial au-

tomation, logistics, retail industry, automotive and transport, telemedicine, etc.

One of the biggest challenges in the design of such networks is energy efficiency, as

many of the connected devices will be battery-powered or use energy-scavenging

techniques to avoid wiring, which is costly and not always feasible. Therefore, only

a limited amount of energy will be at the disposal of the devices for communication.

The wireless channel is a shared medium. Similarly to shared wired media, a

multiple access scheme must be in place in order to control the organized access of

all devices to the channel. Common multiple access schemes are time division mul-

tiple access (TDMA), frequency division multiple access (FDMA), code division

multiple access (CDMA), space division multiple access (SDMA), and combina-

tions of them.

In FDMA, CDMA, and SDMA the transmitters can use a frequency, code
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Figure 2.3: Communication nodes share the wireless channel in the TDMA scheme.

Each node may access the channel, i.e. transmit data, exclusively in a time slot in

some predefined or dynamic order. All nodes use the same frequency band.

sequence, or region exclusively and are separated from each other. With TDMA,

the channel is granted for a period of time in the complete frequency band and

space exclusively to a single transmitter (Fig. 2.3). TDMA is especially suited

for wireless sensor networks because of its algorithmic simplicity, limited signal

processing demands, and flexibility to changing topologies. We will, therefore,

focus on the TDMA scheme in the remainder of this section.

Medium access control is a sublayer of the data link layer (layer 2) in the OSI

reference model (cf. Fig. 2.1). The medium access control protocol is responsible

for implementing the multiple access scheme in a protocol-specific way. The choice

of the MAC protocol heavily influences how much energy the device spends on

communication. The major sources of energy waste that can be influenced by the

the MAC protocol will be briefly covered in the following. From these observations,

conclusions are drawn for the design of energy-efficient wireless MAC protocols.

A wireless transceiver consumes energy when transmitting, receiving, and also

when just listening on the channel for incoming data. The order of magnitude

for all three tasks is roughly the same [FN01] for current short-range wireless

communication systems like WLAN. The reason for this is the relatively high

power consumption of the radio frequency (RF) transceiver circuitry, no matter

if the circuitry is actually in transmission, receive, or listening mode. The RF
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transceiver must provide a carrier frequency in the 2.4 GHz band and have some

filters and amplifiers powered on, in all three modes.

Therefore, the highest energy efficiency is achieved when transmitters and re-

ceivers are exactly synchronized and operate in transmission or reception mode

only when required, with an output power level that is just sufficient for an error-

free transmission. Obviously, these ideal conditions cannot be achieved in practice.

The main causes of energy loss in wireless communications are described in the

following.

Idle listening refers to the situation that one or more devices are listening

for data, but there is no transmitter sending any data. Similarly, overemitting

describes a situation where a node transmits data and no other device is receiving

the message. Another source of energy misuse is overhearing. In that case, a

receiver consumes power to receive and decode a message, only to find out that

it is not the destination and it has to discard this message. Moreover, collisions

of packets lead to an increased energy consumption, as these packets have to be

retransmitted. The amount of protocol overhead in the form of control information

conveyed in each message influences energy efficiency of the protocol.

Finally, the used data rate and transmission power level are important pa-

rameters that determine how much energy per bit is spent in communication. A

high data rate reduces the time required for transmission, but may also require a

higher signal-to-noise ratio and hence higher transmission power for an error-free

transmission.

The design of the wireless MAC protocol heavily influences how energy-efficient

the communication system will be, that is what sources of energy waste will occur

and how frequently. As examples of popular MAC protocols employed in wireless

sensor networks, the following section will introduce the design principles of S-

MAC and T-MAC, and the IEEE 802.15.3 MAC protocol designed for WPANs,

since it has been used to validate our design methodology and novel ideas.

S-MAC

The sensor-MAC (S-MAC) protocol has been proposed by Ye et al [YHE02] to

address the specific requirements of multi-hop wireless sensor networks. Such

networks consist of a large number of distributed nodes that cooperate to perform

a common task, such as environmental monitoring.

Each wireless sensor node has one or more sensors, embedded processor and
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low-power radio, and is normally battery operated. Due to the, possibly, large

network size, recharging of batteries is not feasible in many intended application

scenarios. Therefore, energy efficiency is the major design goal for wireless sensor

networks in order to prolong the lifetime of the network. Typically, the amount

of energy spent to communicate a single bit can be used to perform hundreds

of microcontroller instructions on a node. This requires a new MAC protocol

approach which significantly reduces the communication overhead compared to,

for instance, the IEEE 802.11 MAC protocol, where nodes spend a lot of energy

for idle listening.

The basic scheme of the S-MAC protocol is a periodic listen and sleep cycle.

Each node goes into sleep mode for some time, and then wakes up and listens to

see if any other node wants to send data to it. While sleeping, nodes consume only

a fraction of the power when being active. The ratio of the active communication

period is called duty cycle. A low duty cycle increases network lifetime at the

expense of higher latency and lower responsiveness of nodes. WSN applications,

however, usually do not require a level of responsiveness that must be provided,

for example, in WLANs.

Neighboring nodes must synchronize their wake-up schedules in order to com-

municate. For this purpose, nodes broadcast information about their wake-up

and listen interval to all nodes in their communication range in a periodic SYNC

packet. This way, virtual clusters are formed in the WSN where all nodes in a

cluster share the same schedule.

The S-MAC protocol uses a contention-based access scheme in the listen period.

An RTS/CTS handshake is placed before any data transmission to address the

hidden terminal problem.

The hidden terminal problem refers to a situation where two devices cannot

sense the frame transmission of the other, however there is a region where both

transmission ranges overlap and a receiver could detect frames from both devices.

In this case, even if both devices that wish to transmit a frame sense the channel

as idle before actually starting the transmission, a frame collision may occur at a

receiver in the region of overlapping transmission ranges.

The RTS/CTS handshake is a mechanism to mitigate the effects of the hidden

terminal problem: Before the actual frame transmission starts, the transmitter

device sends a short, so-called RTS (Ready-To-Send) frame to the receiver. When

received correctly, the receiver responds immediately with a short CTS (Clear-To-
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Send) frame. If a collision occurs during the RTS frame transmission, the CTS

frame will not be sent and the handshake is initiated once more. The advantage of

this method is that only a short frame was affected by the collision, thus reducing

the amount of wasted energy.

S-MAC has been implemented on the well-known Berkeley motes, a family of

sensor nodes from UC Berkeley that run the TinyOS embedded operating sys-

tem [HSW+00]. The low complexity of the protocol and the moderate physical

layer data rates used by the Berkeley motes allowed a pure software implementa-

tion. The software has been written manually in the nesC language, a dialect of

the C programming language, and amounts to roughly 3000 lines of code.

T-MAC

Timeout-MAC (T-MAC), an improvement of S-MAC, has been proposed by van

Dam et al [vDL03]. In contrast to S-MAC, T-MAC operates with a fixed period

(615 ms) of the listen and sleep cycle and uses a time-out mechanism to dynamically

adapt the end of the listen period. If a node does not detect an incoming message

or collision within a timeout value (15 ms) after the last transmitted frame, it

assumes that no neighbor wants to communicate with it and goes to sleep.

The adaptive duty-cycle allows T-MAC to automatically adjust to fluctuations

in network traffic. The down-side of T-MAC’s rather aggressive power-down policy,

however, is that nodes often go to sleep too early: when a node s wants to send

a message to r, but looses contention to a third node n that is not a common

neighbor, s must remain silent and r goes to sleep. After n’s transmission finishes,

s will send out an RTS to sleeping r and receive no matching CTS, hence, s must

wait until the next listen cycle to try again.

IEEE 802.15.3 MAC protocol

Similar to the well-known IEEE 802.11 standard [IEE99], IEEE 802.15.3 comprises

specifications for the MAC and physical layers. This standard provides data rates

from 11 to 55Mbit/s at distances of greater than 70 meters to enable wireless per-

sonal area networking [IEE03a]. In contrast to IEEE 802.11 WLAN and to the

previously introduced protocols, it provides QoS to support multimedia applica-

tions.
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Figure 2.4: Superframe structure, beacon contents, and basic network topology

defined in the IEEE 802.15.3 standard.

In each IEEE 802.15.3 wireless network1 there is one so-called piconet coordi-

nator (PNC) that is responsible for managing the associated devices and granting

them channel access time. Synchronization in the network is maintained by the

PNC broadcasting beacon frames. All devices must be in communication range of

the PNC. The beacon contains information about the piconet and, most impor-

tantly, a list of reserved time slots indicating their position relative to the start of

the beacon frame, their duration, as well as the sender and receiver. Devices may

communicate directly in a peer-to-peer fashion.

The time interval between two consecutive beacon frames is termed super-

frame. The superframe duration is a fixed time interval, such that a strict time

synchronization between the devices is maintained. This is very useful to support

isochronous data services and to allow devices to sleep for a couple of superframes

without having to go through a long resynchronization period.

The protocol allows an optional contention access period (CAP) following di-

rectly after the beacon. It resembles the same behavior as the distributed coordina-

tion function (DCF) of the IEEE 802.11 MAC protocol. The superframe structure

and basic topology of the IEEE 802.15.3 standard are illustrated in Figure 2.4.

The protocol functionality defined in the standard is so extensive and complex,

1The term piconet is used in the standard to denote a set of logically associated devices

belonging to the same network and having a common coordinator.
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especially for the PNC, that a list of the main features must suffice to become a feel-

ing for what a challenge and potential for errors the protocol design presents. The

protocol includes: scanning for available piconets, starting a new piconet or syn-

chronizing on an existing one, contention-based and TDMA-based channel access,

error control and ARQ, association and disassociation, managing asynchronous

channel time requests, managing2 isochronous streams, managing power save sets,

scheduling time slots considering available channel time and the power save mode

of devices, beacon generation and parsing, encryption and decryption, etc.

The most processing-intensive and timing-critical functionality is directly re-

lated to the channel access mechanism, namely CRC calculation and check, ac-

knowledgment generation, frame transmission of the right frame at an exact point

in time, as well as the AES algorithm for encryption and decryption.

The ARQ schemes applied by this MAC protocol are a timeout-driven3 Stop-

and-Wait for asynchronous data and command frames, and Selective Repeat as an

option for isochronous streams. The latter is termed delayed ACK in the standard.

Window-based flow control is realized by these delayed ACK frames, as well. The

receiver of streaming data indicates how many data frames may be sent before a

window update has to be requested.

We have modeled the complete IEEE 802.15.3 MAC protocol in SDL. It serves

as an example of the application of our protocol design flow for embedded systems.

The SDL model will be explained in some detail in Chapter 7. In that chapter

we will also present the full implementation of the IEEE 802.15.3 MAC protocol

including a hardware accelerator design.

2.1.3 Specification and design of communication protocols

This section shall provide an overview on languages and tools commonly used for

protocol engineering. Protocol specification and design languages shall fulfill a

number of goals:

An unambiguous description of protocol behavior is required for specification,

implementation, and test. In contrast to natural language descriptions, which

leave room for interpretation, a formal language captures protocol behavior and

its data types in a precise way. Formal specification of protocols has the potential

2creation, modification, and termination
3An immediate acknowledgment frame must be transmitted 10 µs after the end of the received

frame.
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of revealing inconsistencies or missing definitions at a very early stage in the design

process. This way, the cost and development time for protocols can be reduced

significantly. As a guide for protocol implementers, the IEEE Standards Associ-

ation, for instance, supplements its standards with SDL models of the specified

protocols in some cases. Finally, an unambiguous protocol specification can be

used to derive test cases to test a protocol implementation.

In the same line, formal verification of protocols becomes increasingly impor-

tant due to the inherent complexity and concurrency of communication protocols

and, at the same time, high demands on reliability and dependability. Formal ver-

ification is a strict mathematical approach towards proving certain properties of a

specification. Therefore, protocol specification languages should lend themselves

to formal verification.

Last but not least, specification languages shall support a simple transition

to protocol implementations. Firstly, this saves development time by avoiding

duplicate design effort and, secondly, ensures that the verified properties of the

protocol specification are transferred to the implementation model.

The major difficulty lies in designing a specification language that is expres-

sive enough to satisfy the protocol designer’s needs, while formal verification ap-

proaches are based on simple and mathematically tractable models [ZHT93]. Var-

ious formal description techniques (FDT) for the specification and design of dis-

tributed and reactive systems have been proposed in the literature, and some of

them have gained wider application in industrial projects.

SDL [ITU02] and Estelle [ISO][DB89] are two popular protocol specification

languages, which are based on finite state machine models. LOTOS (Language

of Temporal Ordering Specification) is a theoretical framework based on alge-

braic concepts that originate from Milner’s Calculus of Communicating Systems

(CCS) [Mil80] and Hoare’s Communicating Sequential Processes (CSP) [Hoa85].

All three specification languages have become international standards.

Other FDTs make use of Petri nets, process algebras, or temporal logic. They

have received more attention in the design and verification of concurrent and reac-

tive systems where design errors could have direct catastrophic consequences. Such

hard real-time systems are not addressed by this thesis (see also the discussion in

Section 1.2).

In the following section, the specification language SDL shall be presented in

more detail. Thereby we intend to motivate the use of SDL in our design flow,
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introduce its language concepts and provide a background that later chapters will

build upon. The introduction of other popular protocol specification languages and

FDTs would go beyond the scope of this thesis. We refer the reader to [Hog89] for

an overview on Estelle and LOTOS, and to [Pop06] for an introduction to Message

Sequence Charts. The design or extension of a protocol specification language is

outside the focus of this work.

Specification and Description Language (SDL)

History Originally addressing the specification of telecommunication systems,

SDL has evolved into a language that is suitable for the specification of any reac-

tive, distributed system. Studies and a first, small standard have been produced

by the CCITT (now ITU-T) already in the 1970s, when the need for a high-level,

unambiguous description of telephony systems became apparent [RS82]. The stan-

dard formally defines the semantics of the language and has been updated every

four years. Today, SDL includes extensions for object-oriented modeling and de-

sign.

Modeling of behavior SDL is a constructive FDT, which means that it is used

to develop abstract protocol models. The execution of the abstract model specifies

the behavior of the communicating protocol entities. In contrast, descriptive FDTs,

for which Temporal Logic is an example, only express properties, that must be

fulfilled by the protocol, by means of logic formulas.

Communicating extended finite state machines are the basis for behavioral de-

scription in SDL. With finite state machines (FSM) it is possible to model behavior

by means of a set of states and transitions from one state to another one. These

transitions are triggered by an external input and can have associated output ac-

tions.

As an example, a protocol description could introduce states such as Connected,

Data transfer, and Disconnected with transitions between these states that are

initiated by higher layer requests or the reception of messages from a peer protocol

entity. Transition actions could be the output of a service primitive to the higher

protocol layer or a message to the peer entity.

Often, the protocol state machine must keep additional information such as

sequence numbers of received and transmitted PDUs. Since such variables can

take many different values, this would lead to a large number of states if each
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variable assignment would be represented by a new state. Therefore, extended

FSMs allow the use of variables in addition to states.

The behavioral description in SDL is composed of multiple concurrent extended

FSM models. Each state machine is encapsulated in a process 4. Processes commu-

nicate with each other by the exchange of asynchronous signals, remote procedure

call, and shared variables. Asynchronous signals may carry any number of data

parameters.

Each process has got its own signal input queue, which is of infinite size. Signals

sent to a process are first stored in that queue, until they are consumed. The signals

are consumed when the process is not currently performing a transition, i.e. the

FSM is waiting in a state. Then, the first signal in the queue is fetched and will

start the transition that is associated with the current state of the process and the

input signal type. If no such transition is specified, the signal is simply discarded,

unless the designer explicitly specified that this signal type has to be saved in the

queue. In both cases, the next signal in the queue will be processed.

Processes start with an initial transition that is not triggered by an input

signal. The first transition usually performs all required initializations and ends

in a state of the process FSM. The behavior of transitions can be complex. SDL

allows to model the control flow similar to imperative programming languages, i.e.

it provides conditional statements, loops, sequential statements, procedure calls,

etc. A transition may also contain signal output to other processes. Transitions

are executed until the control flow reaches a next state of the FSM. SDL has

got a graphical and a textual representation. Because of the expressive nature of

the language, it is easy to learn and has thus become a popular tool for protocol

specification.

A simplified example of the modeling of behavior within an SDL process is

given in Fig. 2.5. It shows a state machine that consists of the states Discon-

nected, ConnConfirm, and Connected with three transitions between them. The

transitions are triggered by the following input signals: Conn.req (request from

higher layer), ReceivePDU (indication from lower protocol layer), and T (timeout

signal). The figure also shows the initial transition, declarations, the task symbol,

a procedure call, the symbol for a conditional statement (choice), and the output

of signals.

4With SDL-2000, the term agent was introduced to denote all active components of an SDL

specification.
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Figure 2.5: Fragment of a simplified protocol specification as part of an SDL

process.

Timers The specification of timing behavior is an important aspect of protocol

modeling. SDL provides the concept of timers for this purpose. Timers are local

to SDL processes and can be set from any transition in that process. When the

specified time interval has elapsed, a timer input signal is placed in the signal

queue of the process. Like any other signal, it can be consumed when the process

execution is in a state and has got a transition that is triggered by this timer

signal. The same timer may also be reset by the process, which has the effect

of deactivating the timer and removing the timer signal from the input queue, in

case the time interval has already elapsed. The use of timers in an SDL process is

illustrated in Fig. 2.5, as well.

Since SDL is an abstract specification language, the execution of transitions

does not consume time, nor is it possible to annotate transitions with an execu-

tion time. When simulating an abstract SDL model, time advances only after all
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transitions have been executed. In this case, new transitions are enabled only by

external signals or when a timer expires.

In implementations derived from SDL specifications, the execution of transi-

tions takes real time. Real-time systems require an action or response from the

system within a bounded time interval. The SDL timer mechanism seems to be

appropriate to specify exactly such behavior. However, due to the asynchronous

nature of the timer mechanism, it cannot be guaranteed that the process executes

the transition associated with the timer signal exactly (or even with a bounded

delay) after the timer was set. There are three unpredictable delays before this

transition is triggered [Leu95]:

• The timer signal is created and placed in the input queue of the timed process

only some time after the timer expired.

• There may be other signals in the queue that have arrived earlier than the

timer signal and that still need to be consumed by the process.

• Even if the timer signal is the only signal in the input queue, the process may

still be executing a transition, from which it cannot be interrupted. Hence,

an unknown time will pass before the process has reached the next state and

is able to react on the timer signal.

In summary, SDL is very useful to prove liveness properties, i.e. that some

action will be executed eventually, but is ill-suited to specify real-time constraints,

i.e. that an action will be executed within a bounded delay.

A question that is often encountered in protocol design and implementation

is whether the implementation is fast enough and meets its timing requirements.

The design flow should provide additional support for the protocol engineer to

identify timing bottlenecks, as this is not directly possible with SDL.

Structure of SDL specifications An SDL specification is a formal description

of both the architecture and the behavior of a system. Executable specifications

are hierarchically structured. The top-level entity is called system. The system

diagram is a container for lower-level structural entities, called blocks, that them-

selves may contain other blocks or processes. SDL processes capture the behavioral

description of a specification, the blocks are used to provide structure and for ini-

tialization purposes. Connections for communication between blocks and processes

must be specified, they are called channels.
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Figure 2.6: Illustration of an SDL system embedded in its environment.

An SDL system is embedded in an environment, from which it may receive and

send signals. This is shown in Fig. 2.6. The system specification in this simple

example is composed of two blocks, A and B. Block A contains two processes A1

and A2, block B only process B1. Signal channels between the processes and blocks

as well as the environment (EnvCh) are shown. Names and signal lists are omitted

for simplicity.

SDL specifications may also contain packages. Packages are collections of

reusable components, such as data and signal type definitions, procedures, block

and process types. References of these types can be instantiated in the system

specification.

Formal semantics With SDL-2000 a new formal semantics of the language was

introduced. The old semantics suffered from a very extensive description using a

combination of the Meta IV and CSP languages, and was not executable. The new

formal semantics was designed to be more practical.

It consists of two parts: static and dynamic semantics. The static semantics

describes the SDL syntax and all language elements. SDL is a very rich language,

therefore a transformation of language constructs to an abstract core language is

part of the static semantics of SDL. By means of rewrite rules, the SDL syntax

tree is transformed into an abstract syntax tree (AST).

The dynamic semantics associates with each SDL specification, represented as
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an abstract syntax tree, a particular multi-agent real-time Abstract State Machine

(ASM) [FHvLP00]. Intuitively, an ASM consists of a set of autonomous ASM

agents cooperatively performing concurrent machine runs. The behavior of ASM

agents is determined by ASM programs, each consisting of a set of transition rules,

which define the set of possible runs.

There are strong structural similarities between SDL systems and ASMs. For

instance, ASM agents will be introduced for SDL agents, agent sets, and channel

segments. ASM agents can be created during the system initialization phase as well

as dynamically, which allows, e.g., to directly represent dynamic process creation

in the underlying model. The execution of a system starts with the creation of

a single ASM agent for the SDL unit “system”. This ASM agent then creates

further ASM agents according to the substructure of the system as defined by the

specification, and associates an ASM program with each of them.

ASM programs are determined by the kind of the SDL unit modeled by a

given ASM agent. Following an abstract operational view, behavior is expressed

in terms of SDL abstract machine runs. The SDL abstract machine is independent

of a particular SDL specification.

Formal semantics of a specification language are important to be able to analyze

and prove properties of specifications. In order to reason about properties of an

implementation derived from a correct, abstract specification in SDL, the semantics

of SDL must be preserved in the transformation from abstract specification to

implementation.

Tool support Formal languages are often used to communicate between design

engineers. During implementation, the specifications are taken as input and the

product is described in a programming language. A key feature is that SDL can be

used for specification, design and implementation, thus avoiding errors introduced

when converting between different languages for different design phases.

The availability of tool support for modeling, simulation, automatic code gen-

eration, and verification has contributed to the success of SDL as a system specifi-

cation language. The most popular SDL tools are the (commercial) integrated de-

velopment environments Telelogic TAU [Tel06] and Cinderella SDL [Cin07]. More

details on tool support for the protocol design flow are presented in Sect. 2.1.4.
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2.1.4 Protocol development

This section shall provide a rough overview on the protocol development process.

A more in-depth presentation and discussion of specific design approaches is left

to Chapter 3.

The protocol development process bears some similarities to the way how soft-

ware is developed. There are, however, also some additional elements, which are

specific to protocol engineering, and that shall be illustrated briefly before we begin

with a systematic presentation of the development tasks.

Communication protocols are used to form networks of potentially heteroge-

neous devices. This means that the same protocol is implemented and running

on diverse hardware/software platforms, i.e. on different processors and, possibly,

using different operating systems. All these specific implementations are derived

from a single protocol specification and must adhere to it in order to facilitate

communication between these devices. This property is called interoperability.

Hence, the protocol specification must be unambiguous and abstract, i.e. imple-

mentation-independent. As introduced in the previous section, formal description

techniques have been applied for this purpose. Since the protocol development is

relying on the specification as the basis for implementations, the verification of the

protocol specification is a vital step. Thereby, certain properties of the specifica-

tion, such as the presence of deadlocks, livelocks or unreachable statements, are

checked.

Protocol specifications often contain options and implementation-dependent

decisions. Therefore, any protocol implementation must not only be tested for

conformance with the specification, but also for interoperability with other imple-

mentations of the same protocol.

The phases of a typical protocol development process have been described

by König [Kön03] and are depicted in Fig. 2.7. The figure shows the activities,

their results and interdependencies. In the following, we will present the main

objectives of these phases, methods and tools that are commonly used, as well as

open research problems. Those development phases that are most relevant within

the scope of this thesis are treated in more detail.

Requirements analysis Like any other engineering task, the development of

a communication service and a protocol that provides this service starts with an

analysis of the requirements it must fulfill. This analysis is often driven by use cases
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Figure 2.7: Protocol development phases and their results based on [Kön03].

or application scenarios and, typically, leads to informal descriptions of system re-

quirements. In the software development process, the Unified Modeling Language

(UML) has been found useful to specify requirements formally. In [dV02] the

UML-based specification of requirements of real-time systems has been proposed.
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Figure 2.8: Two exemplary Message Sequence Charts as part of a service specifi-

cation.

Service design The goal of the service design activity is to create the service

specification. This specification shall clearly define the interactions of the com-

munication service with its environment. The communication service may receive

and send service primitives through service access points (SAP).

The service designers specify the set of primitives and their parameters. They

also describe when these primitives may be issued to the communication service

and what effects to expect. That could be primitives sent out by the local ser-

vice provider or at the communication partners some time after issuing the initial

service primitive.

The service specification is taken as a reference document for the following

development process, in particular the design of the protocol. Because of this

high importance, formal descriptions are often used to capture the service spec-

ification unambiguously. This specification, and also the protocol specification,

are abstract in the sense that they are implementation-independent, to facilitate

implementations on heterogeneous platforms.

Message Sequence Charts (MSC) [ITU04] is a standardized, formal language

to specify the interactions between communicating entities in a graphical and tex-

tual form. MSCs have become very popular to capture possible communication

sequences. With the standard MSC-2000, data types were introduced to the lan-

guage. MSC is therefore a convenient tool for service design.

In Fig. 2.8, two MSCs are presented that show the possible effects of a service

primitive requesting the transmission of data. In the first case, left in the figure,

the transmission is successful, while in the other case a timeout occurred.
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Protocol design In the protocol design phase it is specified how the service will

be provided by the protocol. Some of the most common protocol mechanisms have

been presented already in Sect. 2.1.1. In addition to the behavioral description, the

format of protocol data units (PDU) exchanged with peer protocol entities is pre-

cisely defined. The specification must also cover exceptional cases such as how to

handle invalid service primitives or received PDUs. Besides this, the specification

must be unambiguous and shall be implementation-independent.

For this reason, as already introduced in Sect. 2.1.3, formal description tech-

niques (FDTs) have been applied for protocol specification. SDL is one of the

most popular formal specification languages due to its expressiveness, formal se-

mantics, and wide tool support. However, many standards bodies provide only

plain (English) textual specifications for their protocols, that are sometimes sup-

plemented by formal descriptions in order to resolve ambiguities, but are far from

being complete. Many of today’s protocol implementations in the internet domain

are developed without the use of formal methods. This is caused by the need to

deliver products within a short time and the fact that FDT tools often require

more time for the development process and create less efficient code.

In the literature, systematic approaches to protocol design have been proposed.

According to [PS91], protocol design approaches can be classified into two main

categories: synthetic and analytic methods. The synthetic design methodologies

aim to generate designs that are correct by construction, while the analytic meth-

ods iterate a sequence of (re)design, analysis, error detection and correction, and

may lead to incomplete and erroneous designs. Even though synthetic design ap-

proaches promise to be less time-consuming and introduce less errors, up to now

there is no mature design methodology due to the lack of practical tools and the

diverse nature of communication protocols [Kön03].

In [WFGG04], a design approach that introduces SDL design patterns and

advocates the composition of protocols from micro-protocols is presented. Design

patterns express successful solutions to common design problems in the object-

oriented software development process and can be considered as reusable micro-

architectures that contribute to an overall system architecture [GHJV93]. Simi-

larly, the SDL design pattern library shall provide configurable building blocks for

protocol design in SDL. As an example, a well-known mechanism found in reliable

systems—a watchdog and a heartbeat—has been turned into the two reusable SDL

design patterns Watchdog and Heartbeat.
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Micro-protocols resemble to a large extent the various protocol mechanisms

discussed in Sect. 2.1.1, such as error control, flow control, etc. Unfortunately,

protocols are often much more complex and exhibit interdependencies between

their mechanisms such that it is difficult to apply this design paradigm in its

purest form in practice. However, the SDL model for the IEEE 802.15.3 MAC

protocol that we have developed (cf. Sect. 7.1) was designed with reusability in

mind by encapsulating independent protocol functions in SDL processes and by

applying a layered design approach.

Protocol verification This stage in the development process shall assert if the

protocol specification actually provides the communication service it was designed

for, and if the specification fulfills certain general properties. Such properties are,

for instance, that there are no states in which the protocol is stuck (deadlock-free

protocol) or from which it cannot reach any other state (livelock-free protocol).

Protocol verification is necessary because the employed design methodologies do

not guarantee that the specification provides the intended service, let alone that

it fulfills the safety properties.

The protocol specification serves as a reference for the following design phases

and potentially many different implementations. It is well known that errors that

have not been detected in the specification cause escalating costs for detecting and

correcting them during implementation, test, or even in production. This is the

reason why formal verification techniques have first been introduced commercially

to hardware design [Kur97] and why formal verification has attracted a lot of re-

search work in the past decades. Exhaustive implementation tests are not feasible

due to the complexity of distributed systems and the limited available time for

testing, therefore even carefully tested systems still contain residual errors. Ver-

ification, on the other hand, has the objective of proving that the mathematical

model of a system has the desired properties.

Protocol verification is based on formal models with clearly defined semantics.

There are two general approaches towards formal verification: model checking and

theorem proving [HS96].

Model checking is an automatic procedure which takes as inputs the formal

model and the specified properties that shall be checked. It produces an output

whether or not the properties hold. There are many different model checking

techniques, and the properties are often expressed by means of temporal logic
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formulas, such as LTL or CTL. The model checker analyzes all possible sequences

of protocol behavior. This is only possible for finite models. Due to the high

complexity and the use of variables with a large range of values in the model,

model checking suffers from the so-called state explosion problem. Approaches

to reduce the state space to be held in memory and careful modeling enable the

verification of not just trivial models.

The other approach—automated theorem proving—is based on reasoning about

the model. By logical inference, certain properties about the model shall be de-

duced. Theorem proving may require the interaction of the user to cope with the

complexity of the model. There were also attempts to employ theorem proving

with the goal of reducing the state space for a subsequent model checker run [HS96].

Protocol verification tools for the most popular formal description techniques,

such as SDL or LOTOS, are available. The commercial tool set Telelogic TAU SDL

Suite [Tel06], for instance, contains at least basic support for a reachability anal-

ysis of the SDL model, which helps to identify design errors early in the process.

Other formal verification approaches based on SDL have been reported in the lit-

erature [BDHS00] [MIJ03]. They make use of model checkers such as SPIN [Hol97]

(for the formal language PROMELA), the IF tool set, or CADP [GLM02] (based

on LOTOS) and require a conversion of the SDL model into the respective internal

representation suitable for the model checker. The translation of SDL models into

Petri Net representations and their verification has also been considered [FDT95]

[AHV03].

Performance analysis While the goal of protocol verification is to check func-

tional correctness of the specification, performance analysis considers the so called

non-functional properties of the protocol. These properties capture, for instance,

the timing behavior, achievable throughput and latency, the protocol behavior

under varying load conditions or in the presence of communication errors, or the

required resources such as buffer space.

Some of these values are difficult to obtain on an abstract specification level,

since the target platform as well as implementation-specific parameters have an

influence on the protocol performance. Therefore, performance analysis is per se a

task that is carried out throughout the development process. However, the earlier

it is applied, the easier it is to make changes to the protocol.

In [HHM98] stochastic process algebras and a corresponding extension of the
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specification language LOTOS were presented. The mathematical model behind

the communicating processes are Markovian processes. Markovian processes are

useful to model queueing systems. They allow to model the probability of state

transitions and to analyze the system at its equilibrium point. Similar approaches

are based on Timed Automata or Timed Petri Nets, which allow to annotate

transitions or places with stochastic, minimum or maximum times.

Another common approach for performance testing is to simulate the protocol

specification and provide a simulation environment which can be used to vary the

delay of messages, introduce different load models or exceptional cases such as

the loss of messages. The protocol can then be analyzed under these conditions.

Drawbacks of this method are that it is slow, since it requires complete simulation

runs, and that it is limited to the modeled and simulated conditions. However,

it can be set up with little effort and serves as a protocol validation at the same

time. Examples for this approach are the SDL-based tools PerfSDL [Mal99] and

QUEST [HHL+01].

Implementation design The objective of the implementation design activity is

to provide a mapping of the abstract protocol specification to the target platform.

Based on this high-level design document the actual implementation is developed.

For this purpose, typically a number of implementation-specific protocol options

must be defined and any non-determinisms must be resolved.

In the protocol engineering literature, protocols were mostly considered as soft-

ware products. Consequently, implementation design needs to consider the inte-

gration of the protocol implementation into the operating system, particularly the

mapping to operating system processes and ways of interacting with the rest of

the system [Kön03]. For mixed hardware/software implementations the designer

is confronted with the task of partitioning the protocol functionality into hard-

ware and software and to define the architecture and interfaces of the hardware

blocks. When presenting our cosimulation approach we will discuss this topic in

more detail.

In particular for the implementation of multi-layer communication systems,

two basic models of how to use operating system (OS) processes have been de-

scribed [Svo89]. They are called server model and activity-thread model. They

both assume that FSMs are used to describe the protocol behavior. In Fig. 2.9,

their basic principles are shown schematically.
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Figure 2.9: Implementation models for multi-layer communication systems: server

model (left) and activity-thread model (right).

