

VII INTERNATIONAL CONFERENCE ON MECHANOCHEMISTRY AND MECHANICAL ALLOYING

INCOME 2011

Herceg Novi, Montenegro, August 31 – September 3, 2011 http://www.mrs-serbia.org.rs/income2011/income2011.html

Programme and The Book of Abstracts

Organised by **Materials Research Society of Serbia**

under the auspices of
International Mechanochemistry Association

Title: VII INTERNATIONAL CONFERENCE ON MECHANOCHEMISTRY AND

MECHANICAL ALLOYING INCOME 2011 Programme and the Book of Abstracts

Publisher: Materials Research Society of Serbia

Knez Mihailova 35/IV; 11000 Belgrade, Serbia Phone: +381 11 2185-437; Fax: +381 11 2185-263

http://www.mrs-serbia.org.rs

Editor: Prof. Dr. Dragan P. Uskoković

Technical editor: Aleksandra Stojičić

Cover page: Aleksandra Stojičić and Milica Ševkušić

Copyright © 2011 Materials Research Society of Serbia

Acknowledgment:

Printed in: Biro Konto

Sutorina bb, Igalo - Herceg Novi, Montenegro

Phones: +382-31-670123, 670025, E-mail: bkonto@t-com.me Circulation: 200 copies. The end of printing: August 2011

VII International Conference on Mechanochemistry and Mechanical Alloying INCOME 2011

Herceg Novi, August 31-September 3, 2011

A131

MECHANOCHEMICAL SYNTHESIS OF MULTIFERROIC YTTRIUM MANGANITE

Z. Marinković Stanojević¹, M. Počuča Nešić¹, Z. Branković¹, L. Mančić², S. Bernik³, A. Rečnik³. G. Branković¹

¹Institute for Multidisciplinary Research, University of Belgrade, Belgrade, Serbia, ²Institute of Technical Sciences of SASA, Belgrade, Serbia, ³Jozef Stefan Institute, Ljubljana, Slovenia

Multiferroic yttrium manganite (YMnO₃) is known as a material that exhibits both ferromagnetic and ferroelectric properties making it interesting for various technological applications. In this work single-phased YMnO₃ was prepared for the first time by mechanochemical synthesis in a planetary ball mill. The YMnO₃ can be formed directly from the highly activated constituent oxides, Y₂O₃ and Mn₂O₃, after 60 min of milling time and subsequently grows during prolonged milling. The cumulative energy introduced into the system during milling for 60 min was 86 kJ/g. X-ray analysis indicates that the as-prepared samples crystallize majority with hexagonal (*P*6₃*cm*) and minorly with orthorhombic (*Pnma*) YMnO₃ structure. The morphology, structure and chemical composition of the powder were investigated by SEM with EDS and TEM. The magnetic properties of the obtained YMnO₃ powders were found to change as a function of milling time in a manner consistent with the variation in the nanocomposite microstructure.

A132

CATALYTIC ACTIVITY OF La_{0.4}Sr_{0.6}FeO₃ PEROVSKITES PREPARED VIA MECHANOCHEMICAL ROUTE IN N₂O DECOMPOSITION PROCESS VERSUS Sr-CONTAINING PRECURSOR

L.A. Isupova, D.V. Ivanov, L.G. Pinaeva, E.M. Sadovskaya Boreskov Institute of Catalysis SB RAS, Novosibirsk, Russia

Strong influence of Sr containing precursor on the phase composition and microstructure of La $_{0.4}$ Sr $_{0.6}$ FeO $_{3-\delta}$ perovskites prepared via mechanochemical route (mechanical treatment in APF-5 + thermal treatment at 900 °C) from La $_2$ O $_3$, Fe $_2$ O $_3$ and SrCO $_3$ (C-sample) or Sr(NO $_3$) $_3$ (N-sample) as well as on the oxygen mobility (SSITKA) and catalytic activity in high temperature N $_2$ O decomposition process was revealed. The perovskite particles covered with LaSrFeO $_4$ layer structured perovskite were detected in the case of Sr(NO $_3$) $_3$ while two perovskites with orthorhombic and cubic structures were detected in the case of SrCO $_3$. Both samples characterized by comparable bulk oxygen mobility, while higher surface oxygen mobility was observed for N-sample. High temperature (800-900 °C) catalytic activity in N $_2$ O decomposition process was higher for N-sample that correlates with surface oxygen mobility.