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ABSTRACT 

This thesis describes the modeling and design issues of high force electrostatically 

actuated RFMEMS contact switches. Various reliability issues and challenges are 

associated with the design of RFMEMS contact switches. The reliability of 

microcontacts is of major importance in increasing the lifetime of such devices. A 

semi-analytical model based on the beam deflection theory is developed to calculate 

the contact force delivered by parallel-plate electrostatically actuated switch 

structures. The model is capable of fast and accurate static solution for complicated 

switch structures which are normally analyzed using finite element analysis 

techniques. High force designs are presented together with finite element simulations 

confirming the model results and reflecting on the reliability of these switch 

structures. The RF performance is expected to be comparable to recently announced 

commercial counterpart specifications. A simple all-metal surface micromachining 

technology providing thick electroplated nickel beams will be used to implement high 

force switch structures. 
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 CHAPTER 1 

INTRODUCTION 

 

1.1. RFMEMS SWITCHES 

RFMEMS switches are revolutionary miniature devices fabricated using special 

MEMS technologies, and employed to switch RF signals. RFMEMS switches present 

substantial performance challenges to their mature counterparts: conventional 

electromagnetic relays and solid state transistors. 

An RFMEMS switch is superior to a conventional electromagnetic relay in terms of 

power consumption, switching speed, device size, and frequency band of operation. 

An electrostatically actuated RFMEMS switch theoretically consumes zero power as 

no steady state current is allowed to flow in the actuator. It operates with switching 

time in the range of 1-200µs [1]. Comparing these values to more than 0.2W power 

consumption and 6ms switching time for a modern high frequency relay [2], the 

significant differences become unambiguous. The miniature size and technology 

compatibility of these MEMS devices open the possibility for on-chip integration with 

other integrated RF systems and CMOS circuits. The only limitation on RFMEMS 

devices compared to conventional relays is the amount of RF signal power that can be 

reliably handled by a single device. 

Compared to semiconductor devices, like FETs, RFMEMS switches provide much 

higher signal isolation in the Off state and much higher conduction in the On state, as 

well as excellent linearity and wider frequency-band of operation [3, 4]. However, 

solid state devices are typically much smaller in size and exhibit much less switching 

delay [1]. 
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A wide range of applications can make use of RFMEMS switches, including: 

transmit/receive switching in mobile phones and base stations, reconfigurable RF 

systems such as filters, phase shifters and antennas, as well as automated RF testing 

and data acquisition systems [5]. 

 

1.1.1. A Commercial Apprehension 

The worldwide market value of RFMEMS components in 2004 was $126 million and 

is forecasted to grow to $1.1 billion in 2009 as shown in Fig. (1.1) [6]. The chart in 

Fig. (1.1) illustrates the actual RFMEMS market turnover in 2004, and the forecast for 

the following 5 years, as reported by Wicht Technologie Consulting, Germany, in 

December 2005. The RFMEMS market in 2004 was mainly stimulated by bulk 

acoustic wave filters used for mobile phones, with very little contribution from the 

other major RFMEMS components like RFMEMS switches and tunable capacitors 

which, according to the same report, still had problems with reliability, packaging, 

and CMOS integration [6]. This reveals that until 2005, RFMEMS switches have been 

locked in university labs and very small scale commercial products, despite their early 

introduction by K. Petersen at IBM in a neat report in 1979 [7]. 

On the other hand, the revolution in wireless communication systems capabilities in 

the past few years is creating a heavy demand for the commercialization of these 

devices [8]. The predicted substantial growth of RFMEMS components market for 

consumer electronics, base stations and RF automated test equipment, as shown in 

Fig. (1.1), emphasizes this breakthrough in the commercialization of RFMEMS 

switches during the present few years. 
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1.1.2. Types of RFMEMS Switches 

RFMEMS switches include two major types of devices: capacitive switches and 

contact switches. A capacitive switch makes use of the fact that a large capacitance 

represents very small impedance at very high frequencies. The device conducts high 

frequency RF signals when it is actuated to a high capacitance state, and isolates the 

same signal when released to another low capacitance state. The advantage of such 

devices is that they encounter no direct contact between two metallic surfaces, with 

the price of losing their functionality at DC and low frequencies. On the other hand, a 

contact switch is capable of conducting DC signals and a wide band of RF signals. A 

contact switch involves a direct ohmic contact between two metallic surfaces. This 

feature represents a major reliability challenge for such devices and is the main 

motivation to present this work. 

