
Full Terms & Conditions of access and use can be found at
https://www.tandfonline.com/action/journalInformation?journalCode=tapx20

Advances in Physics: X

ISSN: (Print) 2374-6149 (Online) Journal homepage: https://www.tandfonline.com/loi/tapx20

Neuromorphic computing using non-volatile
memory

Geoffrey W. Burr, Robert M. Shelby, Abu Sebastian, Sangbum Kim, Seyoung
Kim, Severin Sidler, Kumar Virwani, Masatoshi Ishii, Pritish Narayanan,
Alessandro Fumarola, Lucas L. Sanches, Irem Boybat, Manuel Le Gallo,
Kibong Moon, Jiyoo Woo, Hyunsang Hwang & Yusuf Leblebici

To cite this article: Geoffrey W. Burr, Robert M. Shelby, Abu Sebastian, Sangbum Kim, Seyoung
Kim, Severin Sidler, Kumar Virwani, Masatoshi Ishii, Pritish Narayanan, Alessandro Fumarola,
Lucas L. Sanches, Irem Boybat, Manuel Le Gallo, Kibong Moon, Jiyoo Woo, Hyunsang Hwang &
Yusuf Leblebici (2017) Neuromorphic computing using non-volatile memory, Advances in Physics:
X, 2:1, 89-124, DOI: 10.1080/23746149.2016.1259585

To link to this article:  https://doi.org/10.1080/23746149.2016.1259585

© 2016 The Author(s). Published by Informa
UK Limited, trading as Taylor & Francis
Group

Published online: 04 Dec 2016.

Submit your article to this journal Article views: 21694

View related articles View Crossmark data

Citing articles: 146 View citing articles 

https://www.tandfonline.com/action/journalInformation?journalCode=tapx20
https://www.tandfonline.com/loi/tapx20
https://www.tandfonline.com/action/showCitFormats?doi=10.1080/23746149.2016.1259585
https://doi.org/10.1080/23746149.2016.1259585
https://www.tandfonline.com/action/authorSubmission?journalCode=tapx20&show=instructions
https://www.tandfonline.com/action/authorSubmission?journalCode=tapx20&show=instructions
https://www.tandfonline.com/doi/mlt/10.1080/23746149.2016.1259585
https://www.tandfonline.com/doi/mlt/10.1080/23746149.2016.1259585
http://crossmark.crossref.org/dialog/?doi=10.1080/23746149.2016.1259585&domain=pdf&date_stamp=2016-12-04
http://crossmark.crossref.org/dialog/?doi=10.1080/23746149.2016.1259585&domain=pdf&date_stamp=2016-12-04
https://www.tandfonline.com/doi/citedby/10.1080/23746149.2016.1259585#tabModule
https://www.tandfonline.com/doi/citedby/10.1080/23746149.2016.1259585#tabModule


ADVANCES IN PHYSICS: X, 2017
VOL. 2, NO. 1, 89–124
http://dx.doi.org/10.1080/23746149.2016.1259585

REVIEW ARTICLE OPEN ACCESS

Neuromorphic computing using non-volatile memory

Geoffrey W. Burra, Robert M. Shelbya, Abu Sebastianb, Sangbum Kimc,
Seyoung Kimc, Severin Sidlerd, Kumar Virwania, Masatoshi Ishiie, Pritish
Narayanana, Alessandro Fumarolaa, Lucas L. Sanchesa, Irem Boybatb,
Manuel Le Gallob, Kibong Moonf , Jiyoo Woof , Hyunsang Hwangf and
Yusuf Leblebicid

aIBM Research - Almaden, San Jose, CA, USA; bIBM Research - Zurich, Rüschlikon, Switzerland; cIBM T.
J. Watson Research Center, Yorktown Heights, NY, USA; dEPFL, Lausanne, Switzerland; eIBM Tokyo
Research Laboratory, Tokyo, Japan; fDepartment of Material Science and Engineering, Pohang
University of Science and Technology, Pohang, Korea

ABSTRACT
Dense crossbar arrays of non-volatile memory (NVM) devices
represent one possible path for implementing massively-parallel
and highly energy-efficient neuromorphic computing systems.
We first review recent advances in the application of NVM
devices to three computing paradigms: spiking neural networks
(SNNs), deep neural networks (DNNs), and ‘Memcomputing’. In
SNNs, NVM synaptic connections are updated by a local learning
rule such as spike-timing-dependent-plasticity, a computational
approach directly inspired by biology. For DNNs, NVM arrays
can represent matrices of synaptic weights, implementing the
matrix–vector multiplication needed for algorithms such as
backpropagation in an analog yet massively-parallel fashion. This
approach could provide significant improvements in power and
speed compared to GPU-based DNN training, for applications
of commercial significance. We then survey recent research
in which different types of NVM devices – including phase
changememory, conductive-bridging RAM, filamentary and non-
filamentary RRAM, and other NVMs – have been proposed, either
as a synapse or as a neuron, for use within a neuromorphic
computing application. The relevant virtues and limitations of
these devices are assessed, in terms of properties such as
conductance dynamic range, (non)linearity and (a)symmetry of
conductance response, retention, endurance, required switching
power, and device variability.
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1. Introduction

For more than five decades, the flexibility of the ‘stored program’ Von Neumann
(VN) architecture has driven exponential improvements in system performance.
However, as device scaling has slowed due to power- and voltage-considerations,
the time and energy spent transporting data across the so-called ‘Von-Neumann
bottleneck’ betweenmemory and processor has become problematic. This is par-
ticularly true for data-centric applications, such as real-time image recognition
and natural language processing, where state-of-the-art VN systems work hard
to match the performance of an average human.

The human brain suggests an intriguing Non-Von Neumann (Non-VN)
computing paradigm for future computing systems. Characterized by its mas-
sively parallel architecture connecting myriad low-power computing elements
(neurons) and adaptive memory elements (synapses), the brain can outperform
modern processors onmany tasks involving unstructured data classification and
pattern recognition. The scaling of dense non-volatile memory (NVM) crossbar
arrays to few-nanometer critical dimensions has been recognized as one path to
build computing systems that can mimic the massive parallelism and low-power
operation found in the human brain [1–9]. The human brain has a high degree of
connectivity, with any given neuron having as many as 10,000 inputs from other
neurons. Dense arrays of NVM elements provide an opportunity to emulate this
connectivity in hardware, if various engineering difficulties can be overcome.

These challenges include the need for a robust computational scheme, the
need for peripheral circuitry that can support massively parallel access to NVM
arrays, the need for an integrated crossbar ‘selection device’, and the need
to understand the impact of the inherent limitations of NVM devices (finite
dynamic range, imperfect device reliability and variability, and the non-zero
programming energy) on network performance.

Since the physical properties and switching behaviors of NVM devices vary
considerably with device type, various computational schemes have been pro-
posed for implementing both synapses and neurons in neuromorphic networks
using NVM. In some cases, it is sufficient for a synapse to be connected or not,
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so a binary ‘on/off’ NVM response (such as those found in Conductive-Bridging
RAM (CBRAM) or Magnetic RAM devices) can be useful. If analog synaptic
weights are desired, an NVM with continuously variable conductance – such
as Phase Change Memory (PCM) or Resistive-RAM (RRAM) – may be more
suitable. In some cases, multilevel synaptic weights have been represented by a
number of binary NVMs connected in parallel, using stochastic programming
techniques [7,9–11].

Peripheral circuitry has been proposed for the realization of hybrid CMOS/
NVM neuromorphic chips [3,12–14]. Exploiting the density of nanoscale cross-
bar NVM arrays requires compact, efficient CMOS neurons and/or innovative
techniques for matching the disparate length scales. For instance, the ‘CrossNet’
concept proposed 3D integration technology to form connections between a
dense synapse circuit layer and a less-dense CMOS neuron circuit layer
[11,14,15].

In a crossbar array, a selection device [16,17] is needed in series with the NVM
element to prevent parasitic ‘sneak path’ currents that can lead to incorrect
sensing of the NVM conductance. Such a device should pass very low current at
low bias and have a strong nonlinear turn-on at some threshold voltage. Ideally,
both the selection function and the memory function would be incorporated
into the same device [11,16]. Although neuromorphic applications can tolerate
more variability than conventional storage, it is still essential that very few access
devices fail as a short. Variability among access devices cannot be so large that
different devices might contribute significantly different read currents (into an
integrate-and-fire or other accumulation circuit) for what should have been the
same NVM device state, or require significantly different write conditions than
their neighbors. As a result, both the role and requirements of such access devices
when applied to crossbar arrays for neuromorphic applications are almost iden-
tical to those for conventional storage applications. We refer interested readers
to our recent comprehensive review of access devices [16].

