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resumo 
 

 

A poluição atmosférica é atualmente um sério problema mundial de saúde 
pública, especialmente em áreas urbanas, devido à elevada densidade 
populacional e intensa atividade antropogénica. O setor dos transportes 
rodoviários é uma das principais preocupações e o que mais contribui para 
concentrações de dióxido de azoto (NO2) na atmosfera, embora as condições 
químicas de fundo regional devam também ser consideradas. Neste contexto, a 
utilização de ferramentas de modelação é crucial para compreender a dinâmica 
atmosférica e humana a diferentes escalas, e apoiar na definição das melhores 
estratégias para melhoria da qualidade do ar (EMQA). 
Esta tese tem como objetivo principal o desenvolvimento e aplicação de um 
sistema de modelação multiescala que permita simular qualidade do ar e 
impactos na saúde em cidades. Para isso, foi desenvolvido e operacionalizado 
o sistema modair4health - multiscale air quality and health risk modelling. Este 
sistema inclui o modelo online WRF-Chem, que fornece campos meteorológicos 
e de qualidade do ar da escala regional à urbana, e o modelo CFD VADIS, que 
utiliza os resultados do WRF-Chem para calcular o impacto das emissões do 
tráfego rodoviário no escoamento e dispersão de poluentes em áreas urbanas. 
Para avaliar os impactos na saúde humana, foi também integrado um módulo 
baseado nas abordagens linear e não-linear da Organização Mundial de Saúde 
(OMS), e os custos são calculados com base em estudos económicos. 
A aplicação e avaliação do sistema modair4health permitiram identificar as 
configurações e dados de entrada mais apropriados, que foram posteriormente 
utilizados para testar EMQA sobre o caso de estudo, que corresponde a uma 
das áreas de maior tráfego rodoviário da cidade de Coimbra (Avenida Fernão 
de Magalhães). O WRF-Chem foi configurado com 3 domínios aninhados 
(resoluções de 25, 5 e 1 km2), simulados para o ano 2015; enquanto que para o 
VADIS, foi definido um quarto domínio (resolução de 4 m2) sobre o caso de 
estudo para simular concentrações de NO2 em dois períodos específicos: uma 
semana no inverno e outra no verão. Para quantificar os impactos na saúde, as 
duas abordagens da OMS foram aplicadas ao caso de estudo para avaliar 
efeitos a curto-prazo. A abordagem não-linear apresentou resultados de saúde 
mais baixos que aparentemente estão melhor ajustados à realidade local. Por 
fim, foram avaliadas as potencialidades do sistema no apoio à tomada de 
decisão, testando dois cenários de gestão do tráfego rodoviário: substituição de 
50% da frota de veículos abaixo de EURO 4 por veículos elétricos (ELEC), e 
introdução de uma Zona de Emissões Reduzidas (LEZ). O cenário ELEC 
potencia melhorias mais significativas na qualidade do ar e saúde. 
Este estudo representa um avanço científico na modelação multiescala da 
qualidade do ar e saúde. O sistema modair4health pode ser facilmente adaptado 
e aplicado a outros casos de estudo para avaliar a qualidade do ar urbana e 
impactos na saúde, bem como para testar medidas de controlo da poluição 
atmosférica. 
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abstract 

 
Ambient air pollution is nowadays a serious public health problem worldwide, 
especially in urban areas due to high population density and intense 
anthropogenic activity. Among the main urban air pollution sources, the road 
traffic sector is one of the major concerns and the largest contributor to nitrogen 
dioxide (NO2) concentrations, though regional background chemical conditions 
must also be considered. In this context, the use of modelling tools is crucial to 
understand atmospheric and social dynamics in multiple scales, as well as to 
support in defining the best air quality improvement strategies. 
The main objective of this thesis is to develop and apply a multiscale modelling 
system able to simulate air quality and health impacts in cities. For this purpose, 
the modair4health multiscale air quality and health risk modelling system was 
developed and operationalized. It includes the online model WRF-Chem, which 
provides air quality and meteorological fields from regional to urban scales, and 
the Computational Fluid Dynamics (CFD) model VADIS, which uses the urban 
WRF-Chem outputs to calculate flows and dispersion of traffic emissions-related 
air pollutants in urban built-up areas. A health module, based on linear and non-
linear World Health Organization approaches, was also integrated in 
modair4health to assess the health impacts resulting from air quality changes, 
and the overall health damage costs are calculated based on economic studies. 
The application and assessment of the modair4health system allowed to identify 
the most appropriate configurations and input data, which were used to apply the 
system over the case study testing air quality improvement scenarios. One of the 
busiest road traffic areas of the city of Coimbra (Fernão de Magalhães Avenue) 
in Portugal was selected as case study. The application considered a 4 domains 
setup: three nested domains (25, 5 and 1 km2 resolutions) for the WRF-Chem, 
and the 4th domain (4 m2 resolution) over the target local study area and NO2 for 
the VADIS. WRF-Chem was applied along the year 2015 and VADIS was 
simulating two particular periods: one week in winter and another one in summer. 
Short-term health impacts were estimated and the non-linear approach led to 
lower health outcomes that seem better adjusted to the local reality. Finally, to 
assess the modair4health capabilities for decision-making support, two traffic 
management scenarios were tested over the case study: replacement of 50% of 
the vehicle fleet below EURO 4 by electric vehicles (ELEC), and introduction of 
a Low Emission Zone (LEZ). Air quality and health positive impacts were higher 
for the ELEC scenario. 
This study represents a scientific advance in multiscale air quality and health 
modelling. The modair4health system can be easily adapted and applied to other 
simulation domains, providing urban air pollution levels and subsequent health 
impacts for different case studies and supporting the assessment of air pollution 
control policies. 
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Chapter 1 – Introduction 

3 

1. INTRODUCTION 

 

The current ambient air quality levels and consequent implications for human health in 

Europe, in particular over urban areas where the majority of the population lives and/or 

works and the main anthropogenic air pollution sources are located, are a main concern 

nowadays (Section 1.1). To assess these air pollution levels and health impacts in a broad 

temporal and spatial horizon, the use of modelling tools for research and dissemination 

purposes is a common practice. However, in integrated multiscale modelling a deep 

knowledge of the relationship between air quality and health and the selection of the most 

appropriate models, parametrizations, resolutions and input data are key aspects that 

dictate the quality of the modelling results. In line with the urban air quality challenging 

research issues, the objectives and structure of the thesis are also presented (Section 1.2).  

 

1.1.  Urban air quality and health impacts 

To date, air pollution is a global threat and the biggest environmental risk factor to the 

human health. According to the World Health Organization (WHO), about three million 

premature deaths each year, mainly from chronic diseases, are related to outdoor air 

pollution problems (WHO, 2016a). The exponential population growth throughout the last 

decades, and consequent non-sustainably intensification of the human activity have been 

contributing to these records (Likhvar et al., 2015). From the point of view of the main 

pollution hotspots, particular attention should be attributed to urban areas, because more 

than half of the world´s population lives there, and normally a dense network of emission 

sources is present, namely transports, industry and households (Miranda et al., 2015). 

However, the causes of air pollution must be analysed beyond the urban/local scales, since 

air pollutants are often transported across continents and ocean basins (APPRAISAL, 

2013a; Ramanathan and Feng, 2009; Thunis et al., 2016). Thereby, the use of emerging 

modelling tools is essential and encouraged through environmental regulations to cover 

multiple scales with different purposes: 

(i) to analyse the relative importance of the main emitting sources; 

(ii) to understand atmospheric and demographic dynamics that allow relating air 

concentrations with human exposure;   

(iii) to assess health impacts resulting from short and long-term exposure to air 

pollutants;  
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(iv) to accomplish legal impositions for air quality improvement at the European Union 

(EU) level, in particular those related to air pollution management strategies for the 

zones/agglomerations where air quality standards are exceeded. 

Following this framework, the European Environment Agency (EEA) annually presents an 

updated analysis of air quality and its impacts, based on official data reported by the EU 

Member States (MS). According to the latest EEA report (EEA, 2019), estimates of the 

urban population exposure to air pollutants in Europe for a recent three-year period (2015-

2017) indicate worrying numbers taking into account the exposed population percentage 

above the air quality standards (AQS) established in the EU Ambient Air Quality Directive 

2008/50/EC, which are more alarming when confronted with the WHO air quality guidelines 

(AQG) (Table 1.1). 

 

Table 1.1. EU and WHO air quality guidelines for human health protection related to PM10, PM2.5, NO2 

and O3. 

 
Pollutant – reference value (µg.m-3) 

PM2.5 PM10 NO2 O3 

Averaging period year year year 
maximum daily 
8-hour mean 

EU AQS 25 40 40 120 

WHO AQG 10 20 40 100 

Notes: 

• EU AQS for protecting human health of particulate matter with an equivalent aerodynamic diameter less 
than 2.5 µm (PM2.5) and 10 µm (PM10) and  nitrogen dioxide (NO2) levels are referenced as limit values; 
 

• EU threshold for the ozone (O3) is defined as a target value, not to be exceeded on more than 25 days/year, 
averaged over a three-year period. 

 

Figure 1.1 shows the spatial distribution of the measured concentrations of PM2.5, PM10, 

NO2 and O3 by the European air quality monitoring networks in 2017, in which many stations 

are in non-compliance of the regulated values. Exceedances of the EU AQS are marked in 

red. 
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(a)                                                                             (b) 
  

(c)                                                                             (d) 

Figure 1.1. Pollutant concentrations (µg.m-3) recorded at each monitoring station in 2017: (a) annual mean 

of PM2.5; (b) annual mean of PM10; (c) annual mean of NO2; and (d) 93.2 percentile of the O3 maximum 

daily 8‑hour mean (source: EEA, 2019).  

 

PM2.5 and PM10 concentrations were higher than the respective annual limit values (LV) 

in seven EU MS, representing 7 % of all the reporting stations, and occurred primarily in 

urban areas (83 %). Moreover, the stricter PM2.5 value from the WHO AQG was exceeded 

at 69% of the stations, located in 30 of the 33 countries reporting PM2.5 data. These 

indicators combined with high urban population exposure to PM2.5 concentrations resulted 

in an estimation of 412000 premature deaths in Europe (of which 4900 occurred in Portugal) 

due to long-term exposure. In terms of annual mean of PM10, the WHO reference value 

was exceeded in 51 % of the stations. It should also be noted that higher particulate matter 

(PM) concentrations in 2017 are also frequently associated to extreme natural events, as 

wildfires and natural dust, in particular over the Iberian Peninsula. 
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In urban areas, another critical air pollutant is NO2, with the road traffic sector as the main 

emitting source. From all stations measuring NO2, 10 % recorded concentrations above the 

EU annual LV, which are located, almost entirely (98 %), in urban or suburban areas. The 

highest concentrations, as well as 86 % of all data above the annual LV, were observed at 

traffic stations, to which intense road traffic activity is often associated. Translating these 

reported NO2 concentrations in health impacts, 71000 premature deaths per year in Europe 

(610 deaths in Portugal) were estimated. 

Regarding the O3 concentrations, the EU target value was surpassed in 20 % of all stations 

reporting O3, mostly corresponding to rural background stations (87 %). If the assessment 

value is based on the WHO AQG, only 2 % of the background stations were below this 

threshold. These high O3 levels are strongly linked to extreme weather conditions, mainly 

due to the sharp rise of the air temperature that normally occurs in summer, and precursors 

emissions (nitrogen oxides, NOx, and non-methane volatile organic compounds, NMVOC), 

favouring its production. In Europe, 15100 premature deaths (320 of them in Portugal) were 

estimated based on the O3 concentration-human exposure relationship. 

Notwithstanding the role of air quality monitoring networks in supporting air pollution control 

policies and health research, the way they are designed (i.e. spatial representativeness) 

may lead to an unbalanced checking of compliance with the AQS and biased population 

exposure assessments, given its restricted geographical and time coverage  (Duyzer et al., 

2015; WHO, 2016b). In this sense, the use of air quality models as a complement to 

monitoring data allows a more comprehensive air quality assessment, though the 

measurements are very important for validation of the modelling results. This assessment 

involves the application of different types of air quality models depending on the objectives, 

dimension of study domains and intended resolutions. For this purpose, mesoscale and 

microscale models have been developed and applied, although in most cases following 

distinct approaches. 

In a typical urban atmosphere, the complexity of the urban structure (e.g. buildings 

volumetry, road network) has a relevant role in the physical and chemical processes 

governing the transport, dispersion, transformation and deposition of air pollutants (Chen et 

al., 2011; Russo and Soares, 2014; Srivastava and Rao, 2011; Tang and Wang, 2007; 

Vardoulakis et al., 2003). Thus, applying air quality models at local/urban scale requires 

that these small-scale processes be explicitly well resolved, but also to take into account 

the influence of a larger scale, since the dispersion and atmospheric chemistry contribute 

to variations in polluted air arriving to a region from other regions and/or countries 

(APPRAISAL, 2013a). However, the background and time-dependent boundary conditions 
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provided from mesoscale modelling (i.e. physical and chemical fields), are often greatly 

simplified mostly due to the nature of mesoscale-coupled urban schemes (Baklanov and 

Nuterman, 2009; Beevers et al., 2012; Kwak et al., 2015; Mensink et al., 2003). This is a 

key research area, since the proper link between mesoscale and local scale models, as well 

as the identification of the best parametrizations and input data, are essential requirements 

to decrease the uncertainties when analysing urban-to-local modelling results.   

Another important challenge nowadays is to fully integrate in the air quality modelling 

system the health impacts, moving from air pollutant levels to health indicators, and thus 

getting closer to the society needs (Brandt et al., 2013; Pervin et al., 2008). The health 

impacts are highlighted by public health experts, aware of the link between air pollution and 

worsening morbidity (especially respiratory and cardiovascular diseases) and premature 

mortality (e.g. years of life lost). To quantify the extent of these adverse effects on different 

age groups, approaches combining air concentrations, population data and 

concentration/exposure-response functions (CRF) based on epidemiological studies have 

been used (Holland et al., 2005; WHO, 2013a). The resulting health impacts are often 

converted in monetary values, allowing a cost-benefit analysis of policy options considered 

for air quality management (Holland et al., 2005; Relvas et al., 2017). 

Based on this air quality framework in Europe, the following research questions seeking to 

strengthen the knowledge and to bridge some gaps were formulated:      

1. What are the most appropriate modelling tools for quantifying multiscale air quality and 

health impacts? How to connect them? 

2. How do input data and model setup influence the modelling results? 

3. What is the impact of the urban structure on the dispersion of air pollutants? 

4. Will a modelling system be able to accurately estimate air concentrations and health 

impacts in urban areas? 

5. How might the modelling system capabilities be useful to support decision-makers and 

stakeholders in selecting the best strategies for air quality and health management? 

 

1.2. Objectives and structure 

In order to answer these research questions, a set of objectives to be accomplished along 

the thesis were proposed. The main objective was to develop and apply a multiscale 

modelling system that integrates air quality and health impacts. To tackle this objective, the 

following specific goals were fulfilled: 
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i. to develop an urban air pollution modelling system able to simulate atmospheric 

concentrations from urban to local scales. This modelling system should seek to bridge 

the gaps when crossing different scales; 

ii. to integrate quantifiable human health effects in the air pollution modelling system; 

iii. to apply and assess the system with high spatial and temporal resolutions for a particular 

local scale case study; 

iv. to provide recommendations based on the developed modelling system capabilities for 

local emission reduction or joint pollution control with neighbouring urban areas, 

supported by the analysis of different air quality management strategies and their 

potential health benefits. 

The present document is organized in six main chapters, addressing: (i) a state-of-the-art 

review on air quality and health in Europe, and on available modelling tools commonly used 

to support assessments, (ii) the development and application of an integrated multiscale 

modelling system, (iii) the testing of air quality and health management strategies, and (iv) 

the main conclusions. This structure is schematically represented in Figure 1.2. 

 

 

Figure 1.2. Overview of the thesis structure. 
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Chapter 1 provides an overview of the air quality in Europe and its effects on the human 

health, based on monitoring data and on the application of modelling tools at multiple 

scales. Large uncertainty sources are often associated to the selected models, their 

configurations and coupling, unsuitable input data to portray particular case studies, and to 

air quality-health relationships. These key aspects determine the quality of the modelling 

results, and thus represent some weaknesses of the current scientific knowledge, which 

allowed to identify gaps and challenges, and led to formulate research questions. The 

objectives and structure of the thesis are also presented. 

Chapter 2 complements the introductory chapter of the thesis, focusing on the modelling 

approaches used for computing air quality and health impacts in a broad spatio-temporal 

spectrum. Taking as support the reviewed air quality modelling state-of-the-art, multiscale 

applications and their limitations are discussed, and a set of guidelines for strengthening 

the synergy among scales and harmonizing different types of models within a system is 

proposed. A summary of the health impacts related with air pollution exposure is also 

presented. For quantifying the extent of these impacts, translated into number of 

unfavourable cases and external costs (i.e. total health costs), recommended 

methodologies, information derived from epidemiological and economic studies, and 

associated uncertainties are described and analysed. 

The main conclusions of Chapter 2 are very useful to give response to the research question 

1, namely in selecting the most appropriate modelling tools and how to integrate them into 

a single system. Thus, in Chapter 3, the conceptual framework of the adopted 

models/methodologies and their input data processing configurations for designing a new 

integrated multiscale modelling system is described. Simultaneously, the modelling chain 

setup was operationalized for research and end-user purposes. 

The application and the assessment of the developed modelling system are presented in 

Chapter 4, giving emphasis to a local case study. In order to identify the most suitable 

parametrizations and input data for the simulation domains, a few tests involving the 

selected models were performed. This exercise intends to assess the influence of input data 

and models setup, in particular of the urban structure, on modelling results (research 

questions 2 and 3); hence different configurations and some improvements in terms of key 

input data, as land cover classification and emission profiles, have been implemented and 

tested. For the evaluation of the multiscale air quality modelling results, measured data from 

the Portuguese air quality monitoring network are used. Health outcomes are quantified and 

evaluated for the local case study, considering two simulation periods (one week in winter 
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and another one in summer) and short-term air pollution exposure. In view of this system 

evaluation, it will be possible to understand the reliability of these estimates at urban scale 

(research question 4). 

After the validation and consolidation of the modelling system regarding models, 

configurations and input data to be used, two air pollution management strategies focused 

on the road traffic sector and NO2, are selected and tested in Chapter 5. The objective of 

these emission abatement scenarios is twofold: (i) assessing the system capabilities to 

support decision-makers and stakeholders in selecting the best strategies (research 

question 5), and (ii) providing some recommendations for both local pollution control and 

reduction of adverse health effects. The entire chain of impacts, from atmospheric 

emissions to air quality and health effects is evaluated. These impacts reflect the expected 

benefits with the implementation of the traffic scenarios. 

Finally, the main findings of this thesis are presented in Chapter 6, discussing the identified 

scientific advances and limitations as a response to the formulated research questions. 

Based on the methodological limitations and proposed guidelines for strengthening the 

synergy among models and scales, some developments are also delineated as future work. 



 

 

 

 

 

Chapter 2 

State-of-the-art on multiscale air quality 

and health modelling 

 

2.1. The challenges of air quality modelling when crossing multiple 

spatial scales 

2.1.1.  Overview of multiscale air quality modelling applications 

2.1.2.  Current limitations 

2.1.3.  Guidelines for strengthening the synergy among scales 

2.2. Health impact pathways related to air quality changes 

2.2.1. Exposure assessment and health risks 

2.2.2. Quantification of physical health impacts 

2.2.3. Economic evaluation 

2.2.4. Overview of epidemiological and economic studies 

2.2.5. Uncertainties in health impact assessment 

2.3. Summary 
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2. STATE-OF-THE-ART ON MULTISCALE AIR QUALITY AND HEALTH 

MODELLING 

 

In this chapter, a state-of-the-art on multiscale air quality and health modelling, including an 

analysis of uncertainties/limitations and guidelines for the development of an integrated 

multiscale modelling system, is presented. The contents are divided in two sections: 

- Section 2.1 describes the challenges of air quality modelling when crossing multiple spatial 

scales (Silveira et al., 2019), and it was published as: 

Silveira C., Ferreira J., Miranda A.I., 2019. The challenges of air quality modelling when 

crossing multiple spatial scales. Air Quality, Atmosphere & Health, 12(9), 1003–1017.  

- Section 2.2 discusses health impacts based on the assessment of air quality, and is part 

of the following publication: 

Silveira C., Roebeling P., Lopes M., Ferreira J., Costa S., Teixeira J.P., Borrego C., 

Miranda A.I., 2016. Assessment of health benefits related to air quality improvement 

strategies in urban areas: An Impact Pathway Approach. Journal Of Environmental 

Management, 183, 694-702.  

 

2.1.  The challenges of air quality modelling when crossing multiple spatial 

scales 

Multiscale air quality assessment implies understanding the interaction among atmospheric 

processes and scales. In this perspective, the use of air quality models has a fundamental 

role and the way they address these interactions is very important for the quality of results. 

However, in multiscale air quality modelling, the relationship between models, simulation 

domains and resolutions remains a challenging research issue. This section presents a 

state-of-the-art review on multiscale air quality modelling applications from the regional to 

the street level, identifying which models are used, the methodological principles and the 

required input datasets. Based on the findings, an analysis of the current limitations 

associated with the integration of different models and multiple spatial scales in a single 

modelling system is presented and discussed. Lastly, taking as support the reviewed 

contents, a set of guidelines for strengthening the synergy among scales and harmonizing 

different types of models within a system is proposed. 
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Figure 2.1 shows the basic requirements involving a typical multiscale air quality modelling 

system, namely the information flow needed to interactively combine models at different 

scales and applications. 

 

 

Figure 2.1. General structure of a multiscale air quality modelling system.  

 

The air quality modelling is divided into mesoscale and microscale taking into account the 

suitable spatial coverage and resolutions for application of the involved models, seeking, in 

a multiscale perspective, to ensure the harmonious link among them. To feed offline air 

quality models, three main input datasets are used: meteorology, initial and boundary 

conditions and atmospheric emissions. In the case of online models, the calculation of 

meteorology and chemistry is done in parallel, allowing the assessment of potential 

feedbacks including, for example, direct aerosol effects on the radiation scattering and the 

influence of local weather patterns on chemical reactions. Two main types of coupling 

techniques for the down- and/or upscaling can be chosen: (i) one-way, when effects of the 

local/microscale on a larger scale are not considered, and (ii) two-way, whose scale effects 

are felt in both directions (regional to local and local to regional). The two-way option is 

mainly used in mesoscale modelling, favouring the feedback between simulation domains. 
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2.1.1. Overview of multiscale air quality modelling applications 

Multiscale modelling systems for air quality assessment have often been applied using 

nesting approaches aimed at simulating urban areas. Based on a literature review 

addressing multiscale features and assumptions, a summary of the reviewed applications 

is presented in Table 2.1 including information about the model type, scales of application, 

domains, resolutions and other configurations. This review focuses on manuscripts from 

2000 to 2019 available from the Web of Science, JSTOR and Scopus databases, giving 

preference to the most cited ones. The keywords/terms used for the search were “air 

quality”, “multiscale modelling” and “nesting”. The analysis of Table 2.1 is oriented towards 

urban/local areas, where the main air pollution problems are found. 

 

Table 2.1. Brief characterization of the reviewed air quality modelling applications commonly used involving 

regional, urban and local scales. 

Modelling 
system / 

Reference 

Model Type 
Application 

scales 

Domains / 
Spatial 

resolution 

Other configurations / 
Comments                                                                                                                                                                      

CALIOPE-Urban 
 

(Benavides et 
al., 2019) 

The Community 
Multiscale Air Quality 

(CMAQ) model 
Eulerian CTM 

Regional to 
Urban 

3 nested domains 
over Europe, 

Iberian Peninsula 
and Catalonia (12, 4 

and 1 km2) 

- WRF meteorology 
- CMAQ emission sources: 
EMEP for Europe, and 
bottom-up/top-down 
approaches by SNAP for 
Spain 
- Traffic counting data and 
fleet composition to 
estimate emissions for the 
R-LINE model were used 
- CMAQ provides 
background concentrations 
for the R-LINE 
- There is no double 
counting of traffic 
emissions between models  
- R-LINE was adapted to 
street canyons using urban 
geometry data, and it has a 
simplified NO-NO2 
chemistry 

Research LINE 
source dispersion 
model (R-LINE) 

Gaussian model Urban to Local 
Barcelona 
(Roadside)  

GEM-MACH 
 

(Russell et al., 
2019) 

Global Environmental 
Multiscale – 

Modelling Air-quality 
and Chemistry 
(GEM-MACH) 

 
Online model 
(meteorology 
and chemistry 
are handled 

within a single 
model) 

Regional to 
Urban 

4 nested domains 
from two-thirds of 
the operational 
GEM-MACH 
domain to the 

Canadian provinces 
of Alberta and 

Saskatchewan (10, 
10, 2.5, 1 km2)   

 

- Meteorological boundary 
conditions from operational 
GEM forecasts (outermost 
domain) and data 
assimilation for the inner 
domains 
- Emission sources: stack 
monitoring, regional and 
national EI 
- Chemistry is embedded 
within the GEM physics 
module 
- It represents the particles 
distribution by sizes (12 
and 2-bin) 
- Two-way nesting 
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Table 2.1. Brief characterization of the reviewed air quality modelling applications commonly used 

involving regional, urban and local scales (cont). 

Modelling 
system / 

Reference 

Model Type 
Application 

scales 

Domains / 
Spatial 

resolution 

Other configurations / 
Comments                                                                                                                                                                      

Street-in-Grid 
model 

 
(Kim et al., 2018) 

Polair3D Eulerian CTM 
Regional to 

Urban 

4 nested domains 
over western 

Europe, northern–
central France, Île-

de- 
France region, 
eastern Paris 

suburbs 
(0.5, 0.15, 0.04, 

0.01º)   

- WRF meteorology (1.5 
km2) 
- Polair3D emission 
sources: EMEP for 
domains 1 and 2, and 
Airparif EI for domains 3 
and 4 
- MOZART BC 
- At street level, detailed 
traffic emissions, 
geographic data, and 
meteorological and 
chemical background 
conditions provided from 
Polair3D were used 
- MUNICH is composed by 
two main components: 
street-canyon and street-
intersection  
- CB05 chemical 
mechanism was 
implemented in both 
models 
- There  is no double 
counting of emissions 
- Feedback between 
models      

Model of Urban 
Network 

of Intersecting 
Canyons and 

Highways (MUNICH) 

Street-network 
model 

Local 
577 street 

segments within the 
domain 4 

EMEP4UK – 
ADMS-Urban 

 
(Hood et al., 

2018) 

EMEP regional 
version focused on 
air quality in the UK 

(EMEP4UK) 

Eulerian CTM 
Regional to 

Urban 

2 nested domains 
over Europe and 

UK  
(50 and 5 km2) 

- WRF meteorology (10 
km2) 
- EMEP4UK emission 
sources: UK National EI (5 
km) and EMEP (50 km2) 
outside the UK 
- ADMS-Urban used a 
detailed EI by SNAP sector  
for London (1 km2 grid 
resolution), and measured 
background concentrations 
as BC  
- It  has an “urban-canopy” 
module calculating wind 
speed and turbulence  as a 
function of the surface 
roughness (enters with a 
buildings volumetry and 
roads network) 

Atmospheric 
Dispersion Modelling 

System (ADMS-
Urban) 

Gaussian model Urban to Local 
Greater London 

region 

The THOR 
Integrated 

System 
 

(Jensen et al., 
2017) 

Danish Eulerian 
Hemispheric Model 

(DEHM) 
Eulerian CTM Regional 

3 nested domains - 
Europe, Northern 

Europe and 
Denmark (50 x 16.7 

and 5.6 km2) 

- MM5 meteorology 
- DEHM-UBM emission 
sources: EMEP for Europe, 
and Danish EI from all 
sectors on a 1 x 1 km2 grid 
- DEHM was run in two-
way nesting, using 
Northern Hemisphere 
results (150 km2 resolution) 
from Brandt et al. (2012) as 
IC and BC conditions    
- At street level, geometry 
urban data, traffic volume 
and emissions, 
meteorological parameters 
and background 
concentrations provided 
from the UBM were used    

Urban Background 
Model (UBM) 

Urban 
background 

pollution model 
Urban 

A few Danish cities 
(1 km2)  

Operational Street 
Pollution Model 

(OSPM) 

Street canyon 
model 

Local 

98 selected streets 
in Copenhagen and 

31 streets in 
Aalborg 
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Table 2.1. Brief characterization of the reviewed air quality modelling applications commonly used 

involving regional, urban and local scales (cont). 