In the server model, one OS process is used per state machine in the speci-

fication. When an input signal is sent to this state machine, the corresponding

OS process is activated and executes the transition depending on its current state

and the received input. Finally, the process is waiting for new input. This is a

very simple principle, however it has the disadvantage that for each new input,

i.e. service request or received PDU, a process switch will occur. Generally, such

a context switch is a time-consuming operation and has an adverse effect on the

performance. Furthermore, buffer space to queue input signals while the process

is not able to consume them must be allocated.

In contrast to the server model, the activity-thread model [Cla85] avoids fre-

quent context switches, as the processing of input events is handled by procedure

calls. Each protocol layer or state machine is implemented as a collection of subrou-

tines that may be executed concurrently. The subroutines contain the transitions

related to a single input event. If a transition creates an output event for another

FSM, the corresponding procedure is called. This way, the execution path passes

through the protocol layers without the need for a context switch. Both directions

are possible: downcalls from a higher layer service user and upcalls when a PDU

is received. A careful design is required to enable concurrency and handle possi-

ble cyclic dependencies between the procedure calls. This additional effort pays

off, since the activity-thread model can achieve a higher efficiency than the server

model.

The automatic transformation of abstract specifications to implementations
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is supported for many formal specification languages. In this case, many design

decisions are already fixed by the tool. The server model is often used as the

process model for automatic transformations. An example for this is the code

generator CAdvanced from Telelogic. The efficiency of manual implementations,

however, is not achieved by such tool-generated implementations without further

optimizations.

Implementation The implementation phase comprises coding and in some cases

hardware design. For these development tasks, specific methods and tools, such as

code review, implementation test, and hardware simulation, which are originating

from the software engineering and hardware design areas, are applied.

The abstract specification does not define how the concepts of timers, inter-

process communication etc. are to be realized. This must be taken care of by the

implementers, who have to find a solution to provide these services, possibly by

relying on functionality provided by the operating system.

Any protocol implementation must fulfill the specification. To verify if a given

implementation indeed conforms to the specification, additional tests are required.

This will be discussed further below. Naturally, these tests cannot cover all pos-

sible protocol runs and every scenario due to the behavioral complexity of the

implementation and the possible interactions with peer protocol entities. There-

fore, even tested implementations may still contain errors that take years before

they are discovered.

An approach to avoid these errors is to transform the specification by an au-

tomatic process into an implementation. As already stated above, these kind of

implementations have not yet reached the performance of manual designs, mainly

because the tools apply only syntactical transformations. However, it is a fast and

easy solution to create working prototypes from a verified protocol specification.

Tools have been developed that do not only create software prototypes, but also

hardware components can be generated from, for example, SDL specifications for

prototyping purposes [DSH99].

A typical software implementation of the server model, which is commonly

used for prototyping from state machine-based formal specifications, consists of

an operating system process for each state machine and an associated input signal

queue. The process executes a loop: if there is an input in the queue, it is consumed

and, depending on the state and the event type, the corresponding transition is
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Figure 2.10: Possible software implementation of the server model using a table

lookup to select the transition to be executed.

performed (cf. Fig. 2.10) [KK96]. Then, the process is waiting for the next input.

The operating system is responsible for managing the queue and scheduling the

process.

The choice of the right transition can be programmed either by means of nested

switch statements or through a table lookup and following subroutine call. In pro-

tocols that manage multiple simultaneous connections, it is possible to instantiate

a new state machine process for each new connection, or to handle all connections

by a single process. In the latter case, the process needs to maintain separate sets

of local variables for each connection, but does not require additional OS resources.

Integration The completed protocol implementation is finally integrated with

the target platform. In particular, interfaces to other protocol layers or hardware

have to be designed and methods for the operating system or applications to inter-

act with the communication protocol have to be provided. This can be realized by

means of an API (application programming interface), i.e. a procedural interface,

or via a buffered interface. In the latter case, the communication with the protocol

implementation is asynchronous.
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Conformance test The purpose of protocol conformance testing is to check the

capabilities and behavior of an implementation against the protocol specification.

It is a black-box test, i.e. only the externally observable behavior of an implemen-

tation is examined. The conformance test can be part of a certification process

that is conducted by a test laboratory to provide a product with a certification

label.

Protocol testing has been an area of intense research activity. A great number

of scientific contributions has been published in the proceedings of the international

conference series TestCom [Tes].

The International Standardization Organization (ISO) has issued a set of stan-

dards relating to conformance testing. These are the Conformance Testing Method-

ology and Framework (CTMF) [ISO91], which was later complemented by the For-

mal Methods in Conformance Testing (FMCT) [ISO97] standard. Besides defining

a number of terms and the processes for developing test suites and conducting tests,

the standards also define the test notation Tree and Tabular Combined Notation

(TTCN). It allows to describe test cases unambiguously, i.e. the test cases codify

which responses are expected by the system-under-test as a reaction on certain

stimuli. TTCN is the only standardized test notation. It is maintained by ETSI

and currently available in its version TTCN-3.

Apart from the manual specification of test cases, the derivation of test cases

from formal protocol specifications, e.g. state machine-based descriptions or tem-

poral logic specifications, was studied. We will not get into an in-depth discussion

of conformance testing, as this topic is complementary to our work.

Interoperability test The conformance of an implementation to a protocol

standard does not yet guarantee that a trouble-free communication with alter-

native implementations of the same standard is possible. Reasons for this are

differently implemented protocol options which may limit compatibility or any

implementation-specific details not defined in the standard, such as timer values

or specific algorithms, that could impede the interoperability of two implementa-

tions.

Therefore, implemented protocols must be tested in real networks with imple-

mentations of different vendors, in order to demonstrate their interoperability. In

case that this was not successful, the cause has to be investigated and the imple-

mentation has to be altered, or, where appropriate, networks have to be configured
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in such a way that only interoperable systems communicate with each other.

2.2 Hardware/software codesign

The functionality of many of today’s electronic devices and embedded systems is

realized by a mix of software as well as dedicated hardware5.

As an example, mobile phones are typically based on a high-performance low-

power CPU such as an ARM11 core, which performs higher layer protocol pro-

cessing and a large variety of user applications. Additionally, the GSM, GPRS

or UMTS baseband processing in the physical layer is implemented by a number

of hardware macros for each communication standard and software running on a

digital signal processor (DSP) for layer 1 control [Ram07]. Analog circuitry is used

in the radio transceiver for transforming the baseband signals into analog signals

in the desired frequency band and vice versa. Short-range radio communication

interfaces, such as Bluetooth or NFC, in the mobile phone as well as additional

functionalities, such as image processing from a built-in camera, are likewise real-

ized by a mix of hardware and software.

Hardware/software codesign denotes the integrated design of systems that con-

sist of hardware and software parts. Algorithms that allow an exploration of dif-

ferent design alternatives and provide estimations about their related costs form

an essential part of codesign methodologies.

Hardware/software systems, of course, must be functionally correct and satisfy

all timing requirements. However, beyond that they should require an as small

as possible chip area and consume as little power as possible, while at the same

time being flexible to future changes or extensions. These design objectives partly

contradict each other, so that an acceptable and optimal tradeoff must be found by

the designers. Hardware implementations can be very efficient in terms of power

consumption and chip area, but often require a much longer design time than

software and, once manufactured and unlike software, are impossible to change

without an expensive redesign of the chip.

As shown in the introduction of this thesis, system complexity is continuously

growing caused by the persistent trend of miniaturization in semiconductor tech-

nology. At the same time and aggravating the situation, product development

5in contrast to general-purpose hardware components, such as standard microprocessors on

which the software is running
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cycles and the time-to-market are becoming shorter. Wrong design decisions in

early development stages, i.e. the high-level system design, are particularly time-

consuming and costly to repair [Dol00],[KV04]. Therefore, tools that support the

architectural design of systems and help to cope with the growing complexity are

gaining more and more importance.

This section shall highlight the state-of-the-art of hardware/software codesign,

irrespective of the specific focus on communication protocol design of our work.

First we look at the architectural hardware components and standard software,

such as operating systems for embedded systems, that today’s systems are com-

posed of. After that we look at ways to describe system behavior on different

abstraction levels. Existing methods for an optimal mapping of system function-

ality specified in an abstract manner to hardware and software, and to estimate

the quality of the partitioning, will be discussed afterwards. Finally, we present a

tool that supports an integrated hardware/software codesign flow as an example.

2.2.1 Architectural components of hardware/software systems

Hereafter, we will present different implementation options for hardware/software

systems. System functionality implemented in software is running on processors,

while dedicated integrated circuits can be designed to realize hardware function-

ality. Typically, a mix of processor cores, dedicated hardware, and even reconfig-

urable hardware structures can be found in state-of-the-art complex systems, that

consist of several millions of transistors on a single chip.

Software Software implementations require a processor on which they are exe-

cuted. A characteristic of processors is their programmability, which means that

they execute a sequence of instructions, the program. The instructions are stored in

memory and must be fetched by the processor before execution. The programma-

bility allows different kind of applications to be run on the processor, thereby

creating great flexibility as program memory in most systems can be easily up-

dated.

A number of different processor types and architectures have been designed to

specifically target their application domains. General-purpose processors are typi-

cally found in desktop PCs and workstations. They have a very general instruction

set, thus supporting a broad range of applications, from word processing to im-

age or video processing and scientific computations. Modern high-performance
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Figure 2.11: Architecture of the LEON2 processor as an example of a 32-bit mi-

crocontroller (adapted from [Gai05]).

general-purpose processors feature many optimizations to speed up processing,

such as instruction pipelining, instruction-level parallelism (superscalar architec-

ture), or branch prediction. A hierarchical memory architecture consisting of a

small register file integrated with the processor, medium-sized caches located close

to the processor, and large and slow external memories was introduced to ensure

on average a high throughput of the processor.

Microcontrollers and DSPs are designed for specific application domains. Mi-

crocontrollers are equipped with a number of on-chip peripheral components, such

as timers, interrupt controller, analog-to-digital converters, communication ports

and general-purpose input/output ports to support embedded control applications.

The architecture of the 32-bit LEON2 processor [Gai05] is shown as an example in

Fig. 2.11. It is based on a SPARC-compatible processor core and features a number

of peripheral modules (interrupt controller, timers, general-purpose input/output

ports) and communication interfaces (Ethernet, PCI, UART).

DSPs have instruction sets that optimally support mathematical computations

that are common in signal processing applications. Such computations are, for ex-

ample, vector or matrix operations or Fourier transformations. For this purpose,
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DSPs typically possess multiply-accumulate units, perform address calculations

and loop counters in parallel to instruction processing, and have arithmetic in-

structions that operate on multiple subword operands in parallel.

Application specific instruction set processors (ASIP) constitute a further spe-

cialization. As the name suggests, ASIPs are designed for a particular application

rather than application domain. To cut design costs, ASIPs often have less fea-

tures than fully-fledged general-purpose processors, but their instruction set is

optimized to increase the performance for the targeted class of applications. They

are the right choice when DSPs or general-purpose processors are too slow for the

intended application and a large degree of flexibility, that characterizes software

implementations, must be maintained.

A crucial point for the use of DSPs or ASIPs in hardware/software systems is

the availability of efficient compilers to generate optimized code for the processors

from a high-level programming language such as C. It is a challenge to identify

how programs written in a high-level programming language can be mapped in

the most efficient way to the application-specific instructions of an ASIP and to

take full advantage of any parallelism in the processor architecture. Because of

these difficulties, hand-optimized assembler routines are often delivered in software

libraries that can then be used by application programs written in C.

The simultaneous and automatic design of application-specific processors and

compilers for their instruction sets has been a major focus of research in the hard-

ware/software codesign area. The LISA (Language for Instruction Set Architec-

tures) processor design platform [LIS07] [HML03], for instance, allows to generate

software tools, such as assembler, linker, C compiler, and simulator, from an ar-

chitecture and instruction set specification, and creates a synthesizable hardware

description of the corresponding ASIP.

Operating systems are another important building block of hardware/software

systems. Their main purpose is to provide abstractions from the underlying hard-

ware, i.e. to provide device drivers, and to facilitate the concurrent execution of

different software tasks by task scheduling and providing synchronization prim-

itives. More advanced operating systems also contain a sophisticated memory

management, communication protocol implementations, or support for real-time

applications.

Operating systems facilitate the reuse of application code across different hard-

ware platforms, hide the designer from hardware-dependent details, and allow the
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development of software based on communicating sequential processes without the

need to implement all the inter-process communication and scheduling schemes

from scratch.

Even for the memory- and processing-limited microcontrollers often used in

wireless sensor network applications, very lightweight operating systems that pro-

vide only a minimum set of functionality have been developed. TinyOS [LMP+05]

is currently the most popular one of this kind in the academic research com-

munity, though it has also got some drawbacks. Other examples include Con-

tiki [DGV04] and Reflex [Nol09] [WKSN08], which will be presented in more detail

in a Sect. 5.2.1.

Hardware In contrast to the instruction-set architectures presented in the pre-

vious section, the hardware implementation options that will be discussed in the

following are not programmable. Dedicated hardware implementations, or inte-

grated circuits, are designed and optimized for a specific task. Since they do not

deal with instructions, the required functionality is realized by a network of logic

blocks.

Field programmable gate arrays (FPGA) and mask programmable gate arrays

(MPGA) are particular implementation variants of integrated circuits. They have

a regular structure of identical logic cells with an extensive, configurable intercon-

nection network between them. The configuration of the connections and thereby

of the circuit’s functionality can be customized either at production time, i.e.

by using an adequate mask (MPGA), or afterwards (in the field) by means of

programmable configuration memory (FPGA). Programmable gate arrays can be

freely configured for any required logic functionality, thus significantly reducing

the cost of systems produced in low volume. Due to the vast number of intercon-

nections, the maximum processing speed (clock frequency) is lower and the power

consumption is higher compared with optimized, non-configurable circuits. Still,

the processing throughput can be much higher than what is achievable with DSPs

or general-purpose processors because of the larger degree of functional parallelism

that can be achieved.

Non-configurable hardware implementations are called application-specific in-

tegrated circuits (ASIC). They offer the least flexibility and have the highest pro-

duction costs compared with all the implementation options mentioned above.

However, they can be tuned to consume the least chip area and power consump-
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tion and, therefore, are the technology of choice for large volume production or

for systems with most stringent performance and low-power consumption require-

ments. The design of ASICs can be based on automatic synthesis methods from

a high-level hardware description language like VHDL or Verilog. In that case,

standard logic cells, such as inverters and flip-flops, or macro blocks are placed

to provide the required functionality. This design style is known as semi-custom

design. In full-custom design, the designers work on the layout level and optimize

the physical structure of transistors and the location of connections and vias. This

design method is very laborious, that’s why it is used only for the most critical

parts of a circuit, while semi-custom design and the advent of EDA tools made

the design of today’s complex systems with many millions of transistors possible.

Reconfigurable hardware architectures, in which the pre-designed atomic logic

functions have a much higher granularity than in FPGAs, combine flexibility

and the performance of ASICs. Such macro cells could be arithmetic operations

(adders, multipliers), shift registers, or building blocks for a discrete Fourier trans-

formation. These reconfigurable architectures are a relatively new research topic

and have applications, for instance, in fast data-path architectures. They allow to

customize an integrated circuit to a variety of algorithms to implement different

communication standards, but do not cause as much overhead as FPGAs. Con-

figuration memory is also reduced since, at a higher level of abstraction, there are

less possibilities for customization.

An example for the combination of different hardware and software components

on a single chip is the Pleiades platform for reconfigurable computing [AZW+02].

It is based on a general-purpose control processor which has the sole purpose of

configuring a set of so-called satellite processors and a communication network

between them, as shown in Fig. 2.12. The satellite processors could be DSPs,

reconfigurable data paths, address generators, but also memory. A configuration

bus is used by the control processor to program the desired functionality. An

evaluation [ASI+98] based on the computation of vector dot products, which is

heavily used by speech coding applications, showed that the performance, in terms

of delay and energy consumption, of a chip that was designed around the Pleiades

architecture and could be programmed by means of 11 configuration registers, was

significantly better than equivalent implementations based on a general-purpose

processor (StrongARM), DSPs (TMS320C2xx, TMS320LC54x), or an FPGA.

Summarizing the overview given so far, in Fig. 2.13 the discussed hardware
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Figure 2.12: The Pleiades architecture template (adapted from [AZW+02]).

and software implementation variants are compared with respect to the level of

flexibility they offer, once the system is manufactured, and the achievable perfor-

mance, in terms of power consumption and processing speed. This comparison

shall serve only as a general guideline, and real performance figures may vary for

different applications. Furthermore, the cost factor is not included in the figure.

Which choice turns out to be most cost-efficient depends on the number of chips

sold.

It should not be forgotten to account for the time required to design a func-

tionally correct system—software development, in general, tends to be much less

time-consuming than logic design. Last but not least, the level of experience of

the design team and the available IP cores determine to some degree what target

architecture comes into consideration for a hardware/software system.

2.2.2 System modeling

Models are abstract representations of a physical reality. System models are cre-

ated to be able to reason about certain properties of the system’s behavior, to

communicate among a group of people about the system, and to serve as a spec-

ification for the design process that will lead to a physical implementation of the

system, which is compliant with the model. In hardware/software codesign, they

shall be particularly suitable for the exploration of different design alternatives.
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nents with respect to flexibility and relative performance.

A characteristic of embedded systems, in contrast to the rest of the computing

world, is that they interface with the physical world. This can be via inputs that

sense real-world phenomena or via outputs that control the behavior of actors, such

as step motors, fuel injection, or pumps. When capturing physical phenomena we

are used to describe them as continuous-time models, for instance in the form of

a set of differential equations. When dealing with (digital) computing systems

that interact with the physical world one must resort to discrete-time models.

System-level modeling methodologies for embedded systems must bridge these two

domains [HS07].

Different kinds of abstractions and languages have been proposed and applied

in the past to ease the modeling of certain properties of systems. These approaches

are also known as models of computation. Well-known examples are Synchronous

Data Flow (SDF) [LM87], Communicating Sequential Processes (CSP) [Hoa78],

Finite State Machines (FSM), or Synchronous/Reactive (SR) [HP85].

Each model of computation has an associated semantics to determine the sys-

tem functionality unambiguously. The semantics can be stated in a denotational or

operational manner. Denotational semantics use algebraic objects to express the

meaning of the modeling language, while operational semantics define the behavior

of a model as the execution of this model by an abstract machine. Generally, it is
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not straightforward or even possible to transform behavioral specifications across

models of computation while preserving the original semantics. There are also dif-

ferences in the suitability to generate physical implementations from system-level

descriptions, which is simply not the main purpose of some models of computation.

A particular challenge in system-level modeling is to capture functional as well

as non-functional requirements. Functional requirements relate to the system be-

havior, i.e. the correct processing of inputs and showing the expected responses.

Typically, such requirements can be easily formulated with mathematical equa-

tions. Non-functional requirements, on the other hand, describe constraints on the

design or implementation of a system, such as the timing properties (maximum de-

lay, jitter), power consumption, cost, necessary memory and processing resources,

etc. It is often impossible to properly map these requirements to implementation-

level models in the process of refining a system-level model [HS07].

In recent years, model-based design has gained wide popularity in systems de-

sign driven by maturing tool support. Tool vendors offer a broad range of basic

modules that can be composed by the designer to create complex behavior. The

basic modules stem from different models of computation. For instance, the con-

troller of a digital baseband processor could be specified as a finite state machine

while the data path is designed as a synchronous dataflow graph. It is also possible

to refine a top-level system diagram in a stepwise process. Often, an integrated

development environment allows to simulate, analyze, and to automatically trans-

form the design into an implementation. Simulink [Mat07] is a well-known tool

representing the model-based design philosophy.

Major shortcomings of the model-based design approach that are often cited in

the literature (cf. [SVDN07], [HS07]) are its lack of separation between the func-

tional and architectural models making it impossible to explore different architec-

ture options, and the missing support for handling non-functional requirements,

such as timing, in model transformations.

Independence between the functional system description and the tar-

get architecture is the objective of the platform-based design methodol-

ogy [CCH+99], [KMN+00]. A hardware platform is considered as a microprocessor-

based architecture that can be rapidly extended and customized for a range of

applications. Likewise, a software layer that provides abstractions to make use of

the different parts of the hardware platform, that is the programmable cores and

memory system via the (real-time) operating system, and the I/O and commu-
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Figure 2.14: Separation of concerns in the platform-based design methodology,

adapted from [KMN+00].

nication subsystems via device drivers and network connections, is referred to as

software platform.

In platform-based design, the functional and architectural models are specified

separately from each other. In a mapping process, the functional modules are

mapped to resources of the system platform. For example, an algorithm could

be performed by an operating system task or implemented on a DSP or ASIC.

By comparing different mappings of the system functionality onto the architecture

space, the most optimal solution can be selected. Finally, in a refinement pro-

cess, the implementation of the system is derived. This design flow is depicted in

Fig. 2.14.

The main objectives behind the platform-based design methodology are

• to shorten the development time for complex systems by facilitating reuse of

models and IP cores,

• to optimize system performance by conducting an efficient design space ex-

ploration, and

• to enable the cooperation of design teams and provide standardized interfaces

for component suppliers.

It is generally recognized that platform-based design has the potential of bring-

ing great improvements in the design of complex SoCs and changing the traditional
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system design methodology. In the last couple of years and still ongoing, there

are research activities on standardizing system-level specification languages, for

instance SysML [Sys07] or MARTE [MAR07] as new profiles to UML 2.0. Appro-

priate tools supporting the new methodology have to follow suit.

In some application domains, such as the automotive or avionics industries,

that are characterized by the high complexity and dependability requirements

of their systems, designed by independent design teams from different organi-

zations, efforts to define common platforms with well-defined interfaces can be

observed [SVDN07]. A good example is the AUTOSAR ((AUTomotive Open Sys-

tem ARchitecture) consortium of companies working in the automotive electronics

domain [AUT08].

2.2.3 Hardware/software partitioning

The objectives of hardware/software partitioning are to select a system architec-

ture consisting of the components described in the previous section 2.2.1 and to

map the functionality to the architecture components in such a way that the system

performance is sufficient and all other design constraints are met. The architec-

ture design space and the combinatorial possibilities for the mapping are immense.

Therefore, the design space must be limited and good heuristics must be found

to achieve this task in a reasonable time frame. Often, an architecture is fixed

by the designers, and tools are used to find an optimal partitioning of the system

functionality.

Automatic tools need to be able to assess what effect their design decisions have

on the quality of the final product. This means to check if all timing requirements

(performance) have been met and at what cost (number of components, energy

consumption, required chip area etc.) this was achieved.

We will first present common approaches for partitioning algorithms and will

then come to techniques that provide sufficiently accurate estimates of the quality

of a design without the need to actually implement the system.

System partitioning The partitioning problem is tackled by creating models of

the system architecture and functionality. Graphs are a common means to capture

dependencies and communication links between components. The architecture

graph reflects the computing and communication resources, such as processors,

ASICs or busses, of a system architecture.
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graph (left), and the problem graph for a frequency filtering application (right).

The problem graph, on the other hand, represents functional and communica-

tion objects as its nodes. The edges of the graph show temporal dependencies

between the objects. The system behavior can be described on different abstrac-

tion levels. Nodes could represent, for instance, complete tasks in a coarse-grained

specification, or single operations or boolean logic functions in a fine-grained model.

The general partitioning problem can be described as finding an allocation,

binding, and a processing schedule. Allocation refers to the selection of appropriate

hardware resources, binding to the mapping of functional objects to the allocated

resources, and the schedule determines the order of sequential processing of tasks

on a processor.

To illustrate the introduced concepts with a simple example, Fig. 2.15 (left-

hand side) shows the architecture and corresponding architecture graph of a typical

hardware/software system consisting of a microprocessor, an ASIC, input/output

ports, and a bus connecting these components. The right-hand side of the fig-

ure shows a coarse-grained model and the corresponding problem graph of an

application that calculates the frequency spectrum of an input signal, filters low

frequencies, and produces output. In the problem graph, communication nodes

have been introduced between the tasks.

The partitioning problem is known to be NP-hard [Kal95]. In other words, all

possible combinations for an implementation (allocation, binding, and schedule)

have to be considered and the one that provides the required performance and has

the least associated costs is selected. Defining a suitable cost metrics is another
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challenge in codesign research. Since it is generally not feasible to study all possible

implementations for even low-complexity systems, most often heuristics are applied

to guide in the selection of an acceptable partitioning [AAMO05].

The partitioning algorithms proposed in the literature can be classified into

constructive and iterative approaches. Constructive partitioning algorithms take

one object at a time and group it with another object or group of objects. The

grouping is driven by a so-called closeness function, which indicates the similarity

between two objects and, thus, expresses a metrics for grouping them together,

i.e. mapping the objects into the same partition. At the end of the process, the

system partitioning is completed. Iterative partitioning algorithms, on the con-

trary, start with an initial system partitioning and try to improve it by migrating

objects between the partitions until reaching an optimal solution. Recently, also

knowledge-based algorithms that apply problem-specific knowledge, for instance

represented by a set of rules have been discussed in the literature [AAMO05].

Simulated Annealing [KGV83] is a probabilistic optimization technique that is

not only applied to system partitioning but in general to combinatorial problems

where no efficient algorithms are known and a cost function can be defined. Its

main concept is borrowed from physics. When a heated flux is slowly cooled

down and becomes solid, the material arranges in a configuration with the least

energy level. Applied to the partitioning problem, the algorithm works as follows.

Starting from an initial partitioning, for instance an all-software or all-hardware

implementation, objects are picked and moved into another partition at random.

In order to avoid being stuck in local minima, partitionings that have higher costs

are accepted with a probability that is dependent on the current temperature and

the costs. The temperature is gradually decreased until reaching an equilibrium

low-energy (or low-cost) state. Due to the random nature of the algorithm, it may

take a long time until a good partitioning is found. Choosing an appropriate cost

function and temperature scheduling is a non-trivial task [LVL03].

Performance and cost estimation Efficient design space exploration requires

the ability to estimate the quality of design alternatives. It is, in general, economi-

cally not feasible to fully implement or prototype a system for comparison purposes

only, though rapid prototyping has the advantage of early system validation.

Estimation algorithms can be applied to systems described at different abstrac-

tion levels. System-level estimation techniques typically have lower accuracy than
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those based on lower-level specifications. Being able to produce realistic estimates

is only one important criterion for estimation algorithms. Similarly important is

the aspect of fidelity, which expresses that comparisons gained by estimation hold

true in reality, i.e. that a system design that was estimated to be better than

another indeed leads to a preferable implementation.

The quality (or cost) of a design is often expressed in terms of its performance

characteristics: power or energy consumption, production costs, or other metrics,

such as testability. Combining all different cost measures to a single quantity that

is suitable for meaningful comparisons is not straightforward. In the following, we

show how the mentioned metrics can be obtained from system specifications.

Relevant performance metrics are typically throughput, latency, and jitter.

Throughput refers to the rate at which the system is able to permanently process

a stream of data. Latency describes the initial delay before an event causes an

effect. Jitter s a measure for processing or communication variations. Through-

put and latency can be estimated by relating the processing speed offered by an

architecture to the number of instructions or operations required by an algorithm.

For instruction-set processors, the average number of cycles per instruction can be

determined from different kinds of benchmarking applications. At a given clock

frequency, the processing time for a software function with known number of in-

structions can be estimated—provided that there are no loops and recursions or

their number of iterations is predictable. Moreover, general-purpose processors

often use caches, and the performance heavily depends on whether instructions

and data can be found in the cache.

For hardware implementations, an estimate of the achievable clock frequency

can be obtained by finding critical paths, i.e. the longest paths from a register

output to the next register input.

Probabilistic algorithms and implementation-level knowledge about a system

are required to produce good estimates for jitter. Therefore, this is a measure that

is very hard to predict.

The power consumption of a design is determined by its clock frequency, the

supply voltage and switching capacity. For the latter, one can make assump-

tions based on the number of transistors or gates in the design. With continuing

miniaturization of semiconductor technology, static leakage current, which is pro-

portional to the silicon area, takes an increasing share of the total dissipated power.

Therefore, to estimate the system’s power consumption, one has to estimate the
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hardware complexity, required clock frequency, and the part of the design that is

actively switching. The energy consumption can then be obtained by determin-

ing the time required for an operation and multiplying with the estimated power

consumption.

Production costs are often considered to be proportional to the required chip

area, which can be estimated by summing up the area for memories, processors,

and other hardware. The hardware complexity is given by the number of registers,

combinatorial blocks, and wiring. Memory resources required by software depend

on the program size as well as data memory for variables and stack. The pin count

of a chip also influences its cost and size.

2.2.4 Tools

In the following, we will present the current state of available codesign tools, open

problems, and directions for their future development. A comprehensive overview

and comparison is outside the scope of this thesis. More information, specifically on

real-time control systems, can be retrieved from the ARTIST Network of Excellence

website [ART08].

Metropolis Metropolis [Met07] is a design environment for complex electronic

systems that supports simulation, formal verification, and synthesis [BWH+03].

It has been jointly developed by the University of California at Berkeley, Politec-

nico Torino, and Cadence Berkeley Laboratories. The development of Metropolis

has been influenced by the POLIS approach [BCG+97] and bears similarities to

modeling languages such as Ptolemy, SystemC, and SpecC.

Different models of computation can be combined in Metropolis. This facili-

tates the construction of heterogeneous systems, enables system-level specifications

and their refinement, and promotes reuse of abstractions.

One of the main goals of the Metropolis environment is the separation of behav-

ior from the system architecture. Metropolis allows to model functionality as well

as computing and other resources of an architecture by means of the Metropolis

metamodel, a language with a defined formal execution semantics.

The functionality of a system is described as a set of concurrent processes that

execute independently and communicate with each other [ZDSV+06]. Processes

communicate with each other by calling methods on ports. A port is associated

with an interface that declares the set of methods associated with that port. Me-
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dia are passive objects that implement interfaces. In this way, computation and

communication are orthogonalized. Processes and media can be hierarchically

composed into networks.

The architecture model serves two purposes: to offer services to the functional

model and to specify the cost of providing these services. Each service is bro-

ken down into a sequence of events, and each event is annotated with a value

representing its cost. The cost may be in terms of CPU cycles, time, power, etc.

Quantity managers can be part of the architecture model. They provide an

abstraction for the use of limited resources, such as the access to a shared bus.

To evaluate the performance of a particular implementation, the functional

model needs to be mapped to an architectural model. This is achieved by synchro-

nizing execution events that occur in the behavioral model, for instance reading

from or writing to a port, with events in the architecture domain.

The designer may try alternative architectures and mappings to come up with

a preferred solution. System simulations expose the performance of a chosen map-

ping. For this purpose, the system modeled with Metropolis is converted to a

SystemC [Sys05] representation which can be executed.

An automated design space exploration that examines a number of architec-

tures and mappings is not integrated with Metropolis. Instead, the designer must

choose relevant metrics to be traced and analyze the simulation results for the best

design alternative.

System designers have the possibility to express legal executions with the help

of constraints. The constraints are specified with temporal-logic formulas and can

be formally verified thanks to the semantics of the metamodel. For instance, to

mark the case of two producers writing to a shared medium simultaneously as

illegal, one can specify a constraint expressing that each begin-write event may not

be followed by another begin-write event until an end-write event happened (cf.

Fig. 2.16). The model checker Spin [Hol97] can be connected as an external tool

to verify if the specified behavior would break any constraints. The metamodel is

first translated into a representation that can be analyzed by Spin for this purpose.

Figure 2.16 gives an example of the basic concepts of the metamodel. In the

top-left corner, the functional model consisting of three processes—two producers

and one consumer—connected by a shared medium is depicted. The constraint

below that diagram expresses that write access to the medium must be exclusive.

The diagram on the right-hand side represents the system architecture. Three
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}

name T2
process Task
name T3

medium
CPU

medium
BUS

medium
MEM

CpuArb
q−manager

BusArb
q−manager

Energy
q−manager

Time
q−manager

port

beg(P0, M.write) −> !beg(P1, M.write) U end(P0, M.write) &&

beg(P1, M.write) −> !beg(P0, M.write) U end(P1, M.write)); }

{ ltl G(constraint

constraint{ ltl G( beg(P0, P0.foo) <−> beg(T1, CPU.execute(50)) &&

end(P1, P1.foo) <−> end(T2, CPU.execute(50)) &&

...

end(C, C.foo) <−> end(T3, CPU.execute(50)) &&

... ) }

end(P0, P0.foo) <−> end(T1, CPU.execute(50)) &&

beg(P0, M.write) <−> beg(T1, CPU.write) &&

medium S

...

name M

process X
name P0

process X
name P1

process X
name C

medium S implements Read, Write {

int storage[];
int n, space;
int read() { ... }

int write() { ... }
// body of write()

// body of read()

process Task
name T1

process Task

Figure 2.16: Mapping of the functional model (top-left) to an architecture (right)

in Metropolis by means of constraints (bottom-left) that link events in the two

models to each other.

tasks are using a single CPU, which is connected to a memory via a bus. Access

to the CPU is governed by a quality manager. Similarly, bus access is managed by

a bus arbiter. The consumption of time and energy is measured by two additional

quality managers. The mapping of the processes in the functional model to the

three tasks in the architecture is achieved with the constraints shown below the

functional model in the figure.