Contact devices can be subdivided into two categories: microrelays and switches. A 

microrelay provides full electrical isolation between the DC control circuit and the 

controlled RF signal. On the other hand, a switch configuration normally involves one 

or more common points between the control and RF circuits. An intermediate device 

is presented within this work which provides full isolation only in the Off state, but a 

common electrical point is established between the DC control circuit and the RF 

signal in the On state. This intermediate device can be called a semi-relay. Such semi-

relay can be easily upgraded to a full microrelay as will be illustrated in the last 

chapter of this work. 

 

1.1.3. Actuation Techniques 

Four main actuation techniques can be used to provide the mechanical motion 

required for an RFMEMS switch operation; these are electrostatic, electrothermal, 
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piezoelectric and electromagnetic actuation [9]. A performance comparison among 

these four actuation techniques is given in Table (1.1). 

Piezoelectric and electromagnetic actuation techniques basically require complicated 

fabrication technologies and provide a low contact force. For these reasons, they are 

not widely used to implement RFMEMS switches. Electrothermal actuation provides 

very high contact force, with two major drawbacks of consuming much power and 

exhibiting long switching delays. The remaining and most widely used actuation 

technique for RFMEMS switches is electrostatic actuation. Electrostatic actuation 

offers the least possible power consumption, least complicated technology, least 

switching delay, a wide range of contact forces, and best die area utilization [1]. 

 The main purpose of this thesis is to provide a design methodology to maximize the 

contact force that can be achieved by the simple parallel-plate electrostatic actuation 

technique. 

 

1.2. HIGH FORCE RFMEMS CONTACT SWITCH 

ACHIEVEMENTS 

Table (1.2) summarizes the performance of all substantially reported RFMEMS 

contact switches developed by the industrial sector before September 2002 [1]. Only 

two of the devices in this table provide a high contact force above 0.2mN. The many 

low force devices reported to date by industrial and academic organizations are not 

discussed in detail here to maintain the focus on high contact force devices, with the 

exception of the Radant MEMS switch because of its relatively high lifetime and 

successful commercial profile. 

The first high force switch is the Cronos Integrated Microsystems (USA) switch 

which is based on a lateral high force, high power consumption, electrothermal 
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actuator [1]. Despite the obtained high contact force, this approach is not very 

interesting because of the drawbacks of electrothermal actuation. 

The second high force device is the Omron (Japan) switch. This device is interesting 

as it provides high contact force and still uses electrostatic actuation. The reason is 

using a very large-area actuator of 1.6x1.6mm2. The actuator membrane is made of 

18-24µm thick silicon layer, suspended 3µm above the fixed electrode. The achieved 

high contact force makes it a very reliable switch, despite its large size and relatively 

low frequency operation [1]. The structure of the Omron switch is shown in Fig. (1.2). 

One popular RFMEMS contact switch is the Radant MEMS (USA) electrostatically 

actuated switch. Its commercial success is stimulated by its high reported lifetime [5]. 

The device is based on a cantilever beam made of 7-9µm thick gold. The device 

occupies a small area of 30x75µm2, and produces a low contact force of 100µN 

resulting in a high contact resistance of 2-3Ω [1]. The small area of the device allows 

reducing the contact resistance by using two or more switches in parallel. The 

structure of the Radant switch is shown in Fig. (1.3). 

In 2003, E. Thielicke et al. from Berlin University of Technology reported a high 

force electrostatically actuated switch producing 0.5mN contact force. The device 

area is 700x700µm2. It is based on a polysilicon membrane, fabricated using a 16-

masks process. The contact resistance is low, but the device lifetime is degraded 

because of using pure gold as contact material [10]. Another report in 2003 described 

a relatively mature technology from wiSpry Inc. (USA), but low contact force was 

reported [11]. 

In 2004, several low voltage electrostatically actuated switches were reported, but 

most of them produced low contact forces below 0.3mN per contact [12-14]. 
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In 2005, a very high contact force design was reported by J. Qiu et al., reaching 4mN 

using a lateral bistable electrothermally actuated silicon structure [15]. During the 

same year, more interest in low voltage electrostatically actuated switches could be 

observed [16]. 

Recently in 2006, the structure of the commercially available contact switch from 

TeraVicta (USA) was reported. The device is based on a high force electrostatically 

actuated disk as shown in Fig. (1.4). This device is the next major commercially 

available RFMEMS switch after the Radant switch with a long lifetime reaching one 

billion switching cycles [17]. The high contact force provides a low contact 

resistance, which is opposite to the case of the Radant switch. The device is actuated 

at 68V, and exhibits a switching time of 70µs. The switch RF performance is 

acceptable up to 7GHz which is a higher band compared to the high force Omron 

switch discussed earlier [18]. 

