brought to you by $\widetilde{\mathbb{I}}$ CORE provided by Digital Repository of the Institute of Technical Sciences of SASA

A DETAILED XRD AND FTIR ANALYSIS OF Bi203 DOPED ZnO SnO2 CERAMICS

Tamara Ivetić¹, M.V. Nikolić²; K.M. Paraskevopoulos³, V. Blagojević⁴, P.M. Nikolić⁵, M.M. Ristić⁵

¹Institute of Technical Sciences of SASA, Belgrade, Serbia; ²Institute for Multidisciplinary Research, Belgrade, Serbia; ³Solid State Physics Section, Physics Department, Aristotle University of Thessaloniki, Greece; ⁴Faculty of Electronic Engineering, University of Belgrade, Serbia; 5Serbian Academy of Sciences and Arts, Belgrade, Serbia

ABSTRACT

ZnO-SnO₂ ceramics were prepared with a traditional powder mixed oxide route by mixing starting powders of ZnO and SnO₂ in the molar ratio 2:1 and adding small amounts (0.5; 1.0 and 1.5 molar%) of Bi₂O₃. These mixtures were then mechanically activated for 10 minutes in a planetary ball mill, uniaxially pressed and sintered at 1300°C for 2h. The phase composition of the sintered samples was determined with X-ray **Diffraction (XRD) analysis** and a detailed Rietveld analysis was performed. Room temperature far infrared reflectivity diagrams were obtained using Bruker 113V FTIR spectrometer and fitted with several theoretical models in other to determine parameter values for some structural and optical properties of the obtained material.

CONTACT

Name: Tamara Ivetić Organization: Institute of Technical Sciences of SASA, Address: Knez Mihailova 35/IV, 11000 Belgrade, Serbia Email: tamara@itn.sanu.ac.yu Phone:+381 11 2637 367 Website: www.itn.sanu.ac.yu

INTRODUCTION

The ZnO-SnO₂ system has been the subject of intensive research, mostly in the field of varistor

ceramics. Spinel type ZnO-SnO₂ ceramics are

obtained by solid-state reaction sintering already

at 900°C starting from a compacted powder

mixture of ZnO and SnO₂ in the molar ratio 2:1.

The newly formed compound, zinc stannate, with

a general formula Zn₂SnO₄, belongs to the cubic

oxide spinel group of compounds. Zinc stannate

has potential application as a material for gas and

humidity sensing, anodes for Li-ion batteries and

as semiconducting working electrodes for solar

cells. Cubic spinel zinc stannate in bulk form is

stable in the inverse spinel structure, with a face-

centered cubic (fcc) unit cell (Fd3m space group,

origin 3m), so Zn²⁺ occupy 8a sites and both Zn²⁺

and Sn4+ cations occupy 16d sites, while O

occupies 32e sites. Spinel type structures can

have big cation disorders in the crystal lattice and

certain nonstoichiometry. Nevertheless, disorders

in spinel structures are non conventional so there

is no change in symmetry. Addition of small amounts of ${\rm Bi}_2{\rm O}_3$ to the ZnO-SnO_2 system creates conditions for liquid phase sintering and

enhances the densification process. Addition of

 Bi_2O_3 to the 2ZnO-SnO₂ system resulted in the

formation of a Zn₂SnO₄-SnO₂ two-phased

system, with larger regions of pure Zn₂SnO₄ and

RESULTS

Figure 1. Rietveld refinement of XRD diagram obtained for sample with 1.0 mol% of Bi₂O₂

b)

Table 1. Weight fractions of Zn₂SnO₄ and SnO₂ in samples obtained by Rietveld refinement

Sample	ZSO-0.5	ZSO-1	ZSO-1.5
Zn_2SnO_4	0.58714	0.46038	0.99268
SnO ₂	0.41286	0.53962	0.00732

Table 2. Lattice parameters of SnO ₂ in samples.								
Sample		ZSO-0.5	ZSO-1	ZSO-1.5				
Cell parameter	a=b	4.72829	4.73804	4.72538				
	С	3.19295	3.18586	3.18234				