NVM device issues such as power dissipation, device density, conductance
dynamic range, conductance retention for long-term potentiation (LTP), and
device variability have been considered, as well as techniques for implementing
simple Hebbian learning through Spike-Timing-Dependent-Plasticity (STDP).
The asymmetric response of most NVM devices during programming causes
weight updates of one sign to be favored over the other and leads to reduced
network performance. This feature has led some authors to employ two NVM
per synapse with opposite weight contribution during the update step [18,19].

Real NVM devices are decidedly non-ideal. However, since biology manages
to construct highly functional neural networks from imperfect neurons and
synapses, there is reason to hope that neuromorphic systems could be similarly
insensitive to the presence of defective and variable devices [4,19]. It has been
argued that, given enough connectivity and degrees of freedom, the network
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would adjust the strength of its connections to ‘rewire itself to retain performance
while avoiding defective’ devices [20].

Given the incredibly low power (10–15W) of the human brain, energy
efficiency is one of the driving forces behind neuromorphic computing. A num-
ber of studies have addressed this point [21–23], particularly by using sparse
computing techniques to maximize the computing functionality produced per
device programming event. NVMswitching that requires only low currents (0.1–
1 uA), low voltages (< 1V), and short pulses (0.1–1 us) would be highly preferred
[21].

In this paper, we survey the state of neuromorphic computing usingNVM.We
first discuss computational schemes, starting with biologically-inspired spiking
neural networks (SNN) – including those based on the local STDP learning-rule.
We also briefly survey pure CMOS neuromorphic implementations that do not
depend onNVM.We then discuss the neuromorphic applications of crossbars as
vector–matrix multipliers, including implementation of Deep Neural Networks
(DNNs) based on the backpropagation learning-rule. We also discuss non-
neuromorphic ‘memcomputing’ applications offered by NVM device arrays.

Then we survey neuromorphic computing work by the type of NVM device
employed as a synapse, including PCM, CBRAM, Filamentary RRAM, non-
filamentary RRAM, and other types of devices. Finally, we discuss neuromorphic
research in which the NVM device plays the role of the neuron (rather than
synapse), before concluding the paper.

2. Computational schemes

2.1. Spike-timing-dependent-plasticity

In the nervous system, neurons pass electrical and chemical signals to other neu-
rons through synapses. STDP is a biologically-observed process for strengthening
or weakening these connections [24,25]. STDP depends on the relative timing
between ‘action potentials’ (spikes) within the input (pre-synaptic) and output
(post-synaptic) neuron. In LTP, synapses are persistently strengthened by causal
spiking (pre-synaptic spike occurs before the post-synaptic spike); in Long-Term
Depression (LTD), acausal spiking decreases synaptic strength (Figure 1) [26].
This synaptic plasticity, or change of synaptic weight, is believed to play a key
role in how the brain implements learning and memory [27]. Thus STDP can be
considered as one implementation of Hebbian learning [28] – summarized by
Siegrid Löwel as ‘Cells that fire together, wire together’ [29].

Artificial implementations of this spike-based synaptic plasticity, using asyn-
chronous spikes of identical amplitude and duration, are often referred to as SNN
[30]. Unfortunately, hardware implementations of conventional DNN that use
similar asynchronous spikes solely for low-power node-to-node communication
without global clocking are sometimes also referred to as SNN. Please note that
SNNs as we have defined them here – employing spikes-for-learning – also
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Figure 1. (a) In biology, excitatory and inhibitory postsynaptic potentials are delivered from one
neuron to the next through chemical and electricalmessaging at synapses, driving the generation
of new ‘action potentials’. (b) Biological synaptic weight change has been observed to depend on
the relative timing of pre- and post-synapse spikes (�t = tpost-tpre), as observed in hippocampal
glutamatergic synapses (after [4,26]).

provide the same energy-efficiency benefits of such spikes-for-communication
approaches, if the spike occurrences are suitably sparse. In SNNs, much like
the way the brain is assumed to function, information is encoded into the
timing and frequency of the spikes [30]. In an SNN, spiking of the pre-synaptic
neuron (electrical current) modifies the membrane potential (electrical voltage)
of the post-synaptic neuron, by an amount determined by the ‘synaptic weight’
(electrical conductance), leading eventually to a post-synaptic spike through a
leaky-integrate-and-fire or other similar neuron model [31].

The mapping of STDP as a local learning rule for NVM arrays is highly
intuitive (Figure 2). One edge of the crossbar array represents pre-synaptic
neurons, an orthogonal edge represents post-synaptic neurons, and the voltage
on the wiring leading into these latter neurons represents membrane potential.
Thus one need only implement the STDP learning rule to modify the NVM
conductance based on the timing of the pulses in the pre- and post-synaptic neu-
rons. As mentioned earlier, STDP can be implemented even with NVM devices
that support small conductance change only in one direction, by separating the
LTP and LTD functionality across two devices (Figure 2) [18]. That said, STDP
is only a local learning rule, not a full computational architecture – and thus
significant research still must be performed to identify applications and system
architectures where STDP can be harnessed to provide robust and highly useful
non-VN computation.

Despite this, a more complete understanding of STDP would help researchers
understand how biological neurons use STDP within the brain. In computa-
tional neuroscience, it has been shown that many forms of biological plausible
learning rule which are based on spikes bear resemblances to STDP [32–34].
Some studies have been performed in simulation, using parameters extracted
from biological observations. Diehl et al. demonstrated 95% accuracy on the
MNIST handwritten-digit benchmark [35] by utilizing STDP along with other
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Figure 2. (a) Implementation of STDP with two-NVM-per-synapse scheme (after [18]). Due to
abrupt RESET in PCM devices, LTD and LTP are implemented with SET switching in different
devices, with total weight of the synapse depending on the difference between these two
conductances. (b) Key spiking characteristics of spiking neural network: downstream spikes
depend on the time integration of continuous inputs, with synaptic weight change dependent
on relative spike timing.

biologically plausible features such as lateral inhibition and adaptive spiking
threshold [36]. Masquelier et al. implemented STDP in a feed-forward multi-
layer network which mimicked the ventral visual pathway, and demonstrated
that this network could selectively learn salient visual features in images [37].
Later, the same group demonstrated that STDP can discover a repeating spike
pattern hidden in random spike trains [38].

Even though interesting results regarding various aspects of computing func-
tionalities of STDP have been demonstrated, each demonstration was from small
networks with a limited number of modeled ‘biological’ neurons, using a specific
set of conditions to enable the chosen computing functionality – parameters
which would not necessarily work for other computing functionalities. Recent
works based on SNN and STDP [39–41] have demonstrated a good inference
performance onMNIST comparable to or even better in certain aspects than the
conventional non-spiking implementations. However, even in these promising
SNN implementations, synaptic weights were either trained in the non-spiking
counterparts and later transferred to the SNN, or were trained with a specific
form of STDP which had been narrowly tailored for a particular configuration.

Efficient neuromorphic hardware can be used to extend such studies, both in
search of understanding the biological use of STDP as well as an architectural
framework for harnessing STDPas a neuromorphic computing engine.Nearly all
of this work has been performed in simulation, typically using device parameters
extracted from one or a handful of NVM devices. (This implies that the statistics
of how these parametersmight vary across an eventual large array of such devices
is either being guessed at, or worse yet, ignored.) Those studies that focus on the
STDP algorithm itself are discussed in the remainder of this section; studies
that focus on improving or compensating for a particular NVM ‘synapse’ are
described in Section 3.
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Unsupervised extraction of temporally correlated features was presented in
[42], both for learning trajectories of a moving ball, and for detecting cars
passing on a freeway based on data from a spike-based vision sensor. The authors
demonstrated 98% detection accuracy after 20min of supervised learning. The
authors showed that variations in synapse and neuron parameters can signif-
icantly increase both missed car and false positive rates. Similarly, Beyeler et
al. [43] discussed using STDP for MNIST image recognition, with ∼92% test
accuracy with 2000 training and 1000 test epochs, although no baseline accuracy
was provided. (Although a large number of SNN studies focus on MNIST and
other similar image classification tasks, it is not clear, given the strong suitability
of DNN for this application, whether such tasks are actually the best testbed for
SNNs.)

References [44–46] implemented STDP with a generic memristive device
model. In [46], the authors used ideal memristor relationships to simulate a
small-scale sequence learning problem on a 25× 25 array. Querlioz et al. studied
network resilience in the presence of device variability [44,45,47]. These authors
proposed homeostasis – control over the average neuron firing rate – as a
potential solution for overcoming variability. An event-based simulator called
‘Xnet’ for modelling the impact of NVM device imperfections on STDP through
semi-physical device models based on experimental characterization was also
introduced [48].

