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Abstract 

Recently, polymer composites reinforced with lowfractions of thermomiotic 

nanoceramics have triggered a lot of research. The efforts have been focused on 

achieving considerable reduction of the coefficient of thermal expansion (CTE) of 

polymeric materials without deterioration of other physical properties. In this context, 

polyethylene (PE) composites reinforced with different loads of Al2Mo3O12 nanofillers 

(0.5 to 4 mass %) were fabricated by micro-compounding. To enhance the 

interfacialinteraction between the two components chemical functionalization of 

Al2Mo3O12 was performed with vinyltrimethoxysilane (VTMS) prior to micro-

compounding. Infrared spectroscopy and thermogravimetry demonstrated the successful 

grafting of VTMS on the Al2Mo3O12 surface. The composites showed strongly 

decreased CTEs, up to 46 % reduction for loadings of 4 mass % compared with neat PE, 

suggestingintimate filler-matrix interactions. The variation of CTEs of the composites in 

terms ofthe fillerfraction was successfully described by Turner’s model 

allowingcalculation ofthe bulk modulus of monoclinic Al2Mo3O12 (13.6± 2.6 GPa),in 

agreement with the value obtained by an ultrasonic method. The thermal stability of 

thecomposites was improved, although the addition of functionalized fillers decreased 

the degree of crystallinity of the PE to a small extent. The Young’s modulus and yield 

strength of the compositesincreased from6.6 to 19.1 % and 4.0 to 6.0 %, respectively, 

supporting the existence of strong filler-matrix interactions, contributing to an efficient 

load transfer. Finite element analysis of thermal stresses indicated absence of plastic 

deformation of the matrix or fracture of thenanofillers, for a 100 K temperature drop. 

 

Keywords: negative thermal expansion,ceramics, bulk modulus, thermoplastics, 

chemical functionalization, nanomaterials. 
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1. Introduction 

 Negative thermal expansion (NTE) ceramics, also known as thermomiotics[1], 

began to attract significant attention in the 1990s due to newly discovered phases 

exhibiting this uncommon thermal expansion feature [2-4]. Since then, considerable 

research has been carried out to advance understanding of the physics underlying this 

phenomenon [5-8], while parallel efforts have been made to transform this new class of 

compounds into useful materials. There are two general tentative approaches to engineer 

new materials based on thermomiotics. One route corresponds to the development of 

bulk monolithic ceramics with well-defined CTEs, generally free of undesired 

microstructural defects (microcracks) and frequently aiming at near zero values [9]. 

However, in some cases, such as Al2TiO5, microstructural design and microcrack 

formationcan be used to advantage to produce low thermal expansion materials with 

high thermal shock resistance [10]. On the other hand, the second approach makes use 

of the addition of thermomiotics, as the dispersed phase, in composites [11-29]. The 

most common role of thermomiotics in composites is to control the CTE of the matrix 

phase, which could be a metal, ceramic or polymer.  

Thermoplastic polymers generally present very poor dimensional stability on 

temperature variation. Therefore, the addition of inorganic fillers with low positive, near 

zero or negative CTEs can mitigate high CTEs in polymers, while direct or silane 

crosslinking strategies are also employed in order to improve their physical properties. 

An example of the importance of controlling thermal expansionin polymers is observed 

in the field of electronic packaging polymers, such as polystyrene [30]and thermoset 

epoxy resins [31], applied over integrated circuit chips to protect them from 

environmental factors. These polymers are usually filled with a ceramic showing low 

CTE and moderate thermal conductivity for the sake of reduction of thermal mismatch 

between the packaging polymer and the substrate, while also increasing the thermal 

conductance of the package layer. Polyethylene (PE) is one of the most used 

thermoplastics. Geomembranes and pipes for water or natural gas 

transmission/distribution are some examples of PE applications where the huge CTE (~ 

10-4 K-1) or migration of volatile organic components (VOCs) can induce material 

damage orlead to poor performance [32, 33]. The list of dispersed phases studied for the 

purpose of reduction of CTE of PE is extensive and includes clays, CaCO3, Si, fly ash, 

CeO2, Sr2Al2SiO7, just to mention a few [34-39], but, so far, has not included 

thermomiotics or low CTE materials.  
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Regarding thermomiotic fillers, there are only a few reports in the literature of 

attempts to control the CTE of polymers, mostly thermosetting matrices. 

Thesetentativeattemptsgenerally focus on ZrW2O8, both as micronic and nanometric 

powders [11, 15-17, 23-25]. This is understandable considering the isotropic physical 

properties of ZrW2O8and its strong negative CTE (~ - 9 x 10-6 K-1) over a wide 

temperature range (0-1050K), which includes theoperational temperature range for 

polymer components. This NTE material has been used for the reduction of CTE of 

polyimide, polyester and epoxy resin [11,15-17,23,24], while, as far as the authors are 

aware, there are no reports on its use in a PE matrix. On the other hand, the 

thermomiotics and low CTE compounds from the A2M3O12 family are rarely cited in the 

literature as the dispersed phases for controlling CTE in composites [14, 18, 19, 22, 

40].An advantage of the compounds from this family is their wide chemical flexibility, 

resulting in a variety of orthorhombic phases with CTEs ranging between – 11 x 10-6 

and 2 x 10-6 K-1 [8, 41, 42]. Even in the monoclinic phase, the magnitude of the CTE of 

A2M3O12 compounds is low [9]. It is also significant that some of the A2M3O12 

compounds are routinely synthesized from inexpensive reagents,which is not the case 

for ZrW2O8 and related compounds. There are currently just a few reports of the 

application of A2M3O12 compounds as fillers in ceramic-ceramic (MoO3, ZrO2, ZrSiO4 

and ZrW2O8 featuring as matrices) [14, 19, 22, 40]and ceramic-metal (Mg and Cu 

matrices) [18, 40]composites. However, there are no reports on the use of A2M3O12 in 

polymer matrices. The A2M3O12 compounds already tested in composites as dispersed 

phases are Y2W3O12, Sc2W3O12, FexSc1-xW3O12 and ZrWP2O12, while the application of 

Al2Mo3O12 was only reported in the monolithic form [9].  