Modelling 
system / 

Reference 

Model Type 
Application 

scales 

Domains / 
Spatial 

resolution 

Other configurations / 
Comments                                                                                                                                                                      

Integrated Urban 
Air Quality 
Modelling 
System 

 
(Kwak et al., 

2015) 

CMAQ Eulerian CTM 
Regional to 

Urban 

3 nested domains 
over Seoul, 

Republic of Korea 
(9, 3 and 1 km2) 

- WRF meteorology 
- Mobile emissions are 
spatially allocated on roads 
of the CFD domain 
- CMAQ and WRF provide 
initial and time-dependent 
boundary conditions for the 
CFD  
- The same chemical 
mechanism used in the 
CMAQ was implemented in 
the CFD model 

CFD CFD model 
Local / 

microscale 

High-rise building 
area of Seoul (1600 

x 1600 x 997 m3) 

Polair3D – 
SIREAM 

 
(Kim et al., 2015) 

Polair3D Eulerian CTM 

Regional to 
Urban 

Part of Europe 
(0.5º), France 

(0.125º), Greater 
Paris (0.02º) 

- WRF meteorology 
- EMEP emissions 
(0.5ºx0.5º) 
- INCA-LMDz IC and BC 
- Test different PBL 
schemes, with/without 
UCM 

SIze REsolved 
Aerosol Model 

(SIREAM) 

Implemented 
aerosol model 

CMAQ – 
CALPUFF 

 
(Zhang et al., 

2015)  

CMAQ Eulerian CTM 
Regional to 

Urban 

Hong Kong 
Administrative 

Region 
(3 km2) 

 
- WRF meteorology for the 
CMAQ and CALMET. The 
latter produces finer-scale 
meteorological fields  for 
the CALPUFF  
- Emission sources: CMAQ 
used a bottom-up EI for 
some sources (3 km2 
resolution), while 
CALPUFF used local 
emission data  
- CMAQ provide IC and BC 
for the CALPUFF 
- User-friendly system 
interface currently prepared 
for Hong Kong and Pearl 
River Delta region, but 
could be transferable to 
study other regions, 
providing a proper data set 
    

CALifornia PUFF 
(CALPUFF) 

Multilayer non-
steady state puff 

dispersion 
model 

Urban to Local 
Centered at Hong 

Kong (0.5 km2) 

AURORA – 
IFDM – OSPM 

 
(Hofman et al., 

2014) 

Air quality modelling 
in Urban Regions 
using an Optimal 

Resolution Approach 
(AURORA) 

Eulerian CTM 
Regional to 

Urban 

Antwerp city to 
street level 

- Emission sources: 
industry, traffic, households 
- Local traffic emissions 
provided by the MIMOSA 
model 
- AURORA and IFDM were 
coupled using a method to 
avoid the double counting 
of the local emissions 
- IFDM and OSPM results 
were combined in order to 
get high resolution 
concentrations 

 
Immission Frequency 

Distribution Model 
(IFDM) 

 

Bi-Gaussian 
plume model 

Urban to Local 

Operational Street 
Pollution Model 

(OSPM) 

Street canyon 
model 

Local 
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Table 2.1. Brief characterization of the reviewed air quality modelling applications commonly used 

involving regional, urban and local scales (cont). 

Modelling 
system / 

Reference 

Model Type 
Application 

scales 

Domains / 
Spatial 

resolution 

Other configurations / 
Comments                                                                                                                                                                      

Source-Oriented 
WRF/Chem with 
High Resolution 

(SOWC-HR) 
 

(Joe et al., 2014) 

WRF/Chem 

Online model 
(fully coupled-

meteorology and 
chemistry) 

Regional to 
Urban 

3 nested domains 
over the Oakland 
region, California  
(12, 4 and 1 km2) 

 

- Higher resolution EI for 
the domains 3 and 4 were 
developed  
- LES is coupled in 
WRF/Chem 
- Changes on the PBL 
schemes were made to 
allow the nesting of the 
LES within the multiscale 
parent domains 
- Requires very small time 
intervals to keep the 
numerical stability in the 
advection scheme 
- Street canyon and 
building effects are not 
resolved  
- Two-way nesting 
- Online coupling 
 

Large Eddy 
Simulation (LES) 

Subgrid-scale 
turbulence 

model 
Urban to Local 

Domain 4 focused 
on the Port of 

Oakland (250 m2) 

The UK 
Integrated 

Assessment 
Model (UKIAM) 

 
(Oxley et al., 

2013) 

EMEP Eulerian CTM Regional Europe (50 km2) - Emission sources: EMEP 
for non-UK areas; national 
and local EI for UK 
- Gaussian PPM only 
includes small derivations 
for NO2 concentrations 
- Source-apportionment 
assessment from local and 
distant sources 

FRAME Lagrangian CTM 
Regional to 

Urban 
UK (5 km2) 

Primary Particulates 
Model (PPM) 

Gaussian model Urban UK (1 km2) 

BRUTAL 
Street canyon 

model 
Local Roadside 

CHIMERE – 
“Stretching” 

method 
 

(Siour et al., 
2013) 

CHIMERE Eulerian CTM Regional 

Europe (0.5º) to 
Belgium-

Netherlands-
Luxembourg (0.1º) 

 

- WRF meteorology 
- EMEP emissions 
(0.5ºx0.5º) 
- Zooming approach 
provides a simple and 
immediate way to better 
represent scale interactions 
within the CTM 
- One-way nesting      
 

“Stretching” method 
Also called 
“Zooming” 

Regional to 
Urban 

Belgium-
Netherlands-

Luxembourg (300 
m2) 

The THOR 
Integrated 

System 
 

(Brandt et al., 
2012) 

DEHM Eulerian CTM Regional 

Northern 
Hemisphere (NH – 
150 km2); 2 nested 
domains: Europe 

and North America 
(NA – 50 km2) 

 

- MM5 meteorology 
- Emission sources: RCP 
for NH and NA, EMEP  for 
Europe (both EI with 0.5º x 
0.5º) 
- DEHM was run in two-
way nesting 
- UBM includes a simple 
scheme for dispersion and 
transport, as well as a 
simple chemical model 
including NOx and O3 
reactions 
- OSPM used UBM outputs 
and emissions provided 
from a traffic model for 
simulating NO2 dispersion 
and chemistry at the street 
scale 
 

UBM 
Urban 

background 
pollution model 

Urban A few cities (1 km2)  

OSPM 
Street canyon 

model 
Local Roadside 
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Table 2.1. Brief characterization of the reviewed air quality modelling applications commonly used 

involving regional, urban and local scales (cont). 

Modelling 
system / 

Reference 

Model Type 
Application 

scales 

Domains / 
Spatial 

resolution 

Other configurations / 
Comments                                                                                                                                                                      

CMAQ – ADMS-
Roads 

 
(Beevers et al., 

2012) 

CMAQ Eulerian CTM 
Regional to 

Urban 
London (3 km2) 

 

- WRF meteorology 
- Emission sources: EMEP 
(0.5ºx0.5º), E-PRTR and 
London EI (1km2 
resolution) 
- STOCHEM IC and BC 
- CMAQ predictions were 
downscaled for a 20 m2 
grid using the bilinear 
interpolation method 
- ADMS represents the 
dispersion from road traffic 
(NOx-NO2-O3) 
 

Atmospheric 
Dispersion Modeling 

System (ADMS-
Roads) 

Gaussian model Urban to Local Roadside (20 m2) 

CCAM – TAPM 
 

(Thatcher and 
Hurley, 2010) 

Conformal Cubic 
Atmospheric Model 

(CCAM) 

Semi-
Lagrangian 
atmospheric 

model 

Regional Australia (60 km2) 

 

- CCAM requires only 
global IC (1º resolution 
GFS) 
- It provides BC for the 
TAPM 
- TAPM was selected due 
to its combined prognostic 
meteorological and air 
pollution modelling 
capability 
 

The Air Pollution 
Model (TAPM) 

Eulerian CTM Urban 

Urban regions 
centred on 
Melbourne 
(dynamic 

downscaling of 30, 
10 and 3 km2) 

CMAQ – 
AERMOD 

 
(Isakov et al., 

2009) 

CMAQ Eulerian CTM 
Regional to 

Urban 
USA region (nesting 
from 36 to 12 km2) 

 

- MM5 meteorology 
- 1999 National EI   
- CMAQ was run for one 
year in nested mode  
- It provides regional 
background concentrations 
for the AERMOD 
- AERMOD is designed to 
capture local gradients 
from nearby sources, using 
highly simplified 
atmospheric chemical 
reactions. It uses “bottom-
up” EI from mobile and 
stationary sources 
 

AERMOD Gaussian model Urban 
New Haven (mobile 

and stationary 
sources network) 

Enviro-HIRLAM 
– M2UE 

 
(Baklanov and 

Nuterman, 2009) 

Environment-HIgh 
Resolution Limited 

Area Model (Enviro-
HIRLAM) 

Online model 
(fully coupled-

meteorology and 
chemistry) 

Regional to 
Urban 

Copenhagen 
(nesting from 3 to 

0.5 km2) 

 

- Enviro-HIRLAM provides 
IC and BC for the M2UE 
- It was run in one-way 
nesting 
- It uses urban 
parameterizations: at 
regional level are based on 
the roughness and flux 
corrections approach 
(EMS-FUMAPEX), while 
BEP is considered at the 
urban scale  
- M2UE calculates 
obstacle-resolved flows 
and dispersion based on 
the RANS approach and 
two-equation turbulence 
closure 
 

Obstacle-resolved 
Microscale Model for 
Urban Environment 

(M2UE) 

CFD model 
Local / 

microscale 

Selected area of 
Copenhagen 

(from 50 to 3 m2) 
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Table 2.1. Brief characterization of the reviewed air quality modelling applications commonly used 

involving regional, urban and local scales (cont). 

Modelling 
system / 

Reference 

Model Type 
Application 

scales 

Domains / 
Spatial 

resolution 

Other configurations / 
Comments                                                                                                                                                                      

CMAQ – 
HYSPLIT – 
AERMOD 

 
(Stein et al., 

2007) 

CMAQ Eulerian CTM 
Regional to 

Urban 
Houston, Texas  

(1 km2) 

 

- CMAQ provides regional 
background concentrations 
and urban-scale 
photochemistry 
- A simulated HYSPLIT 
concentrations ensemble is 
used to assess the 
variability/dispersion from 
point sources, assuming 
non-reactive chemistry on 
sub-grid scales (useful to 
model the uncertainty) 
- AERMOD simulates the 
plume dispersion from 
mobile sources 
 

HYbrid Single-
Particle Lagrangian 

Integrated Trajectory 
(HYSPLIT) 

Lagrangian CTM Urban to Local Stationary sources 

AERMOD Gaussian model Urban to Local 
Selected roads 

network 

ECHAM5/ 
MESSy – CMAQ 

 
(Jiménez et al., 

2006)  

Fifth-generation 
atmospheric GCM / 

Modular Earth 
Submodel System 

(ECHAM5/ 
MESSy) 

Atmospheric 
chemistry GCM 

Global Global (1.8º x 1.8º) 

- The ECHAM5/MESSy 
coupling allows to simulate 
large-scale chemistry-
climate  
- Emission sources: 
EDGAR3.2 EI for 
ECHAM5/MESSy; and 
EMEP (coarser domains) 
and high resolution 
emissions (1 h and 1 km2 – 
inner domain) for CMAQ 

CMAQ Eulerian CTM 
Regional to 

Urban 

4 nested domains 
from Europe, 

Iberian Peninsula to 
a Catalonia area 
(72, 24, 6 and 2 

km2) 

MATCH 
 

(Gidhagen et al., 
2005) 

Multi-scale 
Atmospheric 

Transport and 
CHemistry (MATCH) 

Eulerian CTM 
Regional to 

Urban 

Stockholm 
(5 km2 down to 0.5 

km2) 

 

- HIRLAM meteorology (22 
km2 resolution) 
- The flat topography allows 
the downscaling to the 
urban grid (500 m2) and 
also interpolation in time to 
yield hourly data, involving 
higher vertical resolutions 
(4 layers below 15 m)  and 
a recalculation of the 
turbulence over the city   
- Street canopies and 
buildings are not resolved 
in the model 
 

Integrated 
system 

AURORA 
 

(Mensink et al., 
2003) 

AURORA Eulerian CTM 
Regional to 

Urban 
Flemish region, 

Antwerp  (1 km2) 

 

- ARPS meteorology (100 
m2 resolution) 
- Detailed EI, described as 
a function of space, time 
and temperature 
- AURORA system 
integrates the OPS and the 
SBM 
- OPS calculates 
concentrations, and dry 
and wet depositions for 
primary and secondary 
components 
- SBM assumes an uniform 
concentration distribution 
over the street with the box 
dimensioned by the length 
and width of the street and 
the height of the 
surrounding built-up area 
 

Operational Priority 
Substances (OPS) 

Lagrangian CTM 
Regional to 

Urban 
Flemish region, 

Antwerp  (1 km2) 

Street Box Module 
(SBM) 

Street canyon 
model 

Local 
11 

selected streets 
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Acronyms: ARPS - Advanced Regional Prediction System; BC - Boundary Conditions; BEP - Building Effects 

Parameterization; CALMET - CALifornia METeorological model; CB - Carbon Bond; EI - Emission Inventory; EMEP - The 

European Monitoring and Evaluation Programme; E-PRTR - The European Pollutant Release and Transfer Register; GCM - 

General Circulation Model; GFS - Global Forecast System; IC - Initial Conditions; INCA - INteraction with Chemistry and 

Aerosols model;  LMDz - Laboratoire de Meteorology Dynamique zoomed; MM5 - Fifth-Generation Penn State/NCAR 

Mesoscale Model; MOZART - Model for OZone And Related chemical Tracers; PBL - Planetary Boundary Layer; RCP - 

Representative Concentration Pathways; SNAP - Selected Nomenclature for Air Pollution; UCM - Urban Canopy Model; WRF 

- The Weather Research and Forecasting model. 

 

The large majority of the reviewed multiscale modelling applications only consider 

atmospheric feedbacks from larger simulation domains to the inner ones (i.e. one-way 

coupling), mainly when different types of air quality models are used. It means, therefore, 

that the influence of microscale processes on the regional/urban air quality is usually 

neglected. Some coarser resolution models have been adapted to include urban canopy 

parametrizations (UCP) (e.g. WRF, Enviro-HIRLAM) with the primary goal of representing 

the subgrid effects of urban surfaces, by means of averaged input parameters (e.g. urban 

fraction, building height, albedo, roughness), on air flows and air pollution processes taking 

place in the urban canopy (i.e. atmospheric layer between the surface and the highest 

building height). However, the UCP´s numerical and empirical methods triggered to model 

the urban/local air quality are simple approximations to describe fluid’s turbulent flows, heat 

transfer mechanisms and associated phenomena occurring in urban environment, since 

these are mostly based on the assumptions of horizontal homogeneities (Baklanov and 

Nuterman, 2009; Chen et al., 2011; Kim et al., 2015). Moreover, once the air quality models 

that integrate the respective modelling systems were run independently, the input data and 

physical and chemical processes underlying each model are treated separately taking into 

account their application scales and study domains.  

Looking at the regional and urban scales, Eulerian offline chemical transport models (CTM) 

with UCP have been the most used to provide background and boundary chemical 

conditions for higher resolution models. However, the option for offline applications (i.e. 

meteorology is only provided to the CTM as an input) is gradually being replaced by using 

online modelling tools that allow a full integration and parallel computing of both 

meteorology and chemistry components, sharing the same simulation grids (horizontal and 

vertical levels), physical parametrizations, transport schemes and vertical mixing (Grell et 

al., 2005). In some studies, Lagrangian and Gaussian models are used to make the 

connection with mesoscale CTM (Hofman et al., 2014; Mensink et al., 2003; Oxley et al., 

2013), and some Gaussian models were specifically configured for assessing the pollution 

dispersion in street canyons (Beevers et al., 2012; Benavides et al., 2019; Isakov et al., 
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2009; Stein et al., 2007). Lagrangian trajectory models are computationally simpler and 

allow an easy determination of transboundary flows. In addition, they could be especially 

suitable for assessing the dispersion from individual emission sources, and their application 

over urban areas could be grounded in the longer reaction time scale of many chemical 

species than the travel time across the study area (Kukkonen et al., 2012; Stein et al., 2007). 

To analyse the intraurban spatial variability, ensemble modelling techniques with dispersion 

models (e.g. ADMS, OSPM, AERMOD, HYSPLIT) focused on the main emitting sources 

have been applied; in the case of HYSPLIT, it is through a trajectory analysis allowing the 

determination of the origin of air masses and establishing source-receptor relationships 

(Stein et al., 2007). In terms of atmospheric chemistry, in Lagrangian and Gaussian models, 

local pollutant concentrations (e.g. NOx/NO2 at traffic locations) are also derived from 

simplified chemical reactions (Brandt et al., 2012; Jensen et al., 2017), or through 

empirically tested quadratic relationships for rural, urban and roadside sites (Oxley et al., 

2013). 

The downscaling to the local/microscale is done through modelled meteorological and 

chemical data from the upper domain, and requires a more detailed characterization of the 

study case, especially regarding the buildings volumetry and streets configuration, so that 

street emissions and dispersion around these urban structures can be simulated (Brandt et 

al., 2012; Hofman et al., 2014). For this purpose, Computational Fluid Dynamics (CFD) 

models have been used, given their capability to deal with complex features and accurately 

evaluate their effects, solving the Navier-Stokes equations over small domains (few 

hundreds of meters) and in very high resolutions (meters or less) (APPRAISAL, 2013a; 

Schlünzen et al., 2011; Vardoulakis et al., 2003). The different CFD modelling-based 

experiments over densely built areas show that the urban geometry results in lower wind 

speeds leading to a less intense vertical mixing in contrast to suburban or rural areas 

(Baklanov et al., 2009; Beevers et al., 2012; Borrego et al., 2003; Tang and Wang, 2007; 

Vardoulakis et al., 2003). On the other hand, these street canyon experiments have also 

been used for computing UCP which take into account building effects on the local weather 

(e.g. wind speed, air temperature, turbulence), in order to provide spatially-averaged 

characteristics for the mesoscale models (Brown, 2000; Masson, 2006; Santiago and 

Martilli, 2010).  Furthermore, in order to keep the numerical stability in the advection 

scheme, much smaller time steps linearly interpolated from mesoscale outputs and 

increasing horizontal and vertical resolutions (a few meters by a grid cell) are defined (Joe 

et al., 2014; Kwak et al., 2015).  
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For each modelling system, when results from the models combination were compared with 

the high resolution nested Eulerian CTM results and the available air quality measurements, 

a better statistical performance was achieved using the cascade of models. The coupling 

of models over different scales allows accounting for contributions from nearby and distant 

emission sources to the air quality at a specific location (e.g. in an industrial area, in rural 

areas or even in a street canyon) (Brandt et al., 2012; Isakov et al., 2009; Kim et al., 2018; 

Stein et al., 2007). However, the way the atmospheric emissions are included within the 

system requires particular attention, because the same emission sources may be 

considered by the different types of models, and adding as a background the modelled 

concentrations from upper domains could result in double counting the impact of these 

sources. 

 

2.1.2. Current limitations 

As discussed in the previous section, combining air quality results within multiscale models 

is not straightforward. In general, the inconsistences found are related with the modelling 

assumptions and the nature of the available input data. 

Mesoscale CTM are particularly useful to simulate chemically reactive species and address 

their long-range transport (Srivastava and Rao, 2011; Stein et al., 2007), but they fail in the 

realistic representation of atmospheric flows at lower spatial levels (e.g. city scale). This 

inaccuracy of the mesoscale modelling results over urban areas is associated with many 

factors, which should be highlighted: 

(i) No urban parametrization or unsuitability to characterize the three-dimensional (3D) 

urban structure 

The urban canopy (UC), a region where people live and human activities take place, has 

been a subject of much investigation (Baklanov et al., 2009; Schlünzen et al., 2011) given 

its highly complex atmospheric circulations, primarily due to the presence of multiple 

obstacles strongly modifying the air flows and the thermal land-atmosphere exchanges. 

In these circumstances, the use of CFD models to evaluate small-scale atmospheric 

dynamics is recommended; however, the common practice in multiscale modelling is to 

apply mesoscale models with increased resolution over urban areas without the 

adequate parametrizations or Gaussian models that despite the new developments to 

simulate urban areas are still limited (Baklanov and Nuterman, 2009; Thunis et al., 2016). 

Taking as example the urban canopy model (UCM)-coupled WRF-Chem modelling 

system, high uncertainties are related to the required urban parameters and selection of 
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the most representative values, especially due to the limited number of urban land use 

classes and value projection on a single layer (Kim et al., 2015). Notwithstanding all 

efforts to decrease the regional-to-urban modelling uncertainties, currently most of the 

operational mesoscale models do not consider the urban effects.      

(ii) Limited grid resolution      

Grid models are the best suited tools to deal with regional features. Nevertheless, when 

the goal is to estimate concentration fields very close to individual sources, the use of 

regional scale grid–based models is discouraged, since all emissions located within each 

cell are evenly distributed, not allowing the accurate simulation of the effects of these 

sources, either in the grid cell itself or in any of the nearby cells (APPRAISAL, 2013a; 

Stein et al., 2007). Furthermore, due to limitations in the mesoscale formulations, the 

highest typical grid resolution using these modelling tools (about 1 km2) is inadequate to 

capture the urban morphology (obstacles) and thermal characteristics inducing 

dispersion of air flows and pollutants within the UC, primarily close to densely urbanized 

areas and with many pollution sources (Baklanov and Nuterman, 2009; Kwak et al., 

2015; Pay et al., 2014; Talbot et al., 2012; Thunis et al., 2016). 

(iii) Local scale impacts on larger domains are often neglected 

In air quality modelling, multiscale interactions can be represented through two-way 

nesting using a single CTM and/or large and small-scale coupled models. However, the 

coupling of models assumes that only the inner domain outputs resulting from large-

scale simulations are passed to microscale models as initial and boundary conditions 

(i.e. offline coupling). Not considering microscale effects over upper simulation domains 

can be critical in areas exposed to air mass recirculation (sea breeze cells) or around 

regions with high pollutant emission gradients (large cities) (Siour et al., 2013). 

 

In turn, at microscale applications to resolve fine-scale pollutant variations, current 

limitations could be accounted as follows: 

(i) Limited pollutant dispersion modelling in the presence of obstacles using Gaussian 

approaches 

As mentioned in Section 2.1.1, Gaussian models are often used to depict the pollutant 

dispersion around obstacles. However, the Gaussian formulation has been successfully 

employed in simplified flow configurations (under steady-state conditions) and for flat 
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and unobstructed landscapes. In the presence of complex surfaces, pattern observed in 

most cities, the plume dispersion modelling, depending on the urban geometry, 

turbulence and distance from the pollution sources, results probably in an over-

simplification due to the use of empirical input parameters (i.e. all variables are ensemble 

averaged), and so, the validity of these models needs to be carefully evaluated 

(APPRAISAL, 2013a; Lateb et al., 2016). 

(ii) Lack of proper input data 

The use of local-scale atmospheric models is often hampered by a lack of adequate 

lateral boundary conditions to drive the flow in the finer domain, because, typically, these 

boundaries are extracted from regional/urban-scale results to produce time-varying local 

solutions, and they are often skewed due to the local meteorological dynamics, especially 

on complex terrain (APPRAISAL, 2013a; Borrego et al., 2003; Talbot et al., 2012). The 

desired resolution of the emission inventory is another concern in microscale air quality 

applications, since the spatial detail is frequently inadequate to fully characterize 

individual sources at the street-to-building scales (Likhvar et al., 2015; Thunis et al., 

2016).  

(iii) Simplified photochemistry 

Local-scale dispersion models have been improved to provide a detailed description of 

the concentration patterns, but they are not properly treating the complex photochemical 

reactions and their effects, due to the longer reaction time of many chemical species 

than the travel time across an urban area (Stein et al., 2007). Thus, local-scale models 

are considering pollutants as passive compounds or are using a simplified chemical 

kinetic mechanism. This could be considered an advantage because it simplifies the 

simulation and it is computationally cheap, but it has to be carefully assessed to be sure 

that important (fast) chemical reactions are represented. For instance, if VOC emissions 

are larger than NOx emissions, simplified photochemistry is not a valid approach. 

Moreover, the dimension of the domain has to be taken into account to understand how 

far the simplification of the chemistry can go. 

The integration of complex chemistry mechanisms at the local scale is an important but 

also a challenging issue for the air quality modelling community, which must be duly 

weighed. 
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(iv) Timeframe analysis of CFD modelling 

Analysing the evolution of modelled concentrations using CFD at the local/street level 

for long time periods is a challenge that still needs to be worked, due to the high 

complexity of the urban structure and computational requirements for processing 

information at very fine resolutions. When overcoming this issue, it will be possible to 

assess the influence of the main emission sources throughout a particular year and to 

evaluate the seasonality and dispersion and accumulation patterns in a wide range of 

weather conditions (Thunis et al., 2016). 

 

2.1.3. Guidelines for strengthening the synergy among scales 

In view of the current limitations and identified scientific developments in multiscale air 

quality modelling, additional efforts are needed to reduce uncertainties and differences 

among modelled atmospheric concentrations by comparing results from different scales and 

models. In this sense, the following set of guidelines to flexibly integrate regional-to-local–

scale models and input data within a single system is proposed: 

(i) Linking different types of air quality models 

For a reliable representation of multiscale air quality, different types of air quality models 

need to be carefully coupled within the modelling system, and the relevant variables from 

the mesoscale (time-dependent boundary and background meteorological and chemical 

conditions) should be properly assimilated by a microscale model (Brandt et al., 2012; 

Hofman et al., 2014; Mensink et al., 2003; Oxley et al., 2013). Given the complexity of 

the involved atmospheric processes in the mixing layer, the option for online mesoscale 

models may allow a better characterization of the time-resolved dispersion of air 

pollutants and it has the advantage of integrating meteorology-chemistry feedbacks 

(Grell et al., 2004). Even the simplest urban canyon model requires a background 

concentration value as input, to account for the pollutant fraction that is not emitted within 

the simulated street (Vardoulakis et al., 2003). Obstacle-resolved simulations together 

with a canopy layer–based mesoscale approach are likely the simplest and the most 

promising way to include obstacle effects using structured grids in two-way nesting 

(Schlünzen et al., 2011). Another possibility to design a multiscale modelling system, 

though more complex to implement but with advantages, at least in terms of 

computational efficiency, is the integration of a local/microscale model within the 

mesoscale CTM. Thus, as a starting point for successful multiscale simulations, the 

urban characteristics should be well indicated, namely the urban canopy structure, shape 
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of the obstacles (e.g. building blocks and their distribution) and influence of the 

underlying surface (e.g. orography, land use type, roughness, thermal properties and 

energy consumption sources) over the urban atmospheric dynamics (Baklanov et al., 

2007). At the microscale, using combined plume and box models is feasible to 

numerically and accurately examine the intraurban spatial variability and dispersion of 

air flows associated with building geometry and street configuration (Kwak et al., 2015; 

Mensink et al., 2003; Oxley et al., 2013). When dispersion models are used in a 

knowledgeable way, they can be very useful to improve the understanding of the physical 

and chemical processes that govern the transport mediated by the advection scheme 

and chemical transformation of atmospheric pollutants (Vardoulakis et al., 2003). Hence, 

to suitably represent atmospheric phenomena at different spatial and temporal scales, 

the base equations have to be treated and integrated in joint meso-to-microscale 

modelling approaches, ensuring the consistency of processes, essentially due to the 

need of time-dependent boundary conditions for various pollutants (Baklanov and 

Nuterman, 2009; Kwak et al., 2015).  