Table 3. Structure parameters of Zn₂SnO₄ in samples

Sample		ZSO-0.5	ZSO-1	ZSO-1.5
Cell parameter	а	8.65773	8.66067	8.65641
0	u	0.2572	0.2538	0.2573
Zo fraction	Т	0.8614	0.9088	0.8229
ZITITACUON	М	0.5693	0.5456	0.5886
Sn fraction	Т	0.1383	0.0912	0.1771
Sir inaction	М	0.4307	0.4544	0.4114
Bond longths	T-0	1.98248	1.93287	1.98362
Bonu lengtris	M-O	2.10391	2.13233	2.10281
Inversion degree	x	0.8614	0.9088	0.8229
	UT	0.01973	0.00767	0.02066
Temperature factors	U _M	0.00399	0.01334	0.00139
	U ₀	0.01455	0.01351	0.04231

CONCLUSIONS

Two phased system composed of Zn₂SnO₄ and SnO₂ phases was formed and structure parameters of these two phases were determined by Rietveld analysis (the amount of SnO₂ varied depending on the amount of added Bi₂O₃² between 0.7 and 54%).

No peaks of Bi₂O₃ or its secondary peak phases were observed.

Addition of Bi₂O₃ caused increase of relative density up to 92% for sample with addition of 1.0 mol% of Bi₂O₂.

Far infrared reflectivity spectra were analyzed in view of changes in the sample composition and peaks originating from SnO₂ were only noted in the sample containing 54% SnO₂

The model of coupled oscillators is really only applicable to single-phase samples, so in the case of sample with 1.5 mol% Bi₂O₃, where influence of SnO₂ is negligible (0.7%), eight determined oscillators originate from Zn₂SnO₄, while in the case of other two samples, especially sample with 1.0 mol% of Bi_2O_3 determined oscillators originate from mixture of Zn_2SnO_4 and SnO_2 and determined parameter values are just illustrative.

The extra modes for Zn₂SnO₄, compared to four predicted by group theory for normal spinel structures, possibly originated from cation disorder in the crystal lattice.

REFERENCES

- 1. M.V. Nikolić, T. Ivetić, K.M. Paraskevopoulos, T.T. Zorba, M.M. Ristić, Structural analysis of $\rm Bi_2O_3$ doped ZnO-SnO_2 ceramics, Materials Research Bulletin, submited.
- 2. T. Ivetić, M.V. Nikolić, K.M. Paraskevopoulos, E. Pavlidou, T.T. Zorba, V. Blagojević, P.M. Nikolić, M.M. Ristić, Combined FTIR and SEM-EDS study of the Bi₂O₃ doped ZnO-SnO₂ ceramics, 3rd Serbian Congress for Microscopy, Belgrade, September 2007, Proceedings 71-72, accepted for publication in Journal of Microscopy.
- 3. T. Ivetić, M.V. Nikolić, M. Slankamenac, M. Živanov, D. Minić, P.M. Nikolić, M.M. Ristić, Influence of Bi2O3 on Microstructure and Electrical Properties of ZnO-SnO₂ Ceramics, Science of Sintering, 39, 229-240, 2007.
- 4. M.V. Nikolić, T. Ivetić, K.M. Paraskevopoulos, K.T. Zorbas, V. Blagojević, D. Vasiljević-Radović, Far infrared reflection spectroscopy of Zn_2SnO_4 ceramics obtained by sintering mechanically activated ZnO-SnO2 powder mixtures, Journal of the European Ceramic Society, 27, 3727-3730, 2007.

smaller areas of residual SnO₂.

Figure 2. Measured infrared reflectivity spectra of sintered samples.

Figure 3. Measured (dotted line) and calculated (full line)-with model of coupled oscillators, infrared reflectivity spectra of sintered sample with 1.5 mol% Bi_2O_3 .

ACKNOWLEDGMENTS

This work was performed as part of project 142011G financed by the Ministry for Science of the Republic of Serbia. The authors are grateful to the Greek Secretariat of Research and Development for the partial support under the bilateral program between Greece and Serbia.

a) 0.5, b) 1.0 and c) 1.5 mol% of Bi2O3

Figure 6. SEM images of sintered samples with