In contrast to these earlier works which did not consider array design and
sneak-path effects, [49] and [50] proposed a 2T1R synaptic unit cell for STDP
learning. One transistor was specifically designated for integrate-and-fire, with
the second transistor responsible for STDPprogramming.Reference [49] demon-
strated a neuromorphic core with 256 neurons and 64 k PCM synaptic cells and
on-chip leaky-integrate-and-fire and STDP circuits for on-line and continuous
training.

2.1.1. STDPwith CMOS
In addition to NVM-based approaches, various CMOS-based implementations
of SNNs have been demonstrated. To the researcher interested in NVM-based
neuromorphic approaches, suchworks offeruseful lessons inperipheral circuitry,
computational approaches, and engineering for sparse and efficient communi-
cation within the system. Without NVM, synaptic weight is typically stored in
analog or digital devices such as capacitors [51–54], 4-bit SRAM [55], 8T SRAM
[56], 1-bit SRAM [57], SRAMwith 8b-11b per synapse [58] and off-die SDRAM
[59]. With such pure CMOS-based implementations, the reliability issues and
other vagaries of emerging NVM devices can be avoided. Parameter variability
is still present, especially with analog components at deep sub-micron, but is
relatively well-characterized and accurate modeling is available.

When STDP [51,55] or long term plasticity [52] learning functions are imple-
mented at each synapse (rather than neuron), parallel operation is enabled at the
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cost of a larger overall system size. Adding more biologically realistic functions
(such as short term plasticity (STP)) further increases the size of each synapse
circuit. In these various implementations, the area occupied by a single synapse
circuit has varied, from 252.1 um2 at 180 nm in [52], 100 um2 at 180 nm in [55],
and 1.6 um2 at 45 nm node in [56]. When the number of digital synaptic bits is
limited to conserve synapse circuit area, the impact of such resolution limitations
must be carefully considered. The impact of hardware parameter variation on an
SNN chip, Spikey, with 384 neurons and ∼100K synapses was studied [60], as
well as the impact of discretized digital weights [61].

Capacitors can store analog weight values but are leaky and subject to noise
effects. DRAM or embedded DRAM is highly area-optimized for traditional
memory applications, but requires frequent refreshing. SRAM is area-inefficient
and subject to high leakage power. Indiveri and Liu surveyed specialized neu-
romorphic computing platforms including the TrueNorth [62] and NeuroGrid
chips [63], and also addressed the prospects for replacing CMOS synapses with
dense arrays of NVM devices [53].

Resistive-type NVM has shown a great potential in reducing the synapse
circuit size compared to CMOS based implementations. The key idea is to
implement STDP by designing programming pulses tailored for each NVM
device and move STDP learning circuits from the synapse circuit to the neuron
circuit. In addition, each NVM device can potentially replace multiple digital
bits by storing analog synaptic weights. However, a system with analog weights
can be less repeatable than digital weights because of increased susceptibility to
noise. Implementations based on various NVM-based synapses will be discussed
in Section 3.

2.2. Vector-matrixmultiplication for neuromorphic applications

In contrast to SNNs, for which we have a highly biologically-realistic local-
learning rule-STDP-but lack a reliable learning architecture, DNN based on
the backpropagation algorithm [64] have met with tremendous recent success.
Such networks, including convolutional neural networks, deep belief networks,
and multilayer perceptrons, are trained using supervised learning and error
backpropagation. Rather than the asynchronous, uni-valued spikes of an SNN,
the neuron outputs in a DNN are real-valued numbers, processed on syn-
chronous time-steps. While such techniques are not readily observed in biology,
a serendipitous combination – objective functionminimization through gradient
descent implemented by backpropagation, massive labeled datasets, and the
highly–parallel matrix-multiplications offered by modern GPUs – have allowed
DNN to achieve considerable recent success in numerous commercially-relevant
domains [65].

It has been known for some time that arrays of analog resistive memory
elements are ideally suited for the multiply-accumulate operations at the heart
of DNN forward-inference and training [66,67]. The multiply operation is per-
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Figure 3. (a) Key characteristic of Deep Neural Networks (DNNs): downstream neuron excitation
depend on the weight excitation of all upstream neurons, evaluated through a multiply-
accumulate (MAC) operation. (b) This MAC operation, featured in both forward-inference and
backpropagation of DNNs, can be implemented as vector–matrix multiplication on large NVM
arrays. Similar to Figure 2, NVM devices with asymmetric conductance responses (e.g. RESET is
more abrupt than SET, or vice versa) can still be used to train networks by simply assigning two
conductances for the implementation of signed synaptic weight values.

formed at every crosspoint by Ohm’s law, with current summation along rows or
columns performed by Kirchhoff’s current law (Figure 3). Thus these multiply-
accumulate operations can be performed in parallel at the location of data with
locally analog computing, reducing power by avoiding the time and energy
of moving weight data [19,68–70]. Integration of device read-currents along
columns implements in parallel the sums of �ωijxi needed for forward propa-
gation of neuron excitations xi ; integration along rows implements the sums of
�ωijδj needed for backpropagation of error terms δj [19,70].

In 2005, Senn and Fusi [10] considered the task of pattern classification in
simple perceptron networks with binary synapses. Alibart et al. presented a
small-scale pattern classification task using a 2× 9 crossbar array and the delta
learning rule [71]. The non-linearity of the conductance response of the NVM
was observed to be a serious impediment to online learning. Other authors
proposed a read-before-write scheme, with device conductance sensed before
selection of the appropriate programming pulse [71–75]. While this may be
quite accommodating to the peculiarities of real NVMdevices, it is not clear how
such an inherently-serial approach could scale to arrays with millions of NVM
synapses.

Crossbar-compatible weight-update schemes were proposed [19,76–78] with
upstream and downstream neurons firing programming pulses independently
such that overlap of these pulses at the shared crosspoints achieves the desired
weight update. Reference [19] showed no loss of test accuracy for the MNIST
benchmark [35] with this scheme. Different learning rules can be implemented
such as gradient descent [78,79], winner-take-all [79], and Sanger’s learning
rule [80], for applications such as image classification (MNIST dataset) [78],
classification of cancer datasets [80], or compression and reconstruction of
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images [79]. The contrastive divergence at the heart of the stochastic Restricted
Boltzmann Machine neural network can also be accelerated [81].

Non-linear conductance response, limited dynamic range of conductance and
variability would still need to be carefully considered. References [68,82] show
that some degree of non-linearity can be tolerated, so long as the conductance
range over which the response is non-linear is only a small fraction (e.g.∼ 10%)
of the overall conductance range. The deterioration of recognition accuracy with
non-linearity has also been studied for a sparse-coding algorithm [23]. With
respect to dynamic range, Burr et al. [68] proposed ∼ 20 − 50 programming
steps between min and max conductance with a conductance pair representing
a single weight, mirroring the conclusions of Yu et al. (6-bit resolution) [23].
Other authors have sought to quantify the impact of parameter variation and
device reliability on DNN training [19,83].

Gamrat et al. applied ‘spike-coding’ for inference, showing competitive
performance on MNIST with pre-trained weights stored on ideal devices [84].
Garbin et al. suggested that the parallel combination of 10-20 HfO2 RRAM
devices provided more robustness to device variability [85,86]. Training and
forward-inference of a small one-layer DNN was implemented on a 12× 12
memristor crossbar requiring no separate selection device [87,88]. Modeling
based on the programming dynamics of oxidememristor devices [89] was shown
to support MNIST digit classification at high accuracies [88,90]. Finally, NVM-
based DNN implementations were compared to GPUs in terms of power and
speed, showing the prospect for 25× speedup and orders of magnitude lower
power for DNN training [69].

2.3. Non-neuromorphic applications (memcomputing)

In addition to Spiking and DNN, the physical attributes and state dynamics of
emerging NVM devices can be used for computation. In this section we briefly
review such ‘memcomputing’ approaches.

In memristive logic, also known as state-full logic, the same devices are used
simultaneously to store the inputs, to perform the logic operation, and to store the
output result [91]. By using a ‘material implication’ gate q← pIMPq (equivalent
to (NOTp) ORq), Borghetti et al. showed that the NAND logic operation could
be performed using three memristive devices connected to a load resistor [91],
implying extension to all Boolean logic (since NAND is logically complete).
Later, it was shown that such IMP logic can be implemented in a memristive
crossbar by having two memristors on the same bitline but different wordlines
[92]. Additionalmemristive logic crossbar architectures have been demonstrated
based on NOR (also logically complete) [93–95].