The principal purpose of this study was to examine the viability and potential 

employment of a nanometric-sized A2M3O12 as a filler for thermoplastic matrices, added 

in low amounts (≤ 4 mass %), to reduce the CTE of thermoplastic polymers without 

provoking adverse effects on their mechanical properties and thermal stability. Because 

of its technological appeal, PE has been chosen as the matrix, while Al2Mo3O12, a 

reasonably well studied material[9, 43, 44], has been elected as the nanofiller, although 

in the temperature range below 473 K it adopts the monoclinic form with a low positive 

CTE [9]. To enhance the interface interaction between the inorganic hydrophilic filler 

and the hydrophobic polyolefin matrix, chemical functionalization of Al2Mo3O12 

nanoparticles was carried out with the aid of a bi-functional coupling agent, 

vinyltrimethoxysilane (VTMS). One functional group of VTMS is hydrolysable 
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trimethoxysilane (–(Si(OCH3)3)), which is capable of establishing primary bonds with 

the surface of the inorganic filler, while the other functional group is a hydrophobic 

vinyl group (CH2=CH-), capable of interacting physically (inter-molecular 

entanglement) or chemically, through primary bonds created in the presence of peroxide 

initiators, with PE chains. The composites were processedby micro-

compounding,includingextrusion and injection molding.   

 2. Materials and methods 

 2.1 Materials 

Starting reagents for synthesis of Al2Mo3O12 nanopowder and its 

functionalization include Al(NO3)3· 9H2O (Isofar, 99 %), (NH4)6Mo7O24· 4H2O (Isofar, 

99 %), NaOH (Vetec, 99 %), vinyltrimethoxysilane C5H12O3Si (Evonik, 98%), acetic 

acid (Vetec) and anhydrous ethanol (Sigma Aldrich). All reagents were used asreceived. 

Granulated medium density PE (MR-435, Braskem) with a density of 0.934 gcm-3 and 

melt flow index (MFI) of 4.0 g/10 min served as the matrix.   

  The synthesis and characterization of Al2Mo3O12 nanopowder through a co-

precipitation route is described in detail elsewhere[9]. 

Bulk Al2Mo3O12 pellets were prepared in order to measure their mechanical 

properties using ultrasonic transduction. Thesynthesis was performed using a solid-state 

reaction method, using Al2O3 (Sigma-Aldrich, 99.7 %) and MoO3 (Sigma-Aldrich, 99.5 

%) as precursors. The precursor powders were mixed and mechanically activated in a 

high-energy ball mill for 12 hours, followed by consolidation in a cylindrical die press 

(15 mm diameter) under approximately 55 MPa of pressure and subsequent reactive 

sintering for 24 h at 1050 K in air. The three resulting pellets had an average height of 

4.78 mm and a density fraction 73 % of theoretical. 

2.2 Functionalization of Al2Mo3O12 nanoparticles with VTMS 

The functionalization of Al2Mo3O12 was carried out using 51 mL of 

ethanol/water 95:5 % v/v as the reaction medium[45]. A mass of 1g of Al2Mo3O12, 

obtained though the co-precipitation route and ground into a fine powder, was added to 

aqueous ethanol and stirred for 10 min, while the pH was adjusted with acetic acid to 

4.5-5.5. The suspension was placed in an ultrasonic bath for 1 h and the pH was 

adjusted again to 4.5-5.5. VTMS was added dropwise until a mass ratio of 1:2 (VTMS: 

Al2Mo3O12) was reached. This suspension was mechanically stirred at a frequency of 

5000 min-1 (Ultra Turrax Ika T25 disperser) for 2 h, then ultrasonicated for a further 1 h. 

The as-grafted Al2Mo3O12 nanoparticles were washed three times with aqueous ethanol 
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to remove the excess VTMS, and then filtered and dried at 383 K for 2 h in an air-

circulating oven. Here the silanized Al2Mo3O12 nanoparticles are referred to as “VTMS-

g-Al2Mo3O12”, where “g” denotes that VTMS was grafted onto the nanoparticle 

surfaces. 

2.3 Preparation of VTMS-g-Al2Mo3O12/PE composites 

VTMS-g-Al2Mo3O12/PE composites were prepared in a twin-screw micro-

extruder (DSM Xplore 5cc Microcompounder). The screw speed was 100 rpm, the 

barrel temperature profile 443, 448 and 453 K (from the top to the bottom) and the 

mixing time was approximately 5 min. The extrudate was fed to a micro-injection 

molding machine (DSM Xplore 5.5 cc) to obtain ASTM D638-10 tensile specimens. 

The injection pressure was set to 7 bar. The melt and mold temperatures were kept at 

448 K and 353 K, respectively. To investigate the effect of different loads of VTMS-g-

Al2Mo3O12 on CTE, thermal stability and mechanical properties of PE,composites 

containing nominally0.5, 1.0, 2.0, 3.0 and 4.0 mass % of VTMS-g-Al2Mo3O12 were 

prepared and compared with neat PE specimens. 