 

1.3. ORGANIZATION OF THIS WORK 

The next chapter of this thesis discusses the basic design and reliability challenges of 

RFMEMS contact switches, with emphasis on the major reliability issue which is the 

metal-to-metal direct contact. Different options for the contact material are 

introduced. An experimental investigation of the potential of rhodium as a contact 

material is described. Other challenges including air gap breakdown, mechanical 

stability and packaging are also discussed. 

In Chapter 3, a relatively fast and accurate semi-analytical model for electrostatically 

actuated beams is developed. In the beginning, a simplified analytical model for the 

problem is presented for the sake of problem illustration and for later comparison with 

the results of the advanced model. And then, the semi-analytical model is developed 

6 



based on the basic differential equation for beam deflections. The free body diagrams 

for the switch structure in different situations are presented, and the final 

arrangements of the beam deflection equation are concluded. Numerical solution 

algorithms are also introduced to illustrate the method of solving the obtained 

nonlinear beam deflection differential equations. The model is later modified to 

handle bridge-type structures in addition to the originally handled cantilever-type 

structures. Comparisons between the semi-analytical model results and 3D finite 

element simulations are provided in each step of the model development to validate 

the accuracy of the model. 

In Chapter 4, the design considerations for high force RFMEMS contact switch 

structures are discussed based on the basic characteristics of parallel-plate 

electrostatic actuators, in addition to the results of the semi-analytical model 

developed in Chapter 3. Subsequently, the procedure used to simulate RFMEMS 

contact switch static behavior using CoventorWareTM is discussed. CoventorWare 3D 

finite element simulation results for high force devices are presented, together with a 

discussion on the simulation results for the mechanical stability and the effect of 

stress gradients. Furthermore, the RF performance of the achieved designs is 

presented with a comparison to recently reported performance characteristics of 

commercially available devices. The fabrication technology proposed to implement 

the presented designs is described, together with test structures designed to measure 

the technology-dependent performance parameters. Sample RFMEMS contact switch 

designs are later presented for implementation using the proposed technology. 

Finally, the last chapter of this thesis summarizes the major achieved results and 

presents a vision for the future work expected to be performed based on the results of 

this work. 
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Figure 1.1. Actual turnover of RFMEMS market in 2004 and 
forecasts until 2009, as reported by Wicht Technologie 
Consulting in December 2005 (after [6]). 

 

 

 

Figure 1.2. The Omron high contact force switch (after [1], 
Copyright IEEE). 
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Figure 1.3. The Radant MEMS switch (after [5]). 
 
 
 
 
 

 

Figure 1.4. The TeraVicta high force disk actuator (after [18]). 
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Actuation 
technique 

Power consumed 
(mW) Size Switching time 

(µs) 
Contact force 

(µN) 

Electrostatic 0 Small 1-200 50-1000 

Electrothermal <200 Large 300-10,000 500-4000 

Piezoelectric 0 Medium 50-500 50-200 

Electromagnetic <100 Medium 300-1000 50-200 
 
Table 1.1. Overall performance comparison of the different 

RFMEMS switch actuation techniques [1]. 
 

 

 

Company Actuation Power (mW) Switching 
time (µs) 

Contact force 
(µN) 

Cronos Electrothermal 200 10,000 2000-3000 

Omron Electrostatic 0 300 1000 

Motorola Electrostatic 0 4-6 100 

Radant Electrostatic 0 3-6 100 

Microlab Electromagnetic 0 500 50-150 

Rockwell Sci. Electrostatic 0 8-10 50-100 

Samsung Electrostatic 0 100 50-100 

HRL Electrostatic 0 30-40 50-100 

Lincoln Labs Electrostatic 0 <1 50-100 

ST-
Microelectronics 

Electrostatic 
/thermal 0 300 50-100 

NEC Electrostatic 0 30-40 50-100 
 
Table 1.2. Comparing the performance of RFMEMS contact 

switches reported worldwide by the industry before 
September 2002 [1]. 
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CHAPTER 2 

RELIABILITY AND DESIGN CHALLENGES OF 

RFMEMS CONTACT SWITCHES 

One of the major obstacles facing the commercialization of RFMEMS contact 

switches is the reliability of such devices [18]. Reliability of an RFMEMS contact 

switch can be achieved if the device performs its desired function in a stable manner 

for a convenient lifetime. The desired function is isolating the electrical signal in the 

Off state, and conducting the same signal with a low contact resistance in the On state 

when a certain actuation bias is applied. The stability of operation is achieved when 

the contact resistance remains below a certain value and the required actuation bias 

remains unchanged with the aging of the device. The lifetime of an RFMEMS contact 

switch is usually defined by the number of switching cycles in which the contact 

resistance remains below a certain limit. One of the highest lifetimes reported to date 

is that of the Radant switch which achieved 10 billion switching cycles [1]. Some 

design constraints and challenges arise and have to be considered throughout the 

process of developing a high-reliability RFMEMS contact switch. In this chapter, 

some of the major reliability and design challenges of RFMEMS contact switches will 

be discussed together with proposed solutions to cope with these challenges in the 

design presented in this work. 