(ii) Detailing emission inventories 

Nowadays, emission inventories are recognized as one of the main uncertainty sources 

in air quality modelling applications. To improve the performance of the air quality 

models, a detailed knowledge of the pollutants emitted with high spatial and temporal 

resolutions is required. In the case of multiscale modelling systems, the emission 

inventory should be prepared to give response at multiple scales and disaggregated in 

time based on activity profiles by macrosetor (Russo et al., 2019). Nevertheless, the 

dynamical downscaling involving different models should be conducted carefully, 

because the background conditions used to drive the microscale simulations could result 

in double counting the impact of emission sources, mainly if local sources are included 

in mesoscale/urban modelling. In order to accurately assess the impact from local 

emission sources, two air quality simulations using a multiscale model system could be 

performed: one for the base case in which local emissions are included in both CTM and 

small-scale model (double counting) and another simulation in which local emissions are 

only included in the small-scale model. The absolute difference in the air concentrations 

between the two simulations provides an indication of the magnitude of these impacts 

(Isakov et al., 2009). This analysis is very useful for deciding whether local emission 

sources should be included or not in mesoscale simulations and thus avoiding the double 

counting issue to use the resulting modelled concentrations as a background of 

microscale tools. 
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(iii) Using techniques of data assimilation and inverse modelling 

Data assimilation can be a way to improve results from multiscale modelling, and inverse 

modelling can help in identifying the most relevant emitting sources for the different 

scales. Data assimilation techniques within atmospheric models employ observations 

with the purpose of improving air quality estimates, whereas the inverse modelling uses 

these predictions and measured data to estimate pollutant emissions. Thus, the use of 

these two types of techniques under the multiscale modelling framework could be an 

added value. It is not a common practice yet to use these two types of techniques in 

multiscale modelling; they are used in single-model applications. A step forward would 

be to assess their application within the entire multiscale modelling system, as a whole. 

However, a balance between improved results and computational efforts has to be done, 

as well as the analysis of the scales to be focused. 

(iv) Increasing the spatial resolution of mesoscale models 

This issue is a priority research area, mainly for multiscale urban air quality assessment, 

since the high-resolution mesoscale CTM outputs are needed to be compared with finer 

scale modelling results and measured data, but also to allow an accurate assessment of 

urban air pollution events. On the other hand, to provide the best air quality estimates, 

mesoscale models should jointly include local-scale features, long-range transport and 

photochemical transformations (Isakov et al., 2009; Siour et al., 2013; Stein et al., 2007). 

One way to increase the spatial resolution of mesoscale CTM (finer than 1 km2) is to use 

fully embedded large eddy simulation (LES) approaches, which allow the dynamic 

downscaling for grid resolutions around 200 m2. 

(v) Applying the modelling system with nesting capabilities 

Nested atmospheric simulations arise as an appealing approach to get high-resolution 

outputs. Most studies involving multiscale modelling systems consider nesting using 

mesoscale models with a spatial ratio between simulation grids that should not exceed 

3–5, since this ratio is primordial to keep the numerical stability, suitable approximation 

and accuracy of the models (Baklanov and Nuterman, 2009; Gidhagen et al., 2005; Stein 

et al., 2007; Thunis et al., 2016). The link to the local scale or microscale should be 

ensured with specific microscale tools (e.g. CFD models), merging the different types of 

models, preferentially in two-way nesting mode.   
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(vi) Evaluating atmospheric feedbacks between simulation domains 

Combining modelled results from the different simulation domains is the most 

computationally efficient way to provide pollutant concentrations from nearby and 

distant sources (Isakov et al., 2009). The option for two-way nesting capability is a priori 

recommended, making possible to incorporate the influence of small-scale features on 

broader domains, as well as assessing the opposite effect (i.e. larger scale to 

microscale), though it requires more computational power (Brandt et al., 2012; Siour et 

al., 2013; Soriano et al., 2004). For a comprehensive assessment of air quality problems 

in a specific area, it is advisable to analyse potential feedbacks from the microscale to 

larger scale processes and vice-versa. The comparison of overlapping areas will be 

another test to take into account, in order to avoid mass inconsistency and generation 

of numerical noise (Baklanov and Nuterman, 2009).   

 

2.2.  Health impact pathways related to air quality changes 

Health impacts of air pollution have been estimated using information from epidemiological 

studies and methods that describe how health can be integrated in air quality assessments.  

This section summarizes some research advances, starting with the exposure assessment 

and the identification of the main impacts, and then, the recommended methodologies for 

quantifying physical health impacts and monetary valuation of these damages are succinctly 

described. Thereafter, an overview of research studies underpinning these methodologies 

is presented, in particular with respect to the key impact functions and associated external 

costs, and finally, the inherent uncertainties of health impact assessment are analysed. 

 

2.2.1. Exposure assessment and health risks 

Human exposure to air pollution may result in a variety of physical health impacts, 

depending on the types of air pollutants, atmospheric concentration levels, duration and 

frequency of exposure, and stratification of the exposed population (e.g., age, current health 

status) (Baklanov et al., 2007; Burnett et al., 2018; WHO, 2016a). These physical impacts 

can occur in a short time period after exposure (short-term exposure) and result in acute 

effects, or are a consequence of the cumulative exposure over time (long-term exposure) 

resulting in chronic effects. They are often expressed through morbidity and mortality 

indicators, mostly related with respiratory and cardiovascular diseases. Focusing on these 

disease groups, the main effects derived from exposure to the most common air pollutants 

(PM, O3, NOx, and sulphur dioxide, SO2) are reported in Table 2.2. 
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Table 2.2. Air pollutants and their health effects based on respiratory and cardiovascular diseases (source: 

EC, 2005; Hurley et al., 2005). 

Group of health 
effects 

Specific effect 
Air pollutant 

PM O3 NOx SO2 

Acute and chronic 
mortality 

Reduction in life expectancy X X X X 

Acute effects on 
morbidity 

Asthma episodes  X X X 

Respiratory hospital admissions X X X X 

Cardiac hospital admissions X  X X 

Consultations with primary care 
physicians 

X  X X 

Use of respiratory medication X X X X 

Use of bronchodilator X    

Lower respiratory symptoms X    

Restricted activity days X X X X 

Chronic effects on 
morbidity 

Bronchitis X    

Cough in children and asthmatics X    

 

 

In general, a reduction in average life expectancy due to short and long-term exposure to 

the reviewed air pollutants is expected. In order to quantify the magnitude of these effects, 

many epidemiological studies combining meta-analyses recorded during air pollution 

episodes have been conducted to provide statistical associations by relating unit changes 

in ambient concentrations and different types of health outcomes (i.e. specific effect of 

exposure to air pollutants) (Costa et al., 2014). These concentration-response functions 

(CRF) are based on relative risk (RR) models that are applied to translate concentration 

changes into health impacts, and take into account a greater health risk for certain 

vulnerable groups within a population (e.g. elderly people, children and those with 

underlying diseases) (Pervin et al., 2008; WHO, 2013b). As result, linear or non-linear CRF, 

which may or not contain threshold exposure values, have been designed. Nevertheless, 

the vast majority of the available methodologies assumes that the cause-effect relation is 

linear, in the form of a Poisson regression, which usually does not reflect the real situation, 

since there is a threshold exposure value below which the physical impact is no longer felt. 

Therefore, these approaches are considered more appropriate for situations in which the 

increase in pollutant levels is marginal and when the supposed linearity is not violated and, 

hence, the applicability domain (i.e. concentration and exposure range) of the model should 
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be clearly stated (Marques et al., 2013; Pizzol et al., 2010). On the other hand, due to 

unavailability/lack of epidemiological studies based on country data, CRF are often taken 

from international epidemiological studies that are regarded as reference studies by the 

scientific community. According to these studies, the cause-effect relationship is stronger 

for PM compared to other air pollutants (EHA, 2006; Pervin et al., 2008) and, thus, their 

effects are better documented and quantified (e.g. Mechler et al., 2002; Rückerl et al., 

2011). 

To assess the exposure, defined as the pollutant concentration existing in a person’s 

breathing zone over a specified period of time, the following methods can be used (WHO, 

2002): 

- exposure monitoring, with the advantage of producing accurate exposure data on 

individuals in known and real life conditions. However, a personal exposure monitoring 

programme is normally more laborious and costly, and when selecting the individuals 

there is a tendency for behavioural changes, thus potentially modifying the exposure; 

- exposure modelling has some advantages comparatively to personal monitoring, 

allowing exposure assessments for past and future periods; its use is recommended for 

estimating potential long-term effects and for densely populated areas.   

In epidemiological studies, exposure modelling techniques are often applied, since large 

cohorts and populations of entire cities over long periods of time are needed to design the 

overall effect of air pollution. However, to support these long-term exposure assessments, 

adverse health effects due to short-term exposure are usually accounted by the cumulative 

effect over time, which is expressed through mortality indicators (e.g. years of life lost) and 

incidence/prevalence of specific chronic diseases (Costa et al., 2014; Seethaler et al., 2003; 

WHO, 2013c). Short-term exposure studies, that represent only a part of the health problem, 

are usually focused on exploring the high variability of acute health effects using time-series 

of hourly and daily changes in pollutant concentration (Rückerl et al., 2011). In addition to 

the air pollution, seasonal factors, as the time of year and weather conditions, also produce 

important short-term effects that are more significant during the cold season, thus modifying 

the relationship between air quality and acute health outcomes (Ostro, 2004; WHO, 2002). 

In turn, long-term epidemiological evidences assess the increase in mortality risk (age-

specific death rates) due to chronic exposure to outdoor air pollutants (Héroux et al., 2015; 

Rückerl et al., 2011; WHO, 2013a).     
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2.2.2. Quantification of physical health impacts 

Despite the widespread consensus that air pollution is a serious concern for the health and 

welfare of the society, the quantification of its impacts has often been overlooked in 

modelling studies aimed at assessing air quality improvement strategies (Miranda et al., 

2015). This happens because the EU Ambient Air Quality Directive 2008/50/EC establishes 

ambient air quality standards oriented towards public health protection, but not identifying 

the need to estimate effects. Nevertheless, health impacts triggered from air pollution are 

increasingly being addressed and documented due to the joint collaboration of experts in 

different scientific areas, as air pollution, public health, sociology, economics, among others. 

Based on the shared knowledge and identification of key aspects aimed at integrating these 

thematic areas, a set of health impact assessment (HIA) tools have been developed. 

According to Brenk (2018), who assessed the suitability of these tools for European cities 

using criteria as their usefulness at city level, the possibility of calculating multiple health 

effects for different air pollutants as well as adjusting input parameters (e.g. RR, age 

structure, incidence rate) led to the adoption of two main HIA tools: AirQ+ and GGD. The 

latter is directed to the Dutch public health services, not being applicable to other European 

countries. Therefore, the AirQ+ tool, developed by the WHO, is the best option for a 

comprehensive assessment of health impacts derived from air pollution. 

The latest AirQ+ version 1.3 was released in October 2018 and is freely available to 

download from the WHO website (URL1). The AirQ+ software is designed to calculate the 

magnitude of health impacts due to short and long-term exposures to outdoor air pollution 

from several pollutants (PM2.5, PM10, NO2, O3 and black carbon) using methodologies and 

CRF well established by epidemiological studies. Moreover, AirQ+ can also be used to 

estimate the effects of household air pollution related with solid fuel combustion (indoor air 

pollution). Notwithstanding its graphical interface (Figure 2.2) intended for any stakeholder 

who wants to carry out HIA, it is possible to highlight that: 

- users have the possibility to use values for a pollutant not included in the AirQ+ 

database, if RR and other input data are available. In this case, it is highly recommended 

using results from a meta-analysis rather than from a single local study; 

- for each air pollutant and health indicator a separate impact evaluation has to be carried 

out, implying intensive work to conduct a complete HIA with all the available pollutants 

and health indicators. 
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Figure 2.2. Graphical interface of the AirQ+ software.  
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The impact evaluation can be done through two calculation methods: log-linear and linear-log, 

that only differ in the adjusted RR function for different air concentrations. The log-linear RR 

function assumes a linear relationship between concentration and risk (hereinafter referred as 

linear RR)  (Eq. 2.1), whereas the linear-log method uses a RR function in which health risks 

decrease non-linearly with increasing concentrations (hereinafter referred as non-linear RR) (Eq. 

2.2). 

 

𝑅𝑅(𝑝,𝑖) = 𝑒𝑥𝑝⁡[⁡𝛽⁡(𝑋 − 𝑋0)⁡]    (Eq. 2.1) 

 

𝑅𝑅(𝑝,𝑖) = 𝑒𝑥𝑝⁡[⁡𝛽⁡(𝑙𝑛 ⁡(𝑋 + 1) − 𝑙𝑛⁡(𝑋0 + 1))⁡]  (Eq. 2.2) 

 

Where: 

RR(p,i) correlates a pollutant p´s concentration variation (X – X0) with the probability of 

experiencing or avoiding a specific health indicator i; 

β coefficient denotes the change in the RR for unit change in concentration X (expressed 

as the natural logarithm of RR); 

X is the pollutant p´s concentration (µg.m-3): daily values to calculate the short-term 

exposure risk, or annual averages if long-term RR is required; 

X0 indicates the pollutant p´s cut-off or counterfactual concentration value (µg.m-3) above 

which health impacts are calculated. 

 

AirQ+ provides default values of RR and X0, but they may be adjustable. RR values are 

often presented with a confidence interval of 95 %, and result from a systematic review 

done in the scope of the HRAPIE project (WHO, 2013a), which included published 

epidemiological studies and their meta-analyses. Given the nature and geographic 

framework of the majority of these studies, the use of these default RR values is essentially 

recommended for Western Europe and North America regions. Regarding the default 

counterfactual values, the WHO AQG are suggested since they provide global guidance on 

thresholds and limits for key air pollutants harmful for the human health. 

In order to test the behaviour of these RR methods, the mortality risk (all natural causes) due to 

the short-term exposure to NO2 was estimated for a hypothetic case, using the following data: 

default RR of 1.0027 per 10 µg.m-3 change (recommended by WHO, 2013a); daily maximum 1-
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hour mean (X) up to 120 µg.m-3; and the X0 threshold is set at 10 µg.m-3 (default value used in 

URL1). Figure 2.3 shows the estimated RR based on the two methods. 

  

 

Figure 2.3. Estimated mortality risk due to the short-term NO2 exposure using the two RR methods (linear 

RR and non-linear RR).  

 

For lower concentrations (up to 25 µg.m-3), the trendline of the non-linear RR function shows 

a trend similar to the linear method. After this value, the logarithmic form considered in non-

linear RR leads to a smaller increase of the adjusted RR (i.e. response) in association with 

NO2 concentration (i.e. exposure) increases. The option for a non-linear risk model is based 

on the assumption that a simple linear extrapolation produces large overestimates of burden 

of disease, mainly when high air concentrations are observed (Burnett et al., 2018; Nasari 

et al., 2016). 

Beyond the adjusted RR calculation, other input parameters, as population data and 

background incidence/prevalence rate for the chosen morbidity and mortality indicators, are 

required for impact evaluation using the AirQ+ tool. Thus, the general equation (Eq. 2.3) to 

estimate physical health impacts from air pollution is described as follows:  

 

𝐻𝐼(𝑝) = ∑ ⁡[⁡(⁡𝑝𝑜𝑝(𝑝,𝑖) ⁡× ⁡ 𝐼𝑛𝑐(𝑖)⁡) ⁡× 𝑅𝑅(𝑝,𝑖)⁡]
⁡𝑛
⁡𝑖=1    (Eq. 2.3) 
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Where: 

HI(p) represents the number of unfavourable implications (cases of disease, deaths) over 

all health indicators (i = 1,..., n) avoided, or not, due to pollutant p´s short and/or long-

term exposure; 

pop(p,i) is the population at risk (all ages or certain age group) associated to the RR meta-

analysis;  

Inc(i) corresponds to the baseline incidence/prevalence rate of a specific health indicator 

i (expressed as the number of new cases per 100000 individuals per year).  

 

The Impact Pathway Approach (IPA), designed within the ExternE (External Costs of 

Energy) project  (EC, 2005), is another health modelling tool that has often been used by 

the scientific community, at least until the development of the AirQ+ (end of 2016), in order 

to obtain damage estimates for different impact categories. For quantifying health impacts 

from air pollution, the IPA uses a similar methodology to the linear RR-based AirQ+ tool, 

but it does not include the counterfactual value; therefore, any air concentration changes 

result in health damage estimates. 

In addition to the estimate of new cases of disease and deaths attributable to air pollution, 

other health metrics are also quantified in many HIA studies (e.g. APPRAISAL, 2013b; 

Costa et al., 2014; Hurley et al., 2005; Likhvar et al., 2015), such as: 

- Years of life lost (YLL) in the target population due to changes in mortality risk. YLL can 

be calculated by multiplying the number of premature deaths with the remaining life 

expectancy at the age of death, reliably represented through life table methods. This 

heath indicator is also implemented within the AirQ+ software, allowing the user to do 

life table calculations for assessing the decline in life expectancy, assuming that 

population and mortality risk rates are known. 

- Years lost due to disability (YLD) reflecting the extent of the disability associated to a 

specific disease. YLD can be estimated by multiplying a disability weight factor, which 

varies between 0 (perfect health) and 1 (death), with the average duration of the 

disease.   

- Disability-adjusted life years (DALY) provide a relevant measure of the overall disease 

burden, because it combines both mortality and morbidity. Thereby, DALY are the sum 

of the YLL with YLD, which account for the number of years lived in less than optimum 

health.    
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2.2.3. Economic evaluation 

Economic evaluation studies on air pollution-related health impacts aim to raise awareness 

about the need of improving the air quality, especially in urban areas, providing an important 

support for the definition of strategic action plans (Silveira et al., 2016). For that purpose, 

several techniques to estimate the economic costs and benefits that result from air quality 

changes have been employed (DEFRA, 2019a; Holland et al., 2005). However, it is not a 

straightforward procedure, since many of the health effects have no market value and, 

consequently, the monetary valuation is often discarded in HIA studies (Belhaj and Fridell, 

2008). These health damage costs arising from air pollution are known as negative 

externalities, also referred as external costs to repair a given reference situation or avoid 

welfare losses (van Essen et al., 2011), and  are generally quantified through the cost-of-

illness (COI) methodology (Eq. 2.4) (Pervin et al., 2008; WHO, 2008). According to this 

approach, total health costs per case (Chealth) are determined by the sum of direct (Cdirect), 

indirect (Cindirect) and intangible (Cintangible) costs. 

 

𝐶ℎ𝑒𝑎𝑙𝑡ℎ =⁡𝐶𝑑𝑖𝑟𝑒𝑐𝑡 +⁡𝐶𝑖𝑛𝑑𝑖𝑟𝑒𝑐𝑡 +⁡𝐶𝑖𝑛𝑡𝑎𝑛𝑔𝑖𝑏𝑙𝑒   (Eq. 2.4) 

 

Direct costs include both health care and non-health care costs associated with treatment 

and caring. These costs are based on market values for e.g. medical staff, examinations, 

laboratory tests, medication, consumables and hospital facilities as well as for caregivers’ 

time, and are estimated using bottom-up or top-down accounting methods (Pervin et al., 

2008).  

Indirect costs include costs associated with loss of productivity due to morbidity as well as 

loss of production due to morbidity or mortality. These costs are based on market values 

for e.g. wages, incomes and earnings, and are estimated using the human capital approach 

(HCA) or the friction cost approach (FCA) (Hanly et al., 2012; Pervin et al., 2008). The HCA 

approach assesses an individual’s productivity and production losses from health 

deterioration, based on the time foregone from productive activities over the individual’s 

lifetime and against the relevant wage rate (Tranmer et al., 2005). The FCA approach 

assesses a firm’s productivity and production losses from health deterioration, based on the 

time needed to restore initial production levels (friction period) and assuming vacancies are 

filled by unemployed (low opportunity cost) employees (Koopmanschap and van Ineveld, 

1992). 
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Finally, intangible costs include non-market costs associated with pain and suffering. These 

costs are based on non-market values for pain and suffering from morbidity and mortality, 

and are estimated using quality-adjusted-life-year (QALY) and willingness-to-pay (WTP) or 

willingness-to-accept (WTA) approaches (Hammitt, 2005). The QALY approach assesses 

the change in QALYs, and corresponding monetary values, due to an expected change in 

health. Estimates are invariably dependent on life expectancy, future health and latency, 

though rarely dependent on income or risk characteristics. The “willingness-to” approaches 

assess an individual’s willingness to spend money for an expected health improvement 

(WTP; compensating variation) or, alternatively, an individual’s willingness to receive money 

to resign an expected health improvement (WTA; equivalent variation). Estimated values 

may be a function of income, education and age as well as environmental quality (Hammitt, 

2005; Seethaler et al., 2003). 

For each health indicator, after identifying the different cost components related with the 

impacts and determining how to assess them in monetary terms, the overall health damage 

costs over a given region due to air pollutants exposure are estimated as follows (Eq. 2.5): 

 

𝐶𝑜𝑠𝑡𝑠(𝑖,𝑝) = 𝐻𝐼(𝑖,𝑝) ⁡× ⁡⁡𝐶ℎ𝑒𝑎𝑙𝑡ℎ   (Eq. 2.5) 

 

Where: 

Costs(i,p) express the overall damage (€), occurred or avoided, on the health indicator i 

due to pollutant p´s short and/or long-term population exposure over a given region;   

HI(i,p) represents the number of unfavourable implications associated to the health 

indicator i, that could be avoided or not, due to pollutant p´s short and/or long-term 

population exposure over a given region; 

Chealth is the monetary value (€) to repair a person´s initial heath status or, at least, to 

remediate the damages of air pollution on the health indicator i. 

 

Health impacts (HI) and overall damage costs (Costs) avoided reflect the expected benefit 

with the implementation of air quality improvement strategies. In this context, since a typical 

HIA is focused on individual air pollutants, it is necessary to add the impact/benefit from the 

related health indicators. 
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2.2.4. Overview of epidemiological and economic studies 

This section gathers scientific/technical information on epidemiological evidences and economic 

evaluation of impacts linking the exposure to the most common air pollutants (PM2.5, PM10, O3, 

NO2 and SO2) with different health indicators (respiratory and cardiovascular diseases). In each 

pollutant-effect pair, the following aspects are considered: affected age groups, exposure time, 

impact functions (as RR) and damage/external costs per unit (as Chealth) (Table 2.3). 

 

Table 2.3. Epidemiological data and economic evaluation of health effects related to the most common air 

pollutants (PM2.5, PM10, O3, NO2 and SO2). 

Health indicator 
(pollutant) 

Age group 
Study 
design 

RR (95% CI) 
per 1 µg.m-3 

Damage cost  
(prices per unit) Reference 

  € (base year)   Unit 

Cough (PM2.5) 

Children  0.22   Hurley et al. (2005) 

Adults  0.28   Hurley et al. (2005) 

Children <16 yr  0.45 59 (2006) Day Brandt et al. (2013) 

Adults >15yr  0.28 59 (2006) Day Brandt et al. (2013) 

Cough (PM10) 
Children  0.13   Hurley et al. (2005) 

Adults  0.17   Hurley et al. (2005) 

Cough (O3) Children 5-14 yr  0.093 31 (2002) Day Maibach et al. (2008) 

Cough All ages   42 (2000) Day Belhaj and Fridell (2008) 

Chronic cough 
(PM2.5) 

Children Long-term 3.46E-03   Hurley et al. (2005) 

Chronic cough 
(PM10) 

Children Long-term 2.07E-03   Hurley et al. (2005) 

Chronic cough Children   240 (2000) Case Belhaj and Fridell (2008) 

Asthma (PM10) 

Children 5-19 yr Short-term 
0.1028 

(0.1006-0.1051) 
  WHO (2013a) 

Children <15 yr  
0.1044 

(0.1027-0.1062) 
  Seethaler (1999) 

Adults ≥15 yr  
0.1039 

(0.1019-0.1059) 
  Seethaler (1999) 

 Asthma (O3) All ages  4.29E-03   Hurley et al. (2005) 

 Asthma 
   31 Day Seethaler et al. (2003) 

   85 (2000) Day Belhaj and Fridell (2008) 

Acute bronchitis 
(PM10) 

Children Short-term  131 Day Seethaler et al. (2003) 

Bronchitis (PM10) 
Children <15 yr  

0.1306 
(0.1135-0.1502) 

  Seethaler (1999) 

Children 6-18 yr Long-term 
0.108 

(0.098-0.119) 
  WHO (2013a) 

 Bronchitis (NO2) Children 5-14 yr Long-tern 
1.021 

(0.99-1.06) 
  WHO (2013a) 

Chronic bronchitis 
(PM2.5) 

Adults Long-term 3.90E-05   Hurley et al. (2005) 

Adults  8.20E-0.5 52962 (2006) Case Brandt et al. (2013) 

Chronic bronchitis 
(PM10) 

Adults   2.45E-0.5   Hurley et al. (2005) 

Adults >18 yr Long-term 
0.1117 

(0.1040-0.1189) 
  WHO (2013a) 

Adults >25 yr  
0.1098 

(0.1009-0.1194) 
  Seethaler (1999) 

Adults >27 yr  2.65E-0.5 153000 (2002) Case Maibach et al. (2008) 

Chronic bronchitis 
incidence 

Adults 

  168840 (2000) Case Belhaj and Fridell (2008) 

  209000 Case Seethaler et al. (2003) 

  190000 Case Holland et al. (2005) 

Congestive heart 
failure (PM2.5) 

Over 65 
 3.09E-05   Hurley et al. (2005) 
 3.09E-05 16409 (2006) Case Brandt et al. (2013) 

Congestive heart 
failure (PM10) 

Over 65  1.85E-05   Hurley et al. (2005) 

Congestive heart 
failure 

Over 65   3360 (2000) Case Belhaj and Fridell (2008) 
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Table 2.3. Epidemiological data and economic evaluation of health effects related to the most 

common air pollutants (PM2.5, PM10, O3, NO2 and SO2) (cont). 