2.4 Characterization  

2.4.1 Al2Mo3O12 powder 

The Al2Mo3O12 powder obtained through co-precipitation was characterized by 

X-ray powder diffraction (XRPD) on a Siemens D5000 using CuKα radiation in steps of 

0.02o (8 s per step) from 10o to 60o (2 theta) to determine phase composition of the 

product and to evaluate the average crystallite size of Al2Mo3O12. Powder Diffraction 

File 2 Release 2011(PDF-2) was used for crystal phase identification, while Topas 4.2 

was used for LeBail analysis. The direct convolution approach, embedded in Topas 4.2, 

has been used in order to separate physical from instrumental contributions within the 

experimental pattern. The instrumental contribution has been described through the 

Fundamental Parameter Approach (FPA), while the physical (microstructural) 

contribution was modelled by two Voigt functions. The reported crystal size parameter 

is LVOL-IB obtained from the integral breadth of the Voigt function that describes 

crystallite size contribution to the physical broadening. This approach for determination 

of crystallite sizes is known as the Balzar method.  

Transmission electron microscopy (TEM) was performed on a JEOL-2010 

microscope operating at 200 kV using a Gatan CCD camera. TEM specimens were 

prepared by dispersing the powder samples in isopropyl alcohol via ultrasonic treatment 

and then dropped onto a porous carbon film supported by a copper grid. Powder 
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samples, following pretreatment at 393 K under vacuum (50 mTorr), were characterized 

by N2 adsorption at 77 K on a Micromeritics TriStar 3000V6.03 instrument. Specific 

surface area was calculated using the Brunauer–Emmett–Teller (BET) equation in the 

P/Po range of 0.06–0.21. 

2.4.2 Bulk Al2Mo3O12 

 The transverse and longitudinal velocities of sound in three Al2Mo3O12 pellets 

were measured ultrasonically using a Panametrics 25D Ultrasonic Thickness Gauge 

with Panametrics shear-wave couplant and glycerol (longitudinal-wave couplant). The 

measured velocities of sound were corrected for porosity as follows [46]: 

,   (1) 

where ν is the measured velocity, ν0 is the corrected, fully densified, velocity, and p is 

the pore fraction. 

2.4.3 VTMS-g-Al2Mo3O12  

Fourier transform infrared spectroscopy (FTIR) was performed in the range 

4000 to 500 cm-1
, using pellets with the addition of dried IR-grade KBr,in a Perkin-

Elmer Spectrum 100 FT-IR spectrometer with a resolution of 0.5 cm-1. 

Thermogravimetric analyses (TGA) were carried out on a Perkin-Elmer 

Simultaneous Thermal Analyzer (STA-6000). About 5 mg of VTMS-g-Al2Mo3O12 was 

added to an alumina pan (180 μL) and heated in N2 gas flux (50 mLmin-1) in the 

temperature range between 298 and 853 K, at a heating rate of 10 Kmin-1. The 

thermogravimetric balance was previously calibrated in N2 gas flux (50 mL min-1) in the 

range between 298 K and 1173 K using a 15 mg of CaC2O4· H2O standard sample, 

supplied by Perkin-Elmer. The buoyancy effect, observed in TG curves (as a small mass 

gain, < 0.1 mass %, at temperatures lower than 330 K),was partially corrected by blank 

tests. Both analyses, FTIR and TGA, were also performed on Al2Mo3O12 powder before 

grafting, for comparison.  

2.4.4 VTMS-g-Al2Mo3O12/PE composites 

Dilatometric curves of neat PE and VTMS-g-Al2Mo3O12/PE composites were 

determined in air atmosphere using a NETZSCH dilatometer DIL 402C in the 

temperature range from 298 to 373 K with a heating rate of 10 Kmin-1. The specimens 

for dilatometry were prismatic rods (3.3 mm × 3.2 mm × 11 mm) manufactured from 

the injection molded specimens. Each material, neat PE and VTMS-g-Al2Mo3O12/PE 

composites, was tested using threeseparate samples. The instrument was assessed for 
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accuracy using an α-alumina rod supplied by NETZSCH. The accuracy of ΔL/Lo 

(thermal strain; Lo is the original sample length) is ~ 1 % for the dilatometer used [47]. 

TGA and differential scanning calorimetry (DSC) analyses were carried out on 

the equipment described in section 2.4.3 using the same conditionsand corrections, but 

in the temperature range 298 to 923 K.Simultaneous Thermal Analyzer (STA-6000) 

was calibrated for temperature and enthalpy using ~ 5 mg of indium and silver standard 

samples, supplied by Perkin-Elmer. TG curves of neat PE and VTMS-g-Al2Mo3O12/PE 

composites are reported in the Online Resource. 

Tensile tests were carried out on ASTM D638-10 tensile specimens, at room 

temperature, on an EMIC Universal Testing Machine (model DL 1000) with the 

crosshead speed separation of 30 mm/min. Each material (neat PE and VTMS-g-

Al2Mo3O12/PE composites) was tested using sixseparate specimens.  

2.4.5 Finite element analysis 

Finite element analysis (FEA) was used to assess the thermal stress that could be 

expected in VTMS-g-Al2Mo3O12/PE composites upon cooling. The COMSOL 

Multiphysics 4.4 software package was used to perform the analysis. The model 

geometry chosen was that of nine spherical filler particles of monoclinic Al2Mo3O12 

embedded at random positions in a cube of PE, where the volume fraction of filler was 

varied to match the experimental compositions.A mesh of tetrahedral elements was 

generated in COMSOL and the mesh size used was shown by a mesh convergence 

study to produce results convergent to within 1%. 

