Serbian Academy of Sciences and Arts, Belgrade,
Technical Faculty, Čačak,
Center for Solid State Physics & New Materials, Institute of Physics,
Belgrade,
Institute of Technical Sciences of SASA, Belgrade

Physics and Technology of Materials

Čačak, 2007
The aim of this work was analysis of isothermal sintering of zinc titanate ceramics doped with MgO obtained by mechanical activation. Mixtures of ZnO, TiO$_2$ and MgO (0, 1.25 and 2.5%) were mechanically activated 15 minutes in a planetary ball mill. The powders obtained were pressed under different pressures and the results were fitted with a phenomenological compacting equation. Isothermal sintering was performed in air for 120 minutes at four different temperatures. Structural characterization of ZnO-TiO$_2$-MgO system after milling and sintering was performed at room temperature using XRPD measurements. DTA measurements showed different activation energies for pure and doped ZnO-TiO$_2$ systems. The main conclusions are that doped zinc titanate samples achieve higher densities after sintering and that addition of MgO stabilizes the crystal structure of zinc titanate.