An automatic synthesis technique called quasistatic scheduling (QSS) to sched-

ule a concurrent specification on computational resources that provide limited

concurrency can be applied. QSS considers a system to be specified as a set of

concurrent processes communicating through FIFO queues and generates a set of

tasks that are fully and statically scheduled, except for data-dependent controls

that can be resolved only at runtime [BWH+03]. Metropolis provides library ele-

ments to model interprocess communication through FIFOs. A Petri net model of

the part of the system model where QSS shall be applied to can be automatically

generated. By analyzing this model, the schedule can be fixed and communication

primitives are removed. The Petri net can be transformed back into the meta-

model language. In this way, QSS can serve two purposes: functional verification

and optimization of interprocess communication.

COSYMA COSYMA [ÖBE+97] is another example of a hardware/software

codesign tool. It was developed in the 1990s at the Technical University Braun-
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schweig. The focus of COSYMA was put on embedded systems design. Unlike

Metropolis, it supports automatic design space exploration and hardware/software

cosynthesis. Simulated annealing is used as a technique to find optimal partition-

ings. It starts with a situation where all functions are implemented in software.

Functions are moved to hardware until all timing constraints are satisfied.

The system architecture is limited to a single processor with an attached

application-specific coprocessor. Heterogeneous modeling styles and platform-

based design are out of the scope of the COSYMA system.

Other tools In the last couple of years, several other system design method-

ologies and languages emerged. The primary reason for this development was the

perception that with traditional design methods based on hardware description

languages (HDLs) the complexity of future systems could not be handled any-

more. Notable examples for this trend are the SystemC language [Sys05] and

EDA tools based on it, and Simulink [Mat07]. They offer rich modeling libraries,

are appealing to software and hardware design communities alike by embracing

different models of computation, allow system simulation and automatic synthesis

of a subset of their modeling languages.

Addressing specifically real-time control systems, another class of design tools

is developing. Here we mention Jitterbug [LC02] and TrueTime [OHC07] that

support analysis and simulation of a system’s timing behavior. Another well-known

class of tools for safety-critical real-time systems comes from TTTech [TTT07],

which are based on the time-triggered architecture (TTA) [KB03].

Research challenges Many of the current challenges in the design of embedded

systems arise from their growing complexity. As has been presented above, today’s

design methodologies develop into combining heterogeneous models of computa-

tion in a single representation. Reusable components with well-defined interfaces

facilitate the bottom-up construction of large system. However, embedded sys-

tems implementations must not only be functionally correct, but also satisfy non-

functional requirements, such as to deliver responses always in time, have a low

power consumption, or fit into the available program memory. Expressing non-

functional constraints in component descriptions in such a way that they support

composability is one of the challenges for the future.

Reliable performance estimations with respect to timing behavior is difficult
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to achieve without going into implementation-level details. This becomes even

more severe with the adoption of more powerful microprocessors that make use of

caches, pipelining, or speculative execution, thereby making accurate predictions

about the run-time behavior impossible [ÅCH05]. This is particularly relevant for

critical real-time systems as their design methodology is based on worst-case pre-

dictions. Following this methodology, critical system engineering allocates much

more resources than needed for a best-effort system, this way increasing their costs

dramatically [HS07]. Design methodologies that enable the separation of the two

domains—critical and best-effort components—and that allow to share resources

are still missing.

It has been found [HS07] that with the current design process, software is the

most costly and least reliable part of embedded applications. This is due to the lack

of rigorous techniques for embedded systems design. Research on testing and veri-

fication of functional as well as non-functional properties based on formal methods

is part of the agenda in European embedded systems research projects [ART08].

Efficient high-level behavioral synthesis to automatically derive software and hard-

ware implementations would be a step towards more reliable systems and could

shorten the development time from specification to implementation.
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Chapter 3

Related Work

We have given an overview on the current practice in protocol engineering as well

as hardware/software codesign for embedded systems in the previous chapter. In

the following, we will pursue the problem of combining existing protocol engi-

neering techniques with design approaches for embedded systems. Our goal is to

develop a methodology for efficient communication protocol implementation on

tiny, resource-limited target platforms.

When developing embedded communication systems the objectives are to de-

sign efficient, correct protocols, to implement these protocols, and integrate them

into the complete system. An integrated design methodology should support all

steps in the design flow and enable short development times.

SDL (Specification and Description Language) has become a popular language

for communication protocol design. Development tools, such as Telelogic TAU

SDL Suite [Tel06], provide the ability to design, simulate, verify, implement in

software, and test protocols. Extensive research has been conducted to improve

the design flow, e.g. by specifying real-time constraints, developing more efficient

implementation models or generating hardware implementations. We will discuss

this work in the following section.

A number of protocol implementations derived from formal specifications us-

ing SDL have been described in the literature. These approaches, results and

experiences will also be the topic of this chapter.

Other design methodologies that are not based on SDL are also conceivable.

Candidates are, for instance, SystemC [Sys05] with a potentially simple refine-

ment process to derive hardware and software implementations, Simulink [Mat07]

67
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that provides an integrated simulation environment with other protocol layers and

physical channel models, or Unified Modeling Language (UML), which is a very

popular modeling technique. However, the advantages of an SDL-based design

flow are the high-abstraction level and implementation-independence of SDL spec-

ifications and its formal semantics enabling protocol verification. Therefore, we

will not elaborate on those alternative approaches.

3.1 System design with SDL

Specification and verification The most important concepts and abstrac-

tions of SDL have been presented already in Sect. 2.1.3. Due to its capabilities

to formally specify data types, such as protocol data units, and behavior in an

implementation-independent way, the language has been used in the standard-

ization of communication protocols, for instance the IEEE standards 802.15.1 or

802.15.4.

Formal verification of SDL specifications has been described in a number of

reports ([MIJ03], [BDHS00], [SS01], [RB98], [JG01]). In the latter publication, the

authors presented their experiences from a verification experiment of the industrial

protocol MASCARA (Mobile Access Scheme based on Contention and Reservation

for ATM), a wireless medium access control protocol. The protocol has been

specified using SDL, on a total of roughly 300 pages. This specification has been

automatically translated into an equivalent IF specification for further analysis.

The IF language [BFG+99] has been defined as an intermediate representation for

timed asynchronous systems. The main challenges for the verification of this large

system were to reduce the complexity of the model and to analyze subsystems

separately. The authors applied a mix of static and dynamic techniques for model

checking and complexity reduction. In Fig. 3.1, the verification tool chain as

presented in [JG01] is shown.

The model checker CADP [GLM02] has been used to analyze the labeled tran-

sition system. To demonstrate the usefulness of this approach, a number of generic

properties, such as the lack of deadlocks, and expected behavior of the protocol was

checked. To specify such properties, they have to be described as temporal logic

formulas or, alternatively and more intuitive for the non-expert user, by means

of finite automata for expressing labeled transition systems. Protocol behavior

that was found to violate a specified property could be visualized with message
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LTS: Labeled Transition System

translation to PROMELA test generation

Figure 3.1: Tools and languages used for the verification experiment of the MAS-

CARA protocol [JG01]. The shaded boxes mark the used verification flow, alter-

native tools and languages are also shown.

sequence charts. The specification of such properties directly from the SDL model

was not possible.

Many researchers (cf. [Leu95], [FL98], [dW04], [Bou07]) have pointed out that

the built-in concepts of SDL to specify timing behavior are insufficient to model

real-time systems. The most severe limitations of the language in this respect were

found to be the lack of concepts to specify deadlines, i.e. the time for the system to

react on an event, communication delays over channels, different system clocks, and

processing delays. SDL has abstract timing semantics, that is all system activities

are performed without any delay and time advances only when all transitions have

completed and a timer expired or an external event was triggered.

Several research groups have proposed extensions to SDL to express real-time

constraints as well as processing and communication delays.

Fischer and Leue address in [FL98] the inadequacy of SDL for the specifi-

cation of quality-of-service requirements. They note that, due to the language’s

asynchronous timer mechanism, systems satisfy the SDL specification even if they

exceed the limits by an unspecified and even potentially unbounded amount of

time. The most that can be expressed is that there is a minimum amount of time
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that passes between the setting of the timer and the recognition of its expiry by the

timed process. As a remedy, the authors introduce the concept of complementary

real-time specification, which means that the semantic models of Metric Temporal

Logic—a formal language similar to Computational Tree Logic—and SDL can be

combined. For this purpose, the so-called Global State Transition System (GSTS)

was defined, which serves as a common formal model for the interpretation of SDL

specifications and temporal logic formulas. For a detailed presentation of this

approach we refer to the literature.

Design and verification of real-time properties of SDL specifications has been

studied by Bourgeois [Bou07]. The author introduced timing annotations to ex-

press assumptions about the run-time system and environment as well as timing

requirements. Annotations are comments in the SDL model. The introduced

modeling features to describe the temporal behavior of the specification comprise

the specification of clocks, the duration of SDL processes, a notion of urgency

of transitions, the definition of events and maximum available time between two

events, as well as the behavior of communication channels and external inputs.

The processing time is an estimation by the designer and has no relation to the

real implementation. Unfortunately, the approach does not consider the influence

of the run-time system with its scheduling and queueing delays. The annotated

SDL specification is parsed and mapped to a timed automaton. This automaton

can then be analyzed and verified with the UPPAAL tool [LPY97].

In [dW04], a methodology for simulation-based performance analysis of com-

munication protocols based on a combination of SDL and UML 2.0 is presented.

SDL is used as a means to specify protocol behavior. Since the language abstracts

from the temporal properties of the execution environment and implementation

details, these features are modeled and refined with the help of UML diagrams.

The proposed methodology has been validated by an experimental scenario.

Codesign tools The design of a system encompasses its behavioral specifica-

tion and the development of a system architecture on which the functionality is

mapped. Already in the 1990s, a number of tools were developed that used SDL

specifications as a high-level system description and support the design process by

performing an exploration of different architectures and mapping the SDL model

onto them. As examples from this generation of codesign tools, COSMOS [IAJ94]

and CORSAIR [DMTS00] shall be briefly discussed.
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Figure 3.2: Hardware/software codesign flow based on the COSMOS tool.

COSMOS is a hardware/software codesign tool developed at the TIMA labo-

ratories. A commercial product, ArchiMate [MdCP00], has been created based on

the initial work. COSMOS uses SDL as an input language. Hardware/software

partitioning is performed manually on the level of SDL processes. This means that

the designer has the choice to map SDL processes onto a multiprocessor architec-

ture [ZMDJ98].

Hardware processors, in other words ASICs, are then automatically generated

and described in VHDL, while the remaining SDL processes are translated to C

programs and executed on software processors. Additionally, interface components

to connect the hardware and software processes are generated.

A cosimulation of the produced VHDL and C code is performed as the final

step in order to validate the temporal properties of the design. The three tools

used in the codesign flow are shown in Fig. 3.2. A drawback of this cosimulation

approach is the rather long simulation time in the order of minutes or even hours

in the case of more complex systems than described in [ZMDJ98].

COSMOS does not allow system partitioning with a finer granularity than SDL

processes. This means that in order to fully take advantage of the efficiency gain of

hardware implementations, the designer must structure the high-level specification

with implementation details in mind. The efficiency of the generated hardware de-

signs was reported to be poor [MHA+02], though these results were obtained with

the ArchiMate tool. We will present other approaches towards hardware synthesis

from SDL specifications in the following section on implementation synthesis.

The limitations of the COSMOS tool were tackled by the CORSAIR (Code-

sign and Rapid Prototyping System for Applications with Realtime Constraints)

environment. It has been developed at the University of Erlangen-Nuremberg.



72 Chapter 3. Related Work

CONNECTED

calculate1 calculate2

mediumReq(message)

mediumReq(message)

IDLE IDLE${span(A,B)<100ms}

${markend B}

Transition

T1

${markbegin A}

Transition

T2

disReq(disId) mediumInd(message)

disInd(message!Id)

1(1)Process example

Figure 3.3: Modeling of timing constraints with SDL*, taken from [DMTS00].

Similarly to COSMOS, it is an integrated design tool which addresses mixed hard-

ware/software systems and, likewise, their automatic synthesis. However, an ex-

tension of SDL, called SDL*, is used for system specification. This language in-

corporates timing- and implementation-related aspects of the system. An example

that illustrates a timing annotation in an SDL* process is shown in Fig. 3.3.

These timing annotations in the specification are considered by the tool in the

generation of a prototype implementation that meets the real-time constraints.

The CORSAIR tool first creates a problem graph from the SDL* specification and,

subsequently maps this graph to an architecture, consisting of processing nodes

and interconnections built-up from library components. This scheme is depicted

in Fig. 3.4. The optimization goals for this mapping process are a reasonable use

of resources as well as meeting the timing constraints. The allocation, binding,

and scheduling of resources are typical codesign tasks and have been presented

already in Sect. 2.2.3 in general terms. The system architecture specification is

also expressed in SDL*. The complete design flow, including system specification,

architecture and implementation synthesis, is shown schematically in Fig. 3.5.

The synthesis of software, hardware, and interfaces is also supported by the

tool and will be cover below. The goal of the design process with CORSAIR

is a prototypical system realized on a multiprocessor platform that is connected

to an FPGA board. The synthesized components are programmed on the target

platform.
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Implementation synthesis In the following, we will present research work that

addresses the transformation of abstract SDL specifications to implementations in

concrete execution environments. The semantic equivalence of both, the specifica-

tion and the implementation model, must be ensured during this transformation

process, otherwise all previous theoretical examinations become obsolete. However,

the fact that abstract SDL models operate with infinite queues and unlimited mem-

ory capacity contradicts the physical reality and shows that there are limitations

when going from a theoretical model to a real implementation. An extension of

the SDL semantics towards the use of bounded input ports was recently proposed

by Gotzhein et al [GGK07].

In general, SDL specifications can be realized as mixed hardware/software sys-

tems. The extensive study of the problem of generating efficient implementations

has led to a large number of optimization techniques. We will briefly present the
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most important of these.

The generation of software implementations is already state-of-the-art and has

been part of commercial SDL tools for a couple of years. In the 1990s and be-

yond, the automatic translation into hardware descriptions, i.e. VHDL code, was

studied by a number of research groups. Tools for the generation of prototypical

hardware implementations were presented, which to our knowledge did not find

their way into successful commercial products. Besides code generation, embed-

ding the SDL system into a run-time environment or operating system and the

design of interfaces between hardware and software are important, as well.

A straightforward implementation model for SDL specifications, that maintains

the semantics of the language, is the so-called server model, which was already in-

troduced in Sect. 2.1.4. Each SDL process is realized by an asynchronous server—

an entity with its own signal queue that processes the input signals one-by-one and

communicates with other processes by placing asynchronous signals in their input

queues. This model can be applied to software and hardware implementations

alike. In the first case, all servers are executed concurrently under the scheduling

regime of the operating or run-time system, while in the latter case true hard-

ware parallelism can be exploited. The server model is used, for instance, by the

Telelogic TAU code generator for software implementations or by the COSMOS

tool [ZMDJ98] for VHDL generation. Disadvantages of this approach are the ad-

ditional scheduling and context-switch overhead as well as the required resources

to maintain signal queues.

An optimization that removes the mentioned overhead connected with the

server model is the activity thread model. In this model, communication between

SDL processes is synchronous, i.e. by procedure calls. Instead of sending a message

to another process, the corresponding transition at the receiver process is called.

Execution remains within the same thread, no context switch and signal buffers are

required. The SDL specification must be analyzed to identify all possible chains

of transitions that are triggered by an external event and end with a transition

without signal output or a signal to the environment. Such a chain is called an

activity thread.

The activity thread model can be efficiently applied to the implementation of

simple protocol stacks where, basically, signals are exchanged only from higher to

lower layers when transmitting, or in the opposite direction after the reception of a

packet. More complex interaction patterns within the model may create additional



3.1. System design with SDL 75

overhead since transitions that are part of multiple activity threads, i.e. are exe-

cuted following different external events, will be multiplied unless a serialization is

introduced [MF00]. This pertains to an implementation in hardware. For software

implementations using the activity thread model, special care must be taken when

there are interdependencies between processes or multiple signal outputs within a

transition, in order to preserve the semantics of the model [HMTKL96], [Kön03].

Such a dependency analysis was presented by Leue and Oechslin [LO96], who

proposed optimizations to enhance parallelism within an implementation.

Efficiency improvements have been achieved also by reducing the number of

copy operations of large buffers, such as protocol data units, and by a technique

called application-level framing. The first technique uses references to buffers,

which can be easily passed. Application-level framing is a technique for handling

protocol data units across protocol layers. Already at the highest protocol layer,

the application layer, buffer space that is large enough to accommodate lower-

layer headers is allocated. All layers simply add their control information at the

right place in the buffer. Likewise, in the receive direction, each layer accesses the

relevant part of the frame buffer.

Deriving hardware implementations from SDL specifications has been a focus

of research work since the 1990s. Attempts to use SDL as a description language

for synchronous digital systems, similarly to how SystemC today can be used, have

been unsuccessful due to the lack of concepts to express synchronous behavior and

data types for bit manipulation operations [MHA+02].

Of the many approaches towards generating hardware implementations from

SDL specifications, most notably the work by Muth [Mut02], who alsocontributed

to the CORSAIR system, shall be highlighted here.

The rapid prototyping design flow presented in [Mut02] starts with an ini-

tial SDL specification and a set of timing annotations that express the real-

time constraints of the system. The objective is to generate a compliant hard-

ware/software implementation on a rapid prototyping platform consisting of mul-

tiple high-performance general-purpose processors and a configurable I/O proces-

sor (CIOP). The CIOP consists of programmable hardware (Xilinx FPGA) and is

connected via a PCI bus with the other processors of the platform.

A real-time analysis of the SDL specification uses the event stream model to

model the possible occurrence of external events and timers. Deadlines for the

processing of events can be specified. In the course of the real-time analysis,
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also an estimation of the worst-case message queue depth is undertaken. This

is important in order to preserve the semantics of the original SDL model and

allocate resources efficiently.

SDL processes are manually mapped to processing units of the target architec-

ture. The partitioning depends on their ”timing requirements and computational

complexity” [Mut02]. For the software part, Telelogic’s CAdvanced code genera-

tor is used. This C code generator creates implementations based on the server

model. A run-time system is required to provide all the necessary support functions

such as timers, inter-process communication and interfacing with the environment,

which are an implicit part of the SDL specification. In the described approach,

the run-time system is realized by the free real-time operating system RTEMS.

For VHDL generation from SDL, different implementation techniques can be

chosen: the server model as well as a serialized and parallel activity thread imple-

mentation. For the server model, the process-specific extended finite state machine

is modeled in VHDL and extended with pre-designed components for signal queues

and output ports.

In the case of an activity thread implementation, the chain of transitions orig-

inating from an initial external event is determined. Every activity thread is

implemented as a separate VHDL process. Since multiple activity threads may

access the same shared variables of a process, locks are inserted to protect these

variables from concurrent access in a parallel implementation, or activity threads

are serialized.

The resulting VHDL code is synthesized and mapped to a Xilinx FPGA. The

hardware design process is shown in Fig. 3.6 together with an example SDL hard-

ware partition. The macro processor m4 is used to replace certain operations, such

as timer operations, by corresponding hardware blocks. In Fig. 3.7, the hardware

architecture for the partition in Fig. 3.6 is depicted.

As already mentioned above, an execution environment for SDL specifications

must provide services and mechanisms that are part of the semantic model of

the language. Among those are the timer handling, process scheduling as well

as queues for asynchronous messages. SDL tools do provide implementations of

such run-time environments, which must enforce the semantics of the language.

For performance reasons, it is also possible to map the aforementioned services to

operating system mechanisms that may be anyway part of the embedded system

and to get rid of a run-time environment supplied by the SDL tool vendor.
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Figure 3.6: Hardware synthesis process for a rapid prototyping system as described

by Muth [Mut02].

An aspect that is often overlooked is the fact that also the run-time environment

and operating system together with the chosen mapping is subject to design errors.

So, even if the SDL model is formally verified, its run-time environment may not

be. This may compromise the trust in the correctness of the system.

A recent approach towards a real-time operating system that is designed using

formal methods was reported in [VdJ07]. An effort to port this operating system,

which is called OpenComRTOS, to be able to easily map SDL specifications onto

it was announced.

All other software implementations of SDL specifications require trust that
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Figure 3.7: Hardware architecture generated by the REAR system presented

in [Mut02] for the example SDL partition in Fig. 3.6.

the run-time system was thoroughly tested and most errors have been found by

previous implementations. For a number of different operating systems, specific

mappings—based on the output of the code generator—have been created. Tele-

logic, for instance, offers integration models for Neutrino, VxWorks, OSE Delta,

and Nucleus+. Integration models for other platforms have been developed by

various research groups.

Relation to own work Our embedded systems design flow proposed in this

thesis is also based on SDL as high-level system description language. Many of the

presented techniques, such as formal verification or performance analysis, are com-

plementary to our approach and, hence, can be combined. We have particularly

addressed the design of efficient run-time environments for embedded systems.

Furthermore, we developed a cosimulation approach with an instruction set sim-

ulator to support hardware/software partitioning in the design space exploration

phase.
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The software synthesis methods, i.e. code generators from SDL specifications,

are mature and industry-standard tools. Therefore, we base our design flow for

embedded systems on the output of a successful commercial C code generator,

namely CAdvanced which is part of Telelogic TAU SDL Suite [Tel06].

However, the operating system integrations available today are limited to a

couple of real-time operating systems (Neutrino, VxWorks, OSE Delta, and Nu-

cleus+) as mentioned above. Though these are designed for embedded systems,

their complexity and memory requirements exceed the available resources of typical

16-bit microcontrollers, which shall be addressed by this thesis.

The automatically generated C code from CAdvanced contains many prepro-

cessor macros facilitating an OS integration. Each run-time environment must

define these macros such that the SDL concepts, for instance signals, processes

and timers, can be mapped to the resources of the run-time environment or OS.

Unfortunately, Telelogic does not provide a general framework for real-time oper-

ating system integration, but merely recommends to use the existing integrations

as examples when designing a tight integration for a new OS.

Principle concepts for targeting extremely resource-limited devices and their

operating systems are missing. Furthermore, to our knowledge, no SDL run-time

systems have been described for operating systems such as TinyOS, Contiki or

Reflex, which are suitable operating systems for the kind of deeply embedded

devices that are the focus of this thesis.

Therefore, such general concepts had to be investigated, first. Additionally,

a proof of feasibility and efficiency had to be presented. For this purpose, an

integration library for an example operating system was realized. The author has

chosen Reflex because it is designed in C++ and the realization of our concepts

can be shown clearly in the software design.

This implementation serves at the same time as an important building block in

the design flow. It can be used to generate efficient target executables for platforms

where Reflex has been ported to, for instance the Texas Instruments MSP430,

Freescale HCS12 or Atmel ATMega 128 microcontrollers, as listed in [Nol09].

Automatic hardware synthesis from a high-level SDL specification is an option

that we excluded from our proposed embedded systems design flow due to the

increased hardware complexity compared with a hand-optimized semi-custom de-

sign. A hardware compiler is an excellent tool for rapid prototyping as the design

time is significantly reduced. However, for chips that must be very cheap and, in
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order to achieve this, the silicon area should be as small as possible, manual design

promises to give better results. As outlined above in the description of the COR-

SAIR system, which applies automatic VHDL generation, one source of overhead

are mechanisms to buffer SDL signals as inputs to VHDL processes. Moreover, the

translation of the finite state machines and SDL data types to hardware can most

likely be more efficiently achieved by hand-optimized design. Efficient behavioral

compilers from high-level languages are still a fundamental research topic today.

It is questionable whether the mapping of complete SDL processes to either

hardware or software, as employed in the CORSAIR tool, is really an optimal

solution. This coarse-grain partitioning would lead to the mapping of a complete

process to hardware even if only one or two transitions, for instance a time-critical

cyclic redundancy check (CRC) calculation, present an actual bottleneck in the im-

plementation. Furthermore, the communication between the software and hard-

ware representations of SDL processes via SDL signals is time-consuming as all

signal parameters, including control information such as the sender process ad-

dress, have to be passed. For these reasons, we propose a fine-grain, arbitrary

partitioning of SDL processes and give the designer the freedom to use an opti-

mized interface to the hardware partition.

The partitioning decision is made on the basis of simulations of the hard-

ware/software system in our approach, whereas software models for the hardware

can be used in place of real hardware designs in order to speed up the simulation.

We do not consider it necessary to use tools for automatic design space explo-

ration and selection of an optimal hardware/software partitioning, as these tools

base their decision on automatically derived and not necessarily optimized hard-

ware designs. We argue that the designer usually has a good knowledge about

the system and its potential bottlenecks, and thus can easily select eligible archi-

tectures and suitable partitionings. However, the designer needs to be guided by

the simulation results in order to estimate the performance impact of architec-

tural decisions, identify bottlenecks in the design, and thus be able to improve the

partitioning.

As outlined in detail in Sect. 1.2 and depicted in Fig. 1.3 on page 11, we con-

sider an interactive cosimulation between an abstract SDL simulation integrated

with an instruction set simulator that emulates a real system implementation as

the most suitable approach particularly for communication systems design and

implementation. This allows the reuse of the original SDL model, which was used
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to derive a target software executable, in a communication network model and

generate test stimuli for the emulated implementation model. The instruction set

simulator gives reliable and accurate information about the system performance.

This way, bottlenecks and unsatisfied timing requirements can be easily identified.

We have not found any previous work that proposes a similar approach. Therefore,

the author has developed his own concepts for a cosimulation and proved them

experimentally.

Finally, as already mentioned, hardware synthesis from the SDL model is per-

formed manually in our approach. This also includes the design of optimized

interfaces to other hardware blocks and the software partition. The hardware

design process and FPGA or ASIC synthesis is well supported by EDA tools.

3.2 Communication protocol implementations based on

SDL

In this thesis, we present not only a design methodology for embedded communi-

cation systems, but show how it has been applied for a single-chip wireless MAC

protocol implementation of the IEEE 802.15.3 standard. Wireless communication

systems developed from SDL specifications have been reported in the literature. In

order to consider our approach in the context of previous work we will closely study

comparable designs that have been published. It should be noted that certainly

many more systems were designed following proprietary SDL-based processes in

companies, but results have hardly been made available.

Drosos et al describe in [DZM01] the design of an ARM-based processor for

multi-mode, DECT- and GSM-capable, cellular phones. In particular, the authors

present the design process for the MAC protocol of the DECT standard.

This MAC protocol has been implemented entirely in software. The devel-

opment started from an SDL model, which was automatically translated into C

by the CAdvanced code generator from Telelogic. In order to validate the pro-

tocol together with the target hardware platform, two steps were performed: a

tight integration for the Virtuoso operating system and a simulation model for the

ARMulator debugging system were created.

A tight integration approach was chosen because the SDL run-time system

used in the light integration model from Telelogic does not allow preemption.

With the tight integration approach, each SDL process is mapped to an OS task,
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such that higher-priority processes can preempt those with lower priority. A tight

integration library for the Virtuoso OS had to be developed, since Telelogic does

not provide one. Since there is no generic template for targeting other operating

systems this adaptation was a major result [DZM01]. Details on the design of the

tight integration library were not published.

The ARMulator environment allows to simulate the ARM processor and its

peripherals on the instruction level. It can be used for software benchmarking

and hardware/software cross-development. The memory model of the ARMulator

was extended to incorporate a behavioral model of the radio front-end and other

system parts. The MAC protocol software interacts via a number of command

requests with the radio transceiver. Events from the transceiver trigger processor

interrupts. An environment task is responsible for creating SDL signals from these

events and send them to the right processes.

System integration has been found to require little effort due to the previous

validation by simulation and the specification of hardware interfaces and behav-

ior [DZM01].

A very similar problem to our MAC protocol implementation was covered in

Marko Hännikäinen’s PhD thesis [Hän02]. The author addressed the design of a

wireless communication system (TUTWLAN) with QoS capabilities. Like in our

approach, a partitioning of the MAC protocol into hardware implemented on an

FPGA board and software running on a DSP was elaborated.

In [HKHS00] the applied SDL-based high-level design is explained in detail.

A commercial tool from Telelogic was used for editing, simulation, and code gen-

eration. The complete specification can be considered as complex with its 24

processes, 75 procedures, and altogether 96 different internal signal types. The

author argues that simulation at early design phases helped to increase the quality

of the design and saved time and cost [HKHS00].

The light integration model was selected for targeting the SDL specification on

the DSP. There is no operating system required. The compiled C code consumes

490 kbytes of memory, which is a rather large amount for embedded system appli-

cations. Environment functions have been added to provide interfaces to the radio

module and host computer. The SDL model itself is independent of the target

platform.

A number of optimizations to increase the performance of the SDL implementa-

tion were proposed and their effects measured. These optimizations comprise the
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Figure 3.8: Target platform for the TUTWLAN system reported in [SHH02]. A

MAC protocol hardware accelerator is part of the radio interface module imple-

mented in the FPGA.

introduction of process priorities, explicit addressing of signals1, use of efficient

data types by avoiding array and string types, as well as algorithm implementa-

tions as external functions in C. The performance effects have been measured by

simulating the complete SDL model on a host computer. It was not reported that

a simulation for the target processor or real-time analysis was conducted.

A small number of tasks have been identified to be realized in hardware. It

seems that the decision has been made on the basis of the designer’s intuition

and knowledge of the protocol’s timing constraints. A validation method for these

design decisions was not reported. The selected tasks for hardware implemen-

tation are the synchronization to the TDMA frame, data encryption, and CRC

calculation [SHH02].

A hardware accelerator has been designed that provides a clear functional

interface to the protocol software running on the DSP. The hardware accelerator

consists of transmission and reception data paths, a transmission control block,

and a status register with information on the received frame. For details on the

implementation we refer to the article [SHH02]. The demonstrator platform for

the WLAN system with QoS support is shown in Fig. 3.8. The FPGA and DSP

are clocked at 40MHz.

A hardware/software implementation of the IEEE 802.15.3 MAC protocol was

presented in [HBB04]. As the previous two protocol implementations, the design

1When implicit addressing is used, the receiver of signals is determined by a time-consuming

process from the structure (signal routes between processes) of the SDL model.
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methodology employed by the authors starts with a high-level SDL specification.

However, in this case no automatic transformation into a hardware or software

implementation is applied. Instead, the system is re-implemented in SystemC.

This new representation is synthesizable into hardware and can also be simulated.

The SystemC code has been augmented by text outputs in order to trace the

exchange of signals at the interface to its environment.

By means of equivalence checks of the recorded message sequence charts gener-

ated from the simulation of the abstract SDL model and the SystemC simulation

traces, it could be determined if the hardware implementation correctly reflects

the original model. Of course, this approach cannot give a proof for complete

correctness since it relies only on the previously selected test cases.

Time-critical functions of the MAC protocol that have been identified to be

implemented in hardware are immediate acknowledgment transmission and beacon

frame decoding. In order to be able to send an acknowledgment, the integrity of a

received frame must be checked first. Beacon frame decoding is required to extract

information about the position of reserved time slots for transmission or reception.

The hardware accelerator architecture is shown in Fig. 3.9. The Superframe

Control block decodes beacon frames and maintains a timer that indicates trans-

mission and reception opportunities to the Main Control block. The latter ini-

tiates the transmission or reception process. The actual frame processing is per-

formed by the TX and RX Coordination blocks. Additionally, there is an interface

to the physical layer and a memory buffer for received frames and those that are to

be transmitted. The software part of the MAC protocol interacts with the protocol

accelerator through another interface component.

Hardware/software partitioning was not part of the presented design method-

ology, because the complete SDL model was translated into hardware. However,

it outlines an interesting new approach: the SDL specification can be simulated

and verified with the available tools and then automatically translated into a be-

havioral, i.e. non-synthesizable, SystemC model. In a stepwise refinement process

parts of the model that should be realized in hardware are manually translated

using the synthesizable subset of the SystemC language. This codesign approach

would benefit greatly from the availability of operating system models in the Sys-

temC framework. This feature has been announced for new releases of SystemC,

but so far has not materialized.
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Figure 3.9: Hardware accelerator functional blocks for the implementation of the

IEEE 802.15.3 MAC protocol reported in [HBB04].

Relation to own work The examples of protocol implementations presented in

this section are results from projects in industry and academia. They document

that SDL is used for the design and implementation of communication systems

and show the typically employed design flow. The code generator CAdvanced is

commonly used for software synthesis from SDL models.