The VTMS grafting was assumed, based on the experimental results described 

below, to produce perfect interfaces between matrix and filler.Both Al2Mo3O12 and PE 

were treated as linear elastic materials. Assumption of perfect interfaces and linear 

elasticity leads to the calculated stress being a conservative estimate; the stress in the 

actual composite could be reduced by imperfect interfaces or ductility. Therefore, the 

results of the finite element analysis should be treated as qualitatively accurate.Due to 

the low volume fractions of filler used, the size, shape, and distribution of the particles 

did not substantially influence the results and these parameters were not varied as part 

of this study. The boundary conditions used were a temperature drop of 100 K on all 

sides of the material and roller boundaries on three perpendicular sides. 
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3. Results 

3.1 Al2Mo3O12 powder 

The experimental XRPD pattern (Figure 1) confirmed that the co-precipitation 

route resulted in a single-phase powder, since all diffraction lines correspond to 

monoclinic Al2Mo3O12 (PDF: 01-089-8579). However, the well-defined diffraction 

lines of monoclinic Al2Mo3O12were overlaid on a broader diffraction pattern. A 

thorough examination of the powder by TEM revealed an intimate mixture of well-

defined nanometric crystals (50 to 200 nm) with much smaller nanocrystallites(ca. 10 

nm); see Figure 2. (A few other TEM images presented in Online Resource illustrate the 

presence of larger particles.)This observation was confirmed more quantitatively by 

applying LeBail analysis considering two Al2Mo3O12 phases with the same monoclinic 

structure but different mean crystal sizes (Figure 1). Only this fitting approach resulted 

in good agreement with the experimental pattern, giving average crystal sizes of 70 nm 

for the well-defined Al2Mo3O12 and 10 nm for the broader Al2Mo3O12 diffraction 

pattern. BET analysis of N2 adsorption indicated a specific surface area of 8.4 m2g-

1.Considering a crystallographic density of 3.495 g cm-3 for monoclinic Al2Mo3O12 [9], 

an average (spherical) particle size of ~ 100 nm was calculated from the observed 

specific surface area (8.4 m2 g-1), which is somewhat larger than the crystallite sizes 

obtained from XRPD data. 

 
Fig.1Experimental XRPD patternof monoclinic Al2Mo3O12 (red dotted line), the pattern 

fit bythe Le Bail method (black line) and the difference plot (green line) 
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Fig.2 TEM images of Al2Mo3O12 nanometric powdershowing a mixture of crystal sizes 

(a) from 50 to 200 nm(arrows indicate faces of larger particles)and (b) ~10 nm 

 

3.2 Bulk Al2Mo3O12  

Following correction for porosity (Eq. 1), the longitudinal velocity of sound of 

monoclinic Al2Mo3O12 was determined as 3.29 ± 0.16 m ms−1and the transverse 

velocity of sound was determinedas 2.29 ± 0.22 m ms−1. Using the reported theoretical 

density of monoclinic Al2Mo3O12 of 3.495 g cm−3[9], these values correspond to a bulk 

modulus of 13.5 ± 1.3 GPa and a shear modulus of 18.2 ± 0.7 GPa. Interestingly, this 

indicates that monoclinic Al2Mo3O12 has a near-zero Poisson ratio, specifically 0.036 ± 

0.088. 

 

3.3 VTMS-g-Al2Mo3O12 

FTIR spectra of pristine Al2Mo3O12 and VTMS-g-Al2Mo3O12 are presented for 

comparison in Figure 3. 
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Fig.3 FTIR spectra of (a) pristine Al2Mo3O12 and (b) VTMS-g-Al2Mo3O12 

 

The spectrum of VTMS-g-Al2Mo3O12 shows four absorption bands at 2920, 

2855, 1262 and 1154 cm-1 that suggest grafting of VTMS onto Al2Mo3O12. The bands at 

2920 and 2855 cm-1 are generally assigned to stretching vibration modes (ν) of CH3 in 

(OC2H5) and CH2 in (CH=CH2) [48], respectively, while the band at 2920 cm-1 is also 

attributed to stretching vibration modes of CH3 in (OCH3) [49, 50]. However, these two 

bands at 2920 and 2855 cm-1are also faintly observable in the spectrum of pristine 

Al2Mo3O12 and are attributed to organic surface contamination [51]. The band at 1262 

cm-1 appears only in the VTMS-g-Al2Mo3O12 spectrum and is assigned to the in-plane 

CH bendingmode (δ) in (CH=CH2) [48]. In addition, there is a band at 1154 cm-1 

attributed to ν(Si-O-Si) [52], proving the occurrence of oligomerization between silanol 

reaction groups grafted on the Al2Mo3O12 nanoparticles.   

From the TGA results, a total mass loss of ~ 1.1 mass% of pristine Al2Mo3O12 

from room temperature up to 853 K (Figure 4) was observed and is attributed to 

physically adsorbed water (moisture) and primary bonded hydroxyl groups[53].  
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Fig.4 TG curves of (a) pristine Al2Mo3O12 and (b) VTMS-g-Al2Mo3O12 

 

It is considered that desorption of moisture takes place up to ~ 453 K (Figure 4), 

while above this temperature the dehydration of primary bonded hydroxyl groups is the 

predominant mass loss process [53]. On the other hand, the total mass loss of VTMS-g-

Al2Mo3O12 is ~ 0.5 mass % more than for pristine Al2Mo3O12 for the same temperature 

interval (298 K – 853 K), corroborating grafting of VTMS on Al2Mo3O12. It is worth 

noting that up to 453 K (see Figure 4) the mass loss of VTMS-g-Al2Mo3O12 is lower 

than for pristine Al2Mo3O12, indicating that the moisture content in VTMS-g-Al2Mo3O12 

is lower due to its more hydrophobic nature.Furthermore, the mass loss between 453 K 

and 853 K (~ 1.2 mass %) is predominantly due to the release of the VTMS fragments, 

possibly vinyl groups, grafted on Al2Mo3O12 nanoparticles [53]. This could be indirect 

evidence for primary bonding between Si from reactive silanol [53] and the surface of 

Al2Mo3O12 through Si-O-Al and/or Si-O-Mo linkages. The successive processes of 

hydrolysis, oligomerization and grafting, through the condensation of VTMS onto the 

surface of Al2Mo3O12 nanoparticles, are presented in Figure 5. 
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Fig.5Scheme of (a) hydrolysis of VTMS; (b) oligomerization of reactive silanol 

molecules; (c) formation of hydrogen bonds between silanol oligomers and Al2Mo3O12 

nanoparticles and (d) grafting of VTMS on Al2Mo3O12 surface through primary bonds 

 

3.4 VTMS-g-Al2Mo3O12/PE composites: Coefficient of thermal expansion, thermal 

stability and mechanical properties 

CTEs of neat PE and VTMS-g-Al2Mo3O12/PE composites were calculated from 

the slopes of the respective thermal strain curves in the temperature range between 303 

K and 373 K (Table 1).  