 

Health indicator 
(pollutant) 

Age group 
Study 
design 

RR (95% CI) 
per 1 µg.m-3 

Damage cost  
(prices per unit) Reference 

  € (base year)   Unit 

Respiratory HA 
(PM2.5) 

All ages  3.46E-06   Hurley et al. (2005) 

All ages Short-term 
0.1019 

(0.0998-0.1040) 
  WHO (2013a) 

  3.46E-06 7931 (2006) Case Brandt et al. (2013) 

Respiratory HA 
(PM10) 

All ages  2.07E-06   Hurley et al. (2005) 

All ages  7.03E-06 1900 (2002) Case Maibach et al. (2008) 

All ages  
0.1013 

(0.1001-0.1025) 
  Seethaler (1999) 

 Short-term 0.08   DEFRA (2019b) 

 Respiratory HA 
(O3) 

Over 65  1.25E-05   Maibach et al. (2008) 

All ages  3.54E-0.6   Hurley et al. (2005) 

 Short-term 
0.075 

(0.030-0.120) 
  DEFRA (2019b) 

 Respiratory HA 
(NO2) 

All ages 
Short-term 
(day mean) 

0.1018 
(0.1012-0.1024) 

  WHO (2013a) 

All ages 
Short-term 
(day max) 

0.1002 
(0.0999-0.1004) 

  WHO (2013a) 

 Short-term 0.05   DEFRA (2019b) 

 Respiratory HA 
(SO2) 

All ages  2.04E-0.6   Hurley et al. (2005) 

  2.04E-0.6 7931 (2006) Case Brandt et al. (2013) 

 Short-term 0.05   DEFRA (2019b) 

Respiratory HA All ages   4400 (2000) Case Belhaj and Fridell (2008) 

Cardiovascular HA 
(PM2.5) 

All ages Short-term 
0.1009 

(0.1002-0.1017) 
  WHO (2013a) 

Cardiovascular HA 
(PM10) 

All ages  4.34E-06 1900 (2002) Case Maibach et al. (2008) 

All ages  
0.1013 

(0.1007-0.1019) 
  Seethaler (1999) 

All ages Short-term 0.08   DEFRA (2019b) 

All ages Short-term 0.06 (0.03-0.09)   Hurley et al. (2005) 

All ages Short-term 0.09 (0.04-0.15)   Ballester et al. (2006) 

Cardiovascular HA 
(O3) 

 Short-term 
0.011 

(-0.006-0.027) 
  DEFRA (2019b) 

Lung cancer 
(PM2.5) 

  
0.113 

(0.104-0.122) 
  Mechler et al. (2002) 

  1.26E-05 21152 (2006) YLL Brandt et al. (2013) 

Respiratory 
mortality (PM10) 

All ages Short-term 
0.1013 

(0.1005-0.1020) 
  WHO (2008) 

 Respiratory 
mortality (O3) 

Adults >30 yr Short-term 
0.1014 

(0.1005-0.1024) 
  WHO (2013a) 

Cardiopulmonary 
mortality (PM2.5) 

Adults >30 yr Long-term 
0.108 

(0.102-0.114) 
  

Mechler et al. (2002); 
WHO (2008)  

Cardiovascular 
mortality (PM10) 

All ages Short-term 
0.1009 

(0.1005-0.1013) 
  WHO (2008) 

Acute mortality 
(PM2.5) 

  0.068   Hurley et al. (2005) 

Acute mortality 
(PM10) 

  0.040   Hurley et al. (2005) 

 Acute mortality 
(O3) 

  0.059   Hurley et al. (2005) 

All ages  0.03 60500 (2002) YLL Maibach et al. (2008) 

 Acute mortality 
(SO2) 

  0.072   Hurley et al. (2005) 

 Acute mortality    25800 (2017) YLL DEFRA (2019b) 

Chronic mortality 
(PM2.5) 

Adults >30 yr  1.138E-0.3 77199 (2006) YLL Brandt et al. (2013) 

  0.6 (0.4-0.8) 49900 (2017) YLL DEFRA (2019b) 

All ages  4.00E-04 40300 (2002) YLL Maibach et al. (2008) 
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Table 2.3. Epidemiological data and economic evaluation of health effects related to the most 

common air pollutants (PM2.5, PM10, O3, NO2 and SO2) (cont). 

Notes:  

• RR is the relative risk per person and per 1 μg.m-3 change in pollutant concentration; 

• Brandt et al. (2013), Hurley et al. (2005) and Maibach et al. (2008) used RR functions derived from the ExternE project 

(baseline annual rate included in RR); 

• For long-term studies annual mean concentrations are used, whereas short-term pollutant exposure is designed from 

daily average or maximum values; 

• HA - Hospital admissions; YLL - Years of life lost. 

 

As shown in Table 2.3 and mentioned in Section 2.2.1, statistical associations between PM 

concentrations and health effects have been most extensively investigated.  

For certain health indicators the pollutant effect on a given age group reveals considerable 

variation in terms of CRF (i.e. relative risk) and damage costs, which can be explained by 

the differing methodologies, the geographical coverage and socio-economic conditions 

across studies. The research studies reported in Table 2.3 are designed for Europe as a 

whole (e.g. Brandt et al., 2013; WHO, 2013a), while some studies are country specific (e.g. 

DEFRA, 2019b; Seethaler, 1999).  

The variability in CRF may be associated with several factors, namely the population 

structure (density, affected age groups and their distribution), source of data gathering, and 

unavailability or improper format of routinely gathered health indicator data for use in 

economic evaluations. In addition, the inclusion/exclusion of threshold exposure values as 

well as cumulative effects over time have contributed to the variation in derived risk 

functions (Hurley et al., 2005). 

Health indicator 
(pollutant) 

Age group 
Study 
design 

RR (95% CI) 
per 1 µg.m-3 

Damage cost  
(prices per unit) Reference 

  € (base year)   Unit 

Total mortality - 
All causes 
(PM2.5) 

Age >9 months  6.68E-06   Brandt et al. (2013) 

Adults >30 yr Long-term 
0.106 

(0.102-0.110) 
63447 YLL 

Mechler et al. (2002); 
WHO (2008)   

Adults >30 yr Long-term 
0.1062 

(0.1040-0.1083) 
  WHO (2013a) 

Total mortality - 
All causes (PM10) 

Age <1 yr Long-term 
0.104 

(0.102-0.107) 
  WHO (2013a, 2008)  

Adults >30 yr  
0.1043 

(0.1026-0.1061) 
63447 YLL 

Seethaler (1999); WHO 
(2008) 

All ages Short-term 
0.1006 

(0.1004-0.1008) 
63447 YLL WHO (2008) 

All ages Short-term 
0.1012 

(0.1005-0.1020) 
  WHO (2013a) 

 Total mortality - 
All causes (O3) 

 Short-term 
0.034 

(0.012-0.056) 
  DEFRA (2019b) 

Total  mortality - 
All causes (NO2) 

All ages 
Short-term 
(day max) 

0.1003 
(0.1002-0.1004) 

  WHO (2013a) 

All ages Long-term 
0.1055 

(0.1031-0.1080) 
  WHO (2013a) 

 Long-term 
0.09 

(0.06-0.13) 
  DEFRA (2019b) 

Total  mortality - 
All causes (SO2) 

 Short-term 0.06   DEFRA (2019b) 
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The variability in external cost estimates is particularly large when these build on WTP 

studies. WTP studies are based on interviews in which personal interpretation of the 

questions as well as strategic behaviour by respondents can lead to biased outcomes 

(Pervin et al., 2008). Furthermore, these values might also depend on additional variables, 

such as income and age and, probably, differ between health effects. The WTP approach 

has the advantage of acquiring the full range of personal costs associated with the disease 

(Pervin et al., 2008), thereby noting that many of those costs have no market value (Belhaj 

and Fridell, 2008). As a consequence, several health effects due to air pollution are often 

neglected and, hence, results are probably an underestimation of the total health costs 

(WHO, 2008). 

 

2.2.5. Uncertainties in health impact assessment 

In HIA, the uncertainty analysis should be performed in all stages, from air pollution 

exposure assessment to quantification of physical health impacts and corresponding 

external costs. Uncertainties are often based on 95% confidence intervals (CI) around the 

mean to provide an estimate of the precision of the HIA outcomes, and result from a 

simplification or shortcomings of the methodologies used and assumptions for obtaining the 

input data. 

Regarding the exposure assessment, the major uncertainty sources are related with the 

choice of the air pollutants, their measured and/or modelled concentrations over a given 

region, and estimated number of people exposed. Usually only a few pollutants are 

considered in HIA instead of the entire mixture of air pollutants, and it is very likely that this 

approach does not reflect the real exposure and subsequent health impacts, but it is 

currently the most acceptable, since the importance of any individual pollutant for the overall 

mixture is unclear (DEFRA, 2019b; Ostro, 2004). Furthermore, the extent of the effects of 

some pollutants or any combination of different pollutants on human health is not always 

known, mainly due to the lack of epidemiological evidences (i.e. CRF). Even when there is 

a reasonable association between a specific type of exposure and a health effect, some 

doubts about the causality and impact of time lags might still exist (WHO, 2008). From the 

point of view of the concentration-exposure relationship, large uncertainties are associated 

to the modelling, representativeness of measurements and assumptions to link them. Thus, 

when using air quality modelling results to derive exposure, it is not certain that the 

estimated exposure coincides with the observed ambient concentrations in a given location 

(DEFRA, 2019b). In terms of spatial representativeness, HIA assumes that either individual 

exposure measurements or population-weighted average exposure estimates are 
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representative of the population exposed over a particular area. Even if the population 

exposure is well estimated, individual exposures can vary substantially, as a result of spatial 

differences in air concentrations, and due to the individuals´ activity patterns (WHO, 2016b). 

As a consequence, an alleged low correlation between personal exposure and ambient 

concentration contributes to weakening the power of epidemiological studies to detect 

effects. 

Moving from exposure to the quantification of potential health impacts, uncertainties about 

the number of deaths or cases of disease may be found for a variety of reasons: 

- the use of different methodologies to calculate the value of health impacts could result 

in very significant variations, even if the equations are based on the same input data 

sets (e.g. AirQ+ methods); 

- possible double counting of health effects from several air pollutants, since one health 

outcome may be captured from different pollutants, or the same effect may be added 

from two health indicators (e.g. mortality due to a specific cause is a part of all-cause 

mortality) (Héroux et al., 2015; WHO, 2016b); 

- the choice of CRF derived from epidemiological studies inevitably introduces some 

uncertainty into the results, given the random effects and high variability in the CRF 

estimates. Moreover, epidemiological experiments on air pollution are often designed 

using an exposure threshold, and are scarce or absent in many regions around the 

world, limiting their reliability and applicability to these exposure ranges and countries 

where cohort studies were undertaken. It should be noted that most epidemiological 

studies have been conducted in developed countries, and the range of studied 

exposures does not necessarily represent what is observed worldwide (Héroux et al., 

2015; Ostro, 2004; WHO, 2016b); 

- baseline incidence and prevalence rates for health indicators of interest may also be 

highly uncertain with regard to the impact of ambient air pollution. These baseline rates 

are usually expressed as national statistics, available for most countries through the 

following online platforms: Global Health Observatory data repository (URL2) and 

European Health for All database (URL3). In the case of mortality rate, the number of 

premature deaths per a specific cause (e.g. ischaemic heart disease) is estimated from 

the joint effect of ambient and household air pollution. However, for calculating health 

impacts, this air pollution-related mortality rate should not be combined with CRF linking 

mortality to all natural causes, unless other environmental risk factors (e.g. climate 

change, contaminated water, waste disposal) are added to the mortality rate. In turn, 

largest uncertainties are associated to morbidity indicators, because the national health 
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outcomes may come from certain risk factors, not specifying the contribution from the 

air pollution; 

- the introduction of a counterfactual level of air pollution, assuming no health impacts 

below that reference exposure value, raises some doubts about the theoretical minimum 

concentration that results in minimum population risk. This uncertainty degree becomes 

more noticeable when different air pollution management policies are tested in order to 

quantify air quality and health benefits (WHO, 2016a).   

As a last step for analysing uncertainties in HIA, comes the economic evaluation of health 

impacts, which represents the overall estimate of effects, aggregated and converted to 

monetary values based on the pollutant-health outcome pairs (Héroux et al., 2015; Holland 

et al., 2005). In most economic studies (as mentioned in the previous section), the total 

health costs were probably underestimated for two main reasons: 

- several known health effects related with a specific pollutant are often neglected, due to 

the lack of epidemiological evidences (i.e. CRF); 

- certain damage costs, namely intangible costs, have not been quantified, or their 

evaluation is clearly biased. Within this cost component, the QALY and WTP values 

vary greatly and are sensitive to how the studies are conducted, usually through 

personal interviews reporting the individual’s willingness to spend money aiming an 

expected health improvement, or to avoid a particular health risk. Moreover, these 

values might depend on additional variables, as income and age, and probably differ 

between health effects (WHO, 2008). 

 

2.3.  Summary 

The review and analysis of multiscale air quality and health modelling state-of-the-art 

allowed to evaluate the current scientific developments, to identify the strengths and 

weaknesses in these research areas, and to define a set of guidelines with practices to 

overcome some existing methodological limitations. Moreover, this literature review and the 

guidelines were determinant to give response to the research question 1, aimed to select 

the most appropriate methodologies and modelling tools to be used in designing the 

multiscale modelling system, and to better understand how to integrate them into a single 

system. Thus, for the development of the integrated multiscale modelling system, the 

following aspects were taken into account: 
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- Air quality modelling 

(i) to carefully couple different types of air quality models to cover multiple spatial 

scales and resolutions. Background and boundary meteorological and chemical 

conditions extracted from an urban scale simulation should be properly assimilated 

by the local scale model; 

(ii) to model regional and urban air quality, the option for an online mesoscale model is 

recommended, because it has the advantage of integrating meteorology-chemistry 

feedbacks, allowing a better characterization of the time-resolved atmospheric 

processes and dispersion of air pollutants within the atmospheric boundary layer; 

(iii) the link to the local scale should be done with a CFD model, in order to accurately 

reproduce the spatial variability and pollutant dispersion around the urban structure 

(e.g. buildings); 

(iv) to apply the modelling system, starting with the mesoscale model in two-way nesting 

(3-5 ratio) and increasing resolutions (up to 1 km2 or less), in order to provide high-

resolution outputs to be used by the local scale model; 

 

- Health impacts modelling 

(v) to assess the human exposure to air pollutants at urban scales or in densely 

populated areas, it is recommended the use of modelling techniques for estimating 

potential short and long-term effects; 

(vi) to quantify the resulting physical health impacts (number of cases or YLL), the linear 

and non-linear RR methodologies integrating the AirQ+ tool developed by the WHO, 

are the most suitable at the city level, and might be applicable to a wide range of 

environmental conditions; 

(vii) finally, to evaluate the health damage costs, national statistics or comprehensive 

economic evaluation studies including WTP should be preferentially used. 
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3. DEVELOPMENT OF AN INTEGRATED MULTISCALE MODELLING SYSTEM 

 

According to the objectives of the thesis, the design of a multiscale modelling system that 

combines both components, air quality and health, is undoubtedly the biggest proposed 

challenge. 

The conceptual framework of the developed system, called modair4health - multiscale air 

quality and health risk modelling, is described as follows. Section 3.1 presents the general 

structure of the modair4health system, in relation to the used air quality and health models 

and links among them, and to the required input data and key simulation outputs, which are 

also used to feed the chain of models. A detailed description about these models and input 

data processing is provided in Sections 3.2 and 3.3, for air quality and health impacts, 

respectively. After the methodological consolidation and definition of the information flow, 

the modair4health system was linked and operationalized for research and end-user 

purposes (Section 3.4). 

 

3.1.  Architecture of the modair4health system 

The core of the multiscale modelling system is composed by two air quality models able to 

simulate atmospheric concentrations from regional/urban scales (WRF-Chem) to the local 

scale (VADIS), and a health module for estimating health impacts and damage costs 

caused by short and long-term human exposure to air pollutants (Figure 3.1). 

For air quality modelling from regional to urban scales, the Weather Research and 

Forecasting model with Chemistry (WRF-Chem) was chosen, because it is an online model 

that takes into account meteorology-chemistry feedbacks, but also due its performance, 

since it employs appropriate parametrizations for simulating air quality and meteorological 

fields at urban scale. As main inputs to run the WRF-Chem, static data characterizing the 

surface (e.g. land cover, topography), reanalysis data of weather observations, chemical 

boundary conditions from global CTM and atmospheric emissions, are needed.  

The link with the local scale air quality modelling was carried out through the CFD model 

VADIS (pollutant DISpersion in the atmosphere under VAriable wind conditions), taking 

advantage of its numerical prediction capabilities and using much higher spatial resolutions 

to capture the large heterogeneity near the surface, with respect to the dispersion of 

turbulent flows and air concentrations in small simulation domains (building scale). To that 

end, initial meteorological conditions extracted from the higher resolution WRF-Chem 

results are used as input to the CFD model, namely air temperature and winds fields 
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(direction and wind speed) at a reference height. Besides this information source, elements 

describing the urban structure (buildings volumetry and streets configuration) and local 

emissions (point and/or line sources) are also required. As a last step of the multiscale air 

quality modelling, WRF-Chem urban background concentrations are added to the VADIS 

air quality estimates to account for the pollutant fraction that is not generated within the local 

simulation domain. Both air quality models are configured to produce hourly resolution 

outputs. 

Finally, the resulting air quality assessment is then integrated in a health module, based on 

the AirQ+ methodologies, in order to estimate long and/or short-term health impacts and 

underlying damage costs associated to each pollutant-health outcome pair. In addition to 

the estimated ambient air concentrations and reference exposure value (i.e. counterfactual 

concentration level), other variables for quantifying physical health impacts and 

corresponding costs are needed: 

- population size and its distribution by age groups (provided from country´s population 

census); 

- baseline mortality and disease incidence rates (usually derived from country statistics); 

- impact functions expressed as RR for experiencing or avoiding a specific health 

indicator (derived from epidemiological studies); 

- and monetary valuation of the health impacts, individually translated in damage costs 

per case/day over a health indicator (preferentially, should include all cost components: 

direct, indirect and intangible costs). 

 

More details about the adopted models, recommended configurations, input data 

processing, and linking as a whole are presented in the following sections. 
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Figure 3.1. Flowchart of the modair4health system. 
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3.2.  Air quality modelling  

From the point of view of the multiscale air quality modelling, the selection and setup of the 

models to be integrated into the system was duly weighted, either through the critical 

analysis of the state-of-the-art, as well as through the performance evaluation of modelling 

tests aimed at finding the best parametrizations and input datasets.  

In Sections 3.2.1 and 3.2.2, a description of the selected models, WRF-Chem and VADIS 

respectively, main inputs required and methods and modelling tools used for processing 

data, is provided.  

 

3.2.1. WRF-Chem description and input data processing 

WRF-Chem is an online model, developed and periodically updated by the NOAA´s Earth 

System Research Laboratory (NOAA/ESRL) in collaboration with other research groups, 

with a chemistry module completely embedded within the Weather Research and 

Forecasting (WRF) model. This online coupling allows the simultaneous calculation and 

consequent feedback between meteorological and chemical variables, sharing the same 

simulation grids (i.e. horizontal and vertical levels), physical parametrizations, transport 

schemes and vertical mixing (Fast et al., 2006; Grell et al., 2005). 

The WRF-Chem enables a variety of chemical and physical-dynamical parameterizations. 

Physical options include, for example, different schemes of microphysics, radiation, 

cumulus, and land surface and planetary boundary-layer representations. With regard to 

chemical options, the model allows several configurations for integrating anthropogenic and 

biogenic emissions, and includes a set of gas-phase chemical mechanisms (e.g. RADM2, 

RACM, CBM-Z) and aerosol schemes (e.g. MADE/SORGAM, MOSAIC, GOCART), which 

can be combined using different photolysis options. The aerosol interaction with the 

atmospheric radiation, photolysis and microphysics routines can be tested through aerosol 

direct or indirect effects. In terms of application scale, the model is suitable for simulations 

from mesoscale to urban environment. 

Structurally, the WRF-Chem software consists of two major components: WRF 

Preprocessing System (WPS) and WRF solver including chemistry (WRF). The WPS aims 

to prepare some inputs (static and meteorological reanalysis data) for initializing the WRF, 

and is composed by three executable programs: geogrid, ungrib and metgrid. Geogrid 

defines the projection, geographic location and dimension of the simulation domains and, 

horizontally interpolates static terrestrial data. Ungrib uses meteorological fields (i.e. surface 

and pressure levels in GRIB file format) extracted from global atmospheric reanalyses. To 

complete the WPS, metgrid gathers the outputs from the previous programs and 
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horizontally interpolates the meteorological fields for the simulation grids. Data required for 

these programs (inputs and parametrizations) should be previously edited in the 

“namelist.wps” file and, after that, the programs could be run following the order above. The 

resulting metgrid files and vegetation data used for online calculation of biogenic emissions 

are then integrated as an input for the real program inside the WRF component, that along 

with chemical boundary conditions provide initialization fields for running the WRF-Chem 

(i.e. wrf program). In addition to these initialization data, anthropogenic emissions 

disaggregated in space and time are also used and, as main results of the model, 

meteorological and chemical fields are generated (Figure 3.2). 

 

 

Figure 3.2. General structure of the WRF-Chem model. 

 

A more detailed description of the WRF-Chem model can be found in Grell et al. (2005), 

and its application can be guided through tutorial exercises available online. 

For processing the main input data in the format required by the WRF-Chem, the following 

methodologies and tools were used: 

 

- Static data 

Within this category, a set of physical and vegetation parameters that characterize the 

Earth´s surface dynamics are included, as topography, land cover, soil type and erodibility, 

vegetation fraction, albedo, etc. These static fields can be downloaded from the DTCenter 

website (URL4), and they are ready to be used into the geogrid program. Nevertheless, if 

more detailed and recent information is available, efforts to prepare these data to the 

geogrid binary format are recommended. In that sense, after a preliminary analysis of the 

role, magnitude and spatial distribution of available parameters ready for the geogrid and 
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their comparison to existing databases, it was decided to improve the land cover (LC) 

classification to be inputted to the WRF-Chem model. 

LC is as a prevailing driver of important interactions (i.e physical and chemical processes) 

within the atmospheric boundary layer, directly influencing the Earth's energy budget, and 

emission and deposition rates of air pollutants (Jiménez-Esteve et al., 2018; Wu et al., 2012; 

Xu et al., 2016). 

The analysis of the 24-classes of the United States Geological Survey (USGS) database 

provided with the WRF-Chem package against high accuracy and validated LC maps, 

based on the Corine land Cover (CLC) dataset for Europe, which contains 44 classes 

created from visual interpretation of 2012 satellite images with a 100 m positional accuracy, 

and more detailed and specific LC data for Portugal (hereinafter referred as COS2010)  

(DGT, 2017), indicated that the USGS LC does not reproduce with enough detail needed 

LC information (Figure 3.3a). Therefore, a new LC classification combining CLC and 

COS2010 data was developed, allowing to get a better representation of reality (Figure 

3.3b). In a first step, these LC databases were integrated in Geographic Information 

Systems (GIS), using the ArcGIS software, and reclassified according to the new 33-classes 

USGS nomenclature following the Pineda et al (2004) suggestions (Appendix A). In this LC 

reclassification process, the inclusion of three different urban classes should be highlighted: 

low-intensity residential (class 31), high-intensity residential (class 32) and industrial or 

commercial (class 33). Then, the resulting LC was processed with COS2010-based 100 m2 

resolution for Portugal and CLC-based 5 km2 resolution over Europe in order to be 

assimilated by the WPS geogrid program. However, it should be noted that the spatial 

interpolation from very fine resolution data to coarse grid cells leads to considerable losses 

of detail, not taking the best advantage of the relevance of these inputs. Ideally, the LC 

database and the simulation grid spacing should have the same resolution. This advice is 

particularly useful for studies over urban areas, where adjusted urban parametrizations and 

higher input and output resolutions are essential to improve the modelling performance. 
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(b) 

Figure 3.3. Dominant LC categories mapped for a regional domain coverage over central Portugal, 

resulting from interpolation onto a 1 km2 resolution grid based on: (a) default USGS LC; and (b) new LC 

classification. 

 

- Meteorological reanalysis data 

Meteorological reanalyses are conducted from data assimilation systems, using 

observations for model initialization and to recreate the lateral boundary conditions. To run 

the WRF-Chem, ERA-Interim´s global reanalysis data, provided by the European Centre 

for Medium-Range Weather Forecasts (ECMWF) at 6-hour intervals for surface and 

pressure levels, were used. These datasets can be collected from the ECMWF website 

(URL5) and are available from 1979 until nowadays, with a spatial resolution of 

approximately 80 km2 and 60 vertical levels from the surface up to 0.1 hPa. For each 
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simulation domain, the required fields are regridded and prepared as meteorological 

variables applying the WPS ungrib program. 

 

- Chemical boundary conditions 

Chemical lateral boundary conditions are needed to account for the influence of the 

transboundary transport of air pollutants, and are particularly relevant for predicting longer-

lived species, as O3 and carbon monoxide (Pendlebury et al., 2018; Tang et al., 2007). 

These time-variant chemical conditions were extracted from the global Model for OZone 

And Related chemical Tracers (MOZART-4/GEOS-5) considering updated data every 6 

hours with 1.9º x 2.5º horizontal resolution and 56 vertical levels. The integration of these 

boundaries into the coarser WRF-Chem domain is performed after running the real 

program, using the preprocessing tool mozbc (URL6) to design these chemical variables 

over the resulting real outputs. 

 

- Emission data from anthropogenic and natural sources 

Anthropogenic emissions from the European Monitoring and Evaluation Programme 

(EMEP) database with a 0.1º x 0.1º horizontal resolution were used (URL7). This annual 

emission inventory (EI) is available by Gridding Nomenclature For Reporting (GNFR) 

including estimated emissions of classic air pollutants (e.g. PM10, NOx, NMVOC), heavy 

metals and persistent organic pollutants for key activity sectors (e.g. road transport, 

industry). The spatial allocation for the simulation grids based on the LC, vertical distribution 

and application of default time profiles by activity sector considering the seasonality, day of 

week and daily cycle, as well as speciation and aggregation of emissions into WRF-Chem 

species, are performed using the emissions interface (called EMIWRF) built by Tuccella et 

al. (2012).  

In turn, biogenic, sea-salt and dust emissions are calculated online by activating WRF-

Chem-coupled specific modules and preprocessing tools that create initialization fields. For 

computing biogenic emissions, the Model of Gases and Aerosols from Nature (MEGAN – 

version 2.04) is initialized with monthly leaf area index data, fraction by plant functional type 

and emission factors previously prepared from the bio_emiss utility (URL6). Further 

information about this MEGAN model version is provided by Guenther et al. (2006). 
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3.2.2. VADIS description and input data processing 

VADIS is a CFD model developed in 1998 at the Department of Environment and Planning 

of the University of Aveiro, which has been updated and, recently, copyrighted and 

registered as a trademark under the class 9 of the Nice classification, including instruments 

for research purposes, technologic and audiovisual equipment, among other 

goods/services. The latest model version is designed for 3D microscale numerical 

simulations of flow and dispersion of urban air pollution due to point and line (road traffic) 

emission sources in urban built-up areas. Its capacity to support multiple obstacles, and 

flow fields and traffic emissions that vary in time, allows to more realistically evaluate the 

maximum short-term local concentrations over complex urban geometries, especially with 

low wind speed conditions (Borrego et al., 2003). 