However, the examples also show the lack of a general template and concepts

for creating efficient SDL run-time environments for operating systems other than

those already supported by Telelogic. If no operating system is used for the imple-

mentation and the light integration library from Telelogic is used, which provides

a non-preemptive process scheduler, interprocess communication and support for

timers, the code size of the target executable is larger and the performance lower

than with a tight integration approach. The light integration scheduler is realized

as an infinite loop where in each cycle it is checked whether the current system

time has reached the expiration time of the first timer in the queue. If there is an

SDL process that can be executed to process an input signal or timer, the process

activity function containing the state machine implementation is called. The re-

alization of the scheduler as an infinite loop has the drawback that the processor

cannot be put into a low-power sleep mode waiting for the next timer interrupt
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when there are no active processes.

The use of an instruction set simulator for performance analysis of the exe-

cutable on the target hardware and even for hardware/software cross-development

as reported in [DZM01] is a technique that has proven its effectiveness. We extend

this approach by supporting the designer in specifying and detecting deviations

from the timing requirements of an application or protocol and by reusing the

SDL network model as a test bench that generates stimuli for the implementation

model.

System-on-chip designs that contain an extremely low-power and resource-

constrained microcontroller, hardware accelerators or coprocessors for tasks such

as encryption or time-critical protocol functions, a wireless transceiver, on-chip

SRAM and flash memory, as well as various peripheral interfaces have become

available recently. Products from Texas Instruments featuring an 8051 microcon-

troller unit and low-power RF transceivers [Ins07] are excellent examples for such

architectures. This demonstrates the validity and practical relevance of our focus

on protocol implementations for embedded systems consisting of hardware and

software parts. Our work, however, is not limited to single-chip solutions, but is

just as well applicable to architectures consisting of a microcontroller connected

to application-specific hardware via peripheral interfaces.



Chapter 4

Integrated Design Flow based

on SDL

This chapter gives a conceptual overview of our SDL-based design methodology for

embedded systems protocol design and implementation. Our design flow largely

resembles existing approaches and makes use of mature tools.

However, as has been discussed in Sect. 1.2 and in the previous chapter, there

are still gaps in the traditional design flow when targeting extremely resource-

limited devices and in the support for hardware/software partitioning. In this

chapter, we present our concepts for addressing the identified problems of creating

efficient SDL run-time environments from real-time operating systems for deeply

embedded systems and a cosimulation framework that allows the coupling of an

instruction set simulator with an SDL simulator. We will not just state our new

concepts, but provide the rationale for our decisions, discuss alternative approaches

and their pros and cons. The prototypical implementation and validation of our

concepts and tools that support the design flow, as well as design results for the

IEEE 802.15.3 MAC protocol are then covered in the following chapters.

Compared to other approaches that use SDL merely as a tool for the specifica-

tion of protocols and start a completely new software and hardware implementation

effort without using the SDL model for synthesis, our solution saves development

time and at a minimum allows the model to be automatically transformed into

an all-software implementation. This way, the formally verified properties of the

model are preserved in the implementation. The efficient run-time environment

for deeply embedded systems reduces memory and processing overheads.

87
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Finally, the simulation of the implementation model by an instruction set sim-

ulator gives highly accurate profiling information. Such an approach has been

previously described, however, with our novel contribution of coupling the instruc-

tion set simulator with a functional SDL simulation of a communication network

while reusing the original protocol model, we save development time for the test

benches for the instruction set simulation. These benefits are hard to quantify and

will vary between different system implementations.

The chapter is structured in three sections. First, we introduce the complete

design flow from an initial SDL model to a hardware/software implementation

for embedded systems. In Sect. 4.2, we investigate concepts for efficient SDL

run-time environments, and address general questions concerning the interactive

cosimulation of two SDL systems in Sect. 4.3.

4.1 General overview

We base our design flow for communication protocol design and implementation on

the high-level language SDL. It is a popular and suitable language for this purpose

due to

• its formal semantics, which enables to prove the functional correctness of

SDL models,

• the high-abstraction level of the language, facilitating short development

times and to focus on the behavioral aspects of the model,

• existing tool support for the simulation of models, thus being able to visualize

protocol runs and efficiently debug the design,

• an immediate path towards software implementations supported by mature

C code generators.

It should be noted, however, that the language exhibits a couple of drawbacks

that must be addressed by the design methodology. Among those are

• the lack of specifying real-time constraints,

• the use of data types (unbounded strings and arrays) that are difficult to

implement efficiently, and
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• the missing support to express synchronous behavior as would be required

for a direct translation to hardware descriptions.

The last point highlights that SDL uses only a single model of computation,

namely extended finite state machines that communicate by the exchange of asyn-

chronous signals.

The design flow, which has been sketched already in the introduction of this

thesis, can be structured in different phases. In the following, we present these

phases and motivate our decisions for particular tools and approaches.

System specification For the above mentioned reasons, we have chosen to use

SDL for system specification. An initial SDL model can be derived, for instance,

from a specification document describing a communications standard and written

in a natural language such as English, or following a requirements analysis and

definition of use cases. In contrast to a natural language description, the SDL

model will unequivocally capture the abstract behavior of the system and still be

implementation-independent.

The SDL specification is amenable to formal verification. For this purpose, a

number of tools have been developed and can be applied as mentioned in Sect. 3.1.

By means of simulations, the model can be validated and the performance of

the protocol for various, on not yet specified parameter settings, for instance timer

values, can be determined. All these activities complement our design flow. Results

from the analyses are used to improve the model in a cyclic process as shown in

Fig. 4.1.

In a next step, the SDL model is the basis for an automatic transformation

into a software implementation. We have used the CAdvanced code generator from

Telelogic [Tel06] for this purpose. In principle, this automatic process could yield

highly efficient implementations if sufficient effort for analysis techniques is spent

in the design of the code generator. Such optimizations have been proposed by a

number of researchers, cf. [LO96], [LK99].

This potential is not fully exploited by commercially available tools. There-

fore, taking into account the limitations of the chosen code generator, we manually

extend the SDL model by replacing inefficiently handled concepts with more op-

timized, possibly implementation-dependent C code. We give examples for such

optimizations, mainly concerning data types, addressing of signals, and buffer man-

agement, in the following Sect. 4.2. The development of a tailored SDL compiler
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Figure 4.1: Specification and design phase of our proposed methodology. The SDL

model is the starting point for the following transformation steps.

was out of the scope of this thesis.

Software synthesis Although it is conceivable to use SDL merely as system

specification language and develop the software and hardware implementation from

scratch, we argue that at least for the software implementation—which typically

takes up the largest share of system functionality—the automatic translation to C

code should be followed. This way, a previously verified model is the basis for the

system under development. Furthermore, design time is shortened and needless

re-implementation avoided.

Consequently, in our design methodology we obtain first an all-software system

implementation by combining the SDL model translated into C code with an op-

erating system and an integration library that provides an execution environment

for the SDL model and is linked to operating system services. This is illustrated

in Fig. 4.2.

There are two basic models for integrating the compiled SDL model with an

operating system when using the CAdvanced compiler. They are called light in-

tegration and tight integration. The former maps the complete model to a single
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Figure 4.2: Software synthesis and integration with a target operating system.

OS process, while with the latter approach each SDL process is mapped to a cor-

responding OS process. The tight integration approach requires a more extensive

and elaborate adaptation to the OS, but has two important advantages compared

to the light integration approach:

• The execution of lower-priority processes can be preempted by those with a

higher priority. This way, external signals may interrupt the current activity

and be processed immediately in order to guarantee real-time constraints.

• General OS functions, such as scheduling or interprocess communication,

have to be provided only once. In the light integration approach, an SDL

run-time environment is required for this purpose, which increases code size.

The adaptation to the operating system has to be designed only once for each

target operating system. Telelogic, the tool vendor of the CAdvanced code genera-

tor, recommends to use existing tight integration models as examples for targeting

other operating systems. There is no general framework that would allow porting

an existing integration model easily to a new operating system. The integration

is realized by providing OS-specific definitions for macros which are part of the

generated code.
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In the next section, we discuss general concepts for the mapping of SDL models

to operating systems for extremely resource-limited devices. As an example for a

transformation of these concepts into a practical implementation we have created

a prototypical tight integration library for the Reflex OS [Nol09]. This OS has

also been used in our MAC protocol implementation that validates the complete

design flow. We refer to Chapter 5 for a comprehensive presentation of the design

of the tight integration model for Reflex.

Hardware/software partitioning Our design flow is laid out specifically for

the development of soft real-time embedded systems consisting of hardware and

software. A static real-time analysis as required for hard real-time systems is

rejected in favor of system simulations. As already discussed in Sect. 1.2 this is

due to the pessimistic estimations of worst-case timing behavior by static analysis

tools, leading to overdesigned systems and, hence, inefficient implementations for

the average case.

Behavioral hardware compilers from high-level languages are still lacking the

efficiency of manual hardware design and have applications mainly in rapid pro-

totyping. Therefore, we argue that the design space exploration and a mapping

of functionality to hardware and software should be performed by hand. This is

motivated by the fact that the design team usually has good knowledge about the

complexity and probable bottlenecks of the system. By the way, this is also the

approach taken by other design methodologies, for instance CORSAIR [DMTS00].

However, the effects of the design decisions must be analyzed afterwards.

Such an analysis must confirm that the timing requirements are met by the

implementation model or indicate new performance bottlenecks that must be ad-

dressed in a new design space exploration cycle. This requires manually adapting

the software partition, creating a new target executable, and designing models

for the new hardware partition. With the new partitioning, another profiling and

cosimulation cycle is started until the system reaches the performance targets. The

hardware models serve as the specification for the following implementation phase.

The design space exploration activity is shown schematically in Fig. 4.3.

System simulations can be used to evaluate the performance of a mixed hard-

ware/software implementation. In order to obtain accurate timing information

for a particular design alternative, we require a target executable, i.e. the soft-

ware partition, and a model for the hardware partition. The initial partitioning
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Figure 4.3: Starting from an initial software partition (target executable), an op-

timal hardware/software system is obtained in a cyclic process by making use of

our cosimulation framework.

starts with an all-software system—the transformed SDL model integrated with

the target operating system and compiled for the embedded system.

In our design flow, we rely on an instruction set simulator (ISS) for the target

processor in order to emulate the real execution of the software and provide very

accurate, i.e. cycle-true, profiling information. Instruction set simulators often

allow the simulation of hardware models and their interactions with the software

partition. An ISS is typically several orders of magnitude faster than a register

transfer level (RTL)-level hardware simulation and still provides the same level of

accuracy.

Communication protocol implementations, as well as other kinds of applica-

tions, need to interact with and receive messages from the local environment and

remote communication partners. These entities provide stimuli at certain time in-

tervals to the system-under-design and expect responses within certain deadlines.

We propose the coupling of an SDL simulator with the instruction set simula-

tor. The major advantage of this approach is the reuse of the original, abstract

SDL model and, thus, a shorter time of development. In most cases, a test en-
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of the hardware partition is embedded in the overall network simulation based on

SDL.

vironment for the protocol under development, including test benches, a model

for the communication network and peer entities, is already created in the spec-

ification and design phase for validation purposes. As depicted in Fig. 4.4, the

hardware/software system running on the instruction set simulator is integrated

with the overall network simulation.

Additionally, a so-called timing rules monitor—a protocol-specific SDL

process—can be included in the cosimulation in order to explicitly flag violations

of timing requirements. The problem that makes such a monitor necessary is the

missing support for the specification of real-time requirements in SDL. With the

timing rules monitor it is possible to specify deadlines by which responses from

the implementation model must have occurred after receiving certain stimuli. This

SDL process makes the analysis of the simulation results easier for the designer,

since it can be difficult to spot deviations from the acceptable behavior in the pro-

tocol run and automates the processing of trace outputs from the SDL simulation.

The timing rules monitor receives copies of all SDL signals that are sent as outputs

to the emulated implementation model and all signals sent by this model to its

environment.

Interfaces between the two SDL models, one simulated by the ISS the other

by the SDL simulator, must be provided, and the synchronization of the two

simulation runs must be solved. Our concepts for this coupling are discussed in

Sect. 4.3 in detail. Based on these concepts, we developed a software framework for

an interactive cosimulation of the TSIM instruction set simulator for the LEON2
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processor and the SDL simulator which is part of the Telelogic TAU SDL Suite.

This prototypical implementation will be presented in Chapter 6.

The LEON2 processor is not a typical microcontroller for deeply embedded

systems. The motivation for choosing this processor and the TSIM instruction set

simulator was its availability when conducting this research work and the need for

a processor that would support more than 64 kbytes of program memory in order

to accommodate a software implementation of the rather complex IEEE 802.15.3

MAC protocol. It is important to note that our concepts for a cosimulation of an

instruction set simulator and an SDL simulator are generally applicable, not only to

the design of embedded systems. For this reason, we do not see that the relevance

of our work suffers by validating our approach with the LEON2 instruction set

simulator.

Implementation and test The hardware modules that have been identified in

the codesign phase must be designed in a hardware description language. This also

includes their interfaces to the software parts. In a following synthesis step, either

a bitfile for an FPGA implementation or a chip layout for an ASIC are created. A

mature tool chain for these tasks exists.

The hardware and software synthesis steps and the typically used tools are

depicted in Fig. 4.5. The processor(s) and other hardware library components

that are part of the platform are not explicitly shown. Naturally, the designed

hardware components must be integrated into the processor subsystem.

A software interface for the hardware components must be developed, as well.

This could be a device driver which provides access to registers and handles hard-

ware interrupts. Together with all the sources for the target executable, the final

executable is compiled for the target platform.

All components, such as processing and memory resources, where the software

resides, are finally integrated on a single chip or a printed circuit board (PCB).

The physical embedded system is now subject to further tests. In Sect. 2.1.4 the

well-established protocol test methodologies, for instance conformance test and

interoperability test, were presented.

Additionally, functional tests and production tests are carried out which are

often supported by specific provisions in the design, such as a scan chain or debug

registers. The design for testability is another current research topic. Certainly,

input from this field could benefit our proposed design methodology. So far we do
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Figure 4.5: Sequence of the final steps in design flow: hardware and interface

design, synthesis, integration, and test.

not directly address this topic in our work and leave it to the designer to choose

the best available techniques to increase the testability of the embedded system.

4.2 SDL run-time environment for deeply embedded

systems

Motivation and scope The automatic transformation of SDL models into ex-

ecutable software for embedded systems is an important aspect of our design

methodology as it ensures that verified properties of the models are preserved by

the implementation. For a software implementation, the state machine behavior
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specified by the SDL processes must be translated, as well as a run-time system

that provides all the implicit support functions, such as signal queues, process

scheduling, and timer handling, is required.

In our design flow, the CAdvanced code generator from Telelogic was selected

for software synthesis. We argue that the so-called tight integration approach

is best suited to develop efficient applications that require process priorities and

preemption. This code generator applies the server model for the transformation

of SDL systems, that is each SDL process is represented by a concurrent task and

has its own input signal queue. When an SDL signal is sent to another process, the

signal is placed in the queue and processed only after the process was scheduled

by the run-time environment. The server model was described in Sect. 2.1 in more

detail.

The C code generated by CAdvanced from an SDL model contains macros in

every place where a run-time system function must be inserted, for instance a

signal output or setting a timer. For a general discussion of our concepts for an

efficient run-time environment, the details of the code generator output are of less

importance. For this reason, they will be outlined only in Chapter 5 where we

present our integration library for the real-time operating system Reflex.

Any run-time system for the CAdvanced code generator must provide the fol-

lowing functionality:

• Management of the processes, including their signal queues.

• Management of signal buffers, i.e. signal allocation and deallocation.

• The timer mechanism and the current system time.

• An interface to the environment.

Tight integration libraries for target operating systems provide these support

functions by making use of OS resources and services as illustrated in Fig. 4.6.

Therefore, a specific mapping for each target operating system must be created.

Telelogic provides such mappings only for a few operating systems. Recently, new

operating systems have appeared that target extremely resource-limited and low-

power microcontrollers, such as the MSP430 family from Texas Instruments with

available program memory of 48 kbytes, a RAM size of 10 kbytes, and a clock

frequency of maximum 8 MHz.
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Figure 4.6: Software architecture for an embedded system application consisting of

an SDL system, external (environment) process, and operating system. The tight

integration library provides the links between SDL model and operating system.

Among the most popular of such operating systems are TinyOS [LMP+05],

Contiki [DGV04], and Reflex [Nol09]. These operating systems provide only min-

imal services: simple schedulers, hardware drivers for input/output devices and

timers. Dynamic memory management of objects on a heap is typically not in-

cluded as it would blow up the code size significantly and is not strictly needed

for the intended applications. The operating systems provide mechanisms to de-

sign applications based on an event-flow model, i.e. tasks are triggered by sending

asynchronous events. This is very similar to the SDL model of computation and,

therefore, facilitates an efficient mapping of systems specified in SDL to such an

OS.

For these relatively new operating systems, no tight integration libraries are

available for the CAdvanced code generator. In this section, we discuss general

problems that must be addressed by any SDL run-time environment for deeply

embedded systems. Among those are the allocation of memory for SDL signals or

the handling of timers. We have selected Reflex as an example for a prototypical

implementation of the design concepts. However, the implemented software library

can be easily adapted to other operating systems.

Design objectives and limitations An obvious and primary requirement for

any SDL run-time environment is to preserve the semantics of the language. Partly,
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this requirement is already addressed by the code generator that must transform

SDL models according to the semantic rules of the language. However, especially

the handling of timers and input signals are problems related to the execution

of SDL models and must be correctly implemented by the run-time environment.

Input signals of SDL processes have to be processed in the order of their arrival,

and also the queue of saved signals is organized according to the first in, first out

(FIFO) scheme. After consuming a signal from the input queue, the save queue

has to be traversed to determine how to handle the signals in this queue, before

the next input signal can be consumed. For the correct handling of SDL timers,

there are semantic rules concerning the operations used to set, reset, or retrieve

the status of a timer. This will be covered in the discussion of our concepts for

timer handling.

A high performance and low memory footprint of the target executable are

further design goals that must be reached. Performance and memory overheads

translate directly to a higher power consumption and increased resource require-

ments. Both are critical for deeply embedded systems. These are reasons why

we decided to avoid dynamic memory management altogether. In other words, all

memory that can be used by an implementation during its run-time must be pre-

allocated at compile time and cannot be dynamically allocated from a heap. This

is a decision that differentiates our concepts from previous approaches and tight

integration examples. Its main advantages are that library code for dynamic mem-

ory management (malloc/free) is saved and that access to pre-allocated memory

chunks is typically much faster. This can be seen from our comparisons with the

light integration approach presented in Sect. 5.3. Below, we will go into the details

of the memory management for SDL signal buffers.

However, by not allowing dynamic memory allocation from a heap, we exclude

some features of SDL that cannot be used in modeling anymore, when target-

ing deeply embedded systems. This affects certain data types that have dynamic

sizes, for instance strings or dynamic arrays, and the dynamic creation of process

instances. If the designer uses such dynamic features of the language, the compi-

lation will abort with an error, because we have defined the corresponding macros

inserted by the code generator such that the C preprocessor stops with an error

message indicating the unsupported feature.

Dynamic, and potentially infinite data types, must be replaced by finite data

types with known size at compile time. This is not a severe limitation and can
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be dealt with late in the design process when the abstract model is optimized.

Infinite-sized data types are anyway only a theoretical concept. In every practical

implementation there is a limit of the available memory. By forcing the designer

to define upper limits for certain data types, this practical limitation is made ex-

plicit and leads the designer to include provisions for dealing with finite resources.

Otherwise, the application could easily run out of memory and fail, since it was

modeled under the precondition that there is always sufficient memory space avail-

able.

Dynamic process instances are, strictly speaking, not needed. The behavior

of dynamic instances can be emulated easily with a single static instance of the

process, which manages a set of process variables. Each dynamic process instance

can then be represented by its own set of variables, including its current state, and

an identifier. SDL signals sent to or from the static process instance would have

to include the instance identifier in the parameter list. Though dynamic process

instances can make system modeling easier in some cases, we do not really see

their exclusion as a severe limitation, in particular when targeting resource-limited

devices.

Additionally, we currently do not include support for services and procedures,

in order to reduce memory overhead, though this support can easily be added.

Alternatively, we recommend to use abstract data types and define operators for

these types to model procedures that are defined outside SDL processes. Proce-

dures inside SDL processes can be emulated with labels and jumps. This approach

has been applied several times in the IEEE 802.15.3 MAC protocol model.

SDL allows three possibilities for specifying the receiver process of a signal.

In a signal output statement, either the address of the receiver process, the name

of a signal route that leads to the receiver, or nothing can be stated. In the last

two cases, the receiver process is determined implicitly by the structure of the

SDL model and the signal routes specifications between the processes. The code

generator includes functions to calculate the receiver process if implicit addressing

is used in the model. This approach incurs run-time and code size overheads.

Therefore, we support only direct addressing in our run-time environment. This

has no influence on the behavior that can be modeled in SDL, but merely demands

additional coding effort from the designer to explicitly state the receiver process

for each output signal.
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Representation of SDL processes Since the CAdvanced code generator ap-

plies the server model for the transformation of SDL systems, a mapping of SDL

processes to OS tasks is necessary. In principle, it would be possible to map mul-

tiple, or even all, SDL processes to a single OS task. However, this would require

additional code for process scheduling within a task and, more importantly, would

not allow preemption of processes within a single task. Therefore, our approach

is to create one OS task for each SDL process instance. The OS scheduler is re-

sponsible for scheduling the processes according to their priorities or deadlines and

whether they have got an input signal to process.

It is impossible to develop a software template for the run-time environment

functions that is independent of a specific target OS. This is due to the different

languages used in the design of the operating systems, for instance nesC, C, or

C++. Therefore, we limit ourselves to the description of general concepts that can

be adapted to a specific implementation. In particular, the exact representation

of schedulable tasks differs widely in the studied operating systems.

Memory management for signal buffers Communication between SDL pro-

cesses is realized by sending asynchronous signals that may carry any number of

parameters. Hence, buffer space for storing signal parameters and other control

information such as the sender’s address is required. This memory buffer is oc-

cupied only during the lifetime of the signal, i.e. from the time when the sender

process creates the signal and fills its parameters until the receiver consumes or

discards the signal. An unsuccessful attempt to allocate sufficient memory for an

output signal will lead to a system failure.

Memory management for signal buffers can be implemented in two different

ways. There could be a single heap from which memory for all signals is allocated

dynamically. Alternatively, pools of memory for each signal type can be pre-

allocated statically and used only when a signal of this type is created. We will

briefly outline the pros and cons of both strategies.

The dynamic memory management strategy has the advantage that the same

buffer can be reused for different signals over time. This reduces the total size

allocated for signal buffers in the system compared to the other strategy. However,

the maximum size of signal memory that can be allocated at a time must be known

in advance in order to choose a sufficiently large heap size. In most systems the

exchange of signals happens more or less randomly, triggered by external events.
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It is, therefore, difficult to analyze what is the maximum amount of memory

required for active signal buffers. Even worse, the heap may become fragmented

when signals of different sizes are allocated and deallocated in a non-deterministic

order. In this case, even if the sum of available memory chunks in the heap

would be large enough to accommodate a newly created signal, there might be no

single contiguous chunk that is large enough. Designing the run-time system in

such a way that a defragmentation of the heap could be performed during normal

operation would make the system very complex.

In the case of statically allocated pools of signals with the same size, frag-

mentation cannot occur. Furthermore, it is comparatively simple to analyze the

worst-case chain of signal allocations triggered by an external event or timer expi-

ration (cf. activity thread model). When the maximum number of external signals

allocated at a time is limited, the required worst-case buffer space for all signals

that can possibly be created in the further course of actions can be determined.

The number of timers in the system is fixed by the SDL model anyway.

For the aforementioned reasons and to guarantee that the SDL system imple-

mentation does not run out of memory for signal buffers at run-time, we propose

a memory management scheme based on statically allocated signal buffers.

In some cases, the worst-case number of signals to be pre-allocated in pools

may still exceed the size of available memory resources. Severely limiting the

number of external signals that may be input into the SDL system could lead to

low performance, because there is little buffer capacity for a burst of input signals,

thus reducing the throughput.

As an alternative, we propose to allocate a single extra memory buffer large

enough to accommodate one SDL signal buffer with the size of the largest signal

type in the model. When a signal allocation fails because of insufficient memory

resources, the SDL run-time system must provide a memory buffer where the

application can safely write the signal parameters to, since in the generated code

there is no provision to handle such a case. This signal, of course, is used only as

a temporary memory buffer and is never actually consumed by another process.

However, write access to parameter fields will not do any harm to the application,

since there is a valid memory region for the signal buffer. The dummy signal is

identified by its unique signal ID. The input queues of SDL processes ignore any

signal with this identifier.

This dummy signal can only be used for such signals where a loss does not



4.2. SDL run-time environment for deeply embedded systems 103

cause incorrect behavior. Whether this is the case or not must be analyzed by

the designer as it is based on semantic knowledge of the SDL model. For all SDL

signals where a memory allocation failure would lead to a system failure, sufficient

memory resources must be provided in the pre-allocated pools. Alternatively, the

number of input signals from the environment could be limited to avoid an overload

of the system.

Since each SDL system differs in the number of signal types and pool sizes, there

can be no generic system implementation. We provide a SignalBufferManager

class that can be easily adapted to new implementations—only the number of

pools and their signal types and sizes must be given. This could be supported by

a separate tool in a future development of our design methodology.

In Fig. 4.7 the organization of the RAM when using pre-allocated pools for

each signal type is shown. The individual pools are organized as linked lists of

available signal buffers. Pointers to the first available pool elements are kept in

an array, which has as many items as there are signal types. To facilitate queue

management in the process input and save queues, the data type used for SDL

signals contains a next-pointer that is also used for referencing the next free signal

buffer.

The pools are initialized at system start-up time. For this purpose, the number

and size of the individual signal types must be known. This information is kept in

a constant array, which can be placed in ROM.

Both, allocation and deallocation operations, are performed in constant time.

Allocation simply returns the current first pool element and assigns the reference

to the new first element to its next-pointer. When a signal buffer is deallocated,

it becomes the new first element in the linked list and its next-pointer is set to the

previous first element. The code generator assigns each signal type a continuous

number starting from one. The signal number is a part of the data type represent-

ing an SDL signal. The right signal pool is accessed by using the signal number

as the index for the array of first-pointers.

It is, however, also possible for an application developer to provide a

SignalBufferManager implementation that uses a shared heap for all signals. We

do not generally recommend this method, even though it saves on RAM resources

required by the application.

Timer management SDL processes may contain timers to control the behavior
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class SignalBufferManager {
enum {

ComputeRequest_PoolSize = 2,
ComputeConfirm_PoolSize = 2,
NUM_SIGNALS = 2,
BUFFER_MEMORY_SIZE =

ComputeRequest_PoolSize *
sizeof(ComputeRequestType) +

ComputeConfirm_PoolSize *
sizeof(ComputeConfirmType) }

char buffer_memory[BUFFER_MEMORY_SIZE];
static const PoolInfoType pool_info[NUM_SIGNALS];
xSignalHeader first_item[NUM_SIGNALS];
...
typedef union AnySignalType {

ComputeRequestType dummy1;
ComputeConfirmType dummy2; };

AnySignalType dummy_signal;
...

};

const PoolInfoType
SignalBufferManager::pool_info[] = {

PoolInfoType(ComputeRequest_PoolSize,
sizeof(ComputeRequestType),

PoolInfoType(ComputeConfirm_PoolSize,
sizeof(ComputeConfirmType) };

Figure 4.7: The realization of statically allocated signal buffer pools by using

two arrays with control information and a memory area for the actual buffers is

shown schematically on the left. On the right-hand side, a source code example

of a SignalBufferManager class for the SDL system in Fig. 5.2 adopting this

implementation scheme is presented. xSignalHeader is the base class for all signal

buffer types.

of the state machines. The number of timers in a given model is fixed, however

the timers can be set and reset at run-time, and, of course, generate a signal when

they expire. One of the responsibilities of the run-time environment is to provide

the timer management.

The CAdvanced code generator inserts a number of macros at places where a

timer is defined, set, reset, checked for activity, and its expiration handled by the

process. The tight integration library has to define these macros and to set up a

timer handling infrastructure linked to the operating system services or hardware

timer resources such that the SDL semantics with respect to timer handling is

preserved.

Since expired timers are treated like other SDL signals, we represent timers

in the same way as signals. Each timer signal has a unique identifier, which is
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generated by CAdvanced.

In our design concept, all currently active timers, i.e. those that have been set

and not yet expired, are managed by the so-called timer process. In this entity the

timer signals are kept in a double-linked list, ordered by their expiration times.

The timer process detects when the first timer in the list expires, removes the

signal from the list, and sends it to the input queue of the process instance it

belongs to.

We represent time as a 32-bit integer number. The time unit can be freely

chosen by the application designer and depends strongly on the granularity of the

system timer or hardware timer component. In any case, during the run time

of an application an overflow of the continuously incrementing time may occur.

Therefore, special care is taken in the timer process to handle the wrapping of the

32-bit integer number. Timer signals with a wrapped expiration time are ordered

at the end of the non-wrapped timers, and a pointer to the first wrapped timer is

maintained.

There are two possible approaches how the timer process can detect the expi-

ration of a timer: either by receiving a periodic tick event or by an event that is

triggered exactly at the time of expiration. The latter approach is, of course, more

efficient, but may not be feasible on every hardware platform.

For instance on the MSP430 microcontroller, there are hardware timer compo-

nents that can be programmed to generate an interrupt at a certain time. Such a

hardware timer can be used to design the timer process in an efficient way.

In order to keep the tight integration layer flexible and make use of any hard-

ware timers available on the target platform, we decided to realize processor-

dependent functionality in a separate module. Then, only this class, which provides

functions to query the current time and to schedule an event for a later point in

time, must be adapted for a different hardware platform. This concept is shown

in Fig. 4.8 in an UML-like notation. The timer process is a schedulable task. It is

activated when the first timer in the list expires. This is realized by a platform-

dependent timer service. The timer process will then remove all expired timer

signals from its list and send them to the corresponding processes. An implemen-

tation which uses an interrupt-driven hardware timer expiration is presented in

Chapter 5.

There are four functions that can be performed on timers: a check whether the

timer is active, starting and stopping the timer, and its consumption by the SDL
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Figure 4.8: General software architecture for the timer management showing two

variants for the detection of timer expiration.

process. In order to support these functions most efficiently, we added a field to

the timer signal data structure that reflects the current state of timer signal. The

state can be either idle (not started), running (not yet expired), currently in the

input queue of the process (expired, but not yet consumed), or located in the save

queue.

According to the SDL semantics, a timer is considered active until it is con-

sumed by the process, i.e. the timer is not idle. This check can be performed in

constant time.

Resetting a timer means removing it from either the list of running timers in

the timer process, the input or save queue of the process. All these objects are

double-linked lists, so that the delete operation can be realized in constant time.

Access to the timer process list and the input queue must be exclusive to prevent

concurrent write access to these data structures from other processes.

Before a timer is started, it is first reset. Then, the timer signal and its expi-

ration time is passed to the timer process where it is inserted at the right place

in the ordered list. This operation can be implemented in linear time by browsing

the list from one end. Typically only few timers are running at the same time, so

this should not be a performance bottleneck, and optimizations at the expense of

larger code size are not necessary.
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Finally, when a timer signal is consumed or discarded by the process, its state

is set to idle again.

Interfacing the environment Without the possibility to interact with its en-

vironment, any SDL system would be useless. One obvious way of communication

between SDL processes and other application parts outside the SDL system is

via asynchronous signals—just like SDL processes communicate with each other.

Since in the model there is no possibility to differentiate between a signal output

to another SDL process and to the environment, exactly the same mechanism for

signal exchange as presented above is applied. This means that direct addressing

of signals to the receiver is used. There could be different environment processes

all represented by their own addresses.

Such an environment process could also act as an interface to a hardware mod-

ule. Received SDL signals could be transformed into a hardware access and trigger

the desired functionality. Vice versa, an interrupt generated by the hardware might

cause an SDL signal to be sent to an appropriate receiver process.

Another possibility to interface the environment from the SDL model is by

calling imported functions or using abstract data types that have their operations

implemented in C or C++. Telelogic, for instance, offers a tool that can read C++

header files and allows to create SDL abstract data types from C++ classes. These

types can be used in the SDL model just like native data types. Their operations,

however, are defined outside SDL.

The external functions are linked together with the generated C code. This

makes it possible to access hardware peripherals of the microcontroller or dedicated

hardware without the cumbersome exchange of asynchronous signals.

Reading a status byte from a peripheral would require the exchange of two

SDL signals: a request to the environment and a response back into the model.

Besides the run-time overhead for allocating and deallocating signal buffers, the

parameters of the buffers must be set, and, most importantly, scheduling overhead

is added. This makes it clear why we turned away from automatic hardware

synthesis tools that map complete SDL processes to either software or hardware

and realize all communication between SDL processes by exchanging signals. In

the alternative approach, the mentioned function could be imported into the SDL

model and directly called.