 

Table 1. Thermal properties and degree of crystallinity of VTMS-g-Al2Mo3O12/PE 
composites with different filler contents. Nominal filler contents are presented; TGA 
shows inhomogeneity of the order of ±0.5 mass %, regarding to nominal contents, for 
the samples used in dilatometry. CTE values are standard deviations based on triplicate 
measurements. 

Filler 
content(mass 

%) 
CTE (x10-4 K-1) 

Mass loss 
(%) up to 

573 K 

Mass loss 
(%) up to 

673 K 
T10(K) T50 

(K) 
Tm 
(K) Xc (%) 

0.0 2.290± 0.0005 0.90 1.95 722 749 414 76 
0.5 1.98± 0.26 0.07 0.88 728 751 415 73 
1.0 2.12± 0.31 0.13 1.02 726 750 414 70 
2.0 1.80± 0.29 0.02 0.84 727 751 415 73 
3.0 1.78± 0.04 0.0 0.91 721 749 412 74 
4.0 1.23 ± 0.11 0.0 0.53 729 752 413 75 



14 
 

Large reductions of CTE, in comparison to neat PE, have been shown for almost 

all VTMS-g-Al2Mo3O12/PE blends (0.5 - 4 mass %of filler), reaching a reduction of ~ 

46% for a loading of 4 mass %. The observed dependence of the average experimental 

CTEs (Table 1) and volume fraction of VTMS-g-Al2Mo3O12 filler (Figure 6) can be 

successfully described by Turner’s model[15]: 

 ,  (2) 

 

where Km and Kf are the bulk moduli of PE (matrix) and Al2Mo3O12 (filler),  is the 

volume fraction of filler, and αc, αmand αf are theCTEs of the composite, PE (matrix) 

and Al2Mo3O12 (filler), respectively. Other models, such as the rule of mixtures, and 

those of Schapery, Vo or Kerner, have not been able to model the experimental 

dependence on average CTEs of the composites on volume fraction of filler. 

 

 
Fig.6Average experimental CTEs of VTMS-g-Al2Mo3O12/PE composites, with standard 

deviation bars, as a function ofnominal volume fraction of filler(black squares) fitted by 

Turner’s model (red curve). Standard deviation bar for neat PE is smaller than the 

symbol. 

 

The literature valueof αf = 9.5 x 10-6 K-1was considered for monoclinic 

Al2Mo3O12[9], while αm (PE) was taken from Table 1 (αm = 2.29 x 10-4 K-1). The bulk 

modulus of PE (Km) was estimated as 0.278 GPafrom the mean value of Young’s 

modulus (Em = 0.278 GPa) measured for neat PE (Figure 7), assuming: 

,    (3) 
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where μm is shear modulus of matrix, and 

.  (4) 

Considering these values it is possible, using the Turner model, to determine the 

bulk modulus of monoclinic Al2Mo3O12 (Kf) as 13.6± 2.6 GPa, which agrees with the 

ultrasonic results within the margin of error (cf. 3.2), validating the use of Turner’s 

model. 

Thermal stabilities of neat PE and VTMS-g-Al2Mo3O12/PE composites have 

been evaluated from mass loss curves through parameters such as mass loss at 573 K, 

mass loss at 673 K, temperature corresponding to 10% mass loss (T10) and temperature 

corresponding to 50% mass loss (T50), as summarized in Table 1. Although the mass 

losses of neat PE at 573 and 673 K are low, 0.90 and 1.95 mass % respectively, the 

mass losses for all VTMS-g-Al2Mo3O12/PE compositesare far lower. T10 and 

T50parameters of VTMS-g-Al2Mo3O12/PE composites are higher than for neat PE, 

however, the filler impact on these two parameters was not as significant as observed 

for the mass losses until 673 K. On the other hand, the effect of VTMS-g-Al2Mo3O12 

filler on melting temperature (Tm) of the composites, as evaluated by DSC curves, was 

negligible (Table 1). To evaluate the effect of VTMS-g-Al2Mo3O12 filler on degree of 

crystallinity (Xc) of PE matrix, enthalpy change of melting (ΔH) was determined for all 

composites and their degrees of crystallinity were calculated considering ΔH* = 273Jg-1 

for completely crystallized PE [54]using: 

  (5) 

where  is the mass fraction of filler. 

This evaluation showed that VTMS-g-Al2Mo3O12/PE composites lost some crystallinity, 

from ~76% for neat PE to ~70% for VTMS-g-Al2Mo3O12/PE composite reinforced with 

1 mass % of filler. 

Young’s moduli, yield strengths and yield strains of composites were determined 

from stress-strain curves and plotted in Figure 7. The stiffness and resistance to plastic 

deformation of the newcomposites both increased, as evidenced by an increase in 

Young’s modulus, between 6.6 and 19.1 %, and yield strength, between 4 and 6 %. On 

the other hand, yield strain decreased between 8 and 12 % in comparison to neat PE. 
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Fig.7 (a) Young’s modulus; (b) Strength and strain at yield point of VTMS-g-Al2Mo-

3O12/PE composites as a function ofnominal filler content 

 

 

 FEAwas used to calculate the thermal stresses experienced in the composites 

following a 100 K temperature drop, near room temperature. Cooling of the composites 

induces compressive thermal stresses in the VTMS-g-Al2Mo3O12 and tensile thermal 

stresses in the PE matrix due to their mismatched CTEs. The compressive stress in the 

filler particles reached a maximum of 22 MPa, and was invariant with the filler loading. 