The model is structured in two main programs: the FLOW, which is based on an Eulerian 

approximation for solving the Navier-Stokes equations at the atmospheric boundary layer 

(i.e. urban canopy) and; the DISPER, which is based on the lagrangian calculation of the 

trajectory of particles. FLOW is a Reynolds Averaged Navier-Stokes (RANS) prognostic 

model with a standard k-ε turbulence closure that calculates wind components, turbulent 

viscosity, pressure, turbulence kinetic energy and temperature, taking into account a set of 

obstacles located over a 3D Cartesian grid. The DISPER module uses the 3D atmospheric 

flow estimated by FLOW to calculate 3D concentrations of inert pollutants following a typical 

lagrangian approach. This methodology assumes that the pollutant spatial and temporal 

dispersion is conveniently represented by the trajectory of a large number of particles 

randomly released in the flow. The numerical separation between flow estimates and 

pollutant dispersion modelling can be seen as a major advantage compared to other CFD 

models (e.g. ANSYS Fluent), which solve the advection-diffusion equation coupled with the 

Navier-Stokes equations (Vardoulakis et al., 2003). Thus, it is possible to obtain a flows 

database for a particular urban area, which will be available, at any time, for estimating the 

pollutants dispersion with a lower processing time. The numerical principles of the VADIS 

CFD model are described by Borrego et al. (2003). Figure 3.4 shows how these programs 

are related, and what input data are needed for running the VADIS modelling system. 
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Figure 3.4. General structure of the VADIS model. 

 

The main input data could be grouped into three types: (i) geographic features that portray 

the urban area of interest, starting by defining the simulation domain and, thereafter, the 

buildings volumetry and streets configuration with known emission rates; (ii) meteorological 

conditions, including air temperature and wind speed and direction at a specific reference 

height, used for initializing the FLOW module; and (iii) local emissions from point and/or line 

sources required to run the DISPER module. For processing this information according to 

the VADIS requirements, the following methodologies and tools were used: 

 

- Geographic features 

The preparation of the geographic data, from its spatial representation to the format required 

for the VADIS simulations, is performed in two steps. Firstly, once defined the simulation 

domain (i.e. case study), the buildings and streets inside that area should be drawn in 

parallelepiped sections using a GIS software. For the buildings, average heights also need 

to be provided. After this stage, the resulting geographic information, namely the 

coordinates of the vertices of each polygon and buildings height, are introduced into a 

VADIS preprocessing tool, which designs these data, aligned or in angle, under a structured 

mesh. 

 

- Meteorological conditions 

Meteorological variables to feed the FLOW can be obtained from measurements or using 

modelled data. In the scope of the modair4health system, it was decided to use 

meteorological fields extracted from the WRF-Chem simulations, considering modelled 

results over the inner domain. 
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- Local emissions 

For quantifying the pollutants dispersion over the simulation domain, local road traffic 

emissions estimated by the TRansport Emission Model for line sources (TREM) are used. 

TREM was also developed at the Department of Environment and Planning of the University 

of Aveiro, with the main objective of obtaining high spatial-temporal resolution traffic 

emission estimates based on available traffic counts and fleet composition statistical data, 

in order to be used in air quality modelling. Thereby, streets are considered as line sources 

and traffic emissions are calculated for each road segment taking into account detailed 

traffic counts and vehicle fleet data. Basically, the total emission of the pollutant p (Ep) for 

each road segment is estimated as follows (Borrego et al., 2003): 

 

𝐸𝑝 = ∑ 𝑖⁡[𝑒𝑝𝑖⁡(𝑣) ⁡× ⁡𝑁𝑖] ⁡× 𝐿     (Eq. 3.1) 

Where: 

epi () is the emission factor for the pollutant p and vehicle category i as a function of the 

average speed, engine capacity, vehicle mass and emission reduction technology (); 

Ni is the number of vehicles of the category i; 

L is the road segment length. 

 

Fleet composition data and emission factors are extracted from the COPERT 2014 

database for Portugal (URL8). Among these data, the distribution of the number of vehicles 

by category is treated in smaller territorial units. This information is available for each district 

on the Associação Automóvel de Portugal website (URL9), and it is disaggregated to the 

municipality level using the municipality-district ratio in terms of number of inhabitants 

(URL10). Regarding the traffic counts, Open Transport Map data (URL11) based on traffic 

volume estimates in national highways are used and interpolated to other main roads.  

 

3.3.  Health impacts modelling 

Incorporating health impact modelling tools into the system is useful for assessing physical 

and economic health damages due to air quality changes, but also provides an important 

support to stakeholders and decision-makers when defining air pollution control policies at 

different scales. To quantify the extent of these health impacts over a particular urban area, 

pollutant-health outcome pairs are evaluated. Figure 3.5 shows the different steps involving 
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a classic HIA scheme, as well as the methodologies adopted and input data required to run 

the health module. 

 

 

Figure 3.5. General structure of the health module. 

 

The dissemination of HIA results is often based on short and/or long-term exposures for a 

given pollutant. Therefore, the effect on health indicators related with the exposure to a 

single pollutant should be added. 

 

- Exposure assessment 

In the first step, exposure assessment is described as a function of the estimated pollutant 

concentration and its spatio-temporal variability, to which citizens are or may be exposed. 

Thus, for each grid cell of a simulation domain, the population exposure is calculated 

through the resulting concentrations and the number of inhabitants per age groups that 

could be affected. Concentrations are usually presented as daily average or daily maxima 

values for designing short-term exposures, whereas annual average concentrations are 

used for long-term exposure modelling. The examined age groups are based on 

epidemiological evidences (i.e. CRF) relating the pollutant, exposure time and health 

indicator. This exposure modelling approach has been widely used to study large 

geographic regions (e.g. city scale) or densely populated areas (APPRAISAL, 2013b; 
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Brenk, 2018), where is unfeasible the elaboration of individual exposure monitoring 

programmes focused on time-activity patterns, and even if population samples are selected, 

that sampling might not be representative of the case study. For the same reasons, 

epidemiological models continue to use ambient concentrations rather than exposure 

measurements.  

 

- Quantifying physical health impacts 

When moving from exposure assessment to physical health impacts quantification, the 

linear and non-linear AirQ+ methodologies, described in Section 2.2.2, are implemented 

into the health module. Both methodologies use the same general equation (Eq. 2.3), 

differing only in the RR calculation. For a specific health indicator, the RR of the human 

exposure to an air pollutant is derived from CRF, estimated concentration in each grid cell, 

and cut-off concentration value above which health impacts are quantified. Concerning the 

CRF and cut-off values, in the absence of consolidated air quality and epidemiological 

studies over the target geographic region, reference values reported from the WHO are 

recommended. Besides the RR, other inputs to quantify the number of cases of disease or 

premature deaths are required, namely, population data organized by age groups and 

baseline incidence or prevalence rates associated to each pollutant-health outcome pair. 

Demographic data are provided from country´s population census, whereas baseline rates 

related to certain health indicators are usually derived from national statistics, or if not 

available, using scientific references designed for regions with similar environmental 

conditions.  

 

- Economic evaluation of health impacts 

Economic evaluation of the quantified physical health impacts, at least from the perspective 

of governing bodies, is seen as one of the most important milestones of a comprehensive 

HIA, since it reflects the societal costs associated to these health damages. This costs 

component is incorporated into the health module, considering economic cost figures, as 

health costs per case or cost by YLL. Such monetary valuation for the different health 

indicators related to the most common air pollutants is based on economic studies (Section 

2.2.4), and results from the sum of direct, indirect and intangible costs (Section 2.2.3). 

Focusing the HIA on a given pollutant-health indicator relationship, the product between 

these unit health costs and the number of cases due to short or long-term human exposure 

represents the total health cost to repair/remediate the initial health status of the affected 
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people. Lastly, taking as a basis the target pollutant and exposure time, the total health 

costs estimated for the associated health indicators are added.  

 

3.4.  Operationalizing the modair4health system 

After defining the methodological principles, focused on the use of the chosen air quality 

and health models and the preparation of input data, the models and input-output matrices 

were operationalized and linked as a whole, resulting in the modair4health system. 

The operational chain of the modelling system, in terms of automating processes, was 

thought for research and end-user purposes, using python and bash shell script´s 

programming tools for its design. In general outlines, the coupling between models and 

specific input data processing tools, as well as the information flow management, represent 

the main innovations of the developed modelling system. The user is guided from different 

system options (Appendix B, e.g. target pollutant, required simulation period, include or not 

integrated analysis, data postprocessing) and can easily adapt the baseline configurations 

(e.g. domains, parametrizations and input data) according to a specific case study and 

research objectives. 

The modair4health system is organized in modules, which are used for input data 

processing, and in executable programs oriented towards multiscale air quality and health 

modelling. Additionally, a postprocessing module to handle the air quality outputs is also 

incorporated (Figure 3.6). 
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Figure 3.6. Schematic representation of the operational chain of the modair4health system. 

 

Structurally, the operationalization of the system is done at the level of the air quality models 

and health and postprocessing modules, focusing on key determinants used for their 

connection.  

 

- WRF-Chem 

For air quality modelling from regional to urban scales, the WRF-Chem model script, 

composed by the WPS and main real and wrf programs, was prepared to simultaneously 

run multiple domains, because the source code of the CONVERT_EMISS module (available 

within the chemistry component), used to convert binary anthropogenic emission files into 

the required netCDF format, is only able to run each domain separately. To that end, 

anthropogenic emissions for the simulation grids should be previously processed using the 

EMIWRF utility to generate binary files with time and space varying emissions and, then, 

the script-embedded CONVERT_EMISS routine is applied to each domain. The spatial 
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allocation of emissions is performed through geographic information extracted from the 

model initialization files. Once the anthropogenic emissions processing is completed, these 

are called every hour when running the wrf program. To provide initial and boundary 

conditions for the domains, the WPS, mozbc and bio_emiss modules, available for the 

WRF-Chem community, were coupled to the model script. WPS is used to process 

information about the domains and static and meteorological reanalysis data; mozbc 

defines MOZART chemical boundaries; and bio_emiss creates initialization fields for online 

processing of biogenic emissions. After processing these input data, the wrf program is 

executed, producing 3D air quality and meteorological fields with hourly resolution for the 

nested simulation domains.  

 

- VADIS 

The downscaling for the local scale air quality modelling is done through the VADIS model, 

which accurately reproduces turbulent flows (FLOW) and pollutant dispersion (DISPER) 

within the urban structure. With this purpose, hourly meteorological fields (air temperature 

and wind speed and direction), extracted from the WRF-Chem´s inner domain grid cells that 

intersect the local domain, are used as an input for the VADIS simulations, promoting thus 

the link between models (i.e. offline coupling). Besides the meteorology, to automate the 

VADIS model script, other inputs for the local case study are required, namely geographic 

features (buildings volumetry and streets configuration) and streets-allocated traffic 

emissions. These inputs should be previously processed following the methodologies 

described in Section 3.2.2, which briefly identify the use of a GIS software and VADIS 

preprocessing tool to treat the geographic elements, and the TREM model to estimate traffic 

emissions for each road segment. In operational terms, some adaptations and 

improvements in the VADIS functioning scheme were implemented: 

i. to automatically change the namelist that gathers the required input data to run the 

model. This condition is applicable, for example, when hourly resolution simulations for 

a large time period are needed, which implies changing the date, meteorology and 

emissions every hour. When using the model outside the script, these data will have to 

be changed manually; 

ii. to build traffic emission profiles with hourly temporal disaggregation. These profiles are 

calculated based on air quality measurements from a station located within or near the 

domain (preferably under traffic influence), and background concentration values 

estimated from the WRF-Chem. In alternative, default or user-defined emission profiles 

could be used; 
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iii. to represent the VADIS outputs in GIS, assigning the same system projection that was 

used in editing the geographic features. The current model version represents the X and 

Y coordinates according to the Cartesian grid spacing; 

iv. to account for the pollutant fraction that is not emitted within the simulated local case 

study, higher resolution WRF-Chem concentrations for the grid cells that intersect the 

domain are added to the VADIS results as background values. 

 

- Health module 

For quantifying physical health impacts resulting from the multiscale air quality modelling, 

translated in number of unfavourable cases, the two AirQ+ methodologies (linear and non-

linear) were coupled to the system. Thus, when running the health module using one of 

these approaches, the individual and the overall effect of a single pollutant on health 

indicators are estimated, contrary to the AirQ+ software, which only allows distinct impact 

evaluations by pollutant-health outcome pair. For a particular health indicator, both AirQ+ 

approaches use the same input dataset (pollutant concentration, cut-off value, exposed 

population, CRF and baseline rates) and the impacts calculation only differs in the RR 

formulation. As the selection of the input data is dependent on several factors, such as 

target pollutant, associated health indicators, exposed age groups and exposure time, the 

script of the health module (i.e. inputs for the AirQ+ equations) have to be adapted 

according to the specificities of each study. Nevertheless, when choosing impact 

evaluations due to short or/and long-term exposures, hourly modelled concentrations will 

be automatically processed in the required format: daily averages/maxima for short-term, 

and annual averages for long-term exposure. Regarding the economic evaluation, in which 

the physical health impacts are converted in monetary losses, the estimation is made for 

each health indicator, considering total health costs per case or YLL obtained from 

economic studies. These damage costs are included into the health module, in order to first 

quantify total health costs per health indicator (number of cases x costs per case), and then 

compute the HIA per pollutant (sum of the cost of all indicators).    

Following this structure, a set of instructions for computing potential health benefits derived 

from air pollution management strategies (i.e. differences between scenarios) is also 

included into the module. 
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- Postprocessing module 

The creation of a postprocessing module oriented to the multiscale air quality assessment 

is very useful for quickly analysing the performance of the models using different 

parametrizations and input data. The module is divided in two main parts: spatial analysis 

and model evaluation, where the user only needs to define the simulation domain, time 

period and plots (e.g. maps, time series) of interest. All available options are documented 

in Appendix B. 

 

3.5.  Summary 

The conception and operationalization of the modair4health system, following the 

functioning schemes of the models and described methodologies, were the most 

challenging achievement of the thesis. As key aspects of this developed system, it is 

possible to highlight the link among models and scales, the integration of a health module 

to assess short and long-term air pollution exposure effects, and the automated data pre-

and postprocessing capabilities. Thus, when applying the modair4health system to cover 

multiple scales and resolutions, it is possible to more quickly and comprehensively assess 

the ambient pollution levels and their potential impacts on human health. 

 

 



 

 

 

 

 

Chapter 4 

Modair4health system 

application and assessment 

 

4.1. Case study characterization 

4.2. Air quality modelling from regional to urban scales 

4.2.1. WRF-Chem setup 

4.2.2. Model evaluation 

4.3. Air quality modelling at local scale 

4.3.1. VADIS setup and input data 

4.3.2. Model evaluation 

4.4. Quantification of health impacts 

4.4.1. Selected health input metrics 

4.4.2. Comparative analysis of the health impact methodologies 

4.5. Summary 



 

 

 



Chapter 4 – Modair4health system application and assessment 

69 

4. MODAIR4HEALTH SYSTEM APPLICATION AND ASSESSMENT 

 

The application and assessment of the modair4health system allowed to identify the most 

appropriate parametrizations and input datasets for the simulation domains, focusing 

particularly on the smallest domain (case study). 

Structurally, this chapter is organized as follows. Section 4.1 presents the selected case 

study and the reasons for its selection, as well as the description of the most relevant 

characteristics. The base air quality modelling setup, tests performed with different 

configurations and inputs, and models evaluation from regional/urban (WRF-Chem) to local 

(VADIS) scales are presented in Sections 4.2 and 4.3, respectively. The WRF-Chem tests 

resulted in the following publications: 

Test 1 - Investigating feedbacks of online meteorology-chemistry coupling 

Silveira C., Martins A., Gouveia S., Scotto M., Miranda A.I., Gama C., Monteiro A. “The 

role of the atmospheric aerosol in weather forecasts: investigating the direct effects 

using WRF-Chem model”. Submitted to Atmospheric Research Journal (under review). 

Test 2 - Influence of a high-resolution land cover classification 

Silveira C., Ascenso A., Ferreira J., Miranda A. I., Tuccella P., Curci G., 2018. Influence 

of a High-Resolution Land Cover Classification on Air Quality Modelling. International 

Journal of Environmental and Ecological Engineering, 12(9), 563-571.  

Section 4.4 addresses the link between air quality and health impact estimates that is 

carried out for the case study considering short-tern human exposure, and the comparison 

of health results using the two AirQ+ methodologies. 

 

4.1.  Case study characterization 

The selected case study is located within the city of Coimbra, the largest city of the Centre 

Region (Figure 4.1) and the fourth largest urban centre of Portugal, with 105842 inhabitants 

in its urban perimeter (2011 census) and a municipality area of 319.4 km2 (URL10). The 

largest urbanized areas are mainly concentred along the Mondego river valley and in the 

historical zone, in contrast with other areas of the city, which present a high degree of urban 

dispersion.    
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Figure 4.1. Geographic location of the case study area: a) framework, b) part of the Centre Region, c) 

case study, and d) part of the Fernão de Magalhães Avenue. 

 

Coimbra plays a strategic role in connecting the north to the south, and the coast to the 

inland of Portugal. At north, the landscape is characteristically more fragmented and 

complex, whereas towards the south, down the Tejo river, large homogeneous territorial 

units predominate. Regarding the coast-inland link, the city is located 50 km away the 

Atlantic Ocean (Figueira da Foz), and at 40 km distance there is the mountain “Serra da 

Lousã” (1205 m) (Figure 4.2). The proximity to both the sea and the mountains is a 

determinant factor for intensifying urban/local atmospheric dynamics. These geographical 

nuances greatly contribute to the region’s climate, which is affected by Atlantic and 

Mediterranean influences. Based on the 30-year average climatological normal (1971-

2000) obtained from the Coimbra meteorological station, it can be concluded that the 

summer is typically warm and dry, with average minimum and maximum temperatures of 

15 ºC and 28.5 ºC, respectively, reaching 40 ºC or more in certain days. In winter, these 

values decrease to 4.6 ºC and 14.6 ºC, and high rainfall is recorded: total average and daily 

maximum precipitation for January reached 112.2 mm and 47.6 mm, respectively (URL12). 

 

(a) 

(b) (c) 

(d) 
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Figure 4.2. Altimetry (m) of the Coimbra region (source: OpenStreetMap - URL13). 

 

Regarding accessibility, currently, the city of Coimbra is the major input-output pole of the 

region. However, the public road transport services serving the city have to be improved 

due to the long travel time and lack of articulation with the internal services (CIM-RC, 2018). 

These are some reasons that discourage the use of public transports from/to Coimbra and, 

as a consequence, high road traffic volume due to the increased use of private vehicles has 

been observed in the main arteries of the city and in certain day periods with traffic 

congestion. 

From the point of view of urban air quality, high air pollution levels are also associated to 

streets with intense road traffic activity. Thereby, in the current context of the city of 

Coimbra, and in many other urban areas, the road traffic is seen as one of the major 

environmental concerns, being the atmospheric pollution identified as a potential cause of 

many diseases and premature deaths. However, for the Coimbra urban area in general, 

and for the characterization of local effects under complex geometries in particular, few 

studies addressing the emissions, transport and dispersion of air pollutants in urban 

environment (e.g. Dias et al., 2019, 2016) and subsequent health implications have been 

performed. Nevertheless, in a broader geographic context and according to the EU Ambient 

Air Quality Directive 2008/50/EC, transposed into national law through the Decree-Law no. 

408/2010, the elaboration of an air quality improvement plan for the Centre Region was 

mandatory (Regulation no. 408/2014) (CCDRC, 2010). This plan covered the Coimbra, 

Aveiro/Ílhavo and Litoral Noroeste do Baixo Vouga zones, where exceedances to the PM10 

Figueira 
da Foz 

Coimbra 

Serra da 
Lousã 
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LV were recorded in the years 2003-2009. The set of proposed measures for reducing the 

PM10 levels was focused on traffic management and control strategies, industrial 

regulations and on small combustion sources (residential and commercial). Among the 

traffic-related harmful air pollutants, beyond PM10, NO2 is also considered a problematic 

contaminant for both health and environment, which is largely emitted from the road traffic 

activity. It contributes significantly to the ground level O3 formation, primarily during 

heatwave episodes. Moreover, air quality studies based on NO2 have rarely been explored 

for the urban Coimbra area. 

For the aforementioned reasons, in particular the intense traffic in some areas, the chosen 

case study is one of the busiest road traffic areas of the city of Coimbra (Fernão de 

Magalhães Avenue) and NO2 was considered the target pollutant. This case study is 

integrated in a densely build-up and populated zone, where important municipal services 

are located, and a strong commercial activity is known.  

 

4.2.  Air quality modelling from regional to urban scales 

This section focuses on nesting applications using WRF-Chem version 3.6.1, which were 

performed from regional to urban scales, with different configurations and input data to be 

tested and evaluated. The year 2015 was selected, because it was the most recent year 

with the required input data available: emissions, meteorology and boundary conditions 

(described in Section 3.2.1). Furthermore, the option for this year was supported on 

information reported by the EEA and the World Meteorological Organization (EEA, 2017; 

WMO, 2016), which indicate 2015 as the hottest and driest year in Europe since there are 

records, with a series of heatwaves that affected Europe from May to September. The 

evaluation of the model performance was based on air quality observations recorded by the 

Portuguese monitoring network QualAr (URL14) (Figure 4.3), considering stations with 

more than 75% of data availability. A characterization of the QualAr network by geographic 

location of the stations, typology, measured pollutants and start of activity is presented in 

Appendix C. 
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Figure 4.3. Portuguese air quality monitoring network characterized by station typology: rural, suburban, 

urban and traffic. 

 

In total, 40 background influence stations are available in Mainland Portugal: 12 rural in 

inland regions, 8 suburban around the Greater Porto, and 20 urban sites that are mostly 

located in the Lisbon region. Within the urban areas, 14 traffic influence stations are also 

monitoring air pollutant concentrations. In the Coimbra region, 7 air quality stations are 

installed: 2 rural, 2 suburban, 1 urban and 2 traffic. 

 

4.2.1. WRF-Chem setup 

The WRF-Chem setup includes three nested domains covering from a large part of Europe 

and North Africa (D1), through a regional domain centred over Portugal (D2) to a 

Portuguese region (D3) (Figure 4.4). The main configurations used for the geographic 

projection of these domains, having as reference the central point (38.716º, -9.084º) of the 

parent domain (D1), are presented in Table 4.1. The vertical structure of the atmosphere 

was resolved with 29 vertical levels extending up to 50 hPa, being the lowest level at 

approximately 28 m above the surface. 
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Figure 4.4. Spatial representation of the nested WRF-Chem simulation domains. 

 

Table 4.1. Configurations used for designing the nested WRF-Chem simulation domains. 

Domain Description 
Size 
(km2) 

Resolution 
(km2) 

Grid cells 

D1 Background domain 4750 x 4075 25 x 25 190 x 163 

D2 Regional domain 900 x 1000 5 x 5 180 x 200 

D3 
Coimbra region  

(Urban target domain) 
100 x 90 1 x 1 100 x 90 

 

The model was applied in two-way nesting mode from 24th December 2014 to 31st 

December 2015 on a daily basis and with hourly resolution, discarding the days of 

December 2014 as model spin up. 

Table 4.2 shows the main physical and chemical parametrizations adopted for the base 

WRF-Chem simulations. These options were chosen taking into consideration the model 

performance in other applications under different simulation domains but with similar 

environmental conditions (e.g. Kong et al., 2015; Kuik et al., 2016; Palacios-Peña et al., 

2017). 

 

 

D1 

D2 

D3 
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Table 4.2. Main physical and chemical parametrizations used in the numerical WRF-Chem simulations. 

Processes Options 1 Remarks 

Microphysics Morrison double-moment  

Short-wave radiation RRTMG Called every 25 min  

Long-wave radiation RRTMG Called every 25 min  

Surface layer Monin-Obukhov Similarity  

Land-surface model NCEP Noah LSM LC classification 

(to be tested) 

Boundary-layer scheme MYNN 2.5 level TKE  

Cumulus Grell 3D Only for D1 and D2 

Photolysis Fast-J  

Gas-phase mechanism RADM2 Fixed version (chem_opt=2) 

Aerosol module MADE/SORGAM  

Aerosol-radiation feedback  Turned on/off Direct and semi-direct effects 

(to be tested) 
Aerosol optical properties Volume approximation 

1 The methodological assumptions of these options are described in the WRF and WRF-Chem user’s guides. 

Acronyms: LSM - Land Surface Model; MADE/SORGAM - Modal Aerosol Dynamics Model for Europe / 

Secondary Organic Aerosol Model; MYNN - Mellor-Yamada-Nakanishi-Niino; NCEP Noah - National Center for 

Environmental Prediction; RADM2 - Regional Acid Deposition Model, 2nd generation;. RRTMG - Rapid Radiative 

Transfer Model for General Circulation Models; TKE - Turbulent Kinetic Energy.  

 

Aiming to better understand the impact of different configurations and input data, some 

WRF-Chem modelling tests were performed. Table 4.3 summarizes these tests, identifying 

the target options that were compared.  

 

Table 4.3. WRF-Chem tests to different configurations and input data. 

Test Option 1 Option 2 

Test 1 - Investigating feedbacks of 
online meteorology-chemistry coupling 

Include direct and semi-
direct aerosol effects 

Not include direct and 
semi-direct aerosol effects 

Test 2 - Influence of a high-resolution 
land cover classification 

New LC 
(33 classes) 

USGS LC 
(24 classes) 

Test 3 - Impact of grid spacing and its 
relationship with the land cover 

1 km2 grid spacing 5 km2 grid spacing 
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In the first two tests, the aspects referenced in the option 1 were adopted for the base 

simulations, whereas the test 3 was oriented towards the evaluation of the impact of grid 

spacing, focusing on the D2 (5 km2) and D3 (1 km2) nested domains (Figure 4.4) and its 

relationship with the new LC classification (33 classes). 

 

4.2.1.1. Test 1 - Investigating feedbacks of online meteorology-chemistry 

coupling 

This first test aimed to evaluate the impact of considering, or not, direct and semi-direct 

aerosol effects on meteorological results, based on the application of the WRF-Chem model 

along 2015. To that end, besides the base simulation with direct and semi-direct effects, 

another WRF-Chem simulation for the same time period and input data was performed, 

disabling the options aerosol-radiation feedback and aerosol optical properties (i.e. without 

aerosol feedback). By definition, direct effects involve the scattering of solar radiation and 

subsequent reduction of shortwave solar radiation, whereas the semi-direct effects are 

associated to the absorption of solar radiation by black carbon and other absorbing aerosol 

compounds, producing a change in the ground surface temperature, relative humidity and 

atmospheric stability impacting the clouds formation (Chapman et al., 2009; Forkel et al., 

2012; Liu et al., 2016; Palacios-Peña et al., 2017; San José et al., 2015; Zhang, 2008). 

For both simulations, D2 results (5 km2 resolution) were explored based on agreement 

statistical methods and on spatial variability analyses in order to assess the importance of 

including the online-coupled aerosol radiative effect on the potentially more affected 

meteorological variables: shortwave solar radiation, air temperature and precipitation. The 

agreement between simulations (with and without aerosol feedback) was evaluated for each 

meteorological time series and defined in terms of the magnitude-squared coherence 

function, Cxy (f), as: 

 

𝐶𝑥𝑦(𝑓) = ⁡⁡
|𝐺𝑥𝑦⁡(𝑓)|

2

𝐺𝑥𝑥(𝑓)⁡⁡𝐺𝑦𝑦(𝑓)
    (Eq. 4.1) 

 

Where: 

x and y are the (zero-mean) time series of the WRF-Chem outputs without and with 

aerosol feedback, respectively; 
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Cxy (f) varies between 0 and 1, where 0 indicates no relationship between x and y at 

frequency f, and 1 corresponds to a perfect linear relationship between x and y at 

frequency f; 

Gxy (f) is the cross-spectral density between x and y; 

Gxx (f) and Gyy (f) represent the spectral density of x and y, respectively.  

 

More details about these agreement statistical methods can be found in Kay (1988).  

Figure 4.5 shows the spatial distribution of agreement for the set of meteorological 

variables.  