Other adaptations of NVM device physics to logic-in-memory operations
include the rich pattern dynamics exhibited by ferroelectric domain switch-
ing [96], and the physics of crystallization [97] and melting [98] of phase-
changematerials. The accumulationproperty of phase-changematerials has been
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exploited to perform the basic arithmetic processes of addition, multiplication,
division and subtraction with simultaneous storage of the result [99], and to
factor numbers in parallel [100,101]. Similar results have been obtained with
Ag–Ge–Se devices [102].

A particularly attractive application area is that of randomnumber generation
(RNG) for stochastic computing and cryptography [103,104], exploiting the
stochasticity associated with many NVM devices. One example is the spin-
torque switching in magnetic tunnel junction (MTJ), which can be used to gen-
erate sequences of random numbers [105]. The random formation, rupture and
defect composition of the conductive filament(s) within metal-oxide-based
resistive memory devices offers a second source of inherent randomness
[106,107]. Finally, randomness in the atomic configurations of the amorphous
phase created via the melt-quench process after PCM RESET operations can
be harnessed for RNG [108]. Maintaining a near-unbiased RNG with equal
probabilities of 0 and 1 requires careful probability tracking and adjustment
of switching parameters. Recently, a new approach using coupled RRAMdevices
was proposed that provides unbiased RNG without the need for such kind of
additional circuitry [109].

Networks of NVMs can perform certain computational tasks with remarkable
efficiency. For instance, a network of resistive devices can find all possible
solutions inmultiple-solutionmazes and sort out the solution paths according to
their lengths [110]. Recent proposals for Universal Memcomputing Machine, a
class of general-purposemachines basedon interactingmemcomputing elements
for solving computationally hard problems, have initiated discussions on new
physical models of computation [111–113].

3. NVM as a synapse

Desirable properties and switching dynamics of a variety of NVM devices in the
context of neuromorphic applications have been discussed by several authors
[2,4,8,9].

3.1. PCM as a synapse

PCM(Figure 4(a)) depends on the large difference in electrical resistivity between
the amorphous (low-conductance) and crystalline (high-conductance) phases of
so-called phase change materials [114–116]. In NVM devices in general, the
process of programming into the high-conductance state is referred to as ‘SET,’
and programming into low-conductance is ‘RESET’. PCM can be applied to
neuromorphic applications where ‘device history’ is desirable, but only the SET
process can be made incremental, with repetitive pulses slowly crystallizing a
high-resistance amorphous plug within the device. Since RESET involves melt
and quench, it tends to be an abrupt process, especially within an array of not
quite homogenous devices.
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Figure 4. (a) Phase change memory (PCM) depends on the large difference in electrical
resistivity between the amorphous (low-conductance) and crystalline (high-conductance) phases
of so-called phase change materials [114–116]. (b) Conductive-Bridging RAM is based on
the electrochemical formation of conductive metallic filaments through an insulating solid-
electrolyte or oxide [117,118]. (c) The conductive filaments in a filamentary RRAM are chains of
defects through an otherwise insulating thin-film oxide [119].
Note: (After [120]).

As mentioned earlier, a two-PCM approach was proposed [18,121] to imple-
ment STDP by using different devices for LTP and LTD (see Figure 2). In this
implementation, when an input neuron spikes, it sends out a read pulse and
enters ‘LTP mode’ for time tLTP. If the post-synaptic neuron spikes during this
period, the LTP synapse receives a partial SET pulse; otherwise, the LTD synapse
is programmed.

Suri et al. improved synaptic performances of standard Ge2Sb2Te5 (GST)-
based PCM devices by an additionally introducing a thin HfO2 layer [122,123].
Increased dynamic range was attributed to the effect of this interface layer on
crystallization kinetics (through the activation energies related to growth and
nucleation sites). The two-PCM approach, much like the later use of PCM arrays
for vector–matrix computation of the backpropagation algorithm [19], requires a
burdensome refresh protocol to deal with fully SET synapses, in which inputs are
disabled, effective weights are read, and conductances RESET where necessary
to maintain weights but with lower conductance values.

Suri et al. used the behavioral model (from measured device data) of GST
and GeTe PCM to run a Xnet event-based simulation to extract features from
a dynamic vision sensor and count cars in six highway traffic lanes [123]. In
later work, a circuit-compatible model incorporating the electrical and thermal
characteristics of the top and bottom electrodes together with phase change
material parameters was developed [124]. Authors observed that the maxi-
mum conductance was reached in fewer pulses if either growth or nucleation
rate was enhanced, growth and nucleation rates strongly influenced the shape
(but not size) of the amorphous plug after RESET pulses, and conductance
during partial-SET was more sensitive to nucleation rate than growth rate.
Since growth-dominated GeTe saturated in conductance more quickly than
nucleation-dominated GST, GST could offer more intermediate conductance
states than GeTe.
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Symmetric and asymmetric STDP was also implemented with a single PCM
cell per synapse [125,126]. RESET pulses of varying amplitude, and staircase-
down pulses of varying amplitudes were used for partial SET. The use of short
pulse timings kept the total energy low despite high programming currents, and
associative and sequential learning were demonstrated in simulation. Later the
same authors showed that by tuning the energy of the spikes, the total energy for
the neuromorphic implementations can be reduced [127]. Ab initio molecular
dynamics were used to model physical changes inside phase change materials
during STDPpotentiation anddepressionwith a stepwise increase in thematerial
order in response to heat pulses (not electrical pulses) of different heights and
lengths [128].

Eryilmaz et al. experimentally demonstrated array-level learning using a
10× 10 array of transistor-selected PCM cells, showing Hebbian STDP learning
of several simple patterns [129]. Higher initial resistance variation was shown to
require longer training. Ambrogio et al. used measurements of a few transistor-
selected PCM cells (45 nm node) to simulate larger networks [130]. With a
two-layer network of 28× 28 pre- and 1 post-neuron, MNIST digit recognition
probability was 33%, with a corresponding error of 6%. With a three-layer
network, recognition probability reached as high as 95.5% for 256 neurons (error
of 0.35%). The authors also discussed the ability of their network to forget
previous information and learnnew informationboth inparallel and in sequence.

Li and Zhong et al. analyzed four different variants of STDP updates (anti-
symmetric Hebbian and anti-Hebbian update with potentiation, and symmetric
update with depression and potentiation) by applying pulses in different time
windows [131]. These forms were implemented on a few devices and in sim-
ulation [132]. Jackson et al. implemented two STDP schemes: by generating
STDP-encoded neuronal firing delays within the electronic pulses arriving at the
synapse, and by tracking the delay using a simple RC circuit in each neuron [133].
The latter approach was shown to be achievable using programming energies
less than 5 pJ in 10 nm pore (19 nm actual) phase change devices. Authors then
simulated 100 leaky integrate and fire neurons to successfully learn a simple task
of predicting the next item in a sequence of four stimuli.

3.2. CBRAMas a synapse

CBRAM (Figure 4(b)), based on the electrochemical formation of conductive
metallic filaments [117,118], is a promising approach for future NVM device
applications due to its fast speed (∼ns), scalability to the nanometer regime,
and ultra-low power consumption (∼nW). One of the difficulties for neuro-
morphic applications is the inherently abrupt nature of the filament formation
(SET) process. While filament broadening can be performed incrementally, the
resulting states are quite conductive, leading to large overall currents for any
neuromorphic system summing read currents acrossmany devices. For instance,
integrate-and-fire neurons would then require rather large capacitors.
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Ohno et al. implemented STDP synaptic operation with a silver sulfide (Ag2S)
gap-type ‘atomic switch.’ [134]. Short-term memory formation depended on
both pulse amplitude and width, with lower amplitude and narrower width
requiring a larger number of input pulses. Application of several pulses within
a short interval established a relatively stable state, interpreted as long term
potentiation (LTP). A 7× 7 array of inorganic synapses was used to experimen-
tally demonstrate memorization (and forgetting) of two simple patterns [135].

Yu et al. developed a physical model to investigate the switching dynam-
ics of CBRAM devices [136]. During SET (positive bias), the top electrode
is oxidized, with metal ions drifting to the bottom electrode where they are
reduced, producing a metallic filament that grows vertically until it reaches the
top electrode. During RESET, the filament tends to dissolve laterally first due
to the enhanced lateral electric field at the top of the filament. Key parameters
such as the activation energy and effective hopping distance were extracted from
electrical measurements. A signaling scheme was designed to implement STDP-
like conductance change by tuning pulse amplitude.

A layered memristor device structure, in which the continuous motion of
Ag nanoparticles co-sputtered in a Si layer produced reliable analog switching,
was demonstrated [137]. Two CMOS-based integrate-and-fire neurons and a
100nm× 100nm memristor device were connected to demonstrate STDP, and
1.5 e8 potentiation and depression cycles were demonstrated without significant
degradation. Suri et al. proposed the use of CBRAM devices as binary synapses
in low-power stochastic neuromorphic systems [138]. Binary CBRAM synapses
and a stochastic STDP learning rule allowed asynchronous analog data streams
to be processed for recognition and extraction of repetitive, real-time auditory
and visual patterns in a fully unsupervised manner.