The maximum tensile and shear stresses in the PE matrix are shown in Figure 8. The 

maximum tensile stress increased approximately linearly with filler loading, while the 

maximum shear stress increasednonlinearly. 

 
Fig.8 Maximum tensile and shear stresses in the PE matrix as a function of filler 

content. An estimated error due to finite mesh size of 1% is shown. 

 

The CTE of the compositeon addition of filler was calculated to decrease only 

slightly, but more than would be predicted by the rule of mixtures. The discrepancy 
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between the finite element models and the experimental result is possibly due to the 

finite size of the model, which prevents accurate modelling of the constraint of the 

thermal expansion of the matrix due to the filler since the bulk of the matrix material is 

unconstrained. 

 

 

4. Discussion 

The mechanical properties of thermomiotics and low CTE materials still need to 

be more thoroughly studied, sincethis knowledge is fundamental for many potential 

applications. Thus far elastic constants and related properties such as bulk modulus (K) 

have been determined for several compounds from the A2M3O12 family, in both 

orthorhombic and monoclinic structures[55-58]. Our analysis of experimental αc versus 

volume filler fraction in terms of Turner’s model (Figure 6) and calculationsbased on 

the ultrasonic testsgave a bulk modulus of 13.6 ± 2.6 GPa and 13.5 ± 1.3 GPa, 

respectively, for monoclinic Al2Mo3O12, very close to the bulk moduli of monoclinic 

Sc2W3O12, Sc2Mo3O12, In2W3O12 and Zr2WO4(PO4)2 of 11.8 ± 0.8 GPa, 16 ± 1 GPa, 13± 

2 GPa and 17 ± 2 GPa, respectively, as determined from high pressure X-ray or neutron 

diffraction data.Only the bulk modulus of monoclinic Al2W3O12 was reported to be 

higher (28 ± 1 GPa)[56], compared to other monoclinic phases. It is relevant for our 

study that Watanabe et al.,[18] estimated the bulk modulus of Zr2WO4(PO4)2 at 18 GPa, 

independently from theBirch-Murnaghan equation of state analysis of high-pressure X-

ray diffraction data [57], and by applying Hashin’s model on the relationship between 

experimental Zr2WO4(PO4)2/Mgcomposite bulk modulus and Zr2WO4(PO4)2 filler 

volume fraction, with excellent agreement for the two approaches. Monoclinic phases of 

the A2M3O12 family are much softer than the corresponding orthorhombic phases, the 

ones that present NTE, withbulk moduli varying between 32 GPa for Sc2W3O12 

andSc2Mo3O12, and 48 GPa to 49 GPa for Al2W3O12 and Zr2WO4(PO4)2, 

respectively[55-58]. In comparison, the bulk modulus of cubic α-ZrW2O8, the most 

studied thermomiotic filler, is much higher (~ 74 GPa)[59]. Although monoclinic 

A2M3O12 phases have surprisingly low bulk moduli, even significantly lower than 

already soft NTE orthorhombic phases, note that, for example, Al2Mo3O12 possesses a 

bulk modulus two orders of magnitude higher than polyethyleneused in this study, 

estimatedto be ~ 0.278 GPa. Therefore, in accordance to the Turner model, which 
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considers perfect interfaces between the two components [60], the high relative bulk 

modulus of Al2Mo3O12 in comparison to the bulk modulus of PE would lead to a 

relevant reduction of composite CTE. Strong reduction of the CTE of the composite (as 

high as 46%) reached using filler contents not higher than 4 mass % (1.1 vol %) is a 

possible indication of efficient filler-matrix interaction through physical entanglements. 

It is worth noting that such a high reduction of composite CTE,obtained with low filler 

volume fractions, is reached in spite of the small decrease in crystallinity of the PE 

matrix with addition of VTMS-g-Al2Mo3O12fillers (Table 1), indicating that the filler’s 

thermal and mechanical properties, as well as the interfaces, dictate the overall 

composite properties.  

These findings underline the importance of well-dispersed nanoparticles in the 

matrix as well as achievement of strong filler-matrix interactions, since the fulfillment 

of these conditions results in increased density of well-bonded interfaces in the 

composite per unit of volume, when compared to traditional non-functionalized micron 

size fillers. For instance, Dey and Tripathi [36] reported the influence of Si micron 

sized, chemically untreated, powder on thermal properties of Si/PE composites. 

Although the CTEof the Si/PE composite decreased with increased volume percentage 

of Si, the effect of filler content, as high as 20 vol %, on CTE of the composite was 

lower than that reached in VTMS-g-Al2Mo3O12/PE composites with a volume filler 

content of 1.1 vol % (4 mass %). In agreement with the Si/PE result[36], Anjana et al., 

[38]achieved similar reduction of CTE to that reached here for 1.1 vol % VTMS-g-

Al2Mo3O12/PE composite by adding 30 vol % of non-functionalized micron size CeO2 

to the PE matrix. On the other hand, Sahebian et al.[34]reached a more pronounced 

decrease of CTE by adding to PE matrix a lower percentage (10 vol %) of nanometric 

CaCO3 that had been pre-treated with stearic acid. They also observed that the variation 

of mean size of CaCO3 nanoparticles mayplay a role in the CTE of CaCO3/PE 

composites; i.e., nanopowders with smaller mean particle size act more efficiently to 

decrease the CTE of a composite than do nanopowders with higher mean particle size. 