 

(a) (b) (c) 

 

Figure 4.5. Agreement between the WRF-Chem simulations, with and without aerosol feedback, for the 

analysed meteorological variables: (a) solar radiation; (b) air temperature; and (c) precipitation. 

 

Air temperature and precipitation have agreement values ranging from 0.87 up to 1.00, 

while solar radiation presents a lower agreement, varying between 0.68 and 0.98. Solar 

radiation agreement is lower over the ocean (0.68-0.75) comparatively to land regions 

(0.75-0.98), probably due to ocean-land differences based on the extent, height and type of 

clouds and their interaction with the atmospheric aerosol. The higher variability over the 

ocean comparing both simulations is largely associated to the approach used for quantifying 

semi-direct aerosol effects, since their influence on the radiative forcing induces changes in 

other meteorological variables (surface temperature, relative humidity, wind speed) 

impacting the cloud cover (Archer-Nicholls et al., 2016; Briant et al., 2017; Chapman et al., 

2009; Forkel et al., 2015; Thomas et al., 2015). 

By analysing the monthly variation of agreement values, it is possible to observe that once 

again solar radiation exhibits larger variability than temperature and precipitation (Figure 

4.6). 
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     (a) 

 

   (b) 

 

    (c)  

Figure 4.6. Monthly agreement between the WRF-Chem simulations, with and without aerosol feedback, 

for the analysed meteorological variables: (a) solar radiation; (b) air temperature; and (c) precipitation. Dark 

grey box represents the annual average distribution of agreement for the domain grid cells, while light grey 

boxes indicate the monthly distribution of agreement for the domain grid cells. Red dashed line shows the 

median of the annual agreement. 

 

For all meteorological variables, agreement values in April, June and October are lower 

compared to the annual average agreement. One-way analysis of variance (ANOVA) for 

these months showed statistically significant differences from the annual mean (p<0.05). 

Several reasons might justify the larger variability during these months: higher shortwave 
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solar radiation, increased biogenic emissions leading to the formation of secondary organic 

aerosol, more dynamic atmospheric boundary layer, or even predominance of particles due 

to Saharan dust episodes and agricultural activities (EEA, 2017; Sporre et al., 2019; Werner 

et al., 2017). 

Besides the statistical analysis, annual mean and maximum spatial differences between 

simulations (with feedback – without feedback) for the solar radiation (Figure 4.7) and air 

temperature (Figure 4.8) are also presented. 

 

  

                       (a)                        (b) 

Figure 4.7. Spatial differences of solar radiation comparing both simulations (with feedback – without 

feedback): (a) annual average including all hourly values; and (b) annual average of daily maximum values. 

 

Looking at the maps of solar radiation differences, the higher mean values were estimated 

when the aerosol feedback was neglected, mainly over ocean regions (negative differences 

in Figure 4.7a). This radiation variability (up to 20 Wm-2) is associated to the methodological 

assumptions used for estimating aerosol effects (direct and semi-direct) and their 

relationship with the aerosol optical properties, as well as to spatial and vertical distribution 

of both aerosol and cloud layers. Therefore, overall, the aerosol feedback favoured the 

scattering and absorption of the shortwave and longwave solar radiation into the 

atmosphere (direct effect), leading to its warming and subsequent decrease of the amount 

of solar energy that reaches the ground surface. On the other hand, the higher differences 

over the ocean, which resulted in a lower agreement (Figure 4.5a), could be related with 

the aerosol-cloud dynamics (semi-direct effect), since the cloud physical characteristics 

(e.g. geometry, water content, particles size) significantly differ between land and sea, 

influencing the Earth-atmosphere radiative energy budget (Chen et al., 2017; Forkel et al., 

2012; San José et al., 2015; Thomas et al., 2015; Zhang et al., 2012). Similar spatial pattern 

and the same sign of the mean radiation was found when mapping the maximum solar 

radiation differences (up to 40 Wm-2) (Figure 4.7b).  
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Regarding the impact on the air temperature near the surface, very small differences were 

estimated (up to 0.5 ºC) (Figure 4.8). 

 

 

 

                            (a)                           (b) 

Figure 4.8. Spatial differences of air temperature comparing both simulations (with feedback – without 

feedback): (a) annual average including all hourly values; and (b) annual average of daily maximum values. 

 

On land, as expected, the used aerosol schemes contributed for a slight decreasing of both 

solar radiation and temperature, whereas on the ocean the aerosol had the opposite effect 

on the meteorological variables, that is, the largest radiation reduction led to a very small 

increase of the surface temperature. These solar radiation and air temperature variations, 

related with the direct aerosol effect, especially those estimated on land surfaces, are in the 

range of other studies using WRF-Chem over Europe (Forkel et al., 2015, 2012; Palacios-

Peña et al., 2017; Werner et al., 2017).  

In summary, these results confirm that the aerosol particles have a key role in the 

atmosphere dynamics, influencing the net radiation budget and underlying meteorological 

conditions. Therefore, the accounting for the aerosol effect, only possible through the use 

of online atmospheric models, is recommended, either to improve the weather predictions, 

but also to obtain more accurate air quality estimates, since the potential meteorology-

chemistry feedbacks favour the numerical resolution, in very small time steps, of the 

physical and chemical processes occurring within the atmospheric boundary layer.  

 

4.2.1.2. Test 2 - Influence of a high-resolution land cover classification 

The objective of this test was to evaluate the influence on the air quality of the two LC 

databases described in Section 3.2.1: 24-classes USGS (provided with the model package) 

and 33-classes USGS (new LC classification). For this purpose, besides the base 

simulation using the model setup with the aerosol effect turned on (Table 4.2), another 
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WRF-Chem simulation for the same time period (year 2015), replacing the new LC 

classification by the default 24-classes USGS LC, was performed. To assess the impact of 

the LC changes on air quality, Portugal and O3 as target pollutant were chosen for this test 

due to the following reasons: 

- the spatial differences comparing both LC databases (Figure 3.3) show a greater 

discretization of the new LC classification, with several vegetation categories that 

significantly influence the emission of O3 precursors (mainly NMVOC). Thereby, the 

option for the O3 will allow to better evidence the impact of these LC changes; 

- to assess the resulting O3 changes, Portugal was selected as study domain because, 

in particular during the spring/summer, O3 pollution episodes are often recorded, 

leading, sometimes, to non-compliance of the existing air quality standards; 

- another important aspect is related with the detail and higher LC spatial resolution for 

Portugal (100 m2) than the reclassified CLC data over Europe (5 km2).  

The assessment of the modelled O3 concentrations in Portugal using different LC 

classifications was based on D2 outputs (5 km2 resolution), considering the spatial variability 

for the seasons with higher O3 levels: spring (Apr – Jun) and summer (Jul – Sep). As 

support, Leaf Area Index (LAI) and air temperature data, responsible for boosting NMVOC 

emissions and favouring the O3 production, were also examined. These interactions 

between the Earth’s surface characteristics and the planetary boundary layer height are 

closely related with the Noah LSM scheme used in both simulations (Table 4.2), since it 

assumes a prominent role in connection with the LC, incorporating vegetation parameters 

for each LC category that correspond to annual minimum/maximum values. LAI and 

emissivity vary in proportion to vegetation fraction, whereas the albedo varies conversely 

with it. 

Figure 4.9 maps the Portuguese LC obtained for the D2 based on the two LC classifications, 

which were spatially aggregated to the 5 km2 grids resolution by dominant category. 

Relevant differences are visible when comparing both LC spatial distributions, but the new 

LC seems to be closer to reality (Figure 4.9b), because it is possible to observe the complex 

landscape fragmentation characterizing the Portuguese territory, as well as to clearly 

distinguish some categories of interest (e.g. 31, 32 and 33 as urban areas). 
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Figure 4.9. LC databases for the domain 2, over Portugal: (a) USGS LC; and (b) new LC. 

 

In order to capture the impact of LC changes and vegetation dynamics, spatial variations in 

modelled O3 concentrations by season (spring and summer), were analysed (Figure 4.10). 
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 (a)  (b) 

Figure 4.10. Spatial distribution of the modelled O3 concentrations (µg.m-3) by season: (a) new LC-based 

average O3 concentration (dots represent O3 averages from background monitoring stations); and (b) 

average differences between USGS LC and the new LC. 

 

In Figure 4.10a, average O3 concentrations based on the new LC classification are 

presented, serving as a reference for quantifying the average differences in relation to the 

USGS LC. Overall, averaged O3 levels are higher in spring, indicating the most favourable 

environmental conditions for the formation of this secondary pollutant during this period. 

Regarding the spatial differences comparing O3 results from both LC approaches (Figure 

4.10b), higher average values for the spring and summer using the new LC database as an 

input (up to 3 µg.m-3) were estimated (Figure 4.10b). Moreover, the higher differences in 

both seasons are verified in the regions where bigger differences between the LC 

databases are observed (half north of the territory and specific areas in the south). 

Therefore, these differences could be explained by the joint influence of the identified LC 

classes, associated vegetation parameters and their relationship with the meteorology. To 

complement this analysis and better understand the O3 spatial variability, LAI and air 

temperature spatial variations are also analysed (Figure 4.11). The latter is only mapped 

for the new LC, because no relevant temperature differences were found in comparison 

with results from the USGS LC approach. 
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Figure 4.11. (a) Average Leaf Area Index (m2.m-2) for the spring and summer seasons using both LC 

approaches; and (b) 2 m average air temperature (ºC) for the spring and summer using the new LC 

approach. 

 

As regards the LAI, calculated as a function of the LC classes, higher values were recorded 

in spring, in full vegetation growth (i.e. maturity stage), favouring the emission of biogenic 

NMVOC. Relating the LAI spatial information with the average air temperature, it is 

notorious a direct proportionality to the average O3 concentrations (Figure 4.10a), although 

other factors must also be considered in the O3 photochemistry, as availability of other 

precursors (mainly NOx), orography and atmospheric synoptic transport. In summer, the 

highest average air temperatures do not linearly correspond to increased O3 production, 

because during this season there is a decrease of the vegetation fraction, which leads to 

lower LAI values, and consequently, decreases the emission of biogenic NMVOC. 

(a) (b) 
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To evaluate the model performance on an hourly basis using both LC approaches, the 

following statistical metrics were calculated by season and background station typology 

(rural, suburban and urban): Pearson´s correlation coefficient, BIAS and Root Mean Square 

Error (RMSE) (Figure 4.12). 

  

  (a) 
 

  (b) 
 

  (c) 

Figure 4.12. (a) Correlation, (b) BIAS, and (c) RMSE between observations from background air quality 

stations and hourly modelled O3 concentrations (µg.m-3) by season and station typology using both 

approaches USGS and new LC for Portugal. 
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As expected, the best seasonal performance was achieved in rural influence stations: 

moderate correlation (0.6 – 0.7), and lower BIAS (10 – 14 µg.m-3) and RMSE (22 –  25 

µg.m-3). Moreover, in these rural sites, higher O3 concentrations are often observed. In turn, 

the validation for suburban stations had the worst performance, mainly for BIAS and RMSE. 

The location of these stations around the Greater Porto (Figure 4.3), associated to high 

emission rates of O3 precursors and to favourable environmental conditions for the local 

photochemical production of O3, were determinant factors for high deviations between 

observed and modelled O3 concentrations. For urban stations, mostly located in Lisbon 

region (Figure 4.3), the reasons are similar to those indicated for suburban stations. 

Concerning the LC effect, this statistical analysis based on  average values from grouping 

air quality stations by typology was not very conclusive, although a slightly greater 

correlation was obtained with the new LC (Figure 4.12a). Negative BIAS in both LC 

approaches and for all seasons and background stations, indicate an overestimation of the 

modelled O3 concentrations Figure 4.12b), which is in line with the dispersion measure 

between the observations and modelled data (i.e. RMSE, Figure 4.12c). When crossing the 

average O3 concentrations obtained using the new LC approach with the dots representing 

observation values from background monitoring stations (Figure 4.10a), it can be concluded 

that the modelled seasonal averages have an acceptable agreement with the observations, 

mainly in summer. 

Based on the performed spatial and statistical analyses to evaluate the influence of the LC 

on O3 concentrations, it is was demonstrated that the new LC classification represents an 

added value in atmospheric modelling and, therefore, its use is recommended. 

 

4.2.1.3. Test 3 - Impact of grid spacing and its relationship with the land cover 

This last test focuses on the model setup adopted for the base simulation, which includes 

the aerosol effect and the new LC database, and on the target pollutant for the local case 

study, in order to assess the background chemical conditions that will be passed to the local 

scale air quality modelling. Therefore, the variability of NO2 concentrations estimated in the 

two smaller domains, D2 and D3, having 5 and 1 km2 horizontal grid resolutions, 

respectively, was investigated. Spatial variability was examined based on the new LC 

classification specifically processed for both domains, giving particular emphasis to urban 

areas, where the major anthropogenic pollution sources are located, and to NO2 

concentrations, for which the road traffic is a main contributor. Figure 4.13 shows the LC 

mapped for the D3 area that resulted from its aggregation for 1 and 5 km2 grid spacing. 
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 (a) 

  (b) 

Figure 4.13. Dominant LC categories mapped for the domain 3 coverage resulting from interpolation of 

the new LC: (a) 1 km2 grid spacing; and (b) 5 km2 grid spacing (D2 cut on D3 area). 

 

As a starting point to analyse the influence of the horizontal grid resolution on NO2 

concentrations, annual mean spatial differences between D3 and the part of D2 that 

overlaps D3 (D3 – D2 for each grid cell of D3) were quantified (Figure 4.14).  
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Figure 4.14. Map of the annual mean NO2 differences (µg.m-3) between D3 and D2 results. 

 

Looking at the spatial distribution of the annual mean NO2 differences, it is notorious the 

influence of the LC interpolation process on the simulation grids. The highest resolution 

from the domain 3 better resolves the geographic location of the LC categories and, 

consequently, an improved representation of the main emission sources and amount of 

emitted pollutant is expected. Hence, higher positive differences of NO2 concentrations (up 

to 2 µg.m-3) in pollution hotspots were found, which, to a certain extent of the domain 2 

results, are not properly captured, or even not identified. For the Aveiro and Figueira da Foz 

municipalities more pronounced positive differences occur near the large industrial point 

sources, whereas for Coimbra, the resulting LC characterization and associated road traffic 

activity were determinant for raising the NO2 concentrations over the domain 3. In contrast, 

for the surrounding area of these hotspots, higher concentrations were estimated for the 

domain 2 (negative differences up to 2 µg.m-3), probably due to the way the emissions were 

spatially distributed by the simulation grids, attributing a more uniform pattern to domain 2. 

As a support to this information, Figure 4.15 presents the annual mean NO2 differences 

between D3 and D2 for each dominant LC category. 
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Figure 4.15. Annual mean NO2 differences (µg.m-3) between D3 and D2 grouped by dominant LC 

category. For the legend of LC categories, see Figure 4.13. 

 

The dominant LC categories for the D3 cells, mainly the classes 32 and 33 (high-intensity 

residential and industrial or commercial, respectively), contributed to higher NO2 values in 

relation to the D2 estimates (positive differences).  

As mentioned before, this test represents the base model setup that was applied for 

producing NO2 results to be used as background conditions for the air quality modelling at 

local scale. In the next section, it is presented the model evaluation for the D2 and D3 

domains, in order to select the domain that will provide outputs to the local air quality 

modelling. 

 

4.2.2. Model evaluation 

The hourly predicted NO2 levels for D2 and D3 were compared with observations from air 

quality stations common to both simulation domains, taking into account the station type. In 

total, results for seven locations representing air quality stations (inside the Coimbra region 

- Figure 4.3) are presented: 2 rural (FRN, MOV), 2 suburban (ILH, TEI), 1 urban (IGE) and 

2 traffic (AVE, COI). Figure 4.16 shows the variability of the hourly observed and modelled 

NO2 concentrations on these sites. 
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Figure 4.16. Boxplot of the hourly NO2 concentrations (µg.m-3) observed (Obs) and modelled in the D2 

and D3 domains. 

 

A good agreement between observations and estimates was obtained for background rural 

locations (FRN, MOV), where the numerical resolution of the processes within the 

atmospheric boundary layer is easier. In turn, as expected, highest measured values were 

recorded in traffic stations (AVE, COI), due to the intense road activity and its major 

contribution to the urban NO2 pollution. The model was not able to reproduce the magnitude 

of these values because, despite the reasonable grids resolution to portray urban areas, in 

particular of the domain 3 (1 km2), the used EI has a resolution (approximately 10 km2) 

which does not allow to solve urban-scale air pollution patterns. The low resolution of the 

EI and its use in all simulation domains contributed to the relatively small differences 

between D2 and D3. Nevertheless, there are other factors that could explain the variability 

of the modelled data and their underestimation, as the smoothing of areas with complex 

terrain, omission of emission sources or deficit emission rate, and poorly reproduced 

meteorological processes. When comparing the traffic stations results with the other 

typologies, differences between measured and modelled data tend to decrease, 

demonstrating that the traffic-related NO2 emissions used for simulating air quality over 

urban areas with high traffic activity are clearly underestimated. At this scale, specific 

modelling tools and a detailed characterization of the local emission sources and urban 

geometry are required. 

For a more comprehensive analysis of the agreement between base simulation results and 

observations, the model performance over the D2 and D3 domains using the entire 

Portuguese air quality monitoring network (Figure 4.3) was evaluated, considering annual 
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mean NO2 results for each station, identified by typology, and the following statistical 

metrics: Pearson´s correlation coefficient, BIAS and RMSE (Figure 4.17). 

 

 

(a) 

 

(b) 
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(c) 

Figure 4.17. (a) Correlation, (b) BIAS and (c) RMSE between NO2 observations from the Portuguese air 

quality monitoring network and the modelled concentrations (µg.m-3) for the D2 and D3 domains. 

 

These statistics, in a way, translate the hourly NO2 results presented in Figure 4.16. Worst 

performance was found in traffic stations, with lower correlations and higher biases and 

RMSE. For the reasons previously mentioned, this model behaviour can be largely 

explained by the geographic location of these stations, since they are strategically 

positioned over urban street canyons with high traffic activity, and due to the low resolution 

of the used EI in all simulation domains, which contributed to a poor characterization of the 

emission sources, mainly for urban/local-scale modelling purposes. In turn, this limited 

representativeness of the EI, associated to emissions evenly distributed in space and more 

simplified terrain features were determinant for the best estimates on rural areas, leading 

to the highest correlations and lowest biases and RMSE. Comparing the modelled results 

for the sites common to both domains, the increase in the horizontal grid resolution from 5 

km2 (D2) to 1 km2 (D3) did not greatly impact the model performance. However, the bias 

and the RMSE tend to decrease with the increasing resolution, while a slightly higher 

correlation was obtained for the lower resolution.  

Although there is no clear evidence that shows what is the best model setup/resolution for 

the analysed simulation domains, the use of D3 outputs to provide background 

meteorological and chemical conditions for the local scale air quality modelling was 

adopted, because in the relationship with the LC, dominant urban categories aggregated 

for higher resolution cells and potential air pollution hotspots are better represented. 
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4.3.  Air quality modelling at local scale 

Local scale air quality modelling assumed a prominent role in the modair4health system 

development, because the local domain is the focus of this multiscale system. Thus, in this 

section, the VADIS model setup and used input data that characterize the local case study´s 

urban structure are described. The response of the VADIS CFD model to certain traffic 

emission profiles was also evaluated, crossing modelled NO2 concentrations with 

observations from a traffic influence monitoring station.  

 

4.3.1. VADIS setup and input data 

The local case study, as mentioned in Section 4.1, is located in one of the busiest road 

traffic areas of the city of Coimbra (Fernão de Magalhães Avenue), covering an area of 600 

m x 600 m, where air pollution hotspots, in particular NO2, are expected to occur. The urban 

structure that influences the flow and dispersion of air pollutants in this geographic area was 

designed using a GIS software. In total, 125 buildings and 34 road segments were drawn 

in parallelepiped sections, considering also the average building heights (Figure 4.18). 

 

 

Figure 4.18. Spatial representation of the local case study´s urban structure (buildings volumetry and 

streets configuration) considered for the VADIS simulations. The traffic influence monitoring station used 

to evaluate the model performance is also identified. 

 



Chapter 4 – Modair4health system application and assessment 

94 

The tallest building, with 49 m, served as a reference for defining the urban canopy, where 

atmospheric processes are solved by the CFD model. Thereafter, these geographic 

features, represented by their vertices and buildings height, were introduced into the VADIS 

preprocessing tool, which prepares these data as an input for the VADIS simulations.  

The model was applied over the case study domain using a 3-D uniform grid resolution of 

4 m and hourly resolution to produce NO2 estimates for two simulation periods: 

- winter (26th January to 1st February 2015); 

- summer (15th to 21st June 2015). 

It should be noted that the definition of the domain dimensions, grid resolutions and 

geometrical characteristics of the buildings and road segments including their orientation, 

were based on the COST 732 guidelines for CFD simulation of flows in urban environment 

(Franke et al., 2011). 

The simulation periods were selected taking into account the seasonality, very connected to the 

local weather conditions and to daily activity patterns, and the highest NO2 concentrations 

measured in the traffic station located in the Fernão de Magalhães Avenue (marked in Figure 

4.18) for the year 2015. This traffic station, hereinafter referred as COI station, is in operation 

since 2008, and measures, in continuum, PM10, NO, NO2, NOx and carbon monoxide 

concentrations. Figure 4.19 shows the prevailing wind regimes that were simulated by the WRF-

Chem model for the geographic location of the local case study and simulation periods. 

 

  

 

Winter Summer  

Figure 4.19. Wind roses that characterize the direction and speed wind simulated by WRF-Chem for the 

geographic location of the local case study and winter and summer simulation periods. 
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In winter, the wind mainly blew from the northwest sector, with wind speed values that achieved 

10.9 m.s-1 (31st January at 12 p.m.), and an average of 3.5 m.s-1. For the summer period, winds 

were predominantly from northwest and northeast, with an average wind speed of 3 m.s-1, 

reaching a maximum value of 8.5 m.s-1 (18th June at 6 a.m.). 

High resolution WRF-Chem meteorological results (D3), namely 2 m air temperature and 

10 m wind fields (direction and wind speed), were used for VADIS initialization. For 

quantifying the impact of the road traffic activity on local NO2 concentrations, traffic-induced 

NO2 emissions estimated by the TREM model and then allocated to each road segment 

(REF information in Appendix D), were also included in the model setup. In order to account 

for the pollutant fraction that is not emitted within the case study, the WRF-Chem urban 

background NO2 concentrations (1 km2 resolution) extracted from grid cells that intersect 

the local domain were added to the VADIS NO2 results. 

Regarding the local traffic emissions, since their temporal evolution is very relevant, two 

methodologies were tested aiming to better represent their behaviour: 

- REF_def: seasonal traffic profiles based on observed NO concentrations in the COI 

station during a 10-year period (2008-2017). The use of the NO levels as a traffic tracer 

can be explained by its suitability to portray the traffic-related air pollution around the COI 

station, since it is mainly directly emitted from traffic sources, while NO2 is essentially a 

product of NO oxidation. For the area of interest, these profiles were constructed by 

season, considering hourly averaged concentrations for each season during the 

analysed 10-year period. Figure 4.20 shows the seasonal traffic emission profiles for the 

VADIS simulation periods: winter (Dec – Feb) and summer (Jun – Aug). 

 

 

Figure 4.20. Seasonal traffic emission profiles (winter and summer) designed for the influence area of the 

COI station. 
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In winter a bimodal distribution is well visible, with two road traffic activity peaks, in the 

early morning and late afternoon, with people going and returning from their activities. At 

night, there might also be some influence from local domestic heating. During summer, 

the traffic volume is distributed in the afternoon, because it is a holiday period and activity 

patterns are different, with people going to the coastal areas in the morning. 

  

- REF_adj: adjusted traffic profiles based on observed and modelled NO2 

concentrations. Emission disaggregation factors are automatically processed every hour 

when running the VADIS model, by applying the following equation: 

 

𝐹𝑎𝑐𝑡𝑜𝑟⁡(ℎ) = ⁡
(𝑂𝐵𝑆ℎ ⁡− ⁡𝑀𝑂𝐷ℎ)

∑ (𝑂𝐵𝑆ℎ
𝑁
ℎ −⁡𝑀𝑂𝐷ℎ)⁡/⁡𝑁

⁡⁡⁡⁡⁡↔ 

𝐼𝑓⁡𝑀𝑂𝐷ℎ ⁡> ⁡𝑂𝐵𝑆ℎ ⁡⁡⁡⁡⁡↔ ⁡⁡⁡⁡⁡𝐹𝑎𝑐𝑡𝑜𝑟⁡(ℎ) = 0              (Eq. 4.2) 

Where: 

 Factor (h) is the emission disaggregation factor for each road segment and hour of 

 the day (h = 0,…, N = 23); 

 OBSh corresponds to the observed NO2 concentration (µg.m-3) in the COI station at 

 each hour h; 

 MODh represents the WRF-Chem NO2 concentration (µg.m-3) for each hour h at the 

 location of the COI station. 

 

The REF_adj approach is only applicable if observed and modelled background data for the 

local domain are available. Moreover, when the background is higher than the observations, 

a zero factor is assumed; therefore, no emission for these hours is considered and, 

consequently, the modelled NO2 concentrations will only reflect the WRF-Chem background 

values. 

 

4.3.2. Model evaluation 

In this section, the modelled NO2 concentrations for both simulation periods using the two 

emission temporal disaggregation approaches were evaluated based on COI station 

measurements. Looking at the time series (Figure 4.21), a better agreement between 

observations and modelled concentrations was reached with the REF_adj approach, slightly 

improving in the winter period. 
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   (a) 

  (b) 

Figure 4.21. Time series of hourly observed and modelled NO2 concentrations (µg.m-3) in (a) winter and 

(b) summer periods considering the two approaches used for temporal disaggregation of traffic emissions: 

REF_def and REF_adj. 

 

The overestimation of the REF_adj-based NO2 concentrations in certain time periods (e.g. 

30th January) occurred due to the higher background values (MODh) than NO2 

concentrations recorded at the COI station (OBSh). In these cases, only WRF-Chem NO2 

estimates were considered.  

In terms of daily profiles of NO2 concentrations (Figure 4.22), based on hourly averages for 

each simulation period, as expected, when crossing this information with the contents of 

Figure 4.20, a similar curve for both periods using the REF_def approach was obtained, 

since chemistry is not considered (no chemical reactions) in the VADIS CFD model.  
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Relating the observed and modelled NO2 concentrations, it is evident the remarkable role 

attributed to the REF_adj approach, which presents a very strong agreement with the 

observations. Using seasonal traffic-based profiles (REF_def), a clear overestimation of 

local NO2 concentrations is observed in the early morning, because higher emissions (i.e. 

highest factors in Figure 4.20) were allocated to that time of the day. 

  

  (a) 
 

  (b) 

Figure 4.22. Daily NO2 profiles including observations and modelled NO2 concentrations (µg.m-3) in (a) 

winter and (b) summer periods, considering the two approaches used for temporal disaggregation of traffic 

emissions: REF_def and REF_adj. 
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To complement the previous analysis, the statistical performance of the model results was 

evaluated through the coefficient of determination (R2) (Figure 4.23).  

 

 

REF_def 

 

REF_adj 

(a) 

     

 

REF_def 

 

REF_adj 

(b) 

Figure 4.23. Correlation between observations and hourly modelled NO2 concentrations (µg.m-3) in (a) 

winter and (b) summer periods, considering the two approaches used for temporal disaggregation of traffic 

emissions: REF_def and REF_adj. 