Ziegler et al. demonstrated that a single Pt/Ge0.3Se0.7/SiO2/Cu memristive
device implemented in analog circuitry mimics non-associative and associative
types of learning [139]. Yang et al. reported nanoscale and solid-state physically
evolving networks based on memristive effects that enable the self-organization
of Ag nanoclusters [140]. Sillin et al. developed a numerical model based on the
synapse-like properties of individual atomic switches and the random nature of
the network wiring [141].

3.3. Filamentary RRAMas a synapse

Filamentary RRAM (Figure 4(c)) is an NVM that is quite similar to CBRAM,
except that the filament through an otherwise insulating thin-film is a chain of
defects within an oxide (rather than a chain of metallic atoms of one of the two
electrodes through an insulating solid-electrolyte or oxide) [119]. Filamentary
RRAM is attractive because it requires only metal-oxides such as HfOx, AlOx,
WOx, FeOx, GdOx, TaOx and TiOx and mixtures/laminates of such films,
many of which are already in use in CMOS fabs. The multi-level or gradual
memory modulation needed to imitate adaptive synaptic changes has been
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demonstrated in most of these materials. The underlying metal-insulator–metal
structure is simple, compact, CMOS-compatibile and highly scalable, and the
energy consumption per synaptic operation and programming currents can be
made ultralow (sub-pJ energies, < 1 uA programming current).

However, like CBRAM, the filament formation/completion process is inher-
ently abrupt and difficult to control. Low-power switching is attractive, but
since it is typically achieved by moving only a handful of atomic defects, large
variability through Poissonian statistics (‘shot noise’) is unavoidable. Once trig-
gered (by electrical field and/or local temperature increases), the filament forma-
tion/completion in both filamentary RRAM and CBRAM must be truncated by
the external circuit lest the filament grow too thick to be removed by any accessi-
ble RESET pulse. This is particularly problematic for neuromorphic applications,
since a single highly-conductive devicewith a thick filament is contributingmuch
more current into a vector sum or leaky-integrate-and-fire than its neighbors.

Choi et al. reported a gradual RESET switching with increasing RESET volt-
ages in aGdOx-basedRRAMandcrossbar arraywith abrupt SET switching [142].
Yu et al. andWu et al. demonstratedmulti-level switching in SET operation with
continuously increasing external compliance currents, and in RESET with con-
tinuously increasing reset voltages in TiN/HfOx/AlOx/Pt and TiN/Ti/AlOx/TiN
RRAM devices, respectively [143,144]. In [50], STDP pulses were engineered
based on characteristics of bipolar Si-doped HfO2 memory cell, and tested on
individual devices. Simulations were performed to demonstrate learning and
recognition of small black and white patterns. Chua and co-workers proposed
memristive cellular automata networks [145] and a memristor bridge circuit
intended to simplify the ‘chip-in-the-loop’ training of DNN [146,147].

Resistance modulation by controlling current compliance and/or pulse volt-
ages has numerous disadvantages in terms of peripheral circuit design and
complexity. Similar to approaches taken to avoidPCMSET,Yuet al. proposed the
use of only the RESET operation in Filamentary RRAM, achieving hundreds of
resistance states using a forming-free Pt/HfOx/TiOx/HfOx/TiOx/TiNmultilayer
oxide-based synaptic device [148,149]. Short pulses (10 ns) with an identical
pulse amplitude enabled sub-pJ energy per spike with potentially simple neuron
circuits. A stochastic compact model was developed to quantify the gradual
resistance modulation and was applied to a large-scale artificial visual system
simulation. 1024 neuron circuits and 16,348 oxide-based synapses were modeled
to simulate a 2-layer neural network, showing tolerance to resistance variations
of up to 10%.

Another approach is to embrace the abrupt SET operation and adopt binary
stochastic switching synapses [150]. A two-layer winner-take-all neural network
(4096 synapses connecting 32× 32 input neurons to 2× 2 output neurons) were
simulated for an orientation classification task. Jeong et al. proposed the use of
a long and low-amplitude heating pulse in addition to regular SET pulses, to
improve the analog switching of TaOx-based RRAM devices [151]. The heating
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pulse pre-heats the filament by local Joule heating, enhancing diffusion during
short SET pulses and enhancing SET dynamic range by 80%.

The impact of a multi-step ‘forming’ process (for generation of the first
filament in the device) was studied in AlOx-based RRAM devices [152]. Wang
et al. investigated the relation between compliance current during forming
process and conductance stability and synaptic behavior of a FeOx-based RRAM
[153]. To incorporate both voltage-controlled RESET and current-controlled
SET, Ambrogio et al. proposed a 1T1R synapse with HfO2-based RRAM [154].
The transistor serves as both selector and voltage-independent current source,
improving control over filament formation during forming at SET operations.
STDPmodulation of the RRAMresistancewas demonstrated in simulationswith
a compact RRAM model, and also experimentally using a transistor-selected
HfO2-RRAM with timing in the range of a few tens of ms. A 40× 40 memris-
tor crossbar array was integrated with CMOS circuits, and resistive switching
demonstrated using the intrinsic rectifying IV characteristics of a SiGe/W/a-
Si/Ag RRAM device [155]. Multi-level storage capability was verified by pro-
gramming cells with different series resistances and external diodes.

Bill et al. reported the computational implicationsof synaptic plasticity through
stochastic filament formation in multiple binary RRAM cells tied together in
parallel to form a single compound stochastic synapse [156]. A HfO2-based
vertical RRAM (VRRAM) technology was recently reported by Piccolboni et al.
[157]. Each synapse is composed of stack of VRRAM devices (each exhibiting
only two distinct resistance states) with one common select transistor, exhibiting
analog conductance behavior through the parallel configuration of N RRAM
cells. Real-time auditory visual pattern extraction applications were shown via
simulation. Although here there is a unique pair of electrodes for every device
participating in the synaptic behavior, some researchers have proposed multiple
devices in parallel between a single shared pair of electrodes. However, this
cannot work because the existence of a filament in any of the devices shorts out
all the parallel devices, preventing further filament formation.

Prezioso experimentally characterizedAl2O3/TiO2-basedmemristors tomodel
the impact of conductance-dependent conductance change on STDP [158]. Sim-
ulations showed that memristors exhibiting such conductance responses enable
self-adaptation of the synaptic weights to a narrow interval in the intermediate
value of their dynamic range, at least in a simple spiking network. Thus suggests
that non-ideal device characteristics could potentially be compensated at the
system level. Cruz-Albrecht et al. designed and simulated a neuromorphic system
combining a reconfigurable front-end analog processing core and W/WOx/Pd
RRAM-based synaptic storage [159]. Expected power consumption for∼70,000
nanoscale RRAMs and the 16 million CMOS transistors was estimated to be
130mW. Deng et al. combined the internal dynamics of a TiW/Pt/FeOx/Pt/TiW
RRAMwith amixed-analog–digital system (ADCblock at dendritic inputs, DAC
block before the crossbar RRAM) to implement a recurrent neural network using
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the recursive least-squares algorithm [160]. Two parallel RRAM were combined
to realize both excitatory and inhibitory synapses. This neuromorphic system
was shown to offer good tolerance to the variation of the RRAM devices.

3.4. Non-filamentary RRAMas a synapse

In a non-filamentary RRAM, defect migration takes place over the entire device
area, typically at an interface between two materials such as an oxide and
metal that form a Schottky barrier [161]. Motion of defects (dopants) towards
the electrode collapses the Schottky barrier, resulting in significant resistance
changes. In addition, ionic motion can transition oxide region from a highly
resistive state to a more conductive state, narrowing the tunneling gap [162] and
enabling gradual switching that is highly suitable for implementing an analog
synapse. While this eliminates the problems associated with RRAM filaments,
non-filamentary RRAMs tend to require an unpleasant tradeoff between pro-
gramming speed (requiring a lowenergy barrier to defect diffusion) and retention
(calling for a high energy barrier for this same diffusion). Critical to the use of
such non-filamentary RRAM will be a viable solution to this so-called ‘voltage–
time dilemma’ [161].

Seo et al. demonstrated analogmemory enabling synaptic plasticity and STDP
in a nanoscale TiOx/TiOy bilayer RRAM system, with multilevel conductance
states caused by the movement of oxygen ions between the TiOy layer and
the TiOx layer [163]. When 100 successive identical pulses for potentiation
or depression were applied to the device, the conductance was progressively
and continuously increased (decreased). Chang et al. reported a Pd/WOx/W
non-filamentary memristive device fabricated by rapid thermal annealing of
a tungsten film at 400◦C in O2 environment, exhibiting gradual resistance
modulation characteristics attributed to uniform migration of oxygen vacancies
under bias, modulating the Schottky barrier emission and tunneling at the
WOx/electrode interface [164].