However, it is relevant to notice that Sharma et al.[25] inferred that the CTE of 

ZrW2O8/polyimide composites was independent of the size of ZrW2O8 filler. They 

showed that the 5 vol % loading of nanometric or micronic ZrW2O8 fillers to polyimide 

(PI) matrix resulted in comparable CTE values. Sullivan and Lukehart[15] came to the 

same conclusion for the effect of 0.8 and 1.7 vol % loadings of nanometric and micronic 

ZrW2O8 fillers in a polyimide matrix. Sharma et al.[25]did not observe any additional 
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effect of ZrW2O8 nanofillers functionalized with 3-aminopropyltriethoxysilane or 

ZrW2O8 fillers functionalized with 3-aminopropyltriethoxysilane/PI oligomer on 

reduction of the composite CTE for loadings between 5 and 15 vol % when compared to 

non-functionalized ZrW2O8 nanofillers. Therefore, those authors suggested that a 

mechanism different from that usually ascribed for enhancement of mechanical and 

thermal properties of nanocomposites, such as good filler-matrix interaction, is 

responsible for governing thermal expansion in nanocomposites. 

The thermal stability of VTMS-g-Al2Mo3O12/PE composites was significantly 

increased at lower temperatures (< 673 K,Table 1), probably due to the joint action of 

(i) low permeability of fillers leading to a more tortuous path of diffused species, 

thereby decreasing the rate of gas evolution, and (ii) reduced movement of polymer 

chains due to the interactions between VTMS-g-Al2Mo3O12 and the PE matrix [61]. 

Neat PE lost ~ 0.9 mass % on heating to 573 K, while the corresponding VTMS-g-

Al2Mo3O12/PE composites were essentially completely stable up to this temperature. 

Further temperature increases up to 673 K provoked a total mass loss of neat PE of ~ 2 

mass %, while mass losses of VTMS-g-Al2Mo3O12 composites were kept between 0.5 

mass % (for 4 mass % VTMS-g-Al2Mo3O12) and ~ 1 mass % (for1 mass % of VTMS-g-

Al2Mo3O12). In comparison, Chrissafis et al.[62]reported a mass loss of 1 mass % up to 

548 K for cSiO2 /PE composite with 2.5 mass % of filler (cSiO2: functionalized SiO2 

nanofillers). Chrissafis and Bikiaris[61]reported that the addition of 2.5 mass % of 

montmorillonite nanoclays (MMT) or multiwalled carbon nanotubes (MWCNT) to PE 

matrix resulted in the same level of mass loss as their neat PE up to 573 K, ≤ 0.5 mass 

%.  

The origin of thermal stability of nanocomposites with polymer matrices at high 

temperatures is not clear-cut since discrepant results have been reported, including 

decreases of thermal stability, especially for nanoclay fillers, due to the activation of 

different thermal degradation promoter mechanisms[61]. In the case of PE athigh 

temperatures (> 723 K), where the PE matrix degradation rate is high, a small increase 

of stability is confirmed, i.e., T10 and T50 were at most 6K and 3K higher, respectively, 

for VTMS-g-Al2Mo3O12/PE composites with respect to neat PE. Here the increase of 

thermal stability at high temperatures (>723 K) is very similar to the value (~ 4K) 

observed by Chrissafis et al.[62]for a cSiO2 /PE composite with 2.5 mass % of filler, 

judging from the temperature at which PE decomposition rate is highest. Similarly, a 
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rise of T10 of ~ 10 K was identified for the loadings < 5 mass % of non-functionalized 

micron-sized ZrW2O8 in PI matrix [21]. However, much higher increases in T10 and T50, 

25K and 21K, respectively, with respect to neat PE, were reported by Liao and 

Tjong[49]for 4 mass % VTMS-g-Al2O3/PE composite. Therefore, it seems that low or 

negative CTE fillers, like the majority of other inorganic fillers, do not promote thermal 

degradation of polyolefins or polyimide matrices, and are capable of increasing their 

thermal stability at high temperatures. In comparison, the thermal stability at high 

temperatures of silane-crosslinked PE could increase as much as 35 Kas reported by 

Aizan and Rahman[63]. Still, it is worth noting that in the future it would be relevant to 

understand the effect of nanofillers onevolution of VOCs from PE matrices modified by 

nanofillers, since the use ofPE for water pipe applications is negatively affected by the 

migration of VOCs to drinking water.  

The degree of crystallinity of PE was little reduced with increasing content of 

VTMS-g-Al2Mo3O12nanofillers (Table 1), from 76% (neat PE) to 70% (1mass % 

VTMS-g-Al2Mo3O12/PE composite).Although it is commonly expected that nanofillers 

act only as heterogeneous nucleation sites, increasing the crystalline content of PE 

matrix, a steric hindrance effect of nanofillers on chain ordering, resulting in reduction 

of the crystallinity degree of PE has been reported[62, 64-66]. The hindrance effect of 

MWCNT[65], pristine and organofilized MMT [62], nano-SiO2 and functionalized 

nano-SiO2[62]and teak wood flour [66]on crystallization of PE is explained by the 

obstruction of fillers in PE chain ordering. Our results suggest that the same steric 

hindrance mechanism is responsible for the small reduction of the degree of crystallinity 

in thePE matrix when VTMS-g-Al2Mo3O12 is added.The steric hindrance mechanism is 

actually a well-known tool in polymer processing, used to inhibit crystallinity of 

elastomers through addition of bulky methyl groups, rather than nanoparticles as here. 

Also, silane crosslinking of PE, using coupling agents such as VTMS, reduces the 

crystallinity of crosslinked PE due to steric hindrance[63]. Therefore, functionalized 

nanoparticles could serve as defect centers impeding chain ordering and, thus, reduce 

crystallinity of the PE matrix.     