The two principle methods for interacting with the environment of an SDL
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Figure 4.9: Principles for interacting with the environment, including hardware,

from the SDL model.

model are illustrated in Fig. 4.9. On the left, the exchange of SDL signals is

depicted, while on the right-hand side the use of an abstract data type linked to

an external library is shown. The figure also illustrates how dedicated hardware

can be accessed from those parts of the SDL model that are realized as software.

When integrating such external components with the SDL model, a co-verifi-

cation must be performed to ensure the correctness of the whole system. For this

purpose, a formal model or SDL specification of the external component could be

designed and integrated with the existing SDL model.

4.3 Cosimulation with an instruction set simulator

Rationale and objectives When developing a communication protocol imple-

mentation following our design flow outlined in the first section of this chapter,

that is by creating an SDL model of the protocol, applying automatic code gen-

eration and an integration with the target operating system, the result may be

an implementation that does not meet the specified timing requirements or would

necessitate a higher clock frequency and, hence, increase the processor’s power

consumption. In such cases, it is worthwhile to consider hardware/software parti-

tioning of the protocol. This means that for the functionality that can be identified

as a performance bottleneck a dedicated hardware component is designed. This
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protocol accelerator serves as an application-specific coprocessor.

In Chapter 3 we presented SDL-based hardware/software codesign approaches

with automatic generation of hardware descriptions from SDL processes (cf.

Fig. 3.6). This methodology depends on annotations of the SDL model by which

the designer maps SDL processes to software (CPU) or hardware (ASIC). The

decision for this mapping is made intuitively, based on estimations of the compu-

tational complexity and timing requirements [Mut02]. We propose a simulation-

based approach to obtain accurate estimations of the performance of protocol

implementations and to identify performance bottlenecks.

The automatic generation of VHDL code from the SDL model is outside the

scope of this thesis. The tools developed for this purpose (cf. Chapter 3) are

targeted for rapid prototyping systems and allow only the mapping of complete

SDL processes to hardware. In our approach, however, any part of the original

software model can be realized in hardware. Hardware design and the definition of

the interface to the software are manual activities. At the current state of the art

for behavioral hardware compilers, this approach promises to yield more efficient

implementations.

In the case of communication protocol implementations it is particularly im-

portant to analyze their timing behavior. We have discussed static timing analysis

in Chapter 3 and found that worst-case estimations often lead to inefficient imple-

mentations. They are, however, required for the design of hard real-time systems.

In this thesis, we focus on soft real-time applications and target ultra-low-power

and resource-limited devices. Therefore, the implementations must be very effi-

cient in terms of energy and resource usage.

As an alternative to static timing analysis, system simulation is a suitable and

often applied technique to gain insights about the performance of an implementa-

tion.

The objective of a simulation-based approach is to obtain sufficiently accurate

estimations of the performance of the target system. It should be possible to

study the effects of variations in the processor parameters (clock frequency, caches,

etc.), explore different hardware/software partitionings, while at the same time

facilitating reuse of protocol test benches. A simulation run must be completed

within a couple of minutes to be able to explore many design alternatives. All this

can be achieved with the help of an instruction set simulator (ISS) and by running

a functional SDL simulation in parallel to an ISS, as we discuss further below and
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demonstrate in Chapter 6.

An ISS is a tool that emulates the real execution of a program on a target

processor. Some instruction set simulators also allow the simulation of a copro-

cessor or user-defined hardware modules connected to the processor. Before going

into the details of our cosimulation framework for hardware/software partition-

ing we will briefly discuss conceivable alternative solutions for simulation-based

performance analysis.

• One simple approach would be to simulate the performance of the protocol

software on the development platform rather than the target platform. For

this purpose, the SDL simulation is performed, for instance, on a Windows

PC, and conclusions are drawn from profiling information obtained during

this simulation run. Some effort has to be spent to relate the execution

time to the expected execution time on the target processor. To model the

effects of hardware accelerators, simple stub functions could be used. In

general, this proposed method can only provide first indications to possible

performance bottlenecks, but is too inaccurate to produce reliable and useful

results.

• The most accurate estimations of system performance could be obtained by

means of an register-transfer-level (RTL) simulation of the microcontroller

running the protocol software and any hardware accelerators. This RTL

simulation could also be coupled with a high-level SDL network simulation.

Unfortunately, due to the long simulation runs in the order of hours and

days, this approach does not lend itself to the exploration of many design

alternatives. Moreover, RTL or behavioral models for the protocol acceler-

ators have to be designed before the simulation can be started. The RTL

simulation of the target system, however, is often conducted at the end of

the hardware design process to validate the design.

• To avoid the extensive simulation runs, it is a viable option to implement

the target system on a prototyping board, for instance by making use of pro-

grammable hardware and an off-the-shelf target microcontroller. Hardware

descriptions of the protocol accelerators have to be designed for this pur-

pose. This could be a time-consuming task and severely limits the flexibility

in exploring different design alternatives.



4.3. Cosimulation with an instruction set simulator 111

Bus

accelerator
(hardware partition)

Processor

External interface

(software partition)

Memory

Protocol

Figure 4.10: Principle building blocks of our target architecture for the hard-

ware/software codesign process.

Our cosimulation approach supporting hardware/software partitioning is specif-

ically aimed at embedded systems architectures with a single microcontroller and

the possibility to integrate protocol accelerators. The microcontroller runs the soft-

ware part of the communication protocol that is to be implemented. Of course,

the embedded system may consist of other processors or DSPs, as well. However,

we do not support the partitioning of protocol software onto multiple processors.

Memory and external interfaces are further essential building blocks of the target

architecture, as depicted in Fig. 4.10.

When studying the performance of a given protocol implementation, external

events must be generated and presented as inputs to the system under test. Pos-

sible events are, for instance, a service primitive from a higher layer or a received

protocol data unit from the lower layer. The time needed to react on the events is

measured and compared with the specification.

Typically, when modeling a communication system in SDL, test benches are

developed in order to validate that the system’s functionality has been correctly

represented. For this purpose, a number of individual communication systems—

the protocol entities—are connected by a model of a communication network that

allows to exchange protocol data units between the entities. In such a functional

SDL simulation, the real execution time is irrelevant. Typically, a global simulation

time for all entities is assumed. This global time does not advance when transitions

are executed, but only by the expiration of the next scheduled timer.

The functional network simulation is ideally suited to generate input events

for the target system. Then, it is necessary to study at what point in time the

target system produced a response to the received event, for instance in the form
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Figure 4.11: The target implementation simulated by the instruction set simulator

receives inputs from and sends responses back to the SDL network simulation.

An optional timing rules checker is used to flag violations of the protocol’s timing

specification by the target implementation.

of a transmitted packet or an indication to the higher layer. The protocol engineer

has to check on the basis of the protocol specification if the observed behavior is

correct. By using the output of the protocol executed by the ISS as an input to

the functional network simulation, any deviation from the expected or tolerable

timing behavior is made visible. For this purpose, the traces for the simulations

with and without the system-under-test have to be compared.

As an extension to this approach, we give the designer the possibility to specify

a set of rules of acceptable timing behavior for the protocol running in the ISS.

These rules are described in SDL in a separate entity. All inputs to the target

system and all of its output signals are copied and passed to this timing rules

monitor as shown in Fig. 4.11. With the help of timers it is possible to detect

if any responses were not generated in the acceptable time interval. Figure 4.12

exemplifies how one might specify the expected time interval for the transmission

of an acknowledgment frame after the reception of another frame.

Naturally, the exact method of coupling the SDL simulator with an ISS depends

on the provided interfaces by the ISS. In the remainder of this section, however, we

first identify general problems related to an efficient cosimulation of SDL models

and propose conceptual solutions that address these problems. In Chapter 6, we

demonstrate how these concepts have been applied to a cosimulation framework

connecting TSIM, the instruction set simulator for the LEON2 processor, with the



4.3. Cosimulation with an instruction set simulator 113

Figure 4.12: SDL process that illustrates a timing rule check. An acknowledgment

frame is expected to be sent within an interval of 10 to 20 microseconds after the

end of a successfully received frame.

SDL simulator from Telelogic, as an example.

Synchronization between SDL simulations As presented above, our goal is

to provide an interactive cosimulation of two SDL models, namely the implemen-

tation model executed by an ISS and a functional network model acting as the test

bench simulated by an SDL simulator. Since both simulators run independently

of each other, there is no common simulation time and no single event queue.

The external implementation model in the ISS must be integrated in the com-

munication network simulation as if it would be part of the functional SDL sim-

ulation. Since in SDL all processes run concurrently and synchronize only by

exchanging signals, this means that the ISS and SDL simulator may proceed with

their simulations independently until there is an SDL signal sent from one to the

other. At the point of this signal exchange, both (local) simulation times must by
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synchronized. A situation where one of the simulators receives a signal that was

sent at a time ahead of the receiver’s simulation time would violate the semantics

of the model. This becomes evident by considering that the receiver process could

have sent a signal to the sender process before it generated the other signal and

might have controlled the behavior of the sender process in such a way that this

signal would not be generated, at all. A rollback of simulation steps is not possible

for the SDL simulator and, usually, also not for the instruction set simulator.

A straightforward and naive cosimulation approach would be to progress both

simulators, one after the other, in infinitesimal time steps, for instance one clock

cycle. Though the semantics of the model would be preserved with this technique,

the performance would be very low due to the immense scheduling overhead.

Fortunately, a more efficient method can be applied since the SDL simula-

tor uses an abstract time for the functional simulation as described above. The

simulation time is advanced only by the expiration of timers. The execution of

transitions does not take time. There are no external SDL signals into the func-

tional simulation model except those sent from the instruction set simulator, as

shown in Fig. 4.11. Under these preconditions, a highly efficient coupling of the

two simulators can be realized that requires a synchronization of the simulators

only when the ISS send a signal to the SDL simulation and when a timer in the

functional SDL model expires.

The principle of operation can be summarized as follows. Initially, both sim-

ulations start at simulation time 0. The SDL simulator executes all transitions

that are triggered at this time, i.e. the initial transitions of all processes and any

transitions triggered by signals sent from these transitions. Time has not been

advanced by this step. Then, the SDL system waits for a timer to expire or for an

external signal from the environment.

Before advancing the simulation time to the timer expiration, the ISS is allowed

to progress at most as many instructions as correspond to the time interval until

the next timer expires. The ISS, however, must stop immediately when it outputs

a signal to the functional SDL network simulation. The reason for this is that the

signal might cause another signal to be sent back to the ISS. Once the ISS has

stopped the simulation, the simulation of the SDL simulator is advanced to the

time reached by the ISS, i.e. both simulation times are synchronized. If there was

an SDL signal from the ISS, it is sent into the SDL model.

At that point, the SDL simulator will process any transitions that can be
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Figure 4.13: Principle of connecting an SDL simulator with an instruction set

simulator (ISS). A FIFO signal queue is required to store all SDL signals sent

from the functional model before the simulation time is advanced. In the other

direction, from ISS to SDL simulation, at most one signal is sent at a time, because

the ISS stops immediately when a signal was sent, and it is consumed by the SDL

simulator.

triggered now. Of course, there could be one or more signals that have to be

sent to the implementation model simulated by the ISS. These signals need to be

queued in FIFO order for the ISS to retrieve (cf. Fig. 4.13). Then again, the

instruction set simulation is advanced until the time of next timer expiration. If

it had previously stopped because of sending a signal, the simulation will resume

at that point in the SDL implementation model.

If there is one or more signals sent by the SDL simulator and queued for the

ISS to process, this must be indicated to the implementation model. The easiest

possibility would be by requesting an interrupt to the target processor when a

signal is written into the queue. When this interrupt is unmasked, the target

process will handle the interrupt and consume all signals from the queue for later

processing. The interrupt handler has to allocate signal buffer memory for the

new signals, send them to the appropriate receiver processes, and, thus, cause the

processes to be added to the scheduler’s ready queue. Depending on the SDL

process priorities, these processes will then execute the transitions specified in the

SDL model.

It is important to note that the order of the SDL signals is maintained as

originally transmitted, because they are stored and retrieved in FIFO order. Hence,

the SDL semantics are not violated.

The simulations are continued until a condition for their termination is reached.
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Figure 4.14 summarizes the steps of the interleaving algorithm.

Figure 6.7 on page 156 illustrates the synchronization between SDL and instruc-

tion set simulations. It also shows examples for the exchange of signals between

the two simulations.

Exchange of SDL signals As Fig. 4.13 shows, there must be memory buffers

for queueing any output signals from the SDL simulator before the instruction

set simulation is continued and consumes these signals from the queue. Similarly,

memory space for an input signal has to be provided. A small software module

must be developed that manages the queues and generates an interrupt for the ISS

when a signal is placed in the output queue.

In the opposite direction, when it has completely received an SDL signal from

the implementation model, the ISS must be stopped. The software module im-

plementation is specific for each ISS, since there are no standardized interfaces to

control an ISS. The queue management functionality, however, can be reused for

other instruction set simulators.

The signal buffers must be mapped into the address space of the target proces-

sor, so that the implementation model can access the signal parameters and write

its output signals to the allocated memory space. Therefore, the ISS must support

the development of user-defined memory-mapped modules.

The protocol engineer has to extend the implementation model by an environ-

ment process which is responsible for copying signal parameters to the memory

region of the input signal for the SDL simulator. Additionally, this environment

process must handle the interrupt generated by writing a signal to the output

queue and copy all signal parameters from the queue memory.

One problem that must be taken care of is the potentially different representa-

tion of signal parameters on the target processor and on the development computer

system. A simple memory copy of the signal buffer is not sufficient, because the

compilers for the target and for the host systems might use different memory lay-

outs, i.e. byte ordering and alignment, for the C structures representing SDL signal

parameters. Hence, SDL signals must be translated from the host system to the

target system, and vice versa, such that the parameters are interpreted in the same

way. One option would be to use a tool that can generate transformation functions

for each signal from the signal data type definition automatically. Typically, the

external interfaces of an SDL model consist of few signal types, probably in the
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range of 10 to 20. For this small number of signals, the transformation functions

can be written with little effort by the designer. A transformation tool could be

designed as an extension of our work, in the future.

Concept for cosimulations with Telelogic’s SDL simulator So far we have

discussed general questions concerning the cosimulation of two SDL systems. In

the following, we present how our concepts can be realized with the SDL tool from

Telelogic, independent of the instruction set simulator.

For this purpose, the SDL model is first transformed into C code with the help

of the CAdvanced code generator. Telelogic provides an SDL run-time system that

can be used to create a stand-alone application from the SDL system on the host

computer. At compile time, it must be configured to use an abstract simulation

time, and not to the real execution time. A graphical simulator user interface can

be, but does not have to be, connected to visualize the behavior of the SDL system

and control its execution.

Additionally, the designer must provide four environment functions, that are

called by the run-time system at initialization and termination time as well as for

the exchange of SDL signals with the environment, when targeting a cosimulation.

The four environment functions with their parameters and short descriptions are

listed in Table 4.1.

Because the run-time system is responsible for the scheduling and execution

of SDL processes, timer handling, as well as for interfacing with the environment,

we use the term SDL simulator to describe this software. It does not require a

graphical user interface and can be controlled with textual commands.

From the perspective of the SDL simulator, the instruction set simulation is

part of its environment. This means that all signals addressed to an SDL process

inside the implementation model are routed through the environment function

xOutEnv. Vice versa, signals coming from the model inside the instruction set

simulation are sent to the SDL simulation via the xInEnv function. Remember,

the program executed by the ISS was created from the original SDL model of the

protocol.

The synchronization of the SDL simulator with the ISS can be achieved by

interleaving the execution of the functional SDL simulation with the instruction

set simulation according to the general concept introduced before.

At the beginning of the cosimulation, the instruction set simulator must be
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Table 4.1: Environment functions that are called by the SDL simulator and must

be supplied by the designer.
Function Purpose

void xInitEnv() Initializes external code. Called once at simulation start.
void xCloseEnv() Terminates the environment. Called when the simulation

ends.
void xOutEnv( Called each time a signal is sent from the SDL system to
xSignalNode *S) the environment. S is a reference to this signal. After

performing any appropriate actions, the signal must be
released to free the memory it uses.

void xInEnv( Enables the reception of signals from the environment by
SDL_Time next_event) the SDL system. The parameter next event will contain

the time for the next event scheduled in the SDL system.
To implement the sending of a signal into the SDL system,
two functions are available: xGetSignal, which is used
to allocate memory for the signal, and SDL Output, which
sends the signal to a specified receiver.

started and configured to simulate the target executable of the implementation

model. This can be done from the xInitEnv function, which is called at system

start-up time. The implementation model is just loaded, but not started, yet.

The xOutEnv function is called when the abstract SDL model sends a signal

to the external implementation model. This function is responsible for placing

the signal into the output signal queue, so that it can be consumed later by the

implementation model (cf. Fig. 4.13).

When all transitions that could run at the current simulation time were exe-

cuted, the xInEnv environment function is called with a parameter indicating the

next scheduled timer event. If this is greater than the current simulation time1,

the ISS can be resumed for the number of clock cycles that correspond to the time

interval until the next timer expires.

Control is returned to the xInEnv function when the ISS has performed this

number of cycles or the implementation model sent a signal back to the abstract

SDL model, as outlined previously. In any case, the abstract simulation time is

advanced to the current ISS simulation time. If there is an input signal, it is

1In SDL, timers can also be set to expire immediately.
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(0) Initialization: start ISS and load application, both simulation times are set to
0.

(1) Simulate SDL system until system is waiting for timer expiration or external
event. Any signal to the environment (xOutEnv called) is passed to the ISS.

(2) xInEnv is called with timestamp of next timer event as parameter.
(3) Resume instruction set simulation for as many clock cycles that its simulation

time reaches the time of the next timer event.
(4) The ISS stops when a signal to the SDL system is emitted or the assigned

number of clock cycles have been simulated.
(5) Advance SDL simulation time to current ISS time. If a signal was sent by the

ISS, send it into the SDL system. xInEnv returns with the effect of going back
to step (1).

Figure 4.14: Principle operation of the interleaving algorithm to synchronize SDL

and instruction set simulations.

sent to the appropriate receiver process, depending on the signal type. With this,

xInEnv returns. The run-time system schedules the next SDL process and checks

if any timers have expired. Then again, xOutEnv and xInEnv are called, until the

simulation finishes.

Finally, xCloseEnv is called and will terminate the instruction set simulator.

The interleaving algorithm and the role of the environment functions are summa-

rized in Fig. 4.14.
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Chapter 5

Efficient Integration of SDL

Models into Reflex

In order to validate the concepts for an efficient SDL run-time environment pre-

sented in Sect. 4.2, the author of this thesis has developed a prototypical im-

plementation of a tight integration layer for the real-time operating Reflex. This

operating system was chosen because it is strictly object-oriented and programmed

in C++. This makes the presentation of the software architecture for the run-time

environment very clear and illustrates how our general concepts have been realized.

Furthermore, because it has very small memory footprint in the order of few

kbytes, is comparable to TinyOS in its programming abstractions for event-driven

applications, and has been ported to a number of microcontrollers, it stands as an

excellent example of an operating system specifically designed for deeply embedded

systems. Reflex features an earliest-deadline-first scheduler, which is particularly

useful for real-time applications. We will revisit the design concepts of Reflex later

in this chapter.

The tight integration library provides an execution environment for SDL mod-

els. It consists of a set of macro definitions for the macros contained in the gen-

erated C code1 and a lightweight software library. The run-time environment, the

generated code, and the operating system sources are compiled and linked for the

target platform.

The implementation details of our tight integration library targeted for Re-

flex will be presented in this chapter. First, we will focus on the output of the

1The code generator CAdvanced is used to translate SDL models into C code.
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CAdvanced code generator to provide a deeper understanding of the preconditions

and starting point for our work. The header and source files automatically gener-

ated from the SDL specification contain the interfaces for an integration with an

operating system. We will then present how our design concepts for an efficient

integration of the transformed SDL model have been adapted to Reflex, before

stating our implementation results in the last section of this chapter.

5.1 Output of the CAdvanced code generator

The output of the C code generator from Telelogic is interspersed with precom-

piler directives, i.e. macros and #ifdef statements. The macros are used to make

the generated code adaptable to different integration models and target operat-

ing systems. An adaptation, consequently, consists of a set of macro definitions.

Depending on the extent of supported SDL language concepts, this set can be-

come rather extensive, in the order of more than 100 macro definitions. By means

of compiler switches that affect the #ifdef statements the integrator may opti-

mize the size of the compiled object code. Unfortunately, the heavy use of the

precompiler directives makes the generated code very difficult to comprehend.

5.1.1 Transformation of system structure

SDL systems consist of a hierarchically structured set of blocks and processes (cf.

Fig. 5.1). The processes are at the lowest level in the hierarchy. Signals routes and

channels connect processes, blocks, and the environment. The SDL system must

also contain a definition of the signals used in the model and their parameters.

The code generator creates a set of header and source files that reflect the

structure of the SDL system. Most importantly, these files include:

• Static objects that collectively represent the hierarchical structure of the SDL

system. This so-called symbol table is organized as a tree. The symbol table

is useful, for instance, to determine the receiver process for an output signal

if this receiver is not explicitly stated. For an efficient implementation that

uses explicit addressing of signals the system structure is irrelevant since the

entire behavioral description is enclosed in the processes. Therefore, it is

possible to get rid of most of these static objects by means of precompiler

directives.
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CompBlock.c

Dispatcher.c
Worker.c BehaviorSIGNAL

ComputeRequest(Integer);

System ExampleSystem

Block DispBlock

Dispatcher

Block CompBlock

Worker

ExampleSystem.h
ExampleSystem.c

CAdvanced
StructureDispBlock.h

DispBlock.c

CompBlock.h

Figure 5.1: Hierarchical structure of SDL systems and corresponding output files

from the CAdvanced code generator.

• Signal type definitions. For each signal type introduced in the SDL model,

a data structure that encapsulates the signal parameters as well as control

information needed by the run-time system to manage the exchange of sig-

nals is generated. An example for a signal type definition with an integer

parameter is shown below. The macro SIGNAL_VARS comprises all run-time

system-specific elements and must be defined by the integration library.

typedef struct {
SIGNAL_VARS
SDL_Integer Param1;

} yPDef_z6_ComputeRequest;

• Process type definitions. Information related to processes is split into three

categories in the generated code: common data for all instances of a process

type which is encapsulated in a process node in the symbol table, instance-

specific data, and dynamic behavior. The latter is dealt with in more detail

in the following Sect. 5.1.2. As an example of instance-specific data, the lines

below show the generated code for a process Worker with a single variable

declaration (number) of type Integer and a timer DummyTimer. The macro

PROCESS_VARS can be defined in different ways by the integration library.

It must, however, define certain fields such as the RestartAddress, which

identifies the transition of the state machine to be executed next.

typedef struct {
PROCESS_VARS
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SDL_Integer z111_number;
DEF_TIMER_VAR(yTim_DummyTimer)

} yVDef_z11_Worker;

• Initialization routines. The SDL system is initialized in a hierarchical man-

ner. The system initialization function yInit() calls corresponding functions

for all blocks, from where finally the process initialization functions are called.

In order to create and set up a new instance of an SDL process, the data

structures representing the process instance must be created and initialized.

A startup signal is created and sent to every process. Since the initialization

routines depend on the chosen integration approach, the function bodies in

the generated code contain numerous macro calls. An appropriate definition

of these macros has been conducted for our tight integration library.

5.1.2 Transformation of process state machines

The CAdvanced code generator applies the server model (cf. Sect. 2.1.4) for the

implementation of process state machines. The state machine behavior is encap-

sulated in the so-called process activity definition (PAD) function. Whenever the

run-time system brings a process to execution, the PAD function for this process

type is called. As a parameter for this function, the instance-specific data struc-

ture for the activated process instance is passed. This way, the PAD function has

access to all local variables of the process, its current state, and the input signal.

The body of the PAD function is a large switch-statement. Depending on the

RestartAddress—a number that is determined by table lookup before calling the

PAD function—the corresponding transition is executed. In the following, we will

present the macros inserted by the code generator for the most important SDL

concepts that may be present in a transition. For this purpose, in Fig. 5.3, we

list and comment the code generator output for the (meaningless) SDL process in

Fig. 5.2.

The source code shows the switch-statement of the PAD function. Because of

the heavy use of macros and cryptic identifiers this code is hardly human-readable.

We refrain from giving an explanation for each line and provide an overview of the

most important macros in Table 5.1 instead. We refer to the Telelogic TAU User

Manual [Tel06] for a comprehensive list of all relevant macros in the generated

code. It gives also an overview on the data structures that represent the SDL

model.
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process Worker 1(1)

DCL
number Integer;

TIMER
DummyTimer; Ready

DummyTimer ComputeRequest(number)

RESET(DummyTimer);

ComputeResponse(number*number)
TO SENDER

SET(NOW + 10,
DummyTimer);

Ready

Figure 5.2: SDL process state machine with signal input and output as well as

timer functions.

5.2 Tight integration model for Reflex

We elaborate on our software architecture for a tight integration model specifically

targeted to the Reflex operating system in this section. It is based on the concepts

that have been elaborated specifically for severely resource-constrained embedded

systems, as discussed in the previous chapter.

It is essential to introduce the main concepts behind the Reflex OS, first, in

order to understand the rationale for our design. A first version of our tight inte-

gration library was presented at the European Wireless Sensor Networks (EWSN)

workshop in 2006 [WDEK06].
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YPAD_FUNCTION(yPAD_z11_Worker)
{

...
switch (yVarP->RestartAddress) {
case 0: /* START */

BEGIN_START_TRANSITION(yPDef_z11_Worker)
INIT_TIMER_VAR(yVarP->yTim_DummyTimer)

case 3: /* NEXTSTATE Ready */
SDL_NEXTSTATE(Ready, z111_Ready, "Ready")

case 1: /* INPUT DummyTimer */
INPUT_TIMER_VAR(yVarP->yTim_DummyTimer)

L_grst1:;

case 4: /* NEXTSTATE Ready */
SDL_NEXTSTATE(Ready, z111_Ready, "Ready")

case 2: /* INPUT ComputeRequest */
yAssF_SDL_Integer(yVarP->z113_number, ((yPDef_z6_ComputeRequest *)ySVarP)->

Param1, XASS_AR_ASS_FR);

case 5: /* RESET DummyTimer */
SDL_RESET(DummyTimer, ySigN_z112_DummyTimer, yVarP->yTim_DummyTimer,

"DummyTimer")

case 6: /* OUTPUT ComputeResponse */
ALLOC_SIGNAL_PAR(ComputeResponse, ySigN_z7_ComputeResponse,

SDL_SENDER, yPDef_z7_ComputeResponse)
SIGNAL_ALLOC_ERROR
yAssF_SDL_Integer(((yPDef_z7_ComputeResponse *)OUTSIGNAL_DATA_PTR)->Param1,

xMult_SDL_Integer(yVarP->z113_number, yVarP->z113_number), XASS_MR_ASS_NF);
SDL_2OUTPUT(xDefaultPrioSignal, (xIdNode *)0, ComputeResponse,

ySigN_z7_ComputeResponse, SDL_SENDER, sizeof(yPDef_z7_ComputeResponse),
"ComputeResponse")

case 7: /* SET DummyTimer */
SDL_SET_DUR(xPlus_SDL_Time(SDL_NOW, SDL_DURATION_LIT(10.0, 10, 0)),

SDL_DURATION_LIT(10.0, 10, 0), DummyTimer, ySigN_z112_DummyTimer,
yVarP->yTim_DummyTimer, "DummyTimer")

goto L_grst1; /* JOIN grst1 */
}

}

Figure 5.3: Extracts of the C code generated by CAdvanced for the SDL process

shown in Fig. 5.2.

5.2.1 The operating system Reflex

Reflex [Nol09] is an event-driven operating system designed at BTU Cottbus. It

specifically targets embedded systems and has been ported to a number of com-

monly used 8-bit and 16-bit microcontrollers, as well as the 32-bit LEON2 micro-

processor.
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Table 5.1: Explanation of the most common macros found in the generated PAD

functions.

Macro name Usage

SDL_NEXTSTATE The processes reaches a new state and ends the current

transition (see case 3 and case 4 in the previous code

example).

ALLOC_SIGNAL_PAR Allocation of a signal buffer with parameters (see

case 6).

ALLOC_SIGNAL Allocation of a signal buffer without parameters.

OUTSIGNAL_DATA_PTR Pointer to the allocated output signal (see case 6).

SDL_2OUTPUT Output of a signal to a process with explicit addressing

(see case 6).

SDL_SET_DUR Start of a timer with a given duration (see case 7). The

expiration of timers is treated like the reception of a

signal.

SDL_RESET Timer is stopped (see case 5).

The kind of systems Reflex was designed for do not require the rich set of

services provided by general-purpose operating systems. Rather, it is tailored for

the development of embedded real-time control applications.

For this purpose, Reflex offers different types of schedulers, for instance a FIFO

scheduler and an earliest-deadline-first scheduler [WN07]. The latter facilitates

preemption, that is the operating system interrupts the currently running task as

soon as a task with a shorter deadline becomes ready for execution.

All schedulers implemented by Reflex have in common that only a single stack

is required for all running tasks. This is major advantage for systems with limited

memory resources.

The programming model of Reflex applications is based on the event-flow prin-

ciple. Applications are composed of a number of functional components—the so-

called activities—with input and output references. Communication between the

activities is conceptually asynchronous. An activity assigns data or raises an event

on its output which is connected to an input object of another activity. This input

object buffers the received data item or event and marks the associated activity
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Figure 5.4: Simplified representation of a wireless sensor node application illus-

trating the event-flow model of Reflex.

as being ready for execution. The activity is scheduled according to the selected

scheduling scheme and subsequently processes the event or data. An event flow, in

any case, originates from an interrupt handler routine. The structure of an appli-

cation composed of application-layer activities, interrupt handlers, device drivers,

and the event flow between these components is shown in Fig. 5.4.

Reflex provides a library of object classes for trigger variables [WN06]. These

are commonly used input objects, such as FIFO queues or single-value data buffers,

that simplify the construction of event-driven applications. Activities, in Reflex,

are represented by object instances of classes that are derived from the Activity

base class. This class has a member function run() which is called by the scheduler

to execute the corresponding activity.

A class diagram showing inheritance and typical interaction relationships be-

tween activities and trigger variables is shown in Fig. 5.5. Two activities, Console

and Serial communicate with each other by means of a FIFO queue storing buffers

to be transmitted by the serial driver. A tx_done event is raised by the Serial

object each time a buffer was transmitted. Writing to the FIFO object triggers

the Serial activity, the tx_done event activates the Console object.

A classical dynamic memory management with a heap is not part of Reflex. Al-

ternatively, pre-allocated buffers managed in pools have to be used. Consequently,

the operating system requires only very limited program and data memory. Typ-

ically, a Reflex executable, i.e. the application linked with the operating system,

consumes a few kbytes of ROM and RAM.

With the exception of some low-level routines, for instance the boot sequence,

Reflex is completely programmed in C++ following a clear object-oriented design.
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Figure 5.5: Class diagram showing the inheritance and interaction relationships

between activity classes and trigger variables in Reflex.

This makes it easily portable to new platforms and processors.

5.2.2 Mapping of SDL processes

In our tight integration approach, each SDL process instance is represented by an

instance of the SDLProcess class, which is derived from the Activity class. This

SDLProcess instance acts as a wrapper for the process state machine contained in

the PAD function. This way, the SDL process can be scheduled by the operating

system.

As outlined above in Sect. 5.1, during system initialization static variables are

declared for each SDL process. We have defined the macro SDL_STATIC_CREATE,

which is inserted by the code generator, in such a way that not only a static variable

for the instance-specific data structure (local variables etc.), but also a wrapper

object for this process is created. This wrapper object receives a reference to the

data structure of the process it represents (cf. Fig. 5.6).

The SDLProcess wrapper class also manages the input signal queue of the
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Figure 5.6: Diagram depicting the relationship between the process wrapper class

SDLProcess and the objects created by the code generator CAdvanced.

process and its SAVE queue2. Other SDL processes, the timer process, or the en-

vironment send signals directly to the wrapper object by calling its sendSignal()

function. By writing a signal into the input queue the wrapper object is activated,

i.e. the scheduler will call its run() function when it schedules this activity. Since

the signal queue may be accessed concurrently by multiple senders and the con-

sumer, the integrity of its data structures must be protected by disabling interrupts

during the access.