Similar physics was reported for a non-filamentary RRAM device based on a
Ta/TaOx/TiO2/Ti stack [165,166]. A comprehensive analytical model based on
barriermodulation induced by oxygen ionmigrationwas proposed to explain the
observed synaptic resistance change characteristics in the device, including STDP
and paired-pulse facilitation. Resistance states could only be read out at negative
voltages due to significant non-linearity in the device characteristics. Energy
consumption was as low as 7 fJ per training pulse for depression, although the
switching voltages were large with long duration (+9.2V/1ms and –8.0V/50 us
for potentiation and depression, respectively). However, these characteristics
might improve as devices are scaled down in size from the 104um2 regime to
the nanoscale regime, since non-filamentary devices do change significantly with
critical dimension.

Resistance instability in RRAM synapses can be exploited to emulate Short-
TermModulation (STM). Lim et al. investigated the STM effect in TiO2 material



106 G. W. BURR ET AL.

[167] utilizing a non-filamentary switching RRAM device. This potentiation
behavior depends on the stimulation frequency, with synaptic weight increasing
as frequency increased. Yang et al. reported two different switching modes,
volatile and nonvolatile resistance switching behaviors, in a Pt/WO3−x/Pt based
non-filamentary memristor device [168]. Before the device is formed, the device
exhibits a volatile switching characteristics; after forming at 6V, the device
shows less volatile resistive memory-like behavior with∼22–25 s resistance state
lifetimes, potentially enabling short- and long-term memory behaviors

Park et al. demonstrated a neuromorphic system with a 1 kbit cross-point
array of interface-type RRAMbased on reactivemetal/Pr0.7Ca0.3MnO3 (PCMO)
stacks, with device diameters ranging from 150nm–1um. When Al metal is
deposited, the chemical reaction between Al and PCMO forms a very thin AlOx
layer. When negative bias is applied to the Al layer, oxygen ions move from the
AlOx to the PCMO bulk, leading to a low resistance state. Under positive bias,
oxygen ions were attracted from the PCMO layer, forming a thick insulating
oxide layer and a high resistance state. Continuously increasing potentiation
(depression) behaviorswere observed upon iterative programmingwith identical
pulses of negative (positive) bias [169,170].

However, itwas difficult to emulate gradual LTDusing identical spikes because
of large differences between the SET and RESET characteristics, caused by
different oxidation and reduction energies. To obtain a symmetric and grad-
ual behavior on the Al/PCMO device, a programming scheme was introduced
[171]. Varying sputter conditions during the deposition of the TiNx layer was
shown to improve device characteristics such as current level and on/off ratio by
engineering the Schottky barrier between TiN and PCMO [172].

Sheri et al. proposed a solution for the asymmetrical memristor behavior of
TiN/PCMO synapses, achieving improved pattern recognition accuracy [173].
To avoid the abrupt conductance change observed in depression mode, they
proposed a two-PCMO-memristor device model in which two PCMO devices
constitute one synapse (similar to earlier approaches with PCM and RRAM [18,
19,121,148,149]). Moon et al. developed neuromorphic hardware for real-time
associativememory characteristics, combining CMOSneuronswith TiN/PCMO
synapses [174]. Theydesigned a circuit consisting of elements including an adder,
a divider, and a comparator to realize classical conditioning (learning to associate
‘fear’ or ‘hunger’ with particular stimuli). To investigate the role of the electrode
on PCMO-based devices, Lee et al. fabricated and analyzed the effects of various
reactive top electrodes (Al, Ta, TiN, and Ni) [175]. Devices with lowmetal-oxide
free energies exhibited an increased number of conductance states, but more
asymmetric conductance change, posing a tradeoff where these effects need to
be balanced for best neural network performance.

Recently, this group reported a high-density cross-point synapse array using
200mmwafer-scale PCMO-basedmemristive synapses and exhibiting improved
synaptic characteristics [176]. Experimental results were reported in which the
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memristive HNN system is used to recognize human thought patterns for three
vowels: a, i, and u from electroencephalography signals. To increase the recog-
nition accuracy, post-neurons were paired into three groups, with each group
comparing two of the three vowels (a vs. i, a vs. u, and i vs. u). Fear-conditioning
experiments were also performed using signals from the brain of a live rat
(dentate gyrus in hippocampus) [177].

Hansen et al. demonstrated a double-barrier memristive device that consists
of an ultra-thin memristive layer (NbxOy) sandwiched between an Al2O3 tunnel
barrier and a Schottky-like contact [178]. They showed that the resistive switch-
ing originates from oxygen diffusion and modification of the local electronic
interface states within the NbxOy layer, which then influence the interface
properties of the gold contact and the Al2O3 tunneling barrier. They proposed
the use of such devices in neuromorphic mixed signal circuits, similar to earlier
experiments using TiO2 [179].

3.5. Other types of non-volatile and partially-volatile synapses

Besides theNVMdevices described so far, other devices, such as organicnanopar-
ticle transistors [180], inorganic devices [135,181], spin devices [182–186], car-
bon nanotubes (CNT) [187–189], ferroelectric [190], Mott [191] and tunnel
junction based [192] memristors have been used in neuromorphic applications.
Using these devices as artificial synapses, several characteristics of biological
synapses – such as STP [135,180,181,188], [135] LTP, LTD and STDP [184,
185,189,190,192] – have been mimicked. While some of the devices have only
been fabricated, characterized and simulated [180,181,185,188], others have been
used in system level simulations [182,184,186,187,189,191] or even hardware
experiments [135,190,192] to show neuromorphic computing capabilities.

3.5.1. Artificial synapses based on spin devices
In [185], a magnetic heterostructure between a magnetic material exhibiting
Perpendicular Magnetic Anisotropy and a non-magnetic heavy metal with high
spin–orbit coupling was used to enable STDP. Device conductance was a linear
function of the domain-wall position, modulated by a current flowing parallel to
the domain-wall magnet (through spin–orbit torque generated by spin-polarized
electrons accumulated at the interface). Pre-, input- and output-spikes were
applied by access transistors connected to the heterostructure.Vincent et al. [184]
used spin-transfer torque magnetic memory to implement a stochastic mem-
ristive synapse, by carefully choosing programming pulses (current and time)
to implement controlled switching probabilities. A simplified STDP learning
rule was applied, together with lateral inhibition to implement a winner-takes-
all architecture. The detection of cars recorded on a neuromorphic retina was
simulated, and the impact of device variations (minimum/maximum resistance,
transient effects) tested through Monte Carlo simulations. Zhang et a. [193]
proposed an all-spin DNN based on a compound spintronic synapse and neuron
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composed of multiple vertically stacked Magnetic Tunnel Junctions (MTJs),
implementing multiple resistance states and a multi-step transfer function.

3.5.2. Artificial synapses based on CNT
In [189], the intrinsic hysteretic behavior of CNT channel conductance was used
to store synaptic weights. A hysteresis loop was observed when the gate voltage is
varied under constant Vds, and attributed to charge trapping in water molecules
in the ambient environment around the CNT. Using sawtooth-shaped pre- and
post-spikes, an STDP weight update rule was implemented on a single device.
System level simulations demonstrated unsupervised learning on the MNIST
dataset.

In [187] an optically gated three-terminal device based on CNT coated with a
photo-conducting polymer was used as an artificial synapse. A light pulse reset
the channel conductance to its maximum value, with photo-induced electrons
generated in the polymer layer and trapped in the gate dielectric. With its
threshold voltage thus reduced, the device remained in the on-state in the dark.
Device conductance could then be decreased by applying either negative bias
pulses on the gate or positive bias pulses on the drain. Using an FPGA hardware
setup with 8 OG-CNTFET devices, a supervised learning algorithm (based on
Widrow-Hoff’s least square ‘Delta’ rule) was used to demonstrate learning of 2-
and 3-input binary, linearly separable functions. Good tolerance to device level
variability (ON-state current, threshold voltage) was observed.

Shen et al. [188] built a p-type CNTFET, with a random CNT network as the
channel and an aluminiumgate on aluminiumoxide implantedwith indium ions.
Positive voltage on the gate trapped electrons in dielectric defects, temporarily
increasinghole concentration in the channel andhence its conductance.An input
neuron was connected to the gate electrode, an output neuron to the source,
with the drain connected to a fixed potential (negative for inhibitory, positive
for excitatory device). An excitatory (inhibitory) input spike caused a sudden
increase in excitatory (inhibitory) postsynaptic current through the device. The
STP accumulative behavior of various input spike combinations was studied.