 

2.1. RELIABILITY OF MICROCONTACTS 

The most dominant failure mechanisms of RFMEMS contact switches are related to 

the presence of a direct metal-to-metal contact situation in these devices [1]. The 

choice of the metallic elements or alloys to be used is a critical decision and requires 
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knowledge of the contact characteristics of such materials. In addition, the 

technological processes used to deposit the contact layers determine the quality of the 

metallic surfaces and hence influence the microcontacts reliability. The contact 

materials, the technological processes and the environmental conditions determine the 

obtained contact resistance and the required contact force. The source of the contact 

force is the switch actuator which has to be designed to deliver a suitable contact 

force. When the data about the contact characteristics of the available materials and 

technology is limited, it becomes useful to prepare several designs for the actuator 

covering a relatively wide force range to mitigate this lack of information and allow 

for practical contact characterization using the fabricated devices. 

 

2.1.1. Contact Materials 

During more than a decade, several materials have been investigated by many 

researchers worldwide to implement the microcontacts of RFMEMS contact switches 

[19-24]. Pure gold has been conventionally used for this purpose because of its 

relative softness which provides a low contact resistance at a relatively low contact 

force. The low contact force requirement for gold has been very attractive as it 

reduces the size and design effort needed for the electrostatic actuator. A contact force 

of 0.1mN is typically sufficient to establish a stable contact between two clean gold 

surfaces giving a contact resistance around 0.1Ω [22]. While another report claims an 

even lower contact resistance of 0.01Ω by employing advanced contact cleaning 

techniques [23]. This difference in reported values illustrates the sensitivity of contact 

characteristics to many factors including the preparation of test samples, the cleanness 

of the contact surfaces, and the electrical loading conditions. The required contact 
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force for gold is very low if compared to the 20mN contact force needed for a 

conventional relay [25]. 

On the other hand, gold suffers from a severe reliability problem as a microcontact 

metal; that is its high adhesion force, causing it to be “no appropriate contact metal” 

according to J. Schimkat [23]. The high adhesion force of pure gold causes a pure 

gold-based device to fail after a short lifetime due to material transfer during 

switching as well as surface erosion and wear as shown in Fig. (2.1). 

Two typical alternatives to pure gold have been recently proposed in several reports: 

hardened gold alloys and the elements of the platinum metal group. Proposed gold 

alloys include gold-nickel [23] and gold-platinum [19, 20] alloys. Platinum metal 

group member such as platinum, iridium [19], and rhodium [23] have also been 

suggested as suitable contact materials. A comparison of the lifetime of Au-to-Au, 

Au-to-Pt, Pt-to-Pt, Au-to-Ir, AuPt-to-AuPt, and Ir-to-Ir contact combinations has been 

reported recently by H. Kwon et al. and is shown in Fig. (2.2) [19]. It is clear from 

Fig. (2.2) that a platinum-platinum contact gives the best results, because of its high 

lifetime and relatively low contact resistance. 

All the suggested alternatives to pure gold give higher contact resistance values and 

require higher contact force values to establish a contact. The reason for this is that 

they are all harder materials, and higher in bulk resistivity [19]. The exact force 

needed to establish a contact between two certain metallic surfaces is, again, 

dependent on many factors such as the materials of the two surfaces, the quality and 

cleanness of the surfaces, the environment of the experiments, the setup used, and the 

shape of the samples. Fig. (2.3) shows the contact resistance versus force 

characteristics for pure gold and two other contact materials. The required minimum 

contact force for a gold(95%)-nickel(5%) alloy is 0.3mN and for rhodium is 0.6mN, 
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compared to less than 0.1mN for pure gold [23]. These specific facts motivated the 

need for the high force actuator design that will be presented in the following chapters 

of this work. 

 

2.1.2. Rhodium as a Contact Material 

Rhodium belongs to the platinum metal group together with ruthenium, palladium, 

osmium, iridium, and platinum. Rhodium is a hard silvery metal, inert in air and most 

acids. Table (2.1) presents the main physical, mechanical and electrical properties of 

rhodium compared to platinum and gold. The hardness and nobility of rhodium 

recommend it as a reliable contact material. It is logically preferred to platinum due to 

its higher bulk conductivity and hardness. 