When the scheduler calls the run() function, the first signal from the input

queue is consumed. At first, it must be determined, what action should be per-

formed with the input signal—it must be either discarded, saved or it triggers a

transition. In the latter case, the PAD function is called. The actions associated

with an input signal for all the states of the process are contained in tables gener-

ated by the code generator, as well as the number of the transition that is triggered

by the signal. The pseudocode implementation of the run() function is shown in

2The SAVE symbol is used in SDL models to indicate that a signal of the specified type should

remain in the input queue.
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function SDLProcess::run()
consume first signal from input queue, this becomes

the current signal to be processed
loop while there is a signal to process

find the input action for the current signal
(and set the next transition number in case the action is INPUT)

if DISCARD:
deallocate memory for the current signal
if the signal was from SAVE queue

current signal = next signal in SAVE queue
end if

if SAVE:
if the signal was in SAVE queue

current signal = next signal in SAVE queue
otherwise

add signal to the end of the SAVE queue
end if

if INPUT:
if current signal is from SAVE queue

remove signal from SAVE queue
end if

set input signal of process instance variable to current signal
call PAD function of associated process instance
deallocate memory for the current signal

current signal = first signal in SAVE queue
end if

end loop
end function run()

Figure 5.7: Pseudocode representation of the run() function of the SDLProcess

class.

Fig. 5.7.

It should be noted that the scheduler manages a counter in each Activity

instance that indicates how often the activity was triggered and calls the run()

function as many times. This means that each time a signal was written into the

input queue, the process is triggered and, eventually, run() will be called. Hence,

there is no need to consume more than one input signal from the queue each time.

After calling the PAD function, the process state machine may have reached

a new state. This means that the SAVE queue, if there are any signals, must be

traversed to see if any of the saved signals will now trigger a transition or have

to be discarded. The processing of signals from the SAVE queue must happen in

FIFO order, just like signals from the input queue.

Finally, we address a practical problem concerning the explicit communication

with the help of the OUTPUT TO statement. As we have outlined before, only direct

communication is supported in our run-time environment to achieve high efficiency.

This means that the process identifier, in our case: the wrapper object, has to be

specified in the signal output, for instance:
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// SDL PR
// Send signal "ComputeResponse.confirm" with parameter "100" to SDL
// process identifier "Process1PId"
OUTPUT ComputeResponse.confirm(100) TO Process1PId;

The identifier Process1PId denotes the receiver process and must be declared

in the SDL model. For our tight integration approach, this has to be done in the

following form:

SYNONYM Process1PId PId = EXTERNAL;

/*#CODE
#HEADING

extern SDL_PId Process1PId;
#define Process1PId Process1PId

#BODY
SDL_PId Process1PId;

*/

PId is an SDL data type representing a process identifier. The EXTERNAL

keyword indicates that the constant Process1PId is defined externally. The lower

part shows C code that will be placed by the CAdvanced in the generated header

file for the SDL system (lines after #HEADING), and in a source file (lines after

#BODY). The type SDL PId is defined as a pointer to the SDLProcessBase class3,

which is a base class of SDLProcess, as will be covered later in Sect. 5.2.5.

During static process creation, the created wrapper object for the SDL process

is assigned to the variable Process1PId. This is possible, because the name of the

process is passed as a parameter to the SDL STATIC CREATE macro4.

The CAdvanced code generator will use the macro SDL 2OUTPUT in the C code

for the SDL output statement as follows:

SDL_2OUTPUT(xDefaultPrioSignal, (xIdNode *)0,
ComputeResponseconfirm, ySigN_z4_ComputeResponseconfirm,
Process1PId, sizeof(yPDef_z4_ComputeResponseconfirm),
"ComputeResponse.confirm")

The macro SDL 2OUTPUT is defined by us in such a way that the function

sendSignal() will be called on the receiver process parameter, here: Process1PId,

and a pointer to the signal (ySigN z4 ComputeResponseconfirm) is passed as a

parameter.

3In C++, this is expressed by: typedef SDLProcessBase* SDL PId;
4The names of process identifiers are constructed by concatenating the given SDL process

name, for instance Process1, and the suffix PId.
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5.2.3 Memory management for signal buffers

As outlined in the previous chapter, signal buffer memory can be allocated on

a heap or pre-allocated in pools. We do not recommend the first variant as it

can lead to a situation where the system crashes because there is not enough free

memory available on the heap. With pre-allocated signal pools for each signal

type, the required maximum pool size can be statically determined.

In the case that pools are used for signal buffers, the exact number of pre-

allocated elements and the signal types differ between system implementations.

Therefore, it is only possible to provide a template for a signal buffer manager

that must be adapted to the SDL system. The basic principles for the required

signal pool data structures have been shown in Fig. 4.7 on page 104. Therefore,

we restrict ourselves to a presentation of the C++ implementation of signal buffer

manager functions, such as initialization of pools, allocation and deallocation of

buffers.

The source code of a typical signal buffer manager implementation is shown in

Fig. 5.8. The constant array with information about the sizes of all signal pools

is defined in the first lines. In the constructor of the SignalBufferManager class,

the dummy signal buffer, which is returned when a signal allocation fails due to

unavailable memory, is initialized. The type of the dummy signal is a union of all

signal types defined in the system such that the compiler automatically allocates

the maximum required memory. The signal code 0 is not used by any signal and

simply identifies that this signal shall never be sent to any process. The other

member functions, initPools, allocSignal, and freeSignal are independent of

the SDL model and the signal types defined by this model.

The signal type definitions are generated by CAdvanced from the SDL specifi-

cation. The code generator also assigns consecutive signal numbers to each signal

type, starting with 1. The automatic generation of pool declarations could be

supported by a separate tool in a future development of our design methodology.

Then, the designer would only have to assign the number of items in each signal

pool.

Timer signals also require buffer space. As will be outlined in the next sec-

tion 5.2.4, we allocate them statically as part of the process information for the

SDL process where the timer is defined. Consequently, timer signals need not to

be allocated dynamically.
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// Constant array holding the buffer sizes and number of signal items for each type
const SignalBufferManager::PoolInfoType SignalBufferManager::pool_info[] = {

SignalBufferManager::PoolInfoType(SigA_PoolSize, sizeof(SignalType_SigA)),
SignalBufferManager::PoolInfoType(SigB_PoolSize, sizeof(SignalType_SigB)),
...

};

SignalBufferManager::SignalBufferManager() { // constructor
// SignalCode 0 identifies a signal that must not be output
this->dummy_signal.SigA.SignalCode = 0;

}

void SignalBufferManager::initPools() {
// "buffer memory" is contiguous chunk, will be structured into signal lists
char *p = this->buffer_memory;
for (unsigned int sig_id = 0; sig_id < NUM_SIGNALS; sig_id++) {

this->first_item[sig_id] = 0;

// Initialize signal elements, construct linked list
for (unsigned int item = 0;

item < SignalBufferManager::pool_info[sig_id].num_items; item++) {
((xSignalHeader) p)->Suc = this->first_item[sig_id];
((xSignalHeader) p)->IsTimerSignal = 0;
((xSignalHeader) p)->SignalCode = sig_id + 1;
this->first_item[sig_id] = ((xSignalHeader) p);
p += SignalBufferManager::pool_info[sig_id].item_size;

}
}

}

xSignalHeader SignalBufferManager::allocSignal(int code) {
xSignalHeader first;
{

InterruptLock lock(); // Protect concurrent access to "first"
first = this->first_item[code - 1];
if (first != 0) {

this->first_item[code - 1] = first->Suc;
first->Suc = 0;
first->Pre = 0;

}
}
if (!first) first = (xSignalHeader) &this->dummy_signal.SigA;
return first;

}

void SignalBufferManager::freeSignal(int code, xSignalHeader signal) {
if ((signal->SignalCode == STARTUPSIGNAL) ||

(signal->IsTimerSignal)) return; // not in a signal pool

InterruptLock lock(); // Protect concurrent access to "first"
signal->Suc = this->first_item[code - 1];
this->first_item[code - 1] = signal;

}

Figure 5.8: Implementation of the signal buffer manager functions in C++.

It should be noted that these functions are independent of the specific SDL

system, and can be used also for other operating system integrations, as long as

the same approach with pre-allocated signal pools is used.
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5.2.4 Timer handling

We have implemented the concept for timer management described in Chapter 4

by creating a C++ class SDLTimerProcess, which is a schedulable Reflex activity.

It is activated when the first timer in the timer queue expires. Its run() method

called by the Reflex scheduler removes all expired timer signals from the queue

and sends them to the corresponding processes.

Every Reflex application features a system clock that generates tick events

in application-specific intervals. With such a clock module, it is straightfor-

ward to realize a concrete implementation and subclass of the abstract base class

TimerService. The SDLTimerProcess instance requires such a TimerService in-

stance (cf. Fig. 4.8 on page 106). As an example for a TimerService subclass and

only possible solution on platforms with no available hardware timer module, we

have implemented a TickTimerService class that makes use of the Reflex system

clock.

Additionally, we developed a TimerService subclass called

HardwareTimerService that takes advantage of the hardware timer module

of the MSP430 microcontroller. This hardware timer uses a 16-bit counter and

allows to generate interrupts at arbitrary points in time that can be defined by

writing to a 16-bit capture-and-compare register. This makes it possible to avoid

clock ticks in regular time intervals and generate expiration events by hardware

interrupts. If the timer expiration interval is too long and cannot be expressed

with 16 bits, the HardwareTimerService handles timer overflow interrupts and

then checks again if the expiration time can be programmed into the 16-bit

register.

This interrupt-driven implementation allows to set timers with a high precision,

for instance 1 µs, and does not overload the system with clock tick processing at

this rate (1 MHz in this example). The current time can be determined by reading

the 16-bit counter register of the hardware timer and maintaining a counter for

the number of overflows that have occurred. Remember that we use a 32-bit

integer number to represent the system time. The approach is adaptable to other

platforms with hardware timer modules, since they often provide similar features.

The classes implemented to provide the SDL timer management and their

relationships are depicted in Fig. 5.9 in a UML-like notation. Only one of the two

TimerService variants is needed by an application.
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Figure 5.9: Software architecture around the SDLTimerProcess class.

For each timer defined in an SDL process, a timer signal instance is part of

the instance-specific data structure representing the process. This is realized by

the DEF_TIMER_VAR macro inserted by the code generator. Each timer signal has a

unique identifier—the signal code—which is assigned by CAdvanced. Furthermore,

the signal contains a pointer to the SDLProcess instance it belongs to, pointers

to form double-linked lists (cf. 5.9), and a field that indicates the time when the

timer expires.

5.2.5 Interfacing the environment

We have discussed two principle methods for interfacing the environment from an

SDL system: by calling functions defined in an external library or by SDL signal

exchange. Since the first method is already supported by a tool, we will focus only

on the second approach, in the following.

In the SDL model, there is no difference between a signal output to the en-

vironment or to another, internal SDL process. It is possible to declare process

identifiers for external processes, too. So, one can use explicit addressing in the

signal output, i.e. the OUTPUT TO form, also for environment processes. Exactly

the same mechanisms for signal exchange as presented above in Sect. 5.2.2 are ap-

plied. This means that the receiving object must provide a function sendSignal()

to which the output signal is passed.
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We have abstracted the common functionality of environment processes and the

SDLProcess wrapper class for SDL processes in a base class called SDLProcessBase.

This class provides the input queue and the signal handling functionality. It is sub-

classed from Activity. When a signal is written to the input queue by means of

calling the sendSignal() function, this activity is scheduled. The run() function

is a pure virtual method, i.e. concrete subclasses must provide an own implemen-

tation and define how to handle the input signals in the queue5. Furthermore, the

SDLProcess class has additional fields required for acting as the wrapper for an

SDL process that are not needed for an environment object.

The addresses of environment activities must be declared as external process

identifiers in the SDL model such that signals can be sent to them. Vice versa,

signals can be sent to any SDL process, that is its wrapper object, from outside

the SDL system.

5.2.6 Putting it all together: the SDLSystem class

We have designed an SDLSystem class that provides access to the timer process

and signal buffer management functions used by all SDL processes.

The SDLTimerProcess class implementing the timer management is universally

applicable for all SDL system applications. It relies on an entity that allows to

schedule a timer event and to get the current time. This class, derived from

TimerService, has to be developed once for a specific target platform.

As discussed in Sect. 5.2.3 the memory management approach chosen by an

application is not fixed. We recommend to utilize statically allocated pools, how-

ever also dynamic memory management based on a heap is possible. Therefore,

the SDLSystem class has pure virtual functions for the allocation and deallocation

of signal memory. Any concrete class must implement these functions, for instance

relying on a signal buffer manager as shown in Fig. 4.7 on page 104.

The SDL process instances must have access to an instance of the system class

derived from SDLSystem. We provide this access by defining a global variable of the

system class in the application. For an application that is built from multiple SDL

systems, different names for the system objects would have to be used. Within

the system class, any number of environment processes could be defined. This

is shown in the class diagram in Fig. 5.10 that also highlights which parts of an
5The SDLProcess class calls the PAD function of the associated SDL process from its imple-

mentation of the run() function.
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Figure 5.10: Classes required to build an application from an SDL model.

Application- and platform-specific classes as well as those belonging to the Re-

flex operating system and to our tight integration library are distinguished.

application developed with our tight integration approach are created by the code

generator and what has to be added manually.

For applications that use dynamic memory management all the sources can

be taken from the tight integration library and the code generator output. There

would be no application-specific classes except any environment processes. Other-

wise, the signal buffer pools have to be provided based on the requirements of the

application.

Finally, the initialization procedure of the SDL system shall be presented. The

generated code contains a function yInit() which calls generated initialization

routines of the SDL system structure in a hierarchical manner. The routines

related to SDL processes initialize the process type instances in the symbol table

and create static objects for each process instance, including the wrapper objects

of type SDLProcess. When such an object is created, a so-called start-up signal is

sent to the wrapper’s own input queue, so that the activity is scheduled and the

start transition can be triggered by this signal.

It is important that the signal buffer management is set up and all process

wrapper objects are created before any of the start transitions is executed, because

already within this transition signals might be sent to other processes. Therefore,
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the application initializes the global SDLSystem object and calls the yInit() func-

tion before enabling the operating system scheduler.

5.3 Implementation results

Our tight integration model presented in the previous section has been fully imple-

mented and adapted6 to Reflex ports for the LEON2 processor and the MSP430

microcontroller.

LEON2 is a 32-bit general-purpose RISC processor conforming to the SPARC

V8 instruction set [Gai05]. The tight integration library has been used for the

software implementation of the IEEE 802.15.3 MAC protocol on this processor.

The MSP430 16-bit processor family [Tex06] from Texas Instruments is com-

monly used in ultra-low-power embedded systems and in particular on wireless

sensor node platforms. Therefore, in this section, results for the tight integration

model for this microcontroller will be presented. They have been obtained by tar-

geting the TMote Sky wireless sensor node platform [Cor06] and conducting real

measurements. The microcontroller variant on this platform is a MSP430F1611

with 48 kbytes program memory (Flash) and 10 kbytes RAM.

Memory consumption and execution speed are the most important performance

figures to evaluate our approach. We designed simple SDL models to measure the

required memory resources and processing speed of the generated code on the

target platform. One set of SDL models consists of a number of processes that

are arranged as a chain. The first process receives a signal (Ping.request) from

the environment and, subsequently, sends a new signal of the same type to the

process next in the chain as shown in Fig. 5.11. The receiver acts in the same way

until the last process in the chain returns a Ping.confirm signal that is passed

along the chain in reverse order. The signals are sent immediately without any

processing delay after receiving the input signal that triggered the action. Finally,

the Ping.confirm signal is sent to the environment.

Another SDL model designed for performance measurements is very similar to

the previous model, but introduces signals that are stored in the save queue to

reflect the behavior of typical SDL models. Our model consists of four processes

that exchange Ping.request and Ping.confirm signals in the same manner as

6The interrupt-driven timer management is processor-specific and was adapted in order to take

advantage of the available hardware timers.
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Figure 5.11: Simple SDL models composed of 2, 4, or 8 processes used for perfor-

mance measurements.
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Figure 5.12: Performance measurements for an SDL model composed of 4 processes

with signals S1 and S2 placed in the save queue.

described above. However, additional signals S1 and S2 are created and sent to

processes further ahead in the chain where they are saved until the Ping.request

or Ping.confirm signals are received. This is shown in Fig. 5.12.

To compare our results with a light integration approach, these models have

been targeted to the TMote Sky platform using the SDL run-time environment

from Telelogic. For a fair comparison, both approaches apply the same optimiza-

tions, for instance explicit addressing of signals, removal of code for unused data

types, identical compiler optimization level, etc. Of course, the light integration

model requires the standard C library for the dynamic memory management func-

tions malloc() and free(), and the run-time environment supports all concepts of

the SDL language. In both approaches a timer that generates ticks every 10 mil-

liseconds is used, even though the SDL models have no timers declared. FIFO

scheduling has been selected for Reflex in all cases.

Tables 5.2 and 5.3 show the memory consumption of four different applications:

a chain of 2, 4, and 8 processes (Ping2, Ping4, and Ping8) and the model depicted in

Fig. 5.12 (PingSave4) with the light and tight integration approaches, respectively.

The required memory space for the operating system Reflex, Telelogic’s SDL

run-time system or our tight integration library, the system environment func-
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Table 5.2: Required memory space and processing speed of four SDL systems

implemented with the light integration approach.
Light integration approach

Ping2 Ping4 Ping8 PingSave4

Required memory space
text 12128 12516 13284 12814
bss 358 578 1018 844
data 202 222 262 222
total 12688 13316 14564 13880

Execution time (5000 signals)
ticks 548,364 1,212,656 2,450,632 2,291,606
seconds 4.28 9.47 19.1 17.9

Table 5.3: Required memory space and processing speed of four SDL systems

implemented with the tight integration approach.
Tight integration approach

Ping2 Ping4 Ping8 PingSave4

Required memory space
text 7730 8174 9062 8576
bss 220 416 808 654
data 460 624 952 676
total 8410 9214 10822 9906

Execution time (5000 signals)
ticks 371,371 851,502 1,729833 1,756,036
seconds 2.90 6.65 13.5 13.7

tions, library functions, and the code generated from the SDL model for the Ping2

application is listed in Table 5.4. Only the memory required for the SDL model

varies between the different applications.

The read-only text segment contains all the executable code and read-only

data, i.e. constants. The data and bss segments are used to store uninitialized

data and data that will be initialized to zero, respectively.

The increase in the text segment size is caused by the PAD functions, i.e. state

machine implementations, for the processes added to the model. The increased

size of the data segments between the Ping2 models and the models with more
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Table 5.4: Sizes of the text, data, and bss segments (in bytes) of the executable for

the Ping2 application with the light and tight integration approaches, respectively.
Ping2 app. Light integration Tight integration

text data bss text data bss

SDL model 824 238 152 888 190 442
Environment 286 0 12 320 0 6
Reflex 3370 8 4 3470 8 4
Run-time system /
integration library

5562 110 34 2944 22 8

libgcc and libc 2086 2 0 128 0 0

Total (Ping2.elf) 12128 358 202 7730 220 460

processes can be explained by the additional arrays needed to store the state

transition tables and the process information in the symbol table. This data cannot

be removed from the generated code because it is essential for the proper operation

of the process state machines. Finally, the bss segment grows because of the

additional objects for the process-specific information and the process wrappers

in the tight integration approach. The latter is the reason why the bss segment

for the tight integration is larger. It should be noted that additional data memory

is required for the stack and for the heap, in the case of the light integration

approach. The memory required for the signal pools does not vary between the

Ping2, Ping4, and Ping8 applications, because in all cases only two buffers for

every signal type (Ping.request and Ping.confirm) are needed.

Due to the optimized run-time system, the re-use of the operating scheduler for

the SDL process scheduling, and the absence of the libc library, the tight integra-

tion model saves more than 4 kbytes of program memory compared with the light

integration approach. The results also show that the overall memory requirements

for the applications are acceptable for a typical 16-bit microcontroller. However,

the savings in the required memory space is not the only and primary advantage

of our tight integration model, but rather that it enables preemptive scheduling,

does not require dynamic memory allocation, and brings a performance increase

as presented further below.

The toolchain MSPGCC for the MSP430, i.e. C/C++ compilers msp430-gcc

and msp430-g++, and the linker msp430-ld, where used to create the executables.

The compiler version 3.2.3 was used and the optimization level O2 selected. The
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Table 5.5: Performance results for the SDL model Ping2 obtained with different

compiler optimization levels (O2 and Os) for the mspgcc.
Ping2 app. Light integration approach Tight integration approach

Opt. level O2 Opt. level Os Opt. level O2 Opt. level Os

Mem. breakdown
text 12128 bytes 11830 bytes 7730 bytes 7636 bytes
data 358 bytes 358 bytes 220 bytes 220 bytes
bss 202 bytes 202 bytes 460 bytes 460 bytes
Sum 12688 bytes 12390 bytes 8410 bytes 8316 bytes

Execution time
(1000 signals)

112227 ticks 114140 ticks 75926 ticks 74796 ticks

Table 5.6: Processing time with varying number of signals sent into the SDL model.
Ping2 app. Light integration approach Tight integration approach

Execution time
1000 signals 112,227 ticks (0.88 s) 75,926 ticks (0.59 s)
5000 signals 548,364 ticks (4.28 s) 371,371 ticks (2.90 s)
10000 signals 1,096,376 ticks (8.56 s) 742,574 ticks (5.80 s)

optimization level Os gave better performance results for the tight integration

approach and worse results for the light integration as presented in Table 5.5.

Furthermore, the time to process a signal sent by the environment into the

SDL model has been measured. For this purpose, the environment generates a

Ping.request signal, sends it to the first process in the chain, and waits for the

reply (Ping.confirm signal). Upon reception of the Ping.confirm from the SDL

system, the next Ping.request is sent immediately. The number of repetitions

of this procedure has been varied. Table 5.6 reports the time it takes to process

1000, 5000, and 10000 signals by the Ping2 application.

The obtained figures are deterministic values, they have been measured with

the help of the microcontroller’s hardware timer module. The timer module’s clock

source is based on the processor’s 4MHz clock. The tick counter difference between

the sending of the first signal and the reception of the last signal is communicated

via a serial interface to a PC.

Table 5.6 clearly shows that the execution time grows linearly with the number

of created signals, independent of the integration approach. The tight integration is
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more than 30 percent faster than the light integration version. In Tables 5.2 and 5.3

the processing times for all four previously introduced systems with 5000 created

Ping.request signals are given for the tight and light integration models. The

applications using the tight integration approach outperform the light integration

by 25–30 percent.

By extensive simulations and execution of the IEEE 802.15.3 MAC protocol

implementation generated from an SDL model on real hardware for many hours

without failures we could demonstrate that the tight integration library works

correctly. A formal verification of our design and the Reflex operating system

would be required to prove correctness and qualify applications developed using

our SDL-based approach for safety-critical tasks.



Chapter 6

SDL Cosimulation with the

TSIM Instruction Set

Simulator

The feasibility of our concepts for a cosimulation of an abstract SDL simulation

with an instruction set simulation has been demonstrated by a prototypical soft-

ware implementation of all required components. This implementation is specific

to the chosen ISS and also to the simulated SDL model, since functions for translat-

ing signal parameters from the host computer representation to the target system

had to be developed.

We have selected the TSIM instruction set simulator for the LEON2 processor

as an example. This was motivated by the fact that our IEEE 802.15.3 MAC

protocol implementation was targeted for this processor and the cosimulation im-

plementation could directly be used to support hardware/software partitioning of

the protocol. For ultra-low-power microcontrollers, e.g. the Texas Instruments

MSP430 or Atmel AVR, there are also instruction set simulators available. The

basic principles for a cosimulation with, for instance, the MSPsim [EDF+07] or

ATEMU [PBM+04] simulators are identical, even though some more effort has to

be spent to implement the software framework for controlling the simulators.

In the remainder of this chapter, we will first give a brief introduction to TSIM

and show how it can be controlled from the environment functions of the SDL

simulator. Then, we present our software framework which implements all the

cosimulation concepts that have been elaborated in Sect. 4.3. Hardware/software

145
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Figure 6.1: Architecture of the LEON2 processor. All the depicted components

are simulated by TSIM.

partitioning results that have been created by applying the cosimulation to the

IEEE 802.15.3 MAC protocol implementation are covered in Chapter 7.

6.1 The instruction set simulator TSIM

The TSIM simulator [Gai04] was developed by Gaisler Research AB as an in-

struction set simulator for the LEON2 processor, i.e. TSIM emulates the SPARC

instruction set. Moreover, the complete LEON2 processor system, including data

and instruction caches, memories, and peripheral devices, such as the interrupt

controller, timers, and UARTs, are simulated by TSIM. It is possible to provide

user-defined modules for a coprocessor, floating-point unit, and memory-mapped

I/O devices. This way, system designers are able to analyze the performance and

the behavior of LEON2-based designs consisting of hardware and software parts.

The components that are part of the simulator are depicted in Fig. 6.1.

TSIM provides a number of features for system profiling and testing. So it is

possible to display the number of cycles a program spent in different functions.

For debugging purposes, breakpoints can be set, processor registers and memory
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locations can be read or written, and code coverage can be recorded.

TSIM is a cycle-true simulator, which means that the simulation time is in-

cremented according to the exact processor instruction timing and also takes into

account memory latencies. As an optimization to achieve faster simulations, TSIM

advances its simulation time to the next scheduled event in the event queue when

it encounters the power-down instruction. This instruction is typically used in

programs to save power when it is waiting for a timer interrupt or other external

event and there is no current task for the processor.

The instruction set simulator is available as a stand-alone program and also as a

library. The library version enables the integration into a larger simulation frame-

work. Both modes of operation, stand-alone and library, are equivalent in terms

of supported commands and features. When starting the simulator, the processor

configuration can be fixed. This includes the selected clock frequency, cache con-

figuration (sizes of data and instruction cache), or options for the arithmetic-logic

unit (ALU).

The TSIM library provides a set of functions to control the simulation. The

most important library functions are listed in Table 6.1 together with a short

description of their purpose. In addition to these functions, the library exports two

objects, simif and ioif, that allow, for instance, to read the current simulation

time or to generate an interrupt. For a more comprehensive overview and detailed

description of the interface to the TSIM library we refer to the manual [Gai04].

Under the Windows operating system, the TSIM library is provided as a dynamic

link library (DLL), tsimleon.dll.

As already mentioned above, TSIM allows to extend the functionality of the

LEON2 processor system by introducing user-defined modules. With the help of

these modules it is possible to study the effects of designing a part of the system

functionality in hardware. An example could be an extension of the instruction

set which is realized by an application-specific coprocessor.

Alternatively, hardware accelerators could be introduced as memory-mapped

I/O modules. In this case, an access by the processor to a memory location within

the region of such an I/O module is interpreted by this module as an access to a

control register or internal memory.

Depending on the addressed register, a user-defined operation is triggered. This

could involve, for instance, direct memory access (DMA) to other memory locations

or an interrupt request. The simulator’s event queue can be used to schedule events
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Table 6.1: Overview of the most important functions exported by the TSIM library.
Function Purpose
int tsim_init(char *option) Initialize TSIM with the desired configuration

options (clock frequency, etc.)
void tsim_exit(int val) Perform cleanup of the simulator
void tsim_get_regs(int *regs)

Reading and writing processor registers
void tsim_set_regs(int *regs)

void tsim_inc_time(uint64 t) Advance the simulator time without executing
any instructions.

int tsim_cmd(char *cmd) Execute a TSIM command, such as loading an
application (”load app.elf”), starting a program
(”go [address] [count/time]”), continue the ex-
ecution for a certain amount of clock cycles or
time (”cont [count/time]”), enable or disable
profiling, etc. The command syntax is identical
to the stand-alone mode of TSIM. The return
value indicates the simulation status.

for a later time if the initiated operation does not finish immediately.

Address decoding is handled in a simple way by TSIM. Any access that does

not belong to emulated memory or control registers is forwarded to I/O devices.

Any user-defined I/O module must provide a set of functions that are called by

the simulator core. The most important ones of these are summarized in Table 6.2.

The I/O module is compiled as a library and linked to TSIM. A structure with

pointers to the module-specific functions in Table 6.2 must be exported by the I/O

module DLL.

In summary, TSIM is an excellent tool to investigate design alternatives of hard-

ware/software systems based on the LEON2 processor. The simulation is much

faster than RTL simulations, and there is no need for the time-consuming design of

hardware components in VHDL. In the following section, we will tackle the prob-

lem of integrating TSIM with an SDL simulation. Our goal is to perform hard-

ware/software partitioning of the communication protocol implementation with

the help of TSIM and to reuse the existing SDL-based test benches and communi-

cation network models to generate input stimuli for the hardware/software system

under design.
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Table 6.2: Relevant functions that have to be provided by user-defined I/O devices.
Function Purpose
void io_init() Called at simulator startup. Used to initialize

the I/O device.
void io_exit() Called when simulator exits.
int io_read(unsigned int addr, Read access to given address.
int *data, int *ws) The data value at that address as well as the

number of wait states is passed to the simula-
tor. The return value indicates the status of
the access (success or memory error).

int io_write(unsigned int addr, Write access to given address.
int *data, int *ws, int size) The parameter size indicates how to inter-

pret the data parameter (either as byte, half-
word, word, or double-word value). The num-
ber of wait states and return value is identical
to the read access.

6.2 Integrating TSIM with Telelogic’s SDL simulator

The cosimulation framework consisting of TSIM and the SDL simulation is shown

in Fig. 6.2. The TSIM library as well as an I/O module library are linked to the

SDL simulator—a stand-alone application built from the SDL run-time environ-

ment for functional simulations and the SDL model of a communication network.

The four environment functions xInitEnv, xCloseEnv, xInEnv, and xOutEnv

interact with the TSIM and I/O module libraries in such a way that the interleaved

execution of the simulators and the signal exchange are realized. The principle

operation was presented in Sect. 4.3 (cf. Fig. 4.14 on page 119) and shall not be

repeated here.

For the simulated hardware/software system to be able to process signals sent

from the SDL system, the signal parameters must be copied into the address space

of the LEON2 processor. This can be achieved with the help of an I/O module.

The I/O module DLL simply has to export functions which allow to access the

memory space within the LEON2 system that is under control of this I/O module.

Some effort has to be spent to transform the signal parameters from one execu-

tion platform to the other. TSIM emulates the LEON2 processor, which conforms

to the SPARC instruction set and, thus, uses big-endian byte ordering. This means

that the most significant byte of a 32-bit data word has the lowest address. Intel
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Figure 6.2: Applied scheme for coupling the SDL simulator with TSIM. The func-

tions realizing the interface are shaded in gray.

x86 PCs, however, are little-endian machines. We have developed the cosimu-

lation framework on x86 PCs, therefore it was necessary to convert SDL signals

exchanged between the two simulators in order to preserve the meaning of the data,

rather than simply copying the memory buffer occupied by the signal parameters.

In our approach, the conversion is performed within the environment functions

xInEnv and xOutEnv. This way, the time required for the conversion does not affect

the performance of the implementation model simulated by TSIM. We will go into

the details of signal type conversion in the following section 6.3 on implementation

aspects.

6.3 Implementation of the cosimulation framework

The exchange of SDL signals between the models simulated by TSIM and the

SDL simulator is facilitated by an I/O module designed for this purpose. The

implementation is specific for the TSIM simulator and must be adapted when

targeting a different ISS. However, the signal queue handling can be easily reused

as it is written in standard C. This I/O module must provide the functionality to

read and write SDL signals from both, the implementation model and the SDL

simulator. For the latter, library functions are exported and can be called from

other applications.
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Figure 6.3: Chain of actions related to the output of an SDL signal from the

implementation model simulated by TSIM to the external SDL system.

When an SDL signal shall be sent from the TSIM application to its environ-

ment, the signal parameters are copied to a certain memory buffer within the

address range of the I/O module. Additionally, there is another address which is

used to store the length of this signal data buffer, and an address for the signal

code.

When the signal code is written into this designated address it has the effect

that the I/O module immediately stops the simulation. Hence, the signal code

must be written after all the other parameters have been copied. The signal

identifier, the memory buffer for its parameters, as well as the length of this buffer

can be read from the SDL simulator’s environment function xInEnv by calling

an exported function of the I/O module library. Subsequently, the parameters

have to be correctly decoded from big-endian byte ordering to little-endian for the

simulator platform.

Figure 6.3 shows the sequence of function calls related to the output of an SDL

signal from the implementation model simulated by TSIM. At first, the TSIM

simulation is resumed by calling the corresponding TSIM library function from

the environment function xInEnv.

Any signal from the implementation model to the external SDL simulation is

sent via the environment of the implementation model (step (2) in Fig. 6.3). The

operating system scheduler eventually calls the run function of the environment

process (3). The signal is consumed from the input queue and written into the

special memory region of the I/O module (4). When the signal code has been

written, the simulation is stopped by the I/O module library and the execution

resumes in the xInEnv function from where TSIM was called. Here, the current

simulation time of TSIM at the time when it stopped is retrieved (not shown
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Figure 6.4: Interactions between the SDL simulator, I/O module, and TSIM re-

lated to the exchange of SDL signals from the Telelogic simulator to the imple-

mentation model.

in the figure) and the SDL simulation time is advanced accordingly. It is checked

whether the simulation stopped because of a signal output (5). If this is the case, a

corresponding signal for the SDL simulation is allocated, its parameters are copied

from the I/O module buffer, and, finally, the signal is output to the appropriate

receiver process (6). If a timing rules checker is utilized, the output signal is also

sent to that process.