3.5.3. Other synaptic devices
Zhu et al. [181] suggested an in-plane lateral-coupled oxide-based artificial
synapse network, consisting of an indium-zinc-oxide (IZO)-based gate with
source and drain electrodes and a P-doped nanogranular SiO2 channel. Lateral
modulation is caused by proton-related electrical-double-layer effect. The gate
was used as presynaptic terminal, with channel conductance encoding weight
(Vds constant). A positive voltage pulse on the gate induced proton migration,
increasing channel conductance. Several pulses produced an accumulated EPSC,
which can be interpreted as STP. Neural networks were constructed by laterally
coupling several presynaptic gate terminals to the same channel, with synaptic
weights spatiotemporally dependent on the spikes applied to the presynaptic
input terminals.
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Alibart et al. [180] proposed an artificial synapse based on a nanoparticle
organic memory FET (NOMFET) using Ag nano-particles and pentacene as the
organic semiconductor. The nano-particles stored charge at every pulse on the
gate but released them slowly. Charge accumulation through several pulses can
be interpreted as STP. Since hole-trapping led to increased channel conductance,
initially charging the NPs with negative (positive) bias voltage exhibit synaptic
depression (potentiation). By connecting gate to an input neuron and drain
to an output neuron, high (low) frequency pulse trains were shown to exhibit
conductance depression (potentiation). The working frequency range could be
adapted by adjusting device and NP size.

Tunnel junction basedmemristors have been proposed as artificial synapses in
[192]. Severalmaterials were used:Magnesia based tunnel junctions (MgO), Bar-
ium Titanate junctions (BTO), and Tantalum Oxide (Ta-O). The conductance
change is based on the effective tunnel barrier thickness, and exhibited bipolar
switching with a programming voltage threshold (below which the devices were
not programmed). With particular pulsing sequences, conductance could be
gradually increased or decreased for LTP and LTD.

In [190], 3T-FeMEM ferroelectric memristors were used to demonstrate on-
chip pattern recognition. An inverted staggered ferroelectric thin-film transistor
structure and CMOS circuit exhibited hysteretic VGS − ID characteristics. To
demonstrate STDP learning, timing differences were converted to various pulse
amplitudes (bipolar saw-tooth signal for pre-spike, rectangular pulse for post-
spike). A CMOS selector enabled the overlap of pre- and post-spike to be applied
at the gate of the 3T-FeMEM, creating STDP characteristics. Using 9 CMOS
neurons and 16 synapses (each composed one excitatory and one inhibitory 3T-
FeMEM device), a small recurrent Hopfield network was fabricated and used to
demonstrate associative learning and partial recall of two 3× 3 patterns.

4. NVM as a neuron

In biological neurons, a thin lipid-bilayer membrane separates the electrical
charge inside the cell from that outside it, which, in conjunction with several
electrochemical mechanisms, allows an equilibrium membrane potential to be
maintained. With the arrival of excitatory and inhibitory postsynaptic potentials
through the dendrites of the neuron, the membrane potential changes and
upon sufficient excitation, an action potential is generated (‘neuronal firing’, see
Figure 1) [195]. Emulation of these neuronal dynamics, including maintenance
of the equilibrium potential, the transient dynamics and the process of neuro-
transmission, is thought to be the key to the realization of biologically plausible
neuromorphic computing systems [196]. The complex neuronal dynamics cap-
tured in the Hodgkin–Huxley model and in various threshold-based neuronal
models must often be simplified for efficient hardware realizations [197]. In
doing so, the integration of the postsynaptic potentials (related to the neuronal
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Figure 5. Thephysics of Non-VolatileMemory (NVM) devices canbe used to emulate the dynamics
of biological neurons, in order to gain significant areal/power efficiency and seamless integration
with dense synaptic arrays.
Note: (After [194]).

soma) and the subsequent firing events (related to the axon) are the two most
important dynamical components retained. There is a growing body of work that
tries to exploit the physics of NVM devices to emulate these neuronal dynamics
(Figure 5). The objective is to gain significant areal/power efficiency as well as to
achieve seamless integration with dense synaptic arrays.

When an NVM is used as a neuron, it is not essential that it achieves a
continuumof conductance states, but instead that it implements an accumulative
behavior, ‘firing’ after a certain number of pulses have been received. These
pulses could be changing an internal state which is not necessarily well reflected
in the external conductance until the threshold is reached and the neuron ‘fires.’
In contrast, each conductance state of an NVM used as a synapse is important,
because it impacts the network through how it contributes into an integrate-and-
fire or other accumulation operation. Furthermore, for NVMs used as a neuron,
non-volatility is not essential; volatility could potentially be used to implement
leaky integrate-and-fire dynamics.

Ovshinksy and Wright first suggested the use of PCM devices for neuronal
realization [99,198]. Tuma et al. recently showed that post-synaptic inputs can be
integrated using PCM-based neurons [194], experimentally demonstrating the
evolution of neuronal membrane potential as encoded by phase configuration
within the device. The detection of temporal correlations within a large number
of event-based data streamswas demonstrated. All-PCMneuromorphic systems,
in which both the neuronal and the synaptic elements were realized using phase-
change devices, have also been reported [199,200].

Recent studies show that in addition to the deterministic neuronal dynamics,
stochastic neuronal dynamics also play a key role in signal encoding and trans-
mission – for example, in biological neuronal populations that represent and
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transmit sensory and motor signals. This stochastic behavior can be attributed
to a number of complex phenomena, such as ionic conductance noise, chaotic
motion of charge carriers due to thermal noise, inter-neuron morphologic vari-
abilities, and other background noise [201]. Emulating this stochastic firing
behavior within artificial neurons could enable intriguing functionality [202].

Mimicking this stochastic neuronal behavior at the device level, Tuma et al.
showed that neuronal realizations using PCM devices exhibit significant inter-
neuronal as well as intra-neuronal randomness [194]. Intra-device stochasticity
– attributed to shot-to-shot variability in both thickness and internal atomic con-
figuration of the melt-quenched amorphous region – causes multiple integrate-
and-fire cycles in a single phase-change neuron to produce a distribution of the
interspike intervals, enabling population-based computation. Fast signals were
demonstrated to be accurately represented by overall neuron population despite
the ‘too-slow’ firing rate of the individual neurons.

However, it should benotedhere that themelt-quenching processwithinPCM
devices, and in particular elemental migration within the molten state, is the step
that tends to limit device endurance. Similarly in RRAM devices, large changes
in conductance tend to ‘use up’ more endurance than the smaller changes in
conductance involved in synaptic plasticity. Thus, if each neuron will only be
able to fire a finite number of spikes, it will be important to ensure that spike
firing is extremely sparse across the lifetime of the system. Alternatively, other
material systems offering higher endurance could be considered.

Al-Shedivat et al. proposed stochastic artificial neurons using TiOx-based
resistive memory devices [203]. Integration of neuronal inputs leads to a large
voltage on a capacitor (representing themembrane potential of a neuronal soma),
which causes the resistive memory device to switch to a low resistance state. The
resulting current increase was converted into either a shaped analog spike or a
digital event by external circuitry. The randomness associated with the resistive
memory switching leads to a stochastically firing neuron; a probabilistic winner-
take-all network (as described in [204]) was simulated. A similar circuit, but
using a Cu/Ti/Al2O3-based CBRAM device, was proposed by Jang et al. [205].

Resistivememory devices have also found applications in emulations of axonal
behavior. The neuristor was first proposed as an electronic analogue to the
Hodgkin–Huxley axon [206,207], but early implementations were not scalable.
Pickett et al. demonstrated aneuristor built using twonanoscaleMottmemristors
– dynamical devices that exhibit transient memory and negative differential
resistance due to an insulating-to-conducting phase transition driven by Joule
heating [191]. By exploiting the functional similarity between the dynamical
resistance behavior of Mott memristors and Hodgkin–Huxley Na+ and K+ ion
channels, a neuristor comprising two NbO2 memristors was shown to exhibit
the important neuronal functions of all-or-nothing spiking with signal gain and
diverse periodic spiking.



112 G. W. BURR ET AL.

A probabilistic deep spiking neural system enabled by MTJs was proposed to
transform an already fully-trainedDNN into a spiking neural network (SNN) for
forward-inference [186]. DNN inputs were rate-encoded as Poisson spike-trains
for the SNN and modulated by the synaptic weights, with the resulting post-
synaptic current flowing through the heavy metal underneath the MTJ device.
This current flow induced switching in the MTJ from AP to P with a probability
distribution similar to a DNN sigmoid function, with 50% probability at zero
input imposed by the addition of a constant bias current. A switch to the P state
triggered an output spike. Stochastic micro-magnetic simulations of a large scale
deep learning network architecture showed up to 97.6% test accuracy onMNIST
handwritten digit recognition by the SNN forward-inference implementation
(compared to 98.56% in the originally trained DNN).