Melting temperature (Tm) was insensitive to the addition of nanofillers in 

polymeric matrices. Our findings showed negligible variation of melting temperatures 

of VTMS-g-Al2Mo3O12/PE composites compared with Tmof neat PE (Table 1). Many 

other authors noticed asimilar lack of response of Tmin different composites with PE 

matrix and nanofillers. The list of fillers added to PE matrix that do not affect melting 
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temperature of composite is extensive. For example, Chrissafis et al. [62]reported this 

behavior for MWCNT, pristine and organofilized MMT, nano-SiO2 and functionalized 

nano-SiO2 , Li et al. [65]for MWCNT, Liao and Tjong [49]for Al2O3 and VTMS-g- 

Al2O3, Kanagaraj et al.[67]for MWCNT and Zebarjad et al. [68]for CaCO3. The 

previously discussed decrease of crystallinity of the PE matrix in VTMS-g-

Al2Mo3O12/PE composites could reduce the sizes of crystal lamellae inPE spherulites. 

On the other hand, it is known that reduction of the average sizes of crystal lamellae 

decreases Tm of polymers. Therefore, it can be rationalized that negligible variation of 

Tm in VTMS-g-Al2Mo3O12/PE composites is possibly due to the simultaneous action of 

two opposing effects: (i) size reduction of crystal lamellae inside spherulites causing a 

decrease of Tm and (ii) efficient filler-matrix interaction through physical entanglements 

contributing to an increase of Tm. 

The mechanical properties of VTMS-g-Al2Mo3O12/PE composites, such as 

Young’s modulus and yield strength, were improved at room temperature in comparison 

to neat PE (Figure 7). The increase of Young’s modulus (between 6.6 to 19.1 %), and 

yield strength (between 4 and 6 %) are a consequence of much higher elastic constants 

of monoclinic Al2Mo3O12 in comparison to PE, but principally arises from the efficient 

load transfer from the PE matrix to the filler owing to the high density of strong filler-

matrix interfaces, reached through physical entanglements. It is worth noting that the 

overall Young‘s modulus and yield strength of VTMS-g-Al2Mo3O12/PE composites 

increased despite the reduction in the degree of crystallinity of PE matrixfor 

thecomposites, since it is well established that the increase of amorphous content in PE 

should lead to a decrease of mechanical properties of the matrix at the temperatures 

above the glass transition temperature (~ 163 K for PE). However, in VTMS-g-

Al2Mo3O12/PE composites the intimate interfacespermit load transfer, overriding the 

impact of decreasing crystallinity of PE matrix. On the other hand, there are opposite 

examples in the literature such as the report of Li et al. [65]which attributed the 

reduction of Young’s modulus of MWCNT/PE composites to the decrease of 

crystallinity of PE matrix.  

The reduction of yield strain,as observed for VTMS-g-Al2Mo3O12/PE 

composites (Figure 7),has been reported for other composites with polymeric and 

metallic matrices. For example, Sharma et al. [25]reported a strong decrease of yield 

strain for 5 to 15 mass % additions inside PI matrix of ZrW2O8 nanofillers 

functionalized with 3-aminopropyltriethoxysilane or with 3-
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aminopropyltriethoxysilane/PI oligomer. It should be noticed that even the addition of 

ductile Cu particles in a PE matrix [69]resultedin reduction of yield strain of Cu/PE 

composites.  

The thermal stresses calculated by the finite element method for VTMS-g-

Al2Mo3O12/PE composites following cooling by 100 K(Fig. 8) were below the yield 

strength of the PE matrix (Fig. 7b) as well as the level that would be expected to affect 

the Al2Mo3O12filler[9]. Therefore, the composites would be expected to be 

mechanically stable following thermal shock of 100 K or less, due to the absence of 

plastic deformation of the matrix or fracture of the Al2Mo3O12 filler.However, addition 

of Al2Mo3O12 in amounts considerably above 1.1 vol % might increase the thermal 

stress in the matrix above the yield strength of the PE due to the nonlinear increase in 

the thermal shear stress in the matrix. Although there is considerable CTE mismatch 

between PE and Al2Mo3O12, the low stiffness of the matrix reduces the magnitude of the 

thermal stresses considerably, in addition to allowing reduction of the CTE by addition 

of only a small amount of filler. 

5. Conclusions 

This study investigated the viability of employinga nanometric A2M3O12-

typecompound, in low loadings (≤ 4 mass %), as a filler in a thermoplastic polymer in 

order to achieve considerable reduction of the matrix CTE, without causing adverse 

effects on themechanical properties and thermal stability. Nanometric Al2Mo3O12, in the 

monoclinic form, grafted with VTMS, abi-functional coupling agent, was added to a PE 

matrix through melt-compounding extrusion and VTMS-g-Al2Mo3O12/PE composites 

were fabricated by injection molding.  

The as-prepared VTMS-g-Al2Mo3O12/PE composites exhibited strong decrease 

of their CTEs, reaching 46 % reduction for loadings of 4 mass % (1.1 vol %). The 

results suggest efficient filler-matrix interaction through physical entanglements. 

Experimentally obtained CTEs of VTMS-g-Al2Mo3O12/PE composites were 

successfully described by Turner’s model and the bulk modulus of monoclinic 

Al2Mo3O12 was calculated to be 13.6± 2.6 GPa, in good agreement with the bulk 

modulus of 13.5 ± 1.3GPa obtained by ultrasonic testing.  

Thermal stability of VTMS-g-Al2Mo3O12/PE composites was significantly 

increased at lower temperatures (< 673 K) in comparison to neat PE, while at high 

temperatures the increase was small, but not negligible. The degree of crystallinity of 

PE decreased a small extent with VTMS-g-Al2Mo3O12 loading. However, the increased 
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amount of amorphous PE did not result in a significant change in melting temperature 

or deterioration of mechanical properties, the latter as judged by the Young’s modulus 

and yield strength. Actually, the Young’s modulus increased by 6.6 to 19.1 %, while the 

yield strength increased 4to 6 % owing to efficient load transfer from PE matrix to the 

fillers, because of the high density of strong filler-matrix interfaces. 

This research shows the importance of further studies of low or negative 

CTE/thermoplastic composites.  
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