The I/O module provides also the mechanism to send SDL signals to the imple-

mentation model. Figure 6.4 illustrates the principle of operation and the entities

involved in the signal exchange. Any signal that is sent from the SDL system

running in the Telelogic simulator to the implementation model is passed to the

environment function xOutEnv. As already outlined in the previous section, the

signal parameters are converted from the PC platform with little-endian byte or-

dering to big-endian for the LEON2 processor (step (1)). The memory buffer

containing the converted signal parameters, its length, as well as the signal code

is passed to the I/O module by calling the exported library function put signal

(2). The implementation model shall process these signals as soon as the TSIM

simulation is resumed. Therefore, the put signal function requests an interrupt of

the LEON2 processor (3). The environment process contains an interrupt service

routine for exactly this interrupt.

More than one signal may be passed to the xOutEnv function before the sim-

ulation of TSIM is resumed by the xInEnv function. Therefore, all these signals

must be kept in the I/O module until they are retrieved by the implementation

model. The order in which the signals are received by the I/O model is preserved
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by storing them in a linked list as indicated in Fig. 6.4. In addition to copying the

signals to the I/O module, another copy could optionally be sent to a timing rules

monitor process.

When there are no more executable transitions in the SDL simulator, xInEnv

is called and, in this course, TSIM is resumed. Control is passed to the interrupt

handler in the environment process. This function performs read operations on

the memory region belonging to the I/O module in order to obtain all the relevant

information about the stored input signals (4). New SDL signals are allocated and

initialized with the retrieved parameters. Finally, depending on the signal code,

the signals are put into the input queues of the intended SDL processes (5), that

is of their process wrapper objects to be exact.

The order in which the signals are sent to the processes is the same order in

which they have been output by the abstract model, because the signal queue in

the I/O module operates as a FIFO buffer without exception. Hence, the SDL

semantics are preserved in this respect.

Figure 6.5 summarizes the implementation of the four environment functions

in a pseudocode representation. It has been presented in one of our conference

papers [Die08]. In Fig. 6.6, a part of the I/O module library source code is listed.

The queue for the signals from the SDL simulation is realized as a linked list with

sentinel nodes first elem and last elem marking the beginning and the end of

the list. The next pointer of the (dummy) end element indicates the last (real)

signal in the queue. Two memory buffers, sigin and sigout are used to store

the signal parameters. The function get signal done is called from xInEnv after

running TSIM, in order to reinitialize the signal buffers.

The interleaving of the simulation runs is illustrated with a simple example in

Fig. 6.7. This sequence chart shows the interactions of the SDL simulator, TSIM,

and the I/O module. The time axis is drawn vertically with time increasing in

downward direction.

At the beginning, xInitEnv is called by the SDL simulator. The TSIM simu-

lation is initialized and the target application is loaded from this function. After

that, the SDL simulation runs for the first time and executes all transitions at

time 0. In this example, a timer is set at time 5 seconds. Hence, xInEnv is called

with this time as the next timer event. At this point, TSIM is allowed to run for

the first time, in fact for a duration of 5 seconds.

When the TSIM simulation returns, it is first checked what is the current
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Initialize TSIM
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End if

xOutEnv(SignalOut):
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Convert SignalOut parameters into big-endian representation
Put a copy of SignalOut into signal queue in I/O module

Figure 6.5: Pseudocode implementation of the environment functions.

TSIM simulation time and whether a signal was sent from the implementation

model. In our example, no signal was output and TSIM ran for the complete 5

seconds. This means that the SDL simulation resumes at time 5 and the timer is

triggered. During this simulation, one SDL signal is sent to TSIM, namely SigA.

This will cause an interrupt to the LEON2 processor such that the execution of

the implementation model will continue with the retrieval of SigA.

Before TSIM is allowed to resume, all SDL transitions at time 5 are processed

and a timer set to 10 seconds. In the example, the implementation models sends a

signal (SigB) at time 6 seconds to the SDL simulation. TSIM stops immediately

after this action. As described above, the current TSIM simulation time and

the signal is retrieved by the environment function. Consequently, the simulation

resumes at time 6 seconds.

A screenshot from a real cosimulation run of the same example as in Fig. 6.7

is displayed in Fig. 6.8. The implementation model generates SigB not exactly at

time 6 seconds because it uses timer ticks with an interval of 10 milliseconds.

Cosimulation performance We have conducted measurements of the real sim-

ulation time for a wireless communication network modeled in SDL. Our model

of the IEEE 802.15.3 MAC protocol, that will be introduced in the next chap-
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// SIGOUT: signal into SDL simulation
#define SIGOUT_CONTROL_REG 0x20000010
#define SIGOUT_DATA_REG 0x20000014

// SIGIN: signal from SDL simulation
#define SIGIN_CONTROL_REG 0x20000020
#define SIGIN_DATA_REG 0x20000024
...
typedef struct sig_info_t
{

unsigned short signal_code;
unsigned short signal_length;
unsigned int *buffer;
struct sig_info_t *next;

} sig_info_t;

static sig_info_t first_elem, last_elem;

static void io_init(sim_interface sif,
io_interface iif) {

sigout_control = 0;
sigout = (char *) malloc(SIGOUT_SIZE);
sigin = (char *) malloc(SIGIN_SIZE);

first_elem.next = &last_elem;
// pointer to last element in queue

last_elem.next = &first_elem;

sigout_write_ptr = (int*) sigout;

sigin_write_ptr = sigin;
sigin_read_ptr = (int*) sigin;

}

static int io_read(unsigned int address,
int *data, int *ws) {

sig_info_t *p;
...
if (address == SIGIN_CONTROL_REG) {

p = first_elem.next;
if (p != &last_elem) {

*data = (p->signal_length << 16) +
p->signal_code;

sigin_read_ptr = p->buffer;
first_elem.next = p->next;
if (p == last_elem.next)

last_elem.next = &first_elem;
free(p); }

else *data = 0;
return 0; }

if (address == SIGIN_DATA_REG) {
*data = *sigin_read_ptr;
sigin_read_ptr++;

return 0; }

return 1;
}

static int io_write(unsigned int address,
int *data, int *ws, int size) {

if (address == SIGOUT_DATA_REG) {
*sigout_write_ptr = *data;
sigout_write_ptr++;
return 0; }

if (address == SIGOUT_CONTROL_REG) {
sigout_control = *data;
simif.sim_stop();
return 0; }

return 1;
}

static void put_signal(unsigned short code,
unsigned short len, char* sig_buf) {
sig_info_t *sig_info = (sig_info_t *)

malloc(sizeof(sig_info_t));
sig_info->signal_code = code;
sig_info->signal_length = len;
sig_info->buffer = (int*) sigin_write_ptr;
sig_info->next = &last_elem;

last_elem.next->next = sig_info;
last_elem.next = sig_info;

memcpy(sigin_write_ptr, sig_buf, len);
sigin_write_ptr += len;

ioif.set_irq(13, 0);
}

static unsigned short get_signal_code() {
return(sigout_control & 0xFFFF); }

static unsigned short get_signal_length() {
return(sigout_control >> 16); }

static void get_signal(char* sig_buf,
unsigned short len) {

memcpy(sig_buf, sigout, len); }

static void get_signal_done() {
sigout_control = 0;
sigout_write_ptr = (int*) sigout;

sigin_write_ptr = sigin;
sigin_read_ptr = (int*) sigin; }

Figure 6.6: Source code extracts for the I/O module library.

ter, served as the basis for the simulations. We instantiated four IEEE 802.15.3-

compliant device entities, each consisting of a simplified physical layer and our

MAC protocol model, and connected them with an airlink model. An SDL test

bench was used to start one of the devices as a network coordinator, while the
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Figure 6.7: Interactions between the environment functions of the SDL simulator,

the TSIM library, and the I/O module. The example shows the exchange of signals

in both directions.

other three devices associated themselves with the coordinator. We conducted an

abstract simulation, that is without using real-time. The real simulation time for

a network simulation of 5, 10, and 20 seconds was measured.

In order to study the performance of the cosimulation framework, we extended

the experimental set up by a fifth device simulated by the instruction set simulator

TSIM. An implementation model of the same MAC protocol model was created by

generating C code from the SDL model and compiling it for the LEON2 processor.

The physical layer of the network model was extended in such a way that it allowed

to receive and send frames from and to the TSIM model.

After performing the network creation and association procedures, one of the

devices was ordered to periodically send an 8-byte asynchronous data packet. The

interval between two data requests was set to 100 ms. The other devices were idle,

which means that they only received and processed the beacon (broadcast every
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No connection with the Postmaster.
Running stand-alone.
xInitEnv called
Initialising TSIM...

TSIM/LEON SPARC simulator, version 1.3.3
(professional version)

Copyright (C) 2001, Gaisler Research
...

Loading application...
section: .rom_vectors, addr: 0x40000000,

size 4104 bytes
section: .text, addr: 0x40001008,

size 14696 bytes
section: .data, addr: 0x40004970,

size 300 bytes
read 143 symbols
Starting application...
resuming at 0x40000000
Current time 0 (0.000e+000 us)

Welcome to the SDL SIMULATOR.

Command : Proceed-Until 12

*** TRANSITION START
* PId : SenderProcess:1
* Now : 0.0000
* SET on timer T at 5.0000
*** NEXTSTATE Idle

xInEnv(5,0) called.
Executing TSIM command: cont 5000000 us
Advancing until time: 5.000000125 s

*** TIMER signal was sent
* Timer : T
* Receiver : SenderProcess:1
*** Now : 5.0000

*** TRANSITION START
* PId : SenderProcess:1
* State : Idle
* Input : T
* Now : 5.0000
* OUTPUT of SigA to env:1
* Parameter(s) : 0
xOutEnv: SigA has been received by env
* SET on timer T at 10.0000
*** NEXTSTATE Idle

xInEnv(10,125) called.
Executing TSIM command: cont 5000000 us
io_write at 0x20000014, data=0x00000000
io_write at 0x20000010, data=0x00040002
Received signal: 2 (SigB)
* OUTPUT of SigB to SenderProcess:1
* Parameter(s) : 0
Advancing until time: 6.016702201 s

*** TRANSITION START
* PId : SenderProcess:1
* State : Idle
* Input : SigB
* Sender : env:1
* Now : 6.0167
* Parameter(s) : 0
*** NEXTSTATE Idle

xInEnv(10,125) called.
Executing TSIM command: cont 3983298 us
Advancing until time: 10.000000325 s

*** TIMER signal was sent
* Timer : T
* Receiver : SenderProcess:1
*** Now : 10.0000
...
Command :

Figure 6.8: Screenshot from the SDL simulation of the example in Fig. 6.7.

50 ms) and data frames transmitted in the network. In the configuration with the

connected instruction set simulator, the implementation model within TSIM was

ordered to send these 8-byte data packets in the same intervals as before, while

all other stations, this time, remained idle. This way, the overall network traffic

could be kept on the same level as in the first set up.

We counted roughly 3000 transitions and 400 timer expirations per device

within one second of simulation time, on average. In Table 6.3, the measurement

results of the real simulation time for both scenarios are summarized. They have

been obtained on a Windows PC with a Pentium 4 processor clocked at 2.53 GHz

and 512 MB RAM. During the simulation, there was no polling of user input and

no output of any trace information. As expected, the consumed real time grows
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Table 6.3: Comparison of the real simulation times for wireless network simulations
with and without an external instruction set simulator.

Simulation
time

Pure SDL simulation
of 4 devices

Cosimulation with ad-
ditional implemenation
model in TSIM

Number of signals
exchanged between
SDL and TSIM

5 s 6.0 s 25.3 s TSIM → SDL: 116
SDL → TSIM: 992

10 s 11.0 s 49.5 s 325 / 2328
20 s 19.9 s 98.8 s 779 / 5147

linearly with the simulation time. At the beginning of the simulation, the device

association was simulated and required more processing time than the simulation

of a network with regular asynchronous data transmissions.

When looking at the difference between two simulation runs with identical

simulation times, it can be found that the overhead caused by the instruction

set simulation adds less than 4 s per second of abstract simulation time. The

simulation of the implementation model by TSIM is between 10 and 20 times slower

than the SDL simulation of a single protocol entity. This can be concluded by

relating the additional execution time caused by TSIM to the pure SDL simulation

processing time for four devices.

This clearly shows that instruction set simulators can provide performance es-

timations and profiling information for a target implementation within relatively

short real processing times. They are orders of magnitude faster than RTL sim-

ulations. The effects of a hardware/software partitioning decision can be studied

within a couple of minutes with this method.

Furthermore, the results confirm that our general concepts for an SDL cosim-

ulation with an ISS are highly efficient and have been correctly and efficiently

implemented. Synchronization between the two simulators occurs only at those

times when a signal is sent from the ISS or when a timer expires in the functional

SDL model. This avoids excessive scheduling overhead. The number of signals

exchanged between TSIM and the functional SDL simulation is given in the last

column of Table 6.3.
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Design Results

The protocol design methodology presented in the previous chapters has been vali-

dated by applying it to an embedded system implementation of the IEEE 802.15.3

MAC protocol. This work was conducted in our research group at the IHP as part

of the Body Area System for Ubiquitous Multimedia Applications (BASUMA)

project, a publicly-funded research project with the focus on developing a body-

area wireless communication system supporting multimedia applications and, at

the same time, requiring only very low power consumption [BAS06].

The IEEE 802.15.3 standard has been selected within the project for a num-

ber of reasons. Firstly, the supported data rates from 11 to 55Mbit/s enable the

exchange of MPEG-1 video streams, which was one of the requirements for the

body area system. Secondly, TDMA-based channel access allows devices to con-

serve energy by turning on their radio transceivers only at scheduled time slots for

transmission or reception. The channel time allocations are also useful to convey

real-time or multimedia traffic due to their guaranteed bandwidth and periodic

occurrence. Thirdly, effective power management schemes provided by the stan-

dard further enable groups of devices, that are part of so-called power-save sets, to

synchronize their wake-up schedules in order to exchange data among them. The

network coordinator role can be handed over smoothly to another device, thus

providing a means to share the energy consumption equally among all devices in

the network.

The basic operation of an IEEE 802.15.3 wireless network and its TDMA su-

perframe structure has been explained already in Sect. 2.1.2 and shown in Fig. 2.4

on page 27. Due to the complexity of the protocol specification we refer to the

159
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standards document [IEE03a] for a comprehensive presentation. The functionality

most relevant for hardware/software partitioning will be covered where necessary

in the following sections of this chapter.

We have designed and manufactured a chip that contains a LEON2 proces-

sor [Gai05] and a dedicated protocol accelerator for the IEEE 802.15.3 MAC. The

LEON2 processor runs the protocol software and interacts with the hardware ac-

celerator. The software was automatically generated from an SDL model of the

protocol. Hardware/software partitioning of the inital SDL model was necessary

to reach the data rates and timing requirements of the standard at a moderate

clock frequency and, hence, with low power consumption. We have applied the

cosimulation framework introduced in Chapter 6 to identify the functionality of

the protocol accelerator.

The 32-bit LEON2 processor has been selected because it allows to address

more than 64 kbytes of memory and, most importantly, the design is available as a

soft core, i.e. the VHDL sources for the processor are open. It is, therefore, easily

possible to extend the processor design with dedicated hardware connected to the

processor bus.

We illustrate our embedded systems protocol design methodology by presenting

the results of each step in the design flow applied to the IEEE 802.15.3 MAC

protocol implementation. It should be pointed out that this is not an academic

exercise based on a simplistic protocol, but rather a protocol whose complexity

exceeds what is typically found in embedded systems. We begin with a brief

overview of our SDL model in Sect. 7.1, followed by a presentation of cosimulation

results and hardware/software partitioning in Sect. 7.2, and, finally, in Sect. 7.3

describe the architecture and behavior of the protocol accelerator.

7.1 SDL model of the IEEE 802.15.3 MAC protocol

Our primary design objective was to develop a complete functional model of the

protocol. The functionality should be structured by means of SDL blocks and

processes in such a way that the model would be easy to understand, validate, and

extend by application-specific features. The model should also lend itself to hard-

ware/software partitioning and make it easy to generate separate implementations

for piconet coordinator (PNC)-capable and simple devices.

The design of the IEEE 802.15.3 MAC protocol SDL model was the focus of
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Figure 7.1: Structure of our SDL model for the IEEE 802.15.3 standard.

one of our conference papers [DBDK04].

7.1.1 Model architecture

Our top-level SDL system consists of a variable number of Station instances that

are connected with each other through the Airlink block. This makes it possible

to simulate the operation of a piconet consisting of several wireless devices. Stimuli

to the individual stations as well as station configuration parameters are generated

from within the Testbench block. This is shown in Fig. 7.1. The interfaces of the

Station block to higher protocol layers are the MAC and MLME SAPs as defined

in the standard. More details on the Station block structure are given below.

The Testbench contains SDL processes that send requests through the SAPs

of the Station block. We use direct addressing to send requests to the respective

stations. It is also possible to run a test program that is stored in a file instead of

fixing the order of events in an SDL process.

In the Airlink block, a simple broadcast channel model is used. Frames that

are transmitted by a station are received by all other stations at exactly the same

time. It is possible for frames to collide or to be received in error due to random

bit error insertion. This is indicated to the receiving stations by means of an extra

signal parameter.

Referring to the 802.15.3 standard, the Station block contains five sub-blocks.
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These are MAC, MLME, PHY, PLME, and Config as shown in Fig. 7.1. Only the MAC

and MLME block functionality—the focus of the next section—will be used for the

final MAC layer implementation.

The PHY and PLME sub-blocks contain abstract models for frame transmission,

reception, and channel sensing as well as the PIB (personal information base)

attributes of the PHY layer. The PHY layer functionality, such as synchronization,

equalization, or coding, are outside the scope of this model.

The Config block is only required for SDL-specific reasons in order to handle

more than one station in the piconet.

7.1.2 Behavioral description

The MAC layer functionality is contained completely in the MAC and MLME blocks,

which corresponds to a clear separation of the so-called data path and control

path. All data flow processing, such as

• check sum (CRC) calculation,

• encryption and decryption of the frame payload,

• interfacing with the PHY layer, and

• frame buffering

is modeled in the MAC block. The complexity of the MAC block functionality is rather

low and the modeling of the mentioned algorithms straightforward, therefore we

will focus more on the control path in the following. In the original model, the

data path processing algorithms have not been optimized for efficiency, since at

this point in the design flow we were aiming at a functional model of the protocol.

The algorithms have been optimized later for hardware/software partitioning and

implementation.

The MLME block is responsible for controlling the operation of the MAC block,

maintaining protocol operation, and handling requests received via the MLME

SAP. The design of the MLME block was driven by an object-oriented approach,

which means that we first tried to identify basic modular units that are respon-

sible for a single task and provide an interface, but no implementation details, to

their clients. These units are known as classes in the object-oriented domain and

are represented in our case by SDL processes. The exchange of signals between
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functionality
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Figure 7.2: Functional layering of the processes in the MLME block

processes corresponds to the invocation of methods on an object. The concepts of

concurrent process execution and asynchronous communication, which are native

to SDL, have the great advantage of not anticipating any implementation choices

regarding the hardware or software mapping and the kind of communication be-

tween processes.

The modularization approach has got the advantage that many designers in a

team can work on the SDL model in parallel. Additionally, it leads to a decoupling

of the individual modules (processes), so that the model can be modified or ex-

tended easily, without breaking the system. In short, applying the object-oriented

design methodology for protocol design introduces the same benefits as seen for

the development of large software systems, i.e. reduced complexity, clarity, etc. By

taking the model for the MLME block as an example, our approach will be illustrated

in some detail below.

Service layers in the MLME block The SDL processes in the MLME block can be

grouped into three conceptual service layers and one management plane, as shown

in Fig. 7.2. Additionally, within each layer, we identified those processes that are

only needed for a PNC-capable device. This layering approach and the separation

of PNC-specific functionality further enhances the clarity of the model and gives

initial indications for a potential hardware/software partitioning.

The lowest service layer in the MLME block is called TransportEngine. It pro-
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vides to the upper service layers the ability to receive and transmit service data

units (SDU) such as commands, beacons or data. This means that upper layer

processes do not have to deal with the channel access procedure, fragmentation

and reassembly, retransmission, exact timing of transmission and reception, and

so on. The timers in this layer require an accuracy of 1 µs.

On top of the TransportEngine, the CoreServices are placed. The processes in

this layer are responsible for maintaining the piconet operation. The CTAServer

process, for instance, manages channel time allocations in the superframe. A

scheduling algorithm determines which stations are granted channel access based

on previous channel time reservations. The Synchronization process observes the

reception of beacons and takes action if the beacon was lost in several consecutive

superframes.

The highest service layer contains the so-called MlmeProcesses. These are,

for example, the StartPiconet, Scan, AssocServer, or AssocClient processes.

They handle the service primitives received via the MLME SAP. Their behavior

can be described on a high level by making use of lower-layer services such as frame

transmission and reception. Note, that the CoreServices and MlmeProcesses do

not require timers with an accuracy of 1 µs, but millisecond timers are sufficient.

Finally, the ManagementPlane contains the MlmeCtrl process, which distributes

requests received via the MLME SAP and controls the overall station behavior, and

the MacPib process that manages the personal information base (PIB) attributes.

Our layered approach leads to a decoupling of the functional modules of our

model. Additionally, it facilitates the introduction of non-standard protocol ex-

tensions or new frame types. If desired, any additional functionality that relies on

the basic frame exchange mechanisms can be placed above the TransportEngine

layer with no or little impact on the overall model. Likewise, the basic channel

access scheme or interframe spaces can be adapted by modifying the model at a

single well-defined place.

The presented structure of the MAC protocol functionality gives good indi-

cations about which functions should be implemented in hardware and which in

software. This is due to the fact that all bulk data processing is located in the MAC

block and all time-critical control operations can be found in the TransportEngine

layer.
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The TxQueue process As an example of a module in the TransportEngine

layer, we will present the SDL process called TxQueue. It is the responsibility of

this process to queue service data units, i.e. beacons, commands or data units,

for later transmission on behalf of other processes. This is initiated by sending

a TxAddBeacon.request, TxAddCmd.request or TxAddData.request. When the

SDU has been transmitted successfully, has timed out or has reached the retrans-

mission limit, this is indicated via the TxSDUStatus.indication signal to the

respective client process and the SDU is removed from the queue.

The TxQueue process will fragment SDUs into several frames, if necessary.

Only if all fragments have been transmitted successfully and in the correct order,

the SDU is removed from the queue. Another SDL process, called TxControl,

queries the TxQueue process for the next frame to be transmitted depending on

the current time slot. This can be either a beacon frame, a frame that is to be

sent during the contention access period (CAP) or during a channel time alloca-

tion (CTA) for that device. The TxQueue process then determines which frame

is to be transmitted next, based on frame priorities, remaining queuing time etc.

It also performs aging of the queues in regular intervals, so that the SDUs are

removed from the queue when their maximum queuing lifetime has expired. Note,

however, that the TxQueue process is not responsible for maintaining the super-

frame timer and observing the channel access procedure. This is modeled in the

TimingControl and TxControl processes, respectively. The TxControl process

also informs the TxQueue process about a successful or failed frame transmission

via the TransmissionStatus.indication signal.

Additionally, the TxQueue process initiates a request for more chan-

nel time for frame transmissions by sending NewMCTAFrame.indication and

AsyncChannelTimeRsv.indication signals to the CTAClient process when a new

SDU is queued and the current channel time reservation for the station is insuffi-

cient.

In Fig. 7.3, the relationships between the TxQueue process and other processes

together with the signals that are exchanged between them are shown. A discussion

of all the processes in the SDL model and their inter-relationships is outside the

scope of this thesis.
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Figure 7.3: Process interaction diagram for the TxQueue process.

7.1.3 Results

Altogether, our functional model of the IEEE 802.15.3 MAC protocol consists of

24 SDL processes, with on average 10 pages per process. There are more than

160 declared SDL signal types for the communication with the physical layer and

higher layer (as defined by the standard) as well as for the internal communication

among the processes.

We have extensively simulated the protocol model in order to validate its func-

tionality. For this purpose we instantiated four IEEE 802.15.3 stations, including

a PNC, in simulation and tested the network behavior in response to requests re-

ceived from a higher layer and with transmission errors in the physical layer. A

formal verification by means of an external tool has not been conducted due to

lack of time.

Exemplary message sequence charts involving two stations are given in Fig-

ures 7.4 and 7.5. They show the start of a new piconet by the first device after a

scan procedure did not find any wireless network. The second device also performs

a network scan and detects the newly created piconet by receiving beacons from

the first device, now the PNC. Afterwards, the device synchronizes and associates

itself with the network (Fig. 7.5).
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Figure 7.4: Message sequence chart showing the signal exchange from the higher

layer (device management entity, DME) which initiates the formation of a new

piconet.

7.2 Partitioning into hardware and software

In the following, we describe how our approach to hardware/software partitioning

of communication protocol designs based on SDL/TSIM cosimulations was applied

to the IEEE 802.15.3 MAC protocol. Rather than presenting a complete overview

of all simulation runs and partitioning decisions, which would go beyond the scope

of this thesis, we focus on a simple example that can be followed without knowing
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Figure 7.5: Continued message sequence chart from Fig. 7.4 showing synchroniza-

tion with the PNC and association of a device. The frame exchange over the

wireless medium is presented much shortened.

all the details of the protocol.

Hardware/software partitioning of the MAC protocol started from an all-

software model. This initial implementation model was automatically generated

from the SDL model introduced in the previous section. A number of optimiza-

tions have been applied to this model, for instance all signal outputs use explicit

addressing of the receiver process, and inefficient SDL data types, such as strings
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Figure 7.6: Experimental setup for the simulation of an IEEE 802.15.3 network

consisting of a piconet coordinator (PNC) device and a non-PNC device. The

latter is simulated by TSIM in order to obtain performance results for the MAC

protocol implementation model.

or sets, were replaced by C++ implementations. Our tight integration library,

which was presented in Chapter 5, has been used to target the SDL model to the

Reflex operating system for the LEON2 processor.

In order to analyze the performance of the MAC implementation model and

to study the effects of hardware accelerators, we simulated a piconet coordinator

(PNC) device by means of the SDL simulator and connected it to a non-PNC device

simulated by TSIM, in a first experimental setup. The two MAC protocol entities

were interconnected by an abstract physical layer model for frame transmission

and reception as well as clear channel assessment. The behavior of the physical

layer was modeled according to the IEEE 802.15.3 physical layer standard, i.e.

with data rates between 11 and 55 Mbit/s.

A test bench on top of the MAC layer served as the initiator of protocol oper-

ations, such as starting the piconet or exchanging data, and responded to service

primitives received from the MAC layer, for instance an association indication.

Our overall simulation environment for hardware/software partitioning is shown

in Fig. 7.6.

The scenario that we consider in this section involves the following protocol

functionality. The PNC device is ordered to start a new piconet. Subsequently,

the other device simulated by TSIM associates itself with the new piconet. Upon
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successful association, the PNC sends data to the newly associated device by using

the asynchronous data service of the MAC protocol. For simplicity, all frame

exchange may take place in the contention access period, which was chosen to

have a duration of 20 ms in a superframe of 50ms duration.

The expected frame exchange including the timing requirements are presented

in Fig. 7.7. A violation of the expected timing behavior of the implementation

model can be noticed either by a deviation of the expected protocol behavior of

the PNC, for instance by repetitive retransmission attempts and, eventually, giving

up the data transfer, or by means of a dedicated timing rules monitoring process.

The latter approach helps significantly in the identification of missed deadlines.

The simulation of the scenario described above showed that the implementation

model of the IEEE 802.15.3 MAC protocol managed to synchronize as well as

associate successfully with the piconet coordinator. However, the exchange of

data failed because the immediate acknowledgment (ImmAck) frame sent by the

device was received by the PNC too late. After the end of transmission of the data

frame a timer was started by the PNC. If no frame is received within the RIFS

(retransmission interframe space), which equals to 27 microseconds, the timer will

expire and trigger a retransmission of the data frame.

We investigated the reasons for the implementation model to miss the deadline

for transmitting the ImmAck frame. The physical layer model for the device oper-

ates as follows. Precisely at the time when the frame preamble, physical layer and

MAC header have been received, i.e. 22.5 µs after the start of frame transmission1,

an SDL signal indicating the reception of a new frame is sent to the MAC layer.

This signal, PHY RX START.indication is defined by the standard and carries the

MAC header information. This will request an interrupt to the LEON2 processor

as outlined in Chapter 6. At the same time, the PHY DATA.indication primitive

containing the frame payload is also output to the MAC protocol implementation.

The assumption that the MAC header information is available from the physical

layer immediately after it has been received by the antenna is unrealistic. We

neglect the delays in the physical layer and make best-case assumptions in order

to obtain the minimum requirements for the MAC protocol implementation. As

is common in physical layer implementations, we assume the presence of a buffer

1The 2.4GHz band physical layer of the IEEE 802.15.3 standard uses a preamble of 192 sym-

bols and requires 56 symbols to transmit the PHY and MAC headers at a symbol rate of

11Msymbols/s.
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Figure 7.7: Message sequence chart showing the service primitives exchanged via

the MAC and PHY layer interfaces for the start of a new piconet, association

procedure, as well as asynchronous data exchange by the PNC. The data frame

exchange fails because of the immediate acknowledgment frame being transmitted

too late by the implementation model.

that can store received bytes and that can be read out by the MAC layer.

Before the ImmAck frame can be sent as a response to the received frame, the

header information has to be evaluated, and the frame body must be checked for
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any transmission errors2. For this purpose, a 32-bit CRC value over all payload

bytes is calculated and compared with the received frame check sequence. The

CRC check has been optimized for speed by using a table lookup algorithm. If the

destination address in the MAC header corresponds to the device ID, an immediate

acknowledgment is requested by the sender, and the CRC check is successful, the

ImmAck frame has to be transmitted after the SIFS (short interframe space), i.e.

10 µs after the end of the received frame.

The protocol functionality related to the reception of a frame and generation

of an ImmAck frame has been implemented in two different ways. In the straight-

forward approach directly resulting from the initial SDL model, several SDL pro-

cesses are involved in the processing, namely RxFrame, RxControl, TxControl,

and TxFrame (cf. Fig. 7.2 on page 163). In addition to interrupt latency, process-

ing is delayed by scheduling overhead and the exchange of SDL signals. Interrupt

latency consists of any delay caused by the application running with disabled in-

terrupts in a critical section and by the execution of instructions necessary to save

the processor state before actually jumping into interrupt handler code.

In the optimized approach for acknowledgment generation, all required func-

tionality is performed by the interrupt service routine, thus avoiding any scheduling

overhead. This optimization could only be achieved by manually re-implementing

the algorithms in C++. The corresponding transitions and signals have been re-

moved from the SDL model. The purpose of this approach was solely to measure

if an all-software implementation of the acknowledgment generation would be fea-

sible and what clock frequency required.

With the help of the instruction set simulator, we have measured the time

required by the implementation model to handle the interrupt triggered by the

PHY RX START.indication signal and to generate the ImmAck frame with both

approaches and different frame lengths. We used the I/O module to print the

exact clock cycle count of the TSIM simulator when a specific memory location

was accessed. Table 7.1 provides the simulation results for frame lengths of 8,

80, and 800 bytes. The mandatory physical layer data rate of 22 Mbit/s has been

assumed for frame transmissions.

The results show that, in all cases, not only the deadline for the timely trans-

2The physical layer and MAC header information is protected by its own CRC header check

sum. According to the standard, only correctly received headers are passed by the physical layer

to the MAC layer.
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Table 7.1: Results from the simulation of data transmissions by the PNC with

different frame lengths. (All times are relative to the start of the data frame

transmission.)
Event CRC calculation and ACK generation by

Original SDL model Interrupt service routine

PHY RX START.ind sent by 23 µs
SDL simulation

PHY RX START.ind received 64 µs
by interrupt handler

Deadline for ACK received
by PNC

8 bytes 54 µs
Frame length 80 bytes 80 µs

800 bytes 342 µs

Output of PHY TX START.req

for ImmAck
8 bytes 1005 µs 114 µs

Frame length 80 bytes 1204 µs 151 µs
800 bytes 2115 µs 498 µs

mission of the ImmAck frame has been missed, but also the deadline for the start

of reception of this frame by the PNC was exceeded, which has the effect that a

retransmission would be triggered. We observed that interrupts were disabled due

to execution in a critical section at the time when the PHY RX START.indication

signal was sent to the implementation model so that its processing was addition-

ally delayed. In effect, the interrupt handler for processing the signal was executed

only 64 µs after the start of the frame transmission.

We have measured that the interrupt latency amounts to 25 microseconds

when the interrupt can be immediately served. Even this lower bound on interrupt

latency leads to a late acknowledgment transmission for short received frames since

the interframe space before the ImmAck frame is 10 µs and the frame body may

well be shorter than 15 µs.