Sharad et al. proposed the use of lateral spin valves and domain wall
magnets (DWM)asneurondevices [182], for implementingmultiply-accumulate
functionality. In their first idea, two input magnets with opposite polarity, one
fixed magnet and one output magnet were connected by a metal channel. Spin-
torque transfer causes the output magnet to switch to the soft axis parallel to
the polarity of the input magnet with the larger input, which can be detected
through an MTJ. In their second idea, two magnets with fixed and opposite
polarity were connected by a DWM with integrated MTJ (for detection). With
one of the two magnets grounded, the other received the difference of excitatory
and inhibitory currents, plus a bias current to center the DWM response. This
difference current determines both the direction of current flow through the
DWM and the resulting magnetic polarity, which can be sensed through the
MTJ. Sharad et al. also proposed circuit integration schemes for unipolar and
bipolar neurons as well as device circuit co-simulation of some common image
processing applications.

Moon et al. realized a pattern-recognition neuromorphic system by com-
bining a Mo/PCMO synapse device with a NbO2 Insulator-Metal Transition
(IMT) neuron device [208]. The Mo/PCMO device showed excellent reliability
characteristics because of its high activation energy for the oxidation process. A
NbO2-basedoscillator neurondevicewasused to implement aHopfieldnetwork-
basedneuromorphic systemusing an11k-bit array ofMo/PCMOsynapse devices
and NbO2 IMT oscillator neurons.

5. Discussion and conclusions

We have reviewed the application of NVM arrays to parallel, distributed, neuro-
morphic computing. In general, NVM devices can help implement neuromor-
phic systems by offering compact, low-power and efficient ways to integrate a
large number of incoming signals – a key feature of brain-inspired computing.
In Table 1, we have listed what we feel are the key research needs in order to
make significant forward progress towards NVM-based neuromorphic systems.
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Table 1. In each of the areas surveyed in this manuscript, here we list key research advances that
we feel will be needed to make significant forward progress towards NVM-based neuromorphic
systems.

Topic Key research needs

Spiking Neural Networks (SNNs) • Scalable, global learning architecture that can harness local spike-
dependent plasticity for network convergence, while supporting high
sparsity for low-energy computation

Deep Neural Networks (DNNs) • NVM devices exhibiting gentle, symmetric increases/decreases in
conductance over a large dynamic-range, for high training accuracy on
modern and future DNN problems
•Massively parallel peripheral circuitry for fast evaluation/training speed

Memcomputing • End-to-end use case vs. standard CMOS sufficiently compelling to justify
implementation of new unit processes

Synapses based on . . .

Phase-change memory • Highly-scaled devices for low programming power with low drift
Conductive-bridging RAM • Compelling architectures that can use high resistance-contrast but

stochastic and binary synapses
Filamentary-RRAM • Compelling architectures that can use low resistance-contrast but

stochastic and binary synapses, or
• Sufficient analog control over the RESET step even when filaments are
narrow (for low-power and low-read current)

Non-filamentary-RRAM • Solution to voltage–time dilemma offering low-power switching at
�1 usec and�1000 secretention

Spin-based devices • Compelling end-to-end use case supporting all-spin processing,
including tight variability control

Transient effects • Compelling role for Short-Term Plasticity within an SNN or other
neuromorphic algorithm

NVM-as-neurons • Compelling role for NVM-based neurons that can accommodate finite
NVM endurance

Many researchers have studied SNN employing various types of NVM as
synaptic connections. These most often implement a variant of a STDP learn-
ing rule, essentially a type of Hebbian learning in which synaptic connections
between neurons that are often activated together in sequence are strengthened.
Here signal accumulation is typically performed by integrate-and-fire neurons
– and NVM devices can assist in both the integration and firing aspects. The
temporal dynamics inherent in many NVM devices can also provide interesting
neuromorphic functionality.

Although some interesting demonstrations of functionality, such as image
recognition, have been performed, the absence of a robust global learning ar-
chitecture to accompany the local STDP learning-rule remains an important
limitation. Without such an algorithm, we are forced to characterize devices in
terms of ‘pJ-per-spike’ even though we do not know howmany spikes will really
be needed to perform a useful computational task. In this context, further work
on implementing these local learning rules in yet more different types of NVM
devices is not likely to lead to forward progress.

In contrast, DNN trainedwith supervised learning and error backpropagation
have been very successful in important real world applications such as image
recognition and speech recognition. These algorithms call for the multiplication
of large matrices and vectors, conventionally parallelized on GPUs. However,
parallel matrix–vector multiplication can also be implemented efficiently on
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arrays of NVMs – where NVM conductance or conductance-pairs represent
the strength of synaptic connections – in an analog fashion via Ohm’s Law and
Kirchhoff’s Law. By avoiding the time and energy spent moving around large
amounts of digitized weight data, this approach could have potential advantages
in both speed and power consumption compared toGPU implementations. That
said, demonstrating these advantages in actual hardware at the necessary scale –
while delivering DNN performance (e.g. classification accuracies) indistinguish-
able to GPUs – remains a significant research challenge. For instance, modern
GPUs are capable of training Convolutional Neural Networks of modest size
(AlexNet, 7 layers) in approximately 550 usec per example [209], albeit while
dissipating as much as 300W in just one GPU. Any NVM-based system must
offer a significant speed-up, or a very significant power advantage, over these
existing capabilities.

NVM crossbar arrays have high device density, potentially as high as 4F2 area
permemory cell if an integrated selection device is used, where F is theminimum
feature size. Design of CMOS neuron circuitry to effectively address these dense
arrays of memory elements with the high degree of connectivity that many
network architectures demand will be a challenge. Neuromorphic applications
have been shown to be fairly robust to some kinds of device variability and non-
ideality, but sensitive to asymmetry and nonlinearity of conductance response.
An ideal NVM device should have a near-linear response over most of its
conductance range, with each programming pulse changing conductance by
only a small portion of the overall dynamic range. In contrast to conventional
data storage, for which ‘device history’ is an unpleasant hindrance, an ideal NVM
device for neuromorphic applications must embrace device history.

None of the NVM device types surveyed here completely fulfill the desired
criteria. PCM can offer small and contiguous conductance increases through
partial crystallization, but conductance decrease (melt-quenching of an amor-
phous plug) is abrupt. Adaptations using multiple conductances per synapse
and periodic corrections have been developed, but are less than ideal. Resistance
‘drift’, or relaxation of the amorphous phase after themelt-quenching inherent in
the RESET step could also be a potential problem for neuromorphic applications.

CBRAM offers large dynamic range, but the filament formation process tends
to be abrupt. Filamentary RRAM suffers similar abrupt SET processes with lower
dynamic range, but offer fab-friendly materials and device structures. In both
cases, neuromorphic architectures that can use binary devices offering stochastic
programming behavior may be useful. However, the end-to-end use case of
scalable architectures that rapidly converge during learning to show best-in-the-
world performance on useful problems must be fleshed out and shown to be
compelling.

Non-filamentary RRAM offers truly bidirectional conductance change, but
improvements are needed in linearity of this response, and in scaling devices
down to small scale to see if low switching voltages, currents and energies are
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achievable while maintaining sufficient conductance contrast, switching speed
and retention characteristics. Other device concepts, including MTJ and car-
bon nanotube transistor devices, have also been proposed. However, further
advanced device development and/or invention of acceptable schemes to bridge
the deficiencies of each particular class of NVM devices without loss of speed or
power efficiency is likely to be necessary. In particular, while it is too early to be
sure that Short-Term Plasticity has no role in any future neuromorphic system,
researchers studying such devices should seek to make the case that such STP
will in fact be not just useful, but uniquely enabling.

Finally, in addition to the use of NVM devices as synapses, several proposals
have addressed the use of NVM as a neuron, serving either as soma or axon.
Here unique functionality through physical effects within the devices – including
temporal response characteristics – in a low-power and efficient form-factor
is envisioned. Similar proposals have been made for non-neuromorphic, or
memcomputing applications. In all these cases, what is really needed from the
research community are end-to-end use cases in which the energy, speed, cost,
or other advantages of such systems are so compelling that they readily justify
the significant costs of developing and implementing brand-new semiconductor
processes to implement these devices at scale in real CMOS fabs.

Though many problems remain to be solved, the application of NVM arrays
to neuromorphic computing continues to be a potentially attractive solution to
highly parallel, distributed processing of massive amounts of data, and thus can
be expected to remain an active area of research for some time.
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