 

Overall, the best performance to reproduce local NO2 concentrations was achieved with the 

REF_adj approach, in particular for lower values, slightly worsening in the summer period, 
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probably due to the transport of polluted air from other regions, added to the CFD model 

outputs as WRF-Chem background concentrations. Negative R2 associated to the REF_def 

approach indicates that modelled NO2 concentrations do not follow the trend of the 

observations. It means, therefore, that the use of seasonal traffic profiles poorly fits resulting 

NO2 estimates to local reality.  

In summary, the modelled NO2 results using the REF_adj approach showed a better 

agreement with the measurements, demonstrating their suitability to be used as an input 

for quantification of health impacts. Therefore, the option for this automated approach is 

recommended as long as the observations for the case study and modelled background 

values are available for the simulation periods.   

 

4.4.  Quantification of health impacts 

Health impacts of ambient NO2 pollution are expected to be greatest in urban areas, 

characterized by high NO2 concentrations and population density. When the objective is to 

evaluate effects associated to frequent and high NO2 pollution events, short-term human 

exposure studies may be more important than the variability of NO2 concentrations over 

time (i.e. long-term mean exposure). For these reasons, health impacts derived from NO2 

pollution were quantified for the case study and simulation periods, considering health 

indicators that relate this pollutant with short-term human exposure. Therefore, in this 

section, the selected health input metrics based on these indicators are described, and then, 

they are used as inputs for application of the linear and non-linear AirQ+ methodologies and 

subsequent estimation of damage costs. A comparative analysis of the main results is 

presented. 

 

4.4.1. Selected health input metrics 

According to the survey of epidemiological and economic studies (Table 2.3), the following 

health input metrics associated to short-term NO2 exposure were included in the HIA 

performed over the case study: health indicator, affected age group, reference period for 

NO2 concentration, CRF (as RR), baseline rate and damage cost (Table 4.4). 
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Table 4.4. Health input metrics used to assess health impacts from short-term human exposure to ambient 

NO2 concentrations. 

Health indicator 
Age 

group 
Reference 

period 
RR (95%) per 

1 ug.m-3) 
Baseline 
rate (%) 

Damage cost 

Price (€) Unit 

Respiratory 
hospital 
admissions 

All ages 
Daily 

maximum 
0.1002 

(0.0999 - 0.1004) 
0.05 8960 

Case (8-days 
average 
duration) 

Mortality  
(all natural 
causes) 

All ages 
Daily 

maximum 
0.1003 

(0.1002 -0.1004) 
0.977 1844 YLL 

 

Among these metrics, for each health indicator, the chosen RR function determines which 

potentially affected age group and reference period for NO2 concentrations should be 

analysed. Regarding the RR functions, due to the lack of epidemiological evidences over 

the target geographic region, those recommended by the WHO (central value) were used 

(WHO, 2013a), whereas the baseline mortality and disease incidence rates were obtained 

from country statistics (URL2, URL3). In terms of affected age groups, total resident 

population data at the subsection level, extracted from the Portuguese National Statistics 

Institute (INE) (URL10), were used and disaggregated to the local case study´s grid 

horizontal resolution (4 m2) (Figure 4.24). 

 

 

Figure 4.24. Spatial distribution of the total resident population per grid cell (4 m2 horizontal resolution) for 

the local case study. 
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In total, 2005 residents were identified. To estimate the short-term human exposure, daily 

maximum NO2 concentrations for the simulation periods and an exposure threshold (i.e. 

counterfactual concentration value) of 10 µg.m-3, were considered. The use of this 

threshold, above which physical health impacts are calculated, is suggested by the WHO 

(URL1). 

Finally, to quantify the overall health damage costs resulting from the number of cases of 

disease or premature deaths that were estimated, cost figures (per case and YLL)  based 

on Pervin et al. (2008), and updated for the reference year (2015) were considered. 

Nevertheless, since short-term health impacts are quantified on a daily basis, these costs 

were converted to the same time scale. 

 

4.4.2. Comparative analysis of the health impact methodologies 

Given the inherent uncertainty and high variability embedded in HIA studies, the results 

using different assumptions and methodologies need to be evaluated and communicated. 

Thus, based on the selected health input metrics, the linear and non-linear AirQ+ 

methodologies were applied to the local case study for the winter and summer periods, with 

the purpose of evaluating the number of unfavourable cases and health costs attributed to 

the short-term (daily) human exposure to ambient NO2 concentrations. However, for each 

health indicator, due to the small dimensions and very fine resolutions of the case study, 

the health results hereinafter presented were quantified assuming that 1 % of the exposed 

population is vulnerable to both analysed health indicators (i.e. baseline rate equal to 1 %). 

For such a small area, this approach is reasonable to get a good screening of potential 

health impacts. 

Figure 4.25 shows the daily total health impacts for the whole simulation domain including 

the sum of the two health indicators. 

 

 



Chapter 4 – Modair4health system application and assessment 

103 

 

(a) 

 

(b) 

Figure 4.25. Daily total health impacts, translated in number of cases and damage costs due to short-term 

NO2 exposure, for the (a) winter and (b) summer periods using the linear (lin) and non-linear (non-l) AirQ+ 

methodologies. 

 

In general, estimated health impacts are higher using the linear approach, and the daily 

variability is directly related with the spatial distribution of the daily maximum NO2 
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concentrations. Therefore, on the day-to-day analysis, the highest total number of cases 

and associated costs resulted from the combination of higher values of gridded population 

data (Figure 4.24) with daily maximum NO2 concentrations. In contrast, the lowest values 

on 30th and 31st January 2015 occurred because a large part of the simulation domain 

presented daily maximum NO2 levels below 10 µg.m-3 (i.e. exposure threshold), so no health 

impacts were calculated for these grid cells. Summing up the health impacts for each 

simulation period, in winter 415 € total health damage costs (1.04 cases) were estimated 

using the linear approach, whereas more moderate damages were obtained applying the 

non-linear method (305 € health costs and 0.76 cases). In the summer period, the total 

health results were slightly higher: 515 € and 370 € health damages (1.28 and 0.92 cases), 

using the linear and non-linear approaches, respectively. In average, each attributable case 

has a daily cost of 400 €. 

As a support to the information provided in Figure 4.25, the Figure 4.26 gathers daily health 

outputs for the two simulation periods, with regard to the total number of estimated cases 

comparing the two AirQ+ methodologies. Of the exposed vulnerable population (1% of the 

residents), the range of daily attributable cases varies between 0.03 using the non-linear 

method on 31st January, and 0.32 applying the linear method on 15th June. Another aspect 

to note is the point where the line slope changes (0.16, 0.12), from which larger differences 

in number of cases tend to increase, leading to linear method-based values often 

overestimated with increasing NO2 concentrations. 

  

Figure 4.26. Total number of cases estimated for the winter and summer periods comparing the linear and 

non-linear AirQ+ methodologies. 
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Focusing on the health estimates for the days of each period with higher total differences 

comparing both approaches, 26th January and 15th June, there is a clear spatial relationship 

between the ambient NO2 concentration (when combined with population data) and the 

health cost differences (linear – non-linear) (Figure 4.27). Thus, making this link, the linear 

AirQ+ methodology presents larger health costs for grid cells with higher population and 

daily maximum NO2 concentration records. In turn, the more spatially pronounced cost 

differences on 15th June reflect the highest total difference among health approaches that 

was estimated over the simulation domain (Figure 4.25). 

 

26 Jan 15 Jun  

   (a)  

  

 

(b)  

Figure 4.27. Spatial representation of the (a) daily maximum NO2 concentrations (µg.m-3); and (b) short-

term health cost differences (cents/day) between AirQ+ methodologies (linear – non-linear) for the local 

case study of 26th January (on the left) and 15th June (on the right). 

 

The lowest health results using the non-linear AirQ+ methodology seem to be better 

adjusted to the local reality, mainly for higher NO2 concentrations, where the linear model 

is associated to large overestimates of health impacts. In view of these conclusions, the 

·
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option for the non-linear methodology is recommended, especially when high ambient air 

pollution concentrations are recorded. 

 

4.5.  Summary 

The application and assessment of the modair4health system contributed to identify some 

more appropriate configurations and input data for the multiscale simulations. In terms of 

base modelling setup, the WRF-Chem online model was applied over three nested domains 

(25, 5 and 1 km2 resolutions) for the year 2015, and the inclusion of a new LC database and 

the aerosol effect represent the recommended options. The air quality and meteorological 

fields resulting from the inner domain were used as input to calculate flows and dispersion 

of air pollutants in the urban structure, considering a smallest domain with much finer 

resolution (local case study with 4 m grid spacing). For this purpose, the VADIS CFD model 

was applied for two simulation periods: one week in winter and another one in summer. To 

reproduce the behaviour of traffic emissions, an automated approach was considered the 

best option for local scale air quality modelling. The link with the health was tested for the 

case study using the two AirQ+ methodologies to quantify short-term human exposure 

effects. Lower health outcomes using the non-linear approach seem to be better adjusted 

to the local reality, and its use is recommended, mainly for high pollutant concentrations. 
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5. AIR QUALITY AND HEALTH MANAGEMENT 

 

The conception of this chapter was meant towards the assessment of the modair4health 

system capabilities and its operability to support decision-makers and stakeholders in 

selecting the best strategies for urban air quality and health management. To that end, two 

traffic management scenarios were selected and tested over the local case study for the 

two simulation periods previously identified, in order to evaluate the entire chain of impacts: 

atmospheric emissions, air quality and human health. As a result, potential benefits with the 

implementation of these scenarios are expected regarding local pollution control and health 

improvement of the exposed population.  

 

5.1.  Selected air pollution management strategies 

The definition of air pollution management strategies to be tested over the local case study 

was based on: 

- the road traffic sector is the major air pollution source and the main contributor for 

high NO2 levels; 

- the existence of sustainable urban mobility plans for the Coimbra region, which 

include traffic management and control measures, incentives to electric mobility, 

promotion of smooth modes, among other mobility proposals (CIM-RC, 2018, 2016); 

- air quality improvement measures that have been successfully implemented in other 

Portuguese regions (e.g. Lisbon, Porto), or in the European context, with a high 

degree of efficiency and social acceptability (e.g. Borrego et al., 2011; Duque et al., 

2016; Miranda et al., 2015). 

Two of the most common traffic management options in urban areas were selected:  

(i) replacement of 50% of the vehicle fleet below the European emission standards 

(EURO) 4 (registered until the end of 2004) by electric vehicles (hereinafter referred 

as ELEC) that produce little local air pollution, and the engines are much more 

efficient than conventional internal combustion engines; 

(ii) introduction of a Low Emission Zone (LEZ) in the Fernão de Magalhães Avenue 

(identified in Figure 5.1), with an extension of approximately 830 m, where the 

circulation of vehicles below EURO 4 and trucks is banned. 
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Figure 5.1. Spatial representation of the Fernão de Magalhães Avenue LEZ. 

 

The electric mobility has been expanding rapidly, leading many countries to adopt a variety 

of measures to encourage the change from conventional to electric vehicles (EV), such as 

incentives for their acquisition, and strengthening the EV´s charging network and autonomy. 

In 2018, the global EV fleet exceeded 5.1 million, up 2 million more than in the previous 

year and almost doubling the number of new EV sales (IEA, 2019). 

Regarding the LEZs, their introduction has been regulated in many developed cities of 

European and Asian countries, restricting the total or partial circulation of vehicles in certain 

periods of the day. This air pollution management strategy has low implementation and 

operation costs, and it is often considered as the most effective measure that local entities 

can take to improve the air quality of their cities (URL15; Wang et al., 2017). 

 

5.2.  Evaluation of the chain of impacts 

To evaluate the impacts chain resulting from the selected traffic management options, a 

Scenario Analysis Approach (SAA) was applied to the local case study and simulation 

periods previously analysed in the base scenario (hereinafter referred as REF), using the 

methodologies and base modelling setup adopted and presented in Chapter 4. SAA is a 
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systematic method widely used to estimate the impact of air pollution sources, from changes 

in emissions to social value impacts (air quality, health, environment, economy) (Miranda 

et al., 2016; Relvas and Miranda, 2018). The Figure 5.2 illustrates the entire chain of 

impacts to be evaluated following a SAA.  

 

 

Figure 5.2. Diagram of the chain of impacts associated to the selected traffic management options, to be 

evaluated following a SAA. 

 

The main SAA steps for the integrated assessment of the impact of traffic scenarios (ELEC 

and LEZ) can be grouped as follows: 

- Air quality assessment 

(i) to compute NO2 emissions for the traffic management scenarios; 

(ii) to model how these changes in atmospheric emissions will change spatial and 

temporal NO2 concentrations; 

 

- Health impact assessment 

(iii) to assess the human exposure resulting from the NO2 concentration changes; 

(iv) to quantify the total avoided physical health impacts with the expected air quality 

improvement; 

(v) to value these impacts in monetary terms considering the different cost components 

(direct, indirect and intangible costs). Such economic evaluation reflects the benefits 

or avoided costs of the implementation of the traffic scenarios. 

The REF scenario results, validated in Section 4.3.2, were used for assessing the impact 

of the tested scenarios.    
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5.2.1. Atmospheric emissions 

In urban areas, NO2 emissions are largely related to the local road traffic activity, incisively 

contributing to worrying air pollution hotspots. To minimize the adverse effects, over the 

case study and for the chosen traffic management scenarios, NO2 emissions in each road 

segment were recalculated using the TREM model and based on the following assumptions: 

- in the ELEC scenario, 50% of the fleet composition below EURO 4 was replaced by 

electric vehicles, impacting all simulated road segments; 

- for the LEZ scenario, fleet composition data were only changed in the road segments 

that correspond to the Fernão de Magalhães Avenue, banning the circulation of vehicles 

below EURO 4 and trucks. 

As expected, larger NO2 emission reductions were obtained at the Fernão de Magalhães 

Avenue, due to its strong road traffic activity. For the whole simulation domain, a reduction 

in NO2 emissions of 17.8 (50%) and 7.8 kg.d-1 (22%) was estimated for the ELEC and LEZ 

scenarios, respectively (Appendix D). 

Finally, the estimated emissions for the traffic scenarios were automatically disaggregated 

for each hour (i.e. using adjusted traffic profiles) when running the VADIS CDF model.   

 

5.2.2. Air quality 

The local scale air quality model in the multiscale framework was applied to the traffic 

scenarios to quantify the impact of NO2 emission changes on the spatio-temporal patterns 

of NO2 concentrations.  

Figure 5.3 presents the time series with hourly modelled NO2 concentrations for the 

scenarios and for both simulation periods considering the COI station location.  
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  (a) 

  (b) 

Figure 5.3. Time series of hourly modelled NO2 concentrations (µg.m-3) in (a) winter and (b) summer 

periods for the reference and traffic scenarios at the location of the air quality monitoring station COI. 

 

Overall, larger air quality improvements were obtained for the time periods with higher REF 

NO2 concentrations, being more evident for the LEZ scenario. In turn, small differences 

between results of REF and traffic scenarios were found for lower REF NO2 concentrations, 

which correspond to the times of the day with low or moderate road traffic activity (noon and 

night). Therefore, this hourly variability of the modelled NO2 concentrations is closely related 

with the traffic emissions and the way these are disaggregated. 

Analysing the daily averaged profiles of NO2 concentrations for the same location and 

simulation periods (Figure 5.4), local pollution reductions for both traffic scenarios were 

estimated at all hours, especially in the periods of the day associated to traffic activity peaks.  
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 (a) 

 (b) 

Figure 5.4. Daily averaged profiles of NO2 concentrations (µg.m-3) in (a) winter and (b) summer periods 

for the reference and traffic scenarios at the location of the air quality monitoring station COI. 

 

For the analysis of the spatial pattern of air quality improvement over the case study, one 

peak hour for each simulation period was selected (Figure 5.5), taking into account the 

higher observed NO2 concentrations and a good agreement between measurements and 

the REF_adj-based modelled data (Figure 4.21). 
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26 Jan at 19:00 17 Jun at 7:00  

   

 

(a) ELEC  

  

(b) LEZ  

Figure 5.5. Reduction of NO2 concentrations (µg.m-3) (REF minus scenario) on 26th January at 19:00 (on 

the left) and 17th June at 7:00 (on the right) comparing each tested scenario with the reference: (a) ELEC; 

and (b) LEZ. 

 

In general, the most relevant air quality improvements in both traffic scenarios were 

estimated for a part of the Fernão de Magalhães Avenue (up to 100 µg.m-3), where REF 

NO2 emissions and corresponding reduction for the traffic scenarios were higher (1-3 road 

segments in Appendix D). Besides the emissions, these air quality estimates were also 

strongly influenced by the urban geometry (e.g. height and orientation of buildings), which 

interferes with the accumulation and dispersion patterns of NO2 concentrations, and by local 

wind regimes (direction and wind speed) affecting the turbulence. From the point of view of 

the atmospheric flow, on 26th January at 19:00 and 17th June at 7:00, prevailing winds of 

northwest and southeast, respectively, and slightly stable conditions according to the 

Pasquill classification (average wind speed of 1 m.s-1) were recorded. 
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5.2.3. Human health 

Regarding the HIA of the traffic management scenarios for the simulation periods, the non-

linear AirQ+ methodology and selected health input metrics were applied to the local case 

study, in order to quantify the avoided short-term physical health impacts and corresponding 

monetary savings compared with the reference scenario. 

As HIA results, the spatial distribution of potential benefits or avoided costs (REF minus 

scenario) per day with the implementation of the traffic scenarios is presented in Figures 

5.6 and 5.7. For a better understanding of these differences, the health damage costs 

estimated for the REF are mapped in Appendix E. 

 

 

 
26 Jan 

 
27 Jan 

 
28 Jan 

 
29 Jan 

 
30 Jan 

 
31 Jan 

 
1 Feb 

 

(a) ELEC 
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Figure 5.6. Short-term health benefits (cents/day) (REF minus scenario) resulting from the (a) ELEC and 

(b) LEZ scenarios for the winter period. 
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Figure 5.7. Short-term health benefits (cents/day) (REF minus scenario) resulting from the (a) ELEC and 

(b) LEZ scenarios for the summer period. 

 

This economic evaluation represents the difference of estimated health damage costs 

between the reference and each traffic scenario, considering the sum of the health 

indicators impact. Making a comparative analysis of the daily health benefits by scenario, 

overall, ELEC benefits cover a larger geographic area, because the ELEC scenario resulted 

in NO2 emission reductions in all designed road segments. Nevertheless, over the LEZ 

influence area, higher benefits were estimated, given the wider restrictions for the circulation 

of road vehicles. These results show the relevance of the NO2 emission reductions and 

expected air quality improvement, also influenced by the urban structure and local 

meteorological fields, in quantifying the daily benefit. However, the air quality improvement, 

by itself, does not explain the benefit, it has to be combined with population data (Figure 

4.24) to get a clear positive impact on the residents´ health. Thus, highest health benefits 

(up to 1.2 cents/day) were estimated in grid cells that combine larger NO2 improvements 

and higher population values. 

To complement this spatial analysis, Figure 5.8 shows the daily total health impacts avoided 

in each traffic scenario for the whole domain and simulation periods. 
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(b) LEZ 
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(a) 

 

(b) 

Figure 5.8. Daily total avoided health impacts for the (a) winter and (b) summer periods using the ELEC 

and LEZ scenarios. 

 

Daily estimates indicate a higher total number of avoided cases and associated monetary 

benefits using the ELEC scenario. Focusing on the simulation periods, in winter, the largest 
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total benefit in both scenarios was estimated for 30th January, being expected daily health 

savings of 9.9 € (0.025 avoided cases) and 7.3 € (0.018 avoided cases) for the ELEC and 

LEZ scenarios, respectively. The lowest impact was calculated for the 27th January, with 

daily savings around 3 € (ELEC) and 1.4 € (LEZ). In summer, largest monetary benefits 

were predicted for 16th and 18th June, corresponding to 7 € in the ELEC scenario, and 

approximately 5 € for the LEZ. Table 5.1 presents total and daily averaged health impacts 

estimated for the whole simulation domain and for each traffic scenario considering all days 

of each simulation period – winter and summer. 

 

Table 5.1. Total and daily averaged health impacts estimated in each scenario for the (a) winter and (b) 

summer periods considering the whole domain. 

Scenario Metric 
Winter Summer 

Number of 
avoided cases 

Benefit (€) 
Number of 

avoided cases 
Benefit (€) 

ELEC 
Average 0.014 5.7 0.013 5.3 

Sum 0.098 39.7 0.093 37.4 

LEZ 
Average 0.009 3.5 0.008 3.2 

Sum 0.061 24.7 0.056 22.6 

 

For both metrics, the number of avoided cases and the monetary benefit calculated for the 

winter period were slightly higher than those estimated for the summer. Comparing the 

health impacts estimated for the scenarios, the results translate the numbers indicated in 

Figure 5.8, where the ELEC contributes to larger health benefits.  

 

5.3.  Summary 

This chapter was designed with two purposes: (i) to evaluate the operability of the 

developed modair4health system, and (ii) to support the decision-making in selecting the 

best strategies for urban air quality and health improvement. To that end, using the 

methodologies and input data recommended in Chapter 4, two traffic management 

scenarios were selected and tested for the local case study and simulation periods: 

replacement of 50% of the vehicle fleet below EURO 4 by electric vehicles (ELEC), and 

introduction of a Low Emission Zone (LEZ). The entire chain of impacts was evaluated 

based on the REF, reflecting the expected benefits with the implementation of the traffic 

scenarios. 
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For streets with known emission, the ELEC positive impact was felt in all simulated road 

segments, whereas emission reductions for the LEZ were only confined to the segments 

where the LEZ was designed.   

The air quality impact assessment of these emission changes showed air quality 

improvements in both reduction scenarios and for all simulation hours, but these were more 

relevant in time periods with higher REF NO2 concentrations. In turn, these concentration 

peaks, caused by high road traffic activity and increased emissions, led to a greater 

effectiveness of the emission reduction scenarios. Spatially, higher air quality improvements 

were observed near the target streets, but there was also a strong influence of the urban 

structure and local wind regimes (direction and wind speed). 

Translating the air quality improvement in daily avoided health impacts (number of cases 

and costs), larger benefits were estimated with the ELEC scenario, because NO2 emission 

reductions were spatially allocated to all road segments. On the LEZ influence area, the 

broader restrictions to the road circulation, contributed to higher health benefits. 
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6. CONCLUSIONS 

 

The main purpose of the thesis was to develop and apply an integrated multiscale modelling 

system that allows to simulate atmospheric concentrations and resulting health impacts in 

a broad spatial (regional to local scales) and temporal (short and long-term) horizon. The 

scientific advances and methodological limitations found are analysed in Section 6.1, 

whereas the future developments, based on these weaknesses, and guidelines for 

improving integrated assessment modelling synergies, are delineated in Section 6.2.    

 

6.1.  Main research findings 

In this section, the main research findings related with the development and application of 

the modair4health system, are analysed and discussed as a response to the formulated 

research questions and accomplished objectives.  

 

1. What are the most appropriate modelling tools for quantifying multiscale air 

quality and health impacts? How to connect them? 

The review and critical analysis of the state-of-the-art on multiscale air quality and health 

modelling, together with the proposed guidelines on how to overcome the existing 

limitations, were decisive to answer to this research question, which served as support for 

the development of the modair4health system. 

For multiscale air quality modelling, two air quality models able to simulate atmospheric 

concentrations from regional/urban (WRF-Chem) to local (VADIS) scales, were selected. 

The option for the online mesoscale model WRF-Chem represents an added value in 

atmospheric modelling, since potential meteorology-chemistry feedbacks are considered. 

The link to the local scale was done with the CFD model VADIS, in order to accurately 

reproduce the spatial variability and pollutant dispersion within the urban structure. To cover 

the multiple spatial scales and resolutions, the models were carefully coupled (offline 

coupling), ensuring that the background and boundary meteorological and chemical 

conditions extracted from the WRF-Chem urban domain are properly assimilated by the 

local scale. 

When moving from urban air pollution to health impacts, the linear and non-linear 

methodologies recommended by the WHO were adopted, because they can be applied to 

a wide range of environmental conditions and are seen as the most suitable at the city level. 
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To evaluate the monetary losses with the estimated physical health impacts, national or 

sub-national statistics should be preferentially used. If not available, the alternative will be 

to use economic evaluation studies updated for the reference year and geographic region 

of the case study. 

Finally, using programming tools, the different components that integrate the system were 

operationalized as a whole, promoting some adaptations and improvements in the 

functioning schemes of the models and methodologies. 

 

2. How do input data and model setup influence the modelling results? 

To answer to this research question, different configurations and input data involving the 

selected modelling tools were tested. 

The WRF-Chem model was configured to run three simulation domains in two-way nesting 

with increasing resolutions (up to 1 km2 - target urban domain), in order to: investigate 

feedbacks of the online meteorology-chemistry coupling; evaluate the influence of LC 

changes on the air quality; and analyse the variability of pollutant concentrations in the two 

smallest domains (5 and 1 km2 grid resolutions). The feedback results confirm that the 

aerosol particles have a key role in the atmosphere dynamics, influencing the net radiation 

budget and underlying meteorological conditions. Thereby, the option for simulations with 

the aerosol effect turned on, only possible through the use of online atmospheric models, 

is recommended, either to improve the weather predictions, but also to obtain more 

accurate air quality estimates, since the potential feedbacks favour the numerical resolution, 

in very small time steps, of the physical and chemical processes occurring within the 

atmospheric boundary layer. However, in spite of the current developments in this research 

area, improving the aerosol estimates and their properties using data assimilation 

techniques, improving microphysics parametrizations, and increasing the grid spacing and 

resolution of the input data, are emerging challenges to decrease the modelling 

uncertainties and to get more reliable forecasts. Regarding the LC, the objective was to 

evaluate its influence on the air quality when using the new LC classification developed in 

the scope of the thesis. Its greater spatial discretization by dominant LC categories 

contributed to enhance urban pollution hotspots, more evident over the smallest domain (1 

km2 resolution). This analysis highlights the relevance that a detailed LC database and a 

finer grid spacing may have in mesoscale air quality modelling. In view of these conclusions, 

the use of the new LC classification and the option for 1 km2 resolution outputs to provide 

background chemical conditions for the local scale modelling are recommended.    
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In air quality modelling at local scale, the VADIS CFD model was tested using two 

methodologies to represent the behaviour of the traffic emissions: i) long-term seasonal 

traffic profiles based on air quality observations recorded in a traffic station located within 

the simulation domain; and ii) traffic emissions that are automatically disaggregated for each 

simulation hour, considering a factor resulting from the weighting between traffic station 

observations and background NO2 concentrations. Based on obtained NO2 results, the 

automated approach is recommended as long as the observations for the local case study 

and simulation periods are available. However, despite this close relationship between 

traffic-induced NO2 emissions and ambient NO2 concentrations, the influence of other 

pollution sources or transport from other locations should not be neglected. 

To quantify the extent of health impacts related to the urban air pollution, the two WHO 

methodologies were applied to the local case study and VADIS simulation periods. The 

non-linear approach presented lower health outcomes (i.e. fewer cases and damage costs), 

which seem to be better adjusted to the local reality, mainly for higher NO2 concentrations, 

whereas the linear model is associated to overestimated health impacts. This conclusion is 

shared in epidemiological studies combining meta-analyses recorded during air pollution 

episodes and different types of health results, hence the non-linear methodology is 

recommended, especially when high pollutant concentrations are expected. 