Furthermore, the results show that the CRC processing speed of the frame

body within the interrupt service routine does not reach the physical layer data

rate of 22Mbit/s, but is in the order of 16 Mbit/s. This can be concluded by
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Figure 7.8: Hardware design of the 32-bit CRC algorithm consisting of 32 D flip-

flops and a number of XOR gates according to the generator polynomial specified

by the standard [IEE03a].

determining the time difference for a large frame (800 bytes) and a short frame

(8 bytes). Except for the additional data processing, all other processing overhead

remains the same.

The measurements have been obtained with the LEON2 processor clocked at

40 MHz. Though it is possible to use a higher clock frequency in order to meet

the real-time requirements, this would also mean an increase of the system’s power

consumption. At a fixed supply voltage, the power consumption of a digital system

is proportional to its clock frequency. The targeted application field of wireless

body area networking with battery-powered devices excludes this design alterna-

tive. Besides, the processor would be busy calculating CRC values during frame

reception and transmission, so that other protocol functionality or application pro-

cessing would be delayed. This is particularly severe as the interrupts are disabled

during the CRC processing.

Alternatively, the CRC calculation and acknowledgment generation could be

performed in hardware. In fact, the CRC-32 algorithm can be realized with a

single 32-bit shift register as shown in Fig. 7.8. It is easily possible to modify the

design slightly in order to process 8 bits with every clock cycle in paralel, thus

bringing the required clock frequency for the maximum data rate of 55 Mbit/s

down to less than 7MHz. The generation of the ImmAck frame in response to a

previously received frame can also be designed with little effort in hardware. For

this purpose, registers for the device ID (8 bits) and the piconet ID (16 bits), as

well as for the source ID of the received frame have to be introduced. On reception

of the MAC header, only few bit comparisons must be performed.

When comparing the presented design alternatives, mapping the CRC check

and acknowledgment generation to hardware is preferable due to the reduced power
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consumption compared with an all-software implementation. This result was ex-

pected and, in fact, has been realized in many other communication controllers

before. We presented the partitioning problem in detail to illustrate the applica-

tion of our cosimulation framework.

In the same manner as outlined above we identified the following MAC protocol

functionality to be designed in hardware:

• Frame reception and transmission procedure. This involves the calculation

of the CRC checksum over frame body data, encryption and decryption, ac-

knowledgment generation as well as direct access to frame storage in memory

in order to free the processor from copying data between the memory and

protocol accelerator. The security algorithms have not been included in the

first hardware design.

• Superframe timing. According to the channel time allocations broadcast in

the beacon frame and based on timers with an accuracy of 1 microsecond, the

channel access is controlled by the hardware accelerator. This means that

exactly at the scheduled time the transmission of the right frame according

to the current position in the superframe is triggered. This could be, for

example, a beacon frame, or a data frame to be sent to another device in

an allocated time slot. During the contention access period, the backoff

procedure is performed in hardware. When an immediate acknowledgment

is requested, a hardware timer is set and a retransmission started if the

acknowledgment was not received, provided that there is enough time for it

in the current time slot.

• Beacon parsing. Since beacon frames carry the information on how the time

until the next beacon is allocated to the devices, it is necessary to parse the

channel time allocations in the beacon immediately after it has been received

or transmitted. Otherwise, a portion of the superframe would be missed

due to delayed processing in software. As stated above, this information is

required for superframe timing.

• Parts of the transmission queue. According to the current position in the

superframe, the right frame for transmission must be selected. Since time

slots can be rather short, in the area of few hundred microseconds, and de-

vices may stop receiving when a transmission has not started shortly after
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the beginning of a time slot, the frame data must be accessible immediately

at the scheduled time. This can be achieved by placing parts of the trans-

mission queue in hardware. We refrain from designing the complete queue

in hardware in order to save resources for storing the frame information.

From an implementation point of view, it is much easier and more flexible to

manage the queues by software and keep the queue elements in data mem-

ory. It is sufficient to provide the hardware queue with the elements first in

the queue and update this information after completed transmissions or for

frame prioritization.

The results show that the line between the hardware and software partitions

cuts through SDL processes, in some cases. The transmission queue, for instance,

is not entirely designed in hardware as this would put an inflexible upper limit

on the number of frames that can be handled by the implementation and waste

hardware resources. Access to the first elements in the queue, however, is time-

critical, and a part of the transmission queue is therefore designed in hardware.

Another good example is the beacon analysis. Only the channel time allocation

(CTA) information element is relevant for the time-critical medium access and, for

this reason, part of the protocol accelerator, while all other information elements

contained in the beacon frame are processed in software.

Some parts of the Transport Engine block remain in software, such as the

defragmentation of received frames and the forwarding of complete SDUs to the

appropriate receiver processes. These are control-dominated functions, whereas

the processing-intensive and time-critical functionality of the channel access mech-

anism is handled by the protocol accelerator.

All SDL processes above the Transport Engine have no tight timing con-

straints. Consequently, they are mapped to software and handled by the LEON2

processor. Interrupts are used to signal protocol-related events from the hardware

to the software. Conversely, the software interacts with the hardware block by

writing to and reading from a number of control registers.

7.3 Protocol accelerator design

In this section we first introduce the system-on-chip target platform for the

IEEE 802.15.3-compliant wireless communication system. Then, we present the

architecture of the protocol accelerator and how its components work together to
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provide the MAC functionality identified as hardware partition in the previous

section.

Within the scope of this thesis we can only describe a small part of the RTL

design of the protocol accelerator. We focus on the design of the transmission

queue component as it exemplifies the tradeoff between hardware and software

implementation, the interface between the software and hardware parts, and, last

but not least, the hardware transmission queue consisting of several independent

queues for different frame types is a novel contribution as far as we know. The

protocol accelerator design was granted a patent [Die07].

The protocol accelerator is not limited to the IEEE 802.15.3 physical layer

specification. We show how our design can be used for different data rates and non-

standard physical layer timing parameters. Finally, the section is concluded with

results from an FPGA implementation of the complete system. The LEON2 pro-

cessor system including our protocol accelerator was also manufactured in 0.25 µm

technology at the IHP as an ASIC. This chip is currently being tested on a specif-

ically designed board.

7.3.1 Target hardware platform

Our wireless platform based on the IEEE 802.15.3 standard is composed of

the LEON2 processor and communication subsystems integrated on a single

chip [DEK07]. The processor runs protocol as well as application software. As

shown in Fig. 7.9, the communication subsystem is composed of the RF front-end,

digital baseband processor, and the MAC protocol accelerator as an important

component of our wireless platform.

The protocol accelerator is connected to the system bus, the AMBA AHB bus

(see Fig. 7.11). Via an AHB master interface it is possible for the accelerator to

directly access the system memory, for instance to store and retrieve frame data

without involving the LEON2 processor.

For data transfer to/from the baseband processor as well as status indications

from the physical layer, the MAC-PHY interface was designed. It is of master/slave

type with the MAC protocol accelerator acting as master. The accelerator sends

commands to control the start of transmission or reception and to exchange frame

data. The baseband processor contains a 32-byte data buffer for storing frame

data in both, RX and TX, directions in order to decouple the two protocol layers

with respect to timing (see Fig. 7.10). There are signal lines from the physical
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layer to the MAC hardware accelerator that indicate the status of these buffers

and can be used for flow control.
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Figure 7.10: Interface between MAC protocol accelerator and the physical layer.

TX Ready is applied when the TX buffer is not full, RX Start ind when the re-

ception of new frame has started, and RX Ready when the RX buffer contains

data.

7.3.2 Architecture

Figure 7.11 shows the main components of the protocol accelerator. The tasks

performed by each of the main components are listed below. They reflect the

protocol functions that have been identified in Sect. 7.2 to be designed in hardware.

• In receive direction, to retrieve frame data from the physical layer byte by

byte, perform packet filtering and CRC check, and to store the data at a

given memory location by means of direct memory access (components Rx

controller, CRC, and DMA).
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• In transmit direction, to retrieve frame data from a memory location, cal-

culate and append the check sum, and write the data to the physical layer

(components Tx controller, CRC, and DMA).

• To signal a successful reception or transmission of a frame to the processor

by an interrupt (component Interrupts).

• To analyze received and transmitted beacon frames and extract information

on channel time allocations (component Beacon parser).

• To manage a queue of frames that are to be transmitted, and to select an

appropriate frame for transmission (component Transmission queue).

• At the start of a time slot or following a frame transmission, to query a new

frame from the queue and, in the case that the frame must be acknowledged

by the receiver, wait for the acknowledgment frame (components Scheduler

and Timers).

• To perform the backoff procedure in the contention access period (compo-

nents Scheduler and Timers).

• To send an acknowledgment at the right time upon reception of a frame

that needs to be acknowledged (components Scheduler, Timers, and Tx con-

troller).

An additional component (CalcDuration), that is not shown in Fig. 7.11 for

simplicity, calculates the actual duration of a frame transmission based on its

payload length and data rate. This component is used to determine if a frame

transmission fits into an available time slot and when a transmission initiated by

the protocol accelerator will be completed by the physical layer.

7.3.3 Transmission queue

The Scheduler, Transmission queue, and DMA components in the protocol acceler-

ator facilitate a frame transmission operation that is not directly controlled by the

processor. This allows to reduce the clock frequency of the processor and, hence,

leads to possible energy savings. The Transmission queue component, that shall

be discussed in this section, has a key role in this operation.
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Figure 7.11: Hardware architecture of the protocol accelerator (direct memory

access data path highlighted by dashed blue lines) [DEK07].

The transmission queue designed for the IEEE 802.15.3 MAC protocol accelera-

tor contains and manages a table with information on frames to be transmitted—

not the frame data itself, which is stored in application memory. The protocol

software running on the LEON2 processor fills the table according to the gener-

ated frames and their transmission order. An interrupt is signaled to the processor

as soon as a frame from the queue has been transmitted successfully or its max-

imum retransmission limit has been reached. This indicates to the software that

the entry in the table is free and can be reused by another frame. An update,

however, does not have to happen immediately as there are still enough frames in

the hardware transmission queue.

The current design contains 8 table entries, but there might be many more, e.g.

32 or 64. In order to find the right frame upon request from the Scheduler quickly,

there are ordered lists for different frame types, for instance for beacon frames or

frames that can be transmitted in the contention access period. The table index

of the first list item is kept in a register. From this item the complete list can

be traversed by following the table index of the next list item, which is stored in

the table. Furthermore, there is a reference to the previous list item to support

delete operations efficiently. In essence, this forms a double-linked list. These lists

are also used to preserve the right order of data frames where the MAC protocol
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Figure 7.12: Structure of the transmission queue table and its elements.

provides an ordered delivery service to the higher layers. Figure 7.12 presents the

design concept of the transmission queue graphically.

While the software is updating the transmission queue, the hardware may not

access its contents in order to avoid inconsistencies. Similarly, when the hardware

is browsing the lists for a suitable frame to transmit, the software may not write to

the queue. Therefore, a lock must be acquired by the software before an operation

on the queue can be performed and released when it is done. When the queue is

locked, the hardware must defer access to it.

7.3.4 Support for flexible timing

The protocol accelerator has been designed such that it is not limited to a fixed

data rate and time intervals between consecutive frame transmissions (interframe

spaces). Instead, a number of software-programmable registers have been intro-

duced that completely determine the timing behavior of the protocol. These reg-

isters are read by the Scheduler to calculate the point in time when the next frame

can be transmitted. There are registers for SIFS, MIFS, and backoff slot duration,

each given in microseconds.

Additionally, there is one programmable register which contains a rate factor

and is used by the above mentioned CalcDuration component to calculate the

duration of frame transmissions.
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7.3.5 Software interface

The protocol software interacts with the hardware accelerator through a set of

registers that are accessible from the processor via memory-mapped I/O. A special

memory region is reserved for the accelerator. Additionally, interrupts are used to

signal events from the protocol accelerator to the processor.

There are a number of configuration registers that store MAC protocol infor-

mation like the piconet or device identifier. It is possible to enable or disable the

scheduler with another register. When the scheduler is enabled, the protocol accel-

erator will analyze beacon frames and seize transmission opportunities, otherwise

it is just in scanning mode and delivers received frames.

The protocol accelerator features four maskable interrupts: superframe start,

MAC header received, MAC frame received, and transmission queue interrupt.

The latter is triggered when a queued frame has been sent or was discarded. Two

registers indicate the first free queue index and the first index that contains a

transmitted or discarded frame. This way, the software does not have to browse

the complete queue to get this information.

To control the receive operation, there are registers for the address where the

next payload can be stored and for the size of this buffer. When the accelerator

has written data to this buffer, no other payload can be received unless a new

payload buffer address is provided by the software. An acknowledgment frame

will be generated only if the header and payload of the received frame have been

stored.

A complete list of all memory addresses in use by the accelerator and a brief

description of their purpose is summarized in Table 7.2.

7.3.6 Results

In a first step, we have implemented the LEON2 system and protocol accelerator

on a Xilinx Virtex-II FPGA. The functionality designed in hardware has been

removed from the protocol software by updating the SDL model. An interface to

the protocol accelerator has been added. The executable for the LEON2 processor

requires about 140 kbytes of program memory and 60 kbytes of data memory (bss

and data segments).

We have successfully tested the complete MAC protocol implementation, i.e.

the protocol software running on the LEON2 processor and the hardware accel-
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Table 7.2: Protocol accelerator registers and their purpose.
Offset Name Short description
00 hex RESET Protocol accelerator reset
10 hex RX HEADER Last received MAC header
1C hex TX CONFIG Filter frames based on correct destination ID, network ID
20 hex PHY PARAMS Configure PHY layer timings, interframe spaces
24 hex TIMING CONTROL Enable scheduler, scanning mode
2C hex CALC DUR PARAMS Configure non-standard preamble length and data rate
34 hex INTERRUPTS Pending interrupts register
38 hex INTERRUPT MASK Interrupt mask register
3C hex MLME PIB Set device and network ID, and whether device is currently

acting as PNC
4C hex ACK DUR Set duration of ACK frame, retransmission timeout

(RIFS), and backoff slot duration (in microseconds)
60 hex RX RESET Reset receive operation
64 hex RX BUFFER Set memory address where to write next received frame
68 hex RX BUFFER SIZE Set maximum size for received frame
6C hex RX START PARAMS Read PHY header information (frame length and data

rate, header check sequence)
70 hex RX FRAME PARAMS Result of receive operation (CRC correct, security check)
C0 hex TXQ PENDING Bitfield indicating which of the TX queue elements were

either successfully transmitted or discarded
C4 hex TXQ FIRST FREE Returns a TX queue index which is not currently filled

with an element
C8 hex TXQ FIRST DONE Returns a TX queue index with completed transmission
CC hex TXQ OPERATION Add or remove a TX queue element, lock TX queue

erator, by connecting two FPGA boards with wires. This emulates a network

of two devices. The wires couple the boards below the MAC layer, data sym-

bols are transferred serially at a rate of 20 Mbit/s. Table 7.3 shows the usage of

FPGA resources of the same LEON2-based system with and without the protocol

accelerator.

After the successful test on the FPGA, the complete LEON2-based MAC pro-

cessor including Flash memory and peripherals has been designed and taped out

as an ASIC in 0.25 µm CMOS technology [SDP+07]. The chip occupies an area of

31.9 mm2 and consumes 15mW/MHz. A die photo of the chip is shown in Fig. 7.13.

Based on our synthesis results, the silicon area of the protocol accelerator is about

1.8 mm2.
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Table 7.3: FPGA resources used by the MAC protocol system.

Resources LEON2 system Difference
Original With prot. acc.

4 input LUTs 11,582 24,034 12,452

Occupied slices 6,828 14,365 7,537

Block RAMs 20 22 2

Equivalent gate count 1,427,060 1,681,651 254,591

Figure 7.13: MAC processor chip layout.

This chip is currently under test on an evaluation board. First tests have been

successful. By connecting this board with the baseband processor running on an

FPGA and an RF board we will be able to demonstrate a complete IEEE 802.15.3-

compliant wireless system. Its components will then be integrated on a single chip

enabling applications with demand for high data rates, efficient power manage-

ment, and guaranteed quality-of-service, such as multimedia and real-time appli-

cations.



Chapter 8

Critical Assessment and Future

Work

This thesis focused on the development of an SDL-based protocol design and im-

plementation methodology for embedded systems. It has been successfully applied

to the design of an IEEE 802.15.3-compliant wireless communication system.

Driven by Moore’s law, i.e. the exponentially increasing count of transistors

that can be inexpensively placed on an integrated circuit, we expect that the trend

for miniaturization and growing complexity of embedded systems will continue.

This creates the potential of developing cheap, battery-powered, autonomous de-

vices with enough computing resources for smart applications and the ability to

communicate wirelessly. As key requirements for a massive deployment of such

devices we consider their reliable operation and ability to use the available scarce

energy efficiently.

However, as stated in the HiPEAC Roadmap on Embedded Systems [V+06],

”at present a huge gap exists between specifications and implementation of em-

bedded systems”. The utilization of methods that can use the system specification

for automatic or semi-automatic synthesis of the implementation was regarded as

a future trend in EDA tool development [V+06].

From our perspective, ideally, a high abstraction level functional specification

complemented by specifications of the non-functional requirements should be the

starting point for the design flow (see Fig. 8.1). The functional specification would

be composed of elements that use different models of computation, such as finite

state machines or synchronous data flow. Non-functional requirements comprise

185
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Figure 8.1: Elements of an ideal design flow that supports hardware/software

system synthesis by an automatic transformation from high-level specifications.

the real-time characteristics, expected quality-of-service, but also constraints on

power consumption and physical resource usage.

Tools supporting the formal verification of the specification against a set of

formally defined properties should be employed. An automatic transformation

of the high-level model into a, possibly distributed, system implementation that

satisfies the non-functional requirements would yield products that are correct by

design.

Though having been the focus of research in systems design in the past decades,

we are still far away from the ideal solution sketched above. Tools that address

some of the challenges have been proposed, for instance the automatic hardware

generation from SDL specifications or system specification using heterogeneous

models of computation. Especially the integration of non-functional requirements

into the design process still lacks support. Another hurdle for the wide adoption

of automatic synthesis tools is the efficiency gap compared with hand-optimized
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hardware/software systems.

Our work addresses system design from high-level specifications and contributes

to an increased efficiency of automatically generated software from SDL models.

Furthermore, we support hardware/software partitioning with our cosimulation

framework. We are aware that SDL is not a language that is equally well suitable

for all kinds of applications. However, its benefits in the area of protocol design

are well-known. One of the major drawbacks of the language is its inability to

specify real-time requirements, as discussed in Sect. 2.1. For hard real-time systems

development, extensions of SDL that have been proposed in the literature, or other

languages must be used.

We have demonstrated that our proposed methodology is well-suited for the

design and implementation of a complex wireless MAC protocol. We developed

an SDL model of the IEEE 802.15.3 MAC protocol from scratch and used the

C code generator from Telelogic to transform this model into a first, all-software

implementation, which was then optimized and the basis for hardware/software

partitioning. We have shown that the tight integration approach for the Reflex

operating system outperforms the standard light integration approach in terms of

memory consumption (by 25–30 percent) and speed (by 30 percent).

With the help of an available instruction set simulator and by performing

cosimulations with the abstract SDL model, we partitioned the protocol in such

a way that the clock frequency of the general-purpose processor could be lowered

while still satisfying the real-time properties of the protocol. A protocol acceler-

ator, which realizes the hardware functionality, was patented and designed as an

ASIC. The CRC calculation is the bottleneck of the design, a clock frequency of

7 MHz is required to achieve the 55 Mbit/s throughput of the maximum allowed

data rate.

Therefore, we are convinced that the proposed design flow and our tools ad-

vance the state-of-the-art in protocol engineering. Since we have specifically fo-

cused on resource-limited device in our work, the SDL-based design flow can be

employed in the area of wireless sensor networks that has attracted much research

interest in recent years. Even without hardware/software partitioning, but solely

by using the efficient automatic transformation of SDL models and their integration

into a sensor node operating system, our approach can facilitate the development

of formally verified applications and protocols.

In order to assess the suitability of the SDL-based design flow for typical wire-
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less sensor networks protocol implementations, we developed an SDL model of the

S-MAC protocol [YHE02], which was briefly described in Sect. 2.1.2, and created

a pure software implementation by applying the tight integration approach. We

targeted the application for the TMote Sky platform [Cor06], since the operating

system Reflex and device drivers for the hardware timers, radio transceiver, and

other peripherals were already available.

We used the S-MAC source code available in the TinyOS operating system1

as the basis for our SDL model. The entire functionality of the MAC layer was

included in the model. The only adaptations to the protocol we had to make

were related to the different timing of the radio transceiver and the timer handling

mechanism in the MAC protocol, as we will explain briefly in the following.

The original TinyOS S-MAC module was designed for the Mica and Mica2 sen-

sor nodes featuring a different radio transceiver, the RFM TR3000 with 20 kbit/s

data rate, than found on the TMote Sky board, where a CC2420 with 250 kbit/s

is used. Unfortunately, no open S-MAC implementation for TMote Sky exists.

The TinyOS implementation of S-MAC uses a timer that creates a tick every

millisecond. With every tick, a number of timer variables is decremented and a

corresponding action triggered when a variable reaches zero. Due to the higher

data rate on our board, the required timer granularity must be shorter than 1 ms.

This would lead to an excessive timer tick processing. Therefore, we decided to use

the TMote Sky hardware timer and perform the timer handling interrupt-driven.

This is more efficient, since the microcontroller may switch into sleep mode while

waiting for the next timer interrupt, while this was not possible in the original

design. However, this modification added some complexity to the model.

We tested our SDL-based S-MAC implementation by developing a simple

demonstration application. Its software architecture, which is typical for appli-

cations generated following our design flow, is shown in Fig. 8.2. On the lowest

software layer, the device drivers are situated. They must be provided by the

operating system and cannot be specified in SDL. As an example, the driver for

the CC2420 transceiver provides an interface to access configuration registers, re-

ceive and transmit buffers, as well as trigger commands such as starting a frame

transmission. It uses an SPI interface driver to communicate with the hardware

module. However, the interrupt service routine to handle the reception of a frame

1Source: TinyOS CVS repository on http://sourceforge.net. S-MAC is located at

tinyos-1.x/contrib/s-mac (last change: September 2005).
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Figure 8.2: Software architecture of the S-MAC demonstration application on

Reflex. It incorporates automatically generated code from the SDL model of the

protocol.

is not included in the CC2420 driver, as this functionality is application-specific.

On top of the driver layer are the automatically generated SDL processes, any

environment processes, and other application-specific classes. In the case of the

S-MAC application, there is one environment process, MacDriver, which acts as

the physical layer interface for the MAC protocol model. It communicates with the

S-MAC SDL process via SDL signals. Another environment process, MacConsole,

makes use of the S-MAC services and initiates communication with other devices

upon user requests received via a serial interface or by pressing the user button on

the board.

The figure also shows classes that are an integral part of the SDL run-time envi-

ronment, namely the SDLTimerProcess and SignalBufferManager. A Hardware-

TimerService is responsible for providing the current system time and notifying

the SDLTimerProcess when the next timer event has expired.

An application-specific FrameBufferManager class is used to allocate mem-

ory for received frames or user data that shall be transmitted. Like the signal

buffer manager, it uses pre-allocated pools of memory buffers. It could also have
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Table 8.1: Sizes of the text, data, and bss segments (in bytes) of the executable for

the S-MAC demonstration application created from an SDL model of the protocol.
S-MAC demo application Tight integration

text data bss

SDL model 14186 267 2246a

Run-time system 4196 24 6
Environment, application classes 6636 8 0
Reflex, device drivers 5882 12 4
libgcc 210 0 0

Total (smac.elf) 31110 267 2246
aThis number includes local process variables, timer signals, as well as

signal pools for the 18 signal types.

been modeled in SDL, but would have hampered comparability with the TinyOS

application.

Other OS classes, such as the scheduler or clock, are not shown in the figure

for simplicity.

The memory breakdown for our demonstration application is given in Table 8.1.

Similarly to the presentation of the tight integration results in Sect. 5.3, we differ-

entiate between the automatically generated SDL model, the SDL run-time system,

application-specific classes including the environment processes, operating system

and device driver classes, and the gcc library.

Only the share of the SDL model and the run-time environment has to be

considered for the comparison with the TinyOS S-MAC implementation, as all

the other parts would be required by a similar TinyOS demonstration application,

as well. As stated in [Pol05] the size of the S-MAC implementation for TinyOS

requires slightly more than 6 kbytes of program memory and about 500 bytes of

RAM. This result was obtained for the 8-bit ATmega128L microcontroller from

Atmel. The MSP430 processor on the TMote Sky board, however, is a 16-bit

microcontroller, which has the effect that the code size will be larger, particu-

larly when manipulating 8-bit data as is often the case in the S-MAC protocol

implementation.

Our results show that the automatically generated code and the necessary

SDL run-time environment require more memory space (in total 18 kbytes pro-

gram memory) than a native C implementation. The size of the application,
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which is slightly larger than 30 kbytes, is well within the region of available mem-

ory resources of today’s ultra-low-power microcontrollers. The SDL-based design

approach, however, offers a fast validation by means of simulations and a formal

verification of the protocol.

The memory required for the run-time environment is slightly increased com-

pared to the results of Sect. 5.3. This comes from the fact that the S-MAC SDL

model uses more data types, for example structs, than the simple Ping application.

The code generator recognizes which data types are used in the model and includes

certain functions to support these data types by defining precompiler switches. For

instance, when structs are used in the model, a function that allows to check if two

instances are equal by comparing all struct fields, is included. This is a drawback of

the code generator as it does not recognize if such an operation is actually needed

by the model.

Future Work The proposed design flow could be extended in a number of ways

to support the designer and to add more benefits.

Currently, the designer still has to write some C++ source code when using

the tight integration model and our cosimulation framework. This applies mainly

to the handling of SDL signals. We recommend to use pre-allocated signal pools

so that there is no need for dynamic memory allocation. The signal pools could be

automatically generated from a list of signal names and a user-defined number of

signals of each type to be pre-allocated. Furthermore, related to the cosimulation

framework and the exchange of SDL signals and their parameters between the

instruction set and SDL simulators, the source code responsible for copying the

signals to and from the I/O module could be generated automatically based on a

list of the signal types to be exchanged.

The tight integration model could be easily extended to support process or

signal priorities. The SDL tool from Telelogic allows to assign such priorities in

the SDL model. Our integration library would have to be adapted in such a way

that the priority-based scheduler of the Reflex operating system is chosen and

that the priority information in the generated code is passed as a parameter to the

process wrapper instances, which are Reflex activities.

Today, protocols are typically not designed by reusing a set of previously de-

signed and verified protocol elements. The design process could be fastened and

design quality improved by creating the possibility to compose complex protocols
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from atomic building blocks. Approaches in this direction have been briefly looked

at in this thesis, however they are still not common practice. A future research

topic could be the design of such miniprotocols in SDL and of mechanisms that

enable their composability. Similarly, pre-designed hardware components for each

miniprotocol could be added to a protocol design framework that facilitates mod-

ular protocol engineering.

The automatic generation of VHDL designs from SDL descriptions has been

the focus of a number of researchers, and an elaborate hardware/software codesign

tool for rapid prototyping of hard-real time applications has been presented by

Muth in [Mut02]. This hardware compiler could be combined with our work.

Ideally, optimizations that would allow to map smaller chunks than complete SDL

processes into hardware should be added.



Chapter 9

Conclusions

Embedded systems, such as wireless sensor nodes or microcontrollers embedded

in another device, are characterized by limited processing, memory, and energy

resources, the need for reliable operation for months or years without maintenance,

and the ability to communicate with other electronic devices. Applications and

communication protocols developed for such platforms, therefore, must use the

available energy as efficiently as possible and must not contain design errors that

lead to system failures or other unexpected behavior.

In this thesis we presented a design methodology for embedded systems with

this kind of requirements. The high abstraction level, formal language SDL was

chosen to model system behavior because of its popularity in protocol design.

SDL models can be simulated, formally verified, and transformed to C code by an

automatic transformation. We explicitly do not support hard real-time systems

design.

The first contribution of this thesis is a tight integration library for Telelogic’s

CAdvanced code generator targeting the Reflex operating system. Reflex is a real-

time operating system for deeply embedded systems and has been ported to a

number of 8-, 16- and 32-bit microcontrollers. We compared our approach with

the existing light integration approach and achieved significant improvements. Our

tight integration library is lightweight and, therefore, meets the requirements of

the intended application area.

Our second contribution addresses hardware/software partitioning. We pro-

vide a cosimulation framework that allows coupling of an implementation model—

consisting of software and hardware models—simulated by the TSIM instruction
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set simulator with an abstract SDL simulation. This helps to identify timing bot-

tlenecks of the implementation. The functional SDL model, which was the starting

point for the generation of the implementation, is reused as a test bench for the

implementation model. Identified timing bottlenecks can be tackled by developing

more efficient software algorithms, using a higher clock frequency or, in some cases,

by designing an optimized hardware solution. An automatic generation of VHDL

from a high-level specification was outside the scope of this thesis.

Finally, we applied our integrated SDL-based design flow to the design and

implementation of a complex communication protocol, the IEEE 802.15.3 wireless

MAC protocol. The LEON2 processor was chosen as the target processor for

the software generated from our SDL model of this protocol. With the help of

the cosimulation framework we performed a hardware/software partitioning of the

protocol and identified the required protocol accelerator functionality. A hardware

design of this accelerator was presented in this thesis. Together with the LEON2

processor it was integrated on a single chip and manufactured at the IHP. This

successful result proves the validity and effectiveness of our approach.



List of Acronyms

ARQ Automatic Repeat reQuest. ARQ mechanisms are used to initiate retrans-

mission of lost or destroyed PDUs.

ASIC Application-Specific Integrated Circuit.

ASIP Application Specific Instruction set Processor.

BASUMA Body Area System for Ubiquitous Multimedia Applications, BMBF

project (2004–2006).

CDMA Code Division Multiple Access.

CPU Central Processing Unit.

CRC Cyclic Redundancy Check. A special class of algorithms used for error

detection where a binary message is treated as polynomial and is divided

by a so called generator polynomial. The remainder of the division serves

as error check sequence and is attached to the original message. Generator

polynomials can be selected such that they detect error bursts up to a certain

length.

CSMA/CA Carrier Sense Multiple Access with Collision Avoidance.

DECT Digital Enhanced Cordless Telecommunications.

DLL Dynamic Link Library. A software module that can be dynamically linked

to an application.

DMA Direct Memory Access.

DSP Digital Signal Processor.
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EDA Electronic Design Automation.

FDMA Frequency Division Multiple Access.

FDT Formal Description Technique.

FIFO First In, First Out. This principle describes the operation of queues. With

the FIFO scheme, the queue must return the elements in the same order as

they have been written into the queue.

FPGA Field Programmable Gate Array.

FSM Finite State Machine.

GPRS General Packet Radio Service.

GSM Global System for Mobile communications.

IEEE Institute of Electrical and Electronics Engineers. It is one of the lead-

ing standardization bodies for wired and wireless communication systems

through its IEEE Standards Association.

IP Internet Protocol. The packet-oriented network-layer protocol of the Internet

protocol suite.

ISS Instruction Set Simulator.

MAC Medium Access Control. The MAC protocol sublayer is part of the OSI

reference model [ISO94] (layer 2) and provides the protocol and control mech-

anisms that are required for a certain channel access method.

MPGA Mask Programmable Gate Array.

NFC Near Field Communication, a short-range wireless communication technol-

ogy.

OS Operating System.

PAD Process Activity Definition.

PCB Printed Circuit Board.
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PDU Protocol Data Unit. General term for the messages exchanged between

peer protocol entities. PDUs of protocols in OSI layer 2 are sometimes called

frames, in OSI layer 3 packets.

PNC Piconet Coordinator. Name of those device in IEEE 802.15.3 networks that

transmit beacons and control the allocation of time slots in the superframe.

QoS Quality of Service.

RAM Random Access Memory.

RF Radio Frequency.

RISC Reduced Instruction Set Computer.

RTL Register Transfer Level.

SDL Specification and Description Language. A high-level specification language

targeted at the unambiguous specification and description of the behaviour

of reactive and distributed systems. It is defined by the ITU-T (formerly

CCITT) Recommendation Z.100 [ITU02].

SDMA Space Division Multiple Access.

SDU Service Data Unit. In a layered protocol stack, the data passed from a

higher layer protocol to the lower layer, which acts as service provider.

SoC System-on-a-Chip.

TCP Transmission Control Protocol. A connection-oriented transport protocol

of the Internet protocol suite.

TDMA Time Division Multiple Access.

UML Unified Modeling Language.

UMTS Universal Mobile Telecommunications System.

VHDL VHSIC (Very High Speed Integrated Circuits) Hardware Description Lan-

guage.
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WLAN Wireless Local Area Network.

WPAN Wireless Personal Area Network.

WSN Wireless Sensor Network.
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[Hän02] Marko Hännikäinen. Design of Quality of Service Support for Wire-

less Local Area Networks. PhD thesis, Tampere University of Tech-

nology, 2002.
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