

FOURTEENTH ANNUAL CONFERENCE

YUCOMAT 2012

Hunguest Hotel Sun Resort Herceg Novi, Montenegro, September 3–7, 2012 http://www.mrs-serbia.org.rs

Programme and The Book of Abstracts

Organised by:

Materials Research Society of Serbia

under the auspices of
Federation of European Material Societies
and
Materials Research Society

Title: THE FOURTEENTH ANNUAL CONFERENCE

YUCOMAT 2012

Programme and the Book of Abstracts

Publisher: Materials Research Society of Serbia

Knez Mihailova 35/IV, 11000 Belgrade, Serbia Phone: +381 11 2185-437; Fax: +381 11 2185-263

http://www.mrs-serbia.org.rs

Editor: Prof. Dr. Dragan P. Uskoković

Technical editor: Aleksandra Stojičić

Cover page: Aleksandra Stojičić and Milica Ševkušić

Copyright © 2012 Materials Research Society of Serbia

Acknowledgment:

Printed in: Biro Konto

Sutorina bb, Igalo - Herceg Novi, Montenegro

Phones: +382-31-670123, 670025, E-mail: bkonto@t-com.me Circulation: 200 copies. The end of printing: August 2012

FOURTEENTH ANNUAL CONFERENCE YUCOMAT 2012 Herceg Novi, September 3-7, 2012

P.S.B.10.

ELECTRON STRUCTURE, VALENCE STATE AND MAGNETIC PROPERTIES OF THE NEW TERNARY INTERMETALLIC COMPOUNDS: EXPERIMENTAL AND THEORY

<u>I.D. Shcherba</u>¹, I. Kravchenko², D. Uskoković³, V.M. Antonov⁴, M.V. Sacharevych⁵, A.O. Stosyk⁵, B.M. Jatcyk⁶

¹Institute of Technology, Pedagogical of University, Crakow, Poland, ²University of Florida Nano Fabritech Engineering, USA, ³Institute of Technical Sciences, SASA, Belgrade, Serbia, ⁴Academy of Science, IMF, Kyiv, Ukraine, ⁵Lviv National University by Ivan Franko, Lviv, Ukraine, ⁶University of Forestry and Wood Technology, Lviv, Ukraine

High-energy spectroscopy has been used to study the electron structure and valence state of new ternary intermetallic compounds, which crystallize in the CeNiSi₂, ThMn₁₂, ThCr₂Si₂ and HfFe₂Si₂ types. The calculations of electron energy bands E(k) and partial DOS for compounds were performed by the semi relativistic linear muffin-tin orbital method (LMTO) without considerations of spin-orbit interactions. Effective filling numbers of electrons in different bands of components in R.E.M₂X₂ (R.E = Sc, Y, Ce, Yb; M= Fe, Co, Ni, Cu, Pd, Rh; X= P, Si) compounds have been calculated. The electron occupation of the d-states of the M atoms has a dominant influence on the degree of their hybridization. Between the experimental and calculated X-ray emission spectra R.E.M₂X₂ good agreement has been obtained. L_{III} - absorption spectra Ce and Yb in ternary YbNi₄In and Ce(Yb)M₄X₈ compounds were obtained at 78K and 300K using a tube spectrometer equipped with an RKD-01 co-ordinate detector. The mixed valence state of Ce and Yb was obtained in the YbNiIn₄ and Ce(Yb)M₄Al₈ compounds.