 

3. What is the impact of the urban structure on the dispersion of air pollutants? 

The characteristics of the urban structure strongly influenced the dispersion and 

accumulation patterns of NO2 over the local case study. Overall, higher hourly concentration 

gradients were estimated around the main streets, where the highest traffic emissions were 

allocated. However, the spatial variability of these air concentrations was also affected by 

the geometry itself of the urban obstacles (e.g. height, orientation and spacing between 

buildings), causing relevant changes in the atmospheric flow (direction and wind speed), 

provided through the WRF-Chem outputs as time-varying boundary conditions to initialize 

the CFD simulations. These local atmospheric dynamics within the urban canopy (i.e. space 

between the ground surface and the highest building height) favoured the pollutant 

dispersion according to the prevailing wind directions. On the other hand, the flow dynamics 

perturbations induced by the obstacles tended to reduce the wind speed, leading to the 

formation of local air pollution hotspots. 
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4. Will a modelling system be able to accurately estimate air concentrations and 

health impacts in urban areas? 

Based on the different performed tests, it was verified the importance of coupling different 

types of air quality models, showing that the WRF-Chem mesoscale model with nesting 

capabilities is useful to capture the transboundary pollution and to estimate concentrations 

on the outskirts of cities, and the CFD model with adjusted traffic profiles allows to 

accurately reproduce the spatial and temporal variability of air concentrations in busiest 

road traffic areas.  

Given this more comprehensive and accurate framework of the air quality assessment, 

when quantifying human exposure effects, the uncertainties inherent to the health impacts 

modelling tend to decrease. With this purpose, having as reference the non-linear WHO 

methodology, it is necessary to select the most appropriate health input metrics according 

to the required HIA specificities. 

 

5. How might the modelling system capabilities be useful to support decision-

makers and stakeholders in selecting the best strategies for air quality and health 

management? 

The modair4health system showed to be able to comparatively evaluate different air quality 

improvement scenarios, providing quantified spatial and temporal information of 

environmental, social and economic value, in order to facilitate the choice of efficient air 

quality and health management strategies and decisions. Moreover, its operability allows to 

quickly test other urban air pollution control policies, and it can be easily adapted and 

applied to other case studies considering local and regional influences. 

 

6.2.  Future developments 

The development and the applications of the modair4health system were addressed to 

overcome the gaps identified in the current scientific knowledge. However, despite the 

innovations and reached outcomes, there is still research work to be done, which can be 

summarized in the following topics: 

(i)  Testing other air quality modelling configurations and input data  

A set of new applications involving other physical and chemical parametrizations 

included into the WRF-Chem model (e.g. microphysics schemes, chemical mechanisms, 
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urban canopy schemes) should be performed. Also, for both air quality models, more 

detailed input data (e.g. emissions, meteorology, boundary conditions) are needed. 

(ii)  Detailing emission inventories 

For regional-to-urban air quality modelling with dynamic downscaling, it is necessary to 

improve the EI regarding the spatial resolution and sources characterization, especially 

at the urban scale. Moreover, whenever air pollution management strategies are 

required, the nature and the focus of emission reduction measures are mostly oriented 

towards urban areas and, thus, detailed EI are fundamental for decision support.   

(iii)  Applying the modair4health system to other air pollutants and health indicators, 

considering short and long-term human exposures 

For the local (case study) and urban domains, the system can be applied to other air 

pollutants and health indicators. As the case study was focused on one of the busiest 

road traffic areas of the city of Coimbra (Fernão de Magalhães Avenue), it will make 

sense to analyse PM10, which is also a problematic contaminant associated to the road 

traffic. The link with the health, at this spatial level, has to be made only to assess short-

term health effects triggered by air pollution episodes, since the computational 

requirements of the CFD model are a barrier to long-term exposure assessments. These 

long-term studies that require, at least, 1-year air quality data, could be carried out for 

the urban domain simulated with the WRF-Chem model. Health input metrics to be used 

are dependent on the availability of epidemiological evidences (i.e. CRF) relating the 

pollutant, exposure time and health indicators. Preferentially, national statistics or more 

specific health data should be used. 

(iv)  Testing other air pollution management strategies, making a cost-benefit analysis   

Based on the sustainable urban mobility plans designed for the Coimbra region and in 

close collaboration with the local entities, the assessment of the entire chain of impacts 

should be extended to the urban simulation domain, testing other types of measures that 

contribute to healthy cities (e.g. promoting the use of public transports, reducing speed 

limits, expanding the pedestrian and cycling network). To complement this scenario 

analysis approach, a cost-benefit analysis comparing implementation costs of measures 

and health benefits (or avoided costs) is a clear added value in the decision-making 

process. 
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(v)  Quantifying  the modelling uncertainties  

Regardless of the system performance for any configurations and input data, the 

modelling uncertainties at all steps of the scenario analysis approach should be 

investigated. Their quantification, either by sensitivity or probabilistic analyses or using 

the Monte Carlo method, is important to be communicated, in order to support the 

stakeholders and decisions-makers in choosing the best urban air pollution control 

policies. 

(vi)  Employing techniques of data assimilation and inverse modelling 

The application of these techniques within the multiscale air quality modelling component 

could contribute to produce improved air quality estimates, since observational data are 

used to refine the modelling outputs (data assimilation). Combining predictions with 

observations, will also allow to identify the origin and emission rate of the main pollution 

sources (inverse modelling). Nevertheless, a balance between improved air quality 

results at different scales and computational efforts will have to be performed. 

(vii)  Increasing the spatial resolution of the WRF-Chem model 

Another way to improve urban air quality estimates and to simultaneously reduce the 

uncertainties when providing outputs to the local scale, would be the inclusion of a LES 

approach within WRF-Chem. The WRF-Chem/LES coupling has the turbulence-

resolving capability in realistic conditions, involving boundary layers driven by large-scale 

flows. Thereby, it will be possible to do high-resolution simulations (finer than 1 km2) with 

surface layer parametrizations that take into account its heterogeneity. 

(viii) Including the CFD as a WRF-Chem module 

The integration of the VADIS CFD model within the WRF-Chem is other challenging 

issue, either operationally, with advantages in computational processing, or in terms of 

the underlying modelling principles, where the turbulence parameterization when 

crossing different models and scales is seen as one of the most critical aspects in the 

multiscale atmospheric modelling field.  

 

The two last topics have still to be further worked, using the guidelines of ongoing 

scientific developments as support. 
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APPENDIX A - Reclassification scheme of the new land cover classification 

 

Corine and Portugal-specific LC categories  33-classes USGS LC categories 

Non-irrigated arable land 
Pastures 

2 - Dryland cropland and pasture 

Permanently irrigated land 
Rice fields 
Greenhouses and nurseries 

3 - Irrigated cropland and pasture 

Vineyards 
Fruit trees and berry plantations 
Olive groves 
Annual crops associated with permanent crops 
Complex cultivation patterns 
Land principally occupied by agriculture, with 
significant areas of natural vegetation 
Agro-forestry areas 

6 - Cropland/woodland mosaic 

Natural grasslands 7 - Grassland 
Shrubland 8 - Shrubland 
Moors and heathland 
Sclerophyllous vegetation 
Transitional woodland-shrub 

9 - Mixed shrubland/grassland 

Deciduous broadleaf forest 11 - Deciduous broadleaf forest 
Evergreen broadleaf forest 13 - Evergreen broadleaf forest 
Coniferous forest 14 - Evergreen needleleaf forest 
Mixed forest 15 - Mixed forest 
Water courses 
Water bodies 
Coastal and inland lagoons 
Estuaries 
Sea and ocean 

16 - Water bodies 

Inland marshes 
Peat bogs 
Salt marshes 
Salines 
Intertidal flats 

17 - Herbaceous wetland 

Beaches, dunes and sands 
Bare rocks 
Sparsely vegetated areas 
Burnt areas 
Deforestation 

19 - Barren or sparsely vegetated 

Glaciers and perpetual snow 24 - Snow or ice 
Discontinuous urban fabric 
Green urban areas 
Sport and leisure facilities 

31 - Low intensity residential 

Continuous urban fabric 32 - High intensity residential 
Industrial or commercial units 
Road and rail networks and associated land 
Port areas 
Airports 
Mineral extraction sites 
Dump sites 
Construction sites 
Infrastructures for energy production and water 
treatment  

33 - Industrial or commercial 
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APPENDIX B - User options for application of the modair4health system 

 

- GENERAL OPTIONS 

 

(i) Select the air pollutant to analyse: 

(PM2.5; PM10; NO2; O3; CO) 

pollutant = NO2 

 

(ii) Consider Integrated Assessment Modelling (IAM): 

(0 - No; 1 - Yes; 2 - Skip to the postprocessing) 

IAM = 1 

 

(iii) Select the component to run when no IAM is required: 

(1 - air quality; 2 - health) 

component = 1 

 

(iv) Select the application scales to run air quality and/or health: 

(1 - regional to urban; 2 - local; 3 - multiscale) 

scales = 2 

 

(v) Consider air quality and health management (AQHM): 

(0 - No; 1 - Yes) 

AQHM = 1 

If AQHM is required, select the scenario to analyse: 

(ELEC; LEZ) 

scenario = ELEC 

 

- CONFIGURATIONS TO RUN AIR QUALITY 

 

(vi) Select the simulation periods: 

WRF-Chem (regional to urban scale; run up to an entire year; format - yyyy/mm/dd) 

WRF_inidate = 2015/01/26 

WRF_enddate = 2015/02/01 

VADIS (local scale; run air pollution episodes; format - yyyy/mm/dd_hh:00) 

VADIS_inidate = 2015/01/26_00:00  

VADIS_enddate = 2015/02/01_00:00 
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(vii)  Select the traffic emission profile to run local scale air quality: 

(1 - user-defined; 2 - seasonal; 3 - adjusted) 

emis_profile = 3 

For the option 3, select the air quality monitoring station inside/near the local domain: 

station = COI 

 

- CONFIGURATIONS TO RUN HEALTH 

 

(viii) Air pollution exposure time to analyse: 

(1 - short-term; 2 - long-term) 

health effects = 1 

 

(ix) Select the time period to quantify health effects (format: yyyy/mm/dd): 

health_inidate = 2015/01/26 

health_enddate = 2015/02/01 

 

(x) Select the AirQ+ methodology to use: 

(1 - linear; 2 - non-linear) 

health_method = 2 

 

- POSTPROCESSING OPTIONS 

 

(xi) Include postprocessing: 

(0 - No; 1 - Yes) 

post_proc = 1 

 

(xii)  Select the scale(s) and domain(s) to analyse: 

WRF-Chem (1 - regional to urban; domains - d01, d02, d03) 

VADIS (2 - local; domain - d04) 

post_scale = 2 

WRF_dom = d03 

VADIS_dom = d04 

 

(xiii) Select the time periods: 

date (format: yyyy/mm/dd) 

hour (format: hh; must be in 00..24) 

post_inidate = 2015/01/26 
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post_enddate = 2015/02/01 

post_inihour = 08 

post_endhour = 20 

 

(xiv) Spatial analysis: 

(0 - No; 1 - Yes, only modelled data; 2 - Yes, overlap modelled and observed data) 

metrics (average; minimum; maximum) 

spat_dist = 2 

spat_metric = average 
 

 

(xv) Model evaluation: 

(0 - No; 1 - Yes) 

model_eval = 1 

If model evaluation is required, select an air quality station or typology:   

(i) insert station acronym; (ii) Allstations; (iii) Background (Rural, Suburban, Urban);  

(iv) Rural; (v) Suburban; (vi) Urban; (vii) Traffic 

post_station = COI 

Note: for the local scale, it is necessary to set the VADIS cell that corresponds to the 

geographic location of the monitoring station. 
 

Validation: 

Statistical metrics (observed and modelled mean, correlation, BIAS, RMSE) 

(0 - No; 1 - Yes) 

validation = 1 
 

Time series: 

(0 - No; 1 - Yes) 

time_series = 1 
 

Daily profiles: 

(0 - No; 1 - Yes) 

daily_prof = 1 
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APPENDIX C - Characterization of the Portuguese air quality monitoring network 

 

Code Station Acronym Environment Influence 
Latitude 
(decimal 
degrees) 

Longitude 
(decimal 
degrees) 

Altitude 
(m) 

Municipality Zone 
Measured 
pollutants 

Start of 
activity 

1047 Minho-Lima MIN Rural Background 41.800 -8.700 777 
Viana do 
Castelo 

Norte Litoral 
PM2.5, PM10, NOx, 

NO, NO2, O3 
11/03/2005 

1048 Douro Norte DRN Rural Background 41.370 -7.789 1086 Vila Real Norte Interior 
PM2.5, PM10, NOx, 
NO, NO2, O3, SO2 

03/02/2004 

2020 Fundão FUN Rural Background 40.232 -7.300 473 Fundão 
Centro 
Interior 

PM2.5, PM10, NOx, 
NO, NO2, O3, SO2 

01/06/2003 

2021 
Fornelo do 

Monte 
FRN Rural Background 40.640 -8.100 741 Vouzela 

Centro 
Interior 

PM10, NOx, NO, 
NO2, O3 

23/09/2005 

2019 Ervedeira ERV Rural Background 39.922 -8.893 60 Leiria 
Centro 
Litoral 

PM2.5, PM10, NOx, 
NO, NO2, O3, SO2 

01/01/2003 

2022 
Montemor-o-

Velho 
MOV Rural Background 40.183 -8.677 96 

Montemor-o-
Velho 

Centro 
Litoral 

PM10, NOx, NO, 
NO2, O3 

06/09/2007 

3096 Chamusca CHA Rural Background 39.353 -8.468 143 Chamusca 
Vale do Tejo 

e Oeste 
PM2.5, PM10, NOx, 
NO, NO2, O3, SO2 

01/11/2002 

3102 Lourinhã LNH Rural Background 39.278 -9.246 143 Lourinhã 
Vale do Tejo 

e Oeste 
PM2.5, PM10, NOx, 

NO, NO2, O3 
01/12/2008 

3099 Fernando Pó FPO Rural Background 38.636 -8.691 57 Palmela 

Península de 
Setúbal / 

Alcácer do 
Sal 

PM2.5, PM10, NOx, 
NO, NO2, O3, SO2 

18/04/2007 

4002 Monte Velho MVE Rural Background 38.076 -8.799 53 
Santiago do 

Cacém 
Alentejo 
Litoral 

PM2.5, PM10, NOx, 
NO, NO2, O3, SO2, 

heavy metals 
01/01/1976 
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Code Station Acronym Environment Influence 
Latitude 
(decimal 
degrees) 

Longitude 
(decimal 
degrees) 

Altitude 
(m) 

Municipality Zone 
Measured 
pollutants 

Start of 
activity 

4006 Terena TER Rural Background 38.616 -7.398 187 Alandroal 
Alentejo 
Interior 

PM2.5, PM10, NOx, 
NO, NO2, O3, SO2 

15/02/2005 

5012 Cerro CER Rural Background 37.312 -7.68 300 Alcoutim Algarve 
PM2.5, PM10, NOx, 
NO, NO2, O3, SO2 

15/10/2004 

1042 
Frossos-

Braga 
FRO Suburban Background 41.566 -8.454 51 Braga 

Entre Douro 
e Minho 

PM10, NOx, NO, 
NO2, O3 

10/03/2004 

1054 
Anta-

Espinho 
ESP Suburban Background 41.006 -8.643  Espinho Porto Litoral 

PM10, NOx, NO, 
NO2, O3 

25/02/2011 

1031 
VNTelha-

Maia 
VNT Suburban Background 41.259 -8.662 88 Maia Porto Litoral 

PM10, NOx, NO, 
NO2, O3 

01/01/1999 

1021 
Custóias-

Matosinhos 
CUS Suburban Background 41.201 -8.645 100 Matosinhos Porto Litoral 

PM10, NOx, NO, 
NO2, O3 

01/01/1999 

1034 
Leça do 
Balio-

Matosinhos 
LEC Suburban Background 41.220 -8.630 40 Matosinhos Porto Litoral PM10, O3 01/01/2000 

1051 
Mindelo-Vila 

do Conde 
VCO Suburban Background 41.345 -8.736 25 Vila do Conde Porto Litoral 

PM10, NOx, NO, 
NO2, O3 

22/12/2009 

2004 Estarreja EST Suburban Background 40.750 -8.583 15 Estarreja 
Litoral 

Noroeste do 
Baixo Vouga 

PM2.5, PM10, NOx, 
NO, NO2, O3, SO2 

01/05/1990 

2018 Ílhavo ILH Suburban Background 40.588 -8.672 32 Ílhavo 
Aveiro / 
Ílhavo 

PM10, NOx, NO, 
NO2, O3, SO2 

27/03/2003 

1044 
Paços de 
Ferreira 

PFE Urban Background 41.274 -8.376 300 
Paços de 
Ferreira 

Entre Douro 
e Minho 

PM2.5, PM10, NOx, 
NO, NO2, O3 

20/02/2004 

1052 
Burgães-

Santo Tirso 
STR Urban Background 41.346 -8.477 47 Santo Tirso 

Entre Douro 
e Minho 

PM10, NOx, NO, 
NO2, O3 

17/12/2009 
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Code Station Acronym Environment Influence 
Latitude 
(decimal 
degrees) 

Longitude 
(decimal 
degrees) 

Altitude 
(m) 

Municipality Zone 
Measured 
pollutants 

Start of 
activity 

1053 Avintes AVI Urban Background 41.097 -8.556 88 Gaia Porto Litoral 
PM10, NOx, NO, 

NO2, O3 
12/07/2010 

1050 
Sobreiras-
Lordelo do 

Ouro 
SOB Urban Background 41.148 -8.659 17 Porto Porto Litoral 

PM2.5, PM10, NOx, 
NO, NO2, O3 

01/12/2007 

1023 
Ermesinde-

Valongo 
ERM Urban Background 41.217 -8.551 140 Valongo Porto Litoral 

PM10, NOx, NO, 
NO2, O3 

01/01/1999 

2016 
Instituto 

Geofísico de 
Coimbra 

IGE Urban Background 40.206 -8.412 145 Coimbra Coimbra 
PM10, NOx, NO, 

NO2, O3 
01/01/2003 

3082 
Alfragide/Am

adora 
ALF Urban Background 38.738 -9.208 109 Amadora AML Norte 

PM2.5, PM10, NOx, 
NO, NO2, O3, SO2, 

heavy metals 
06/01/1998 

3084 Reboleira REB Urban Background 38.753 -9.232 132 Amadora AML Norte 
PM10, NOx, NO, 

NO2, O3 
06/02/2001 

3070 Beato BEA Urban Background 38.733 -9.114 56 Lisboa AML Norte 
NOx, NO, NO2, O3, 

C6H6 
01/11/1992 

3071 Olivais OLI Urban Background 38.768 -9.109 32 Lisboa AML Norte 
PM2.5, PM10, NOx, 
NO, NO2, O3, SO2, 

CO 
01/03/1992 

3087 Restelo RES Urban Background 38.705 -9.210 143 Lisboa AML Norte 
PM10, NOx, NO, 

NO2, O3 
20/02/2002 

3085 
Loures-
Centro 

LOU Urban Background 38.828 -9.166 10 Loures AML Norte 
PM10, NOx, NO, 

NO2, O3 
01/06/2001 

3091 
Quinta do 
Marquês 

QMA Urban Background 38.697 -9.324 48 Oeiras AML Norte 
PM10, NOx, NO, 

NO2, O3 
01/09/2002 

3089 Mem Martins MEM Urban Background 38.784 -9.348 173 Sintra AML Norte 
PM2.5, PM10, NOx, 
NO, NO2, O3, SO2 

19/10/2002 
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Code Station Acronym Environment Influence 
Latitude 
(decimal 
degrees) 

Longitude 
(decimal 
degrees) 

Altitude 
(m) 

Municipality Zone 
Measured 
pollutants 

Start of 
activity 

3101 Alverca ALV Urban Background 38.896 -9.040 22 
Vila Franca de 

Xira 
AML Norte 

PM10, NOx, NO, 
NO2, O3, SO2 

31/12/2008 

3083 Laranjeiro LAR Urban Background 38.663 -9.159 63 Almada AML Sul 
PM2.5, PM10, NOx, 

NO, NO2, O3, CO 
12/01/2001 

3103 Fidalguinhos FID Urban Background 38.650 -9.049 24 Barreiro AML Sul 
PM10, NOx, NO, 

NO2, SO2 
23/12/2009 

3093 Arcos ARC Urban Background 38.529 -8.894 2 Setúbal Setúbal 
PM10, NOx, NO, 

NO2, O3, CO 
05/04/2002 

5008 Malpique MAL Urban Background 37.091 -8.251 45 Albufeira 
Aglomeração 

Sul 
PM10, NOx, NO, 

NO2, O3, SO2 
04/09/2004 

5007 
Joaquim 

Magalhães 
JMG Urban Background 37.014 -7.928 4 Faro 

Aglomeração 
Sul 

PM2.5, PM10, NOx, 
NO, NO2, O3, SO2 

11/08/2004 

1041 

Fr 
Bartolomeu 

Mártires-
S.Vitor 

FRB Urban Traffic 41.550 -8.406 175 Braga 
Entre Douro 

e Minho 
PM10, NOx, NO, 

NO2 
09/03/2004 

1046 

Cónego Dr. 
Manuel 
Faria-

Azurém 

AZU Urban Traffic 41.449 -8.296 185 Guimarães 
Entre Douro 

e Minho 

PM10, NOx, NO, 
NO2,  benzene 

derivatives 
07/04/2004 

1043 

Pe Moreira 
Neves-

Castelões de 
Cepeda 

PMN Urban Traffic 41.205 -8.338 184 Paredes 
Entre Douro 

e Minho 
PM10, NOx, NO, 

NO2 
07/01/2004 

1024 
D.Manuel II-

Vermoim 
VER Urban Traffic 41.237 -8.618 90 Maia Porto Litoral 

PM2.5, PM10, NOx, 
NO, NO2 

01/11/1999 

1030 
João Gomes 

Laranjo-
S.Hora 

SRH Urban Traffic 41.184 -8.662 72 Matosinhos Porto Litoral 
PM10, NOx, NO, 

NO2, CO 
01/09/2001 
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Code Station Acronym Environment Influence 
Latitude 
(decimal 
degrees) 

Longitude 
(decimal 
degrees) 

Altitude 
(m) 

Municipality Zone 
Measured 
pollutants 

Start of 
activity 

1028 
Francisco Sá 

Carneiro-
Campanha 

FSC Urban Traffic 41.164 -8.590 146 Porto Porto Litoral 
PM10, NOx, NO, 

NO2, CO 
01/10/2000 

2017 Aveiro AVE Urban Traffic 40.636 -8.647 20 Aveiro 
Aveiro / 
Ílhavo 

PM10, NOx, NO, 
NO2, CO 

15/01/2003 

2006 

Coimbra/ 
Avenida 
Fernão 

Magalhães 

COI Urban Traffic 40.216 -8.434 26 Coimbra Coimbra 
PM10, NOx, NO, 

NO2, CO 
08/07/2008 

3072 Entrecampos ENT Urban Traffic 38.747 -9.151 86 Lisboa AML Norte 
PM2.5, PM10, NOx, 
NO, NO2, SO2, O3, 

benzene 
01/03/1992 

3075 
Avenida da 
Liberdade 

AVL Urban Traffic 38.719 -9.148 44 Lisboa AML Norte 
PM10, NOx, NO, 

NO2, CO 
01/01/1994 

3100 
Santa Cruz 
de Benfica 

BEN Urban Traffic 38.750 -9.205 76 Lisboa AML Norte PM10, NO, NO2, CO 16/12/2008 

3097 
Odivelas-
Ramada 

ODI Urban Traffic 38.801 -9.183 124 Odivelas AML Norte 
PM10, NOx, NO, 

NO2, CO 
01/12/2003 

3094 Quebedo QUE Urban Traffic 38.524 -8.887 16 Setúbal Setúbal 
PM10, NOx, NO, 
NO2, SO2, CO, 

benzene 
01/05/2002 

5011 David Neto DVN Urban Traffic 37.138 -8.543 6 Portimão 
Aglomeração 

Sul 
PM10, NOx, NO, 

NO2, CO, benzene 
30/06/2004 
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APPENDIX D - Estimation of road traffic-induced NO2 emissions for the case 

study considering the reference and traffic management scenarios 

 

Road 
segment 

Length 
(m) 

Location 

Road traffic NO2 emission 
(kg/day) 

 NO2 emission reduction 
kg/day) 

REF ELEC LEZ REF-ELEC REF-LEZ 

1 241 Fernão de Magalhães Avenue 3.150 1.575 1.543 1.575 1.607 

2 241 Fernão de Magalhães Avenue 3.150 1.575 1.543 1.575 1.607 

3 241 Fernão de Magalhães Avenue 3.150 1.575 1.543 1.575 1.607 

4 108 Fernão de Magalhães Avenue 1.420 0.708 0.693 0.712 0.727 

5 108 Fernão de Magalhães Avenue 1.420 0.708 0.693 0.712 0.727 

6 118 Fernão de Magalhães Avenue 1.540 0.772 0.757 0.768 0.783 

7 118 Fernão de Magalhães Avenue 1.540 0.772 0.757 0.768 0.783 

8 100 Cidade Aeminium Avenue 1.027 0.513 1.027 0.513 0.000 

9 100 Cidade Aeminium Avenue 1.027 0.513 1.027 0.513 0.000 

10 100 Cidade Aeminium Avenue 1.027 0.513 1.027 0.513 0.000 

11 100 Cidade Aeminium Avenue 1.027 0.513 1.027 0.513 0.000 

12 100 Cidade Aeminium Avenue 1.027 0.513 1.027 0.513 0.000 

13 100 Cidade Aeminium Avenue 1.027 0.513 1.027 0.513 0.000 

14 39 Figueira da Foz Street 0.405 0.202 0.405 0.203 0.000 

15 39 Figueira da Foz Street 0.405 0.202 0.405 0.203 0.000 

16 39 Figueira da Foz Street 0.405 0.202 0.405 0.203 0.000 

17 39 Figueira da Foz Street 0.405 0.202 0.405 0.203 0.000 

18 24 Figueira da Foz Street 0.248 0.124 0.248 0.124 0.000 

19 24 Figueira da Foz Street 0.248 0.124 0.248 0.124 0.000 

20 24 Figueira da Foz Street 0.248 0.124 0.248 0.124 0.000 

21 86 João Machado Street 1.127 0.564 1.127 0.564 0.000 

22 86 João Machado Street 1.127 0.564 1.127 0.564 0.000 

23 77 Sofia Street 1.009 0.505 1.009 0.505 0.000 

24 77 Sofia Street 1.009 0.505 1.009 0.505 0.000 

25 77 Sofia Street 1.009 0.505 1.009 0.505 0.000 

26 77 Sofia Street 1.009 0.505 1.009 0.505 0.000 

27 77 Sofia Street 1.009 0.505 1.009 0.505 0.000 

28 77 Sofia Street 1.009 0.505 1.009 0.505 0.000 

29 42 Doutor Manuel Rodrigues Street 0.548 0.274 0.548 0.274 0.000 

30 42 Doutor Manuel Rodrigues Street 0.548 0.274 0.548 0.274 0.000 

31 42 Doutor Manuel Rodrigues Street 0.548 0.274 0.548 0.274 0.000 

32 42 Doutor Manuel Rodrigues Street 0.548 0.274 0.548 0.274 0.000 

33 46 
Olímpio Nicolau Rui Fernandes 
Street 

0.606 0.303 0.606 0.303 0.000 

34 46 
Olímpio Nicolau Rui Fernandes 
Street 

0.606 0.303 0.606 0.303 0.000 
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APPENDIX E - Short-term health damage costs estimated for the reference 

scenario 

 

 

Figure E.1. Short-term health damage costs (cents/day) estimated for the REF scenario in the winter 

period. 
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Figure E.2. Short-term health damage costs (cents/day) estimated for the REF scenario in the summer 

period. 
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