To practically investigate the potential of rhodium as a contact metal for RFMEMS 

switches, thin films of rhodium have been deposited on silicon and silicon dioxide 

substrates using pulsed Laser ablation of a solid rhodium target. A schematic of the 

setup used in the deposition process is shown in Fig. (2.4). Sample scanning electron 

micrographs of the surfaces of the obtained rhodium thin films are shown in Fig. 

(2.5). The thickness of the layers prepared ranged between 25nm and 150nm. The 

thickness of the layers has been visually estimated from cross-sectional SEM analysis 

for three of the samples performed at IMEC vzw, Belgium.  

Few of the pulsed Laser deposited rhodium samples have been used to determine the 

contact properties of rhodium thin films while in contact with gold and platinum 

surfaces using a special setup that has been assembled by the reliability and modeling 

team at IMEC vzw, Belgium. The setup employs a stepper motor-driven needle 

attached to a piezoelectric force sensor of 0.3mN precision. The stepper motor and the 

sensor are controlled using a standard computer port. During a measurement, the 
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stepper motor drives the needle slowly downwards causing increasing force on the top 

side of the top triangular sample shown in Fig. (2.6). The force sensor reads out the 

applied force and a Kelvin setup is used to measure the resistance at each motor step. 

The resistance and force values at each step are recorded. 

The electrical setup and current flow in the test structures are illustrated in Fig. (2.7). 

A current is forced to flow between probe 1 and probe 3, and the voltage between 

probe 2 and probe 3 is measured, and hence the resistance between the symmetry line 

AA’ and probe 3 is determined. However, the contact resistance is only a part of the 

measured resistance due to the series-resistive contribution of the metal layers on the 

top and bottom samples. To determine the value of the top sample resistance (RF1), 

the setup in Fig. (2.8) is used, and to determine the value of the bottom sample 

resistance (RF2), the setup in Fig. (2.9) is used. The obtained results for contact 

resistance/force characteristics for rhodium with both gold and platinum are shown in 

Fig. (2.10) and (2.11). The results indicate a minimum contact force less than the 

sensor least readable value, 0.3mN, between rhodium and gold. A minimum contact 

force of around 2.6mN could be observed between rhodium and platinum. 

To ensure the cleanness of the test, the triangular gold and platinum top samples were 

coated with a protective photoresist layer which was removed directly before the test 

to ensure the freshness of the contact bumps. However, a similar procedure could not 

be followed with the bottom rhodium samples. This affected the reproducibility of the 

measurements. Furthermore, the top triangular samples were free to travel laterally 

under the influence of the force needle which affected the stability of the setup during 

each measurement. A microfabricated test structure will be presented later for on-

wafer characterization of contact resistance/force of the available contact materials. 
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The presence of small droplets on the rhodium samples can be observed in Fig. (2.5) 

and is a typical drawback of pulsed Laser deposition. This is believed to affect the 

reliability of such PLD prepared thin films as microcontact surfaces, unless the 

density and sizes of the droplets are well controlled [26]. 

 

2.2. AIR GAP BREAKDOWN 

The electrostatic attraction force of a parallel-plate electrostatic actuator is given by 

[1] 

2
20

02

1 1
2 2e

AVF A
d

ε ε ε= =      (2.1) 

where A is the actuator area, V is the applied voltage, d is the gap spacing between the 

electrodes, and ε  is the present electric field which equals V d . It becomes clear 

from Eq. (2.1) that the force delivered by any parallel-plate electrostatic actuator is 

linearly proportional to the area of the electrodes, and proportional to the square of the 

present electric field. This indicates the significance of the electrostatic breakdown of 

the medium between the actuator electrodes. Increasing the applied electric field 

clearly boosts the obtained contact force, but a critical electric field value must not be 

exceeded to avoid the breakdown of the medium between the two electrodes and the 

failure of the device. A typical testing environment employs atmospheric-pressure air 

as a host medium for the actuator. 

The main cause of electrostatic breakdown in a MEMS actuator with gap spacing 

between 2nm and 5µm is field emission of electrons [27]. In this breakdown 

mechanism, free electrons inside the metal lattice are detached when they are near the 

surface due to high attraction, and plasma is formed near the metal surface. When this 

plasma expands and reaches the anode, a spark is formed [28]. This phenomenon is 
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sensitive to the metal type and its surface properties. The modified Paschen curve 

shown in Fig. (2.12) takes field emission into account, and estimates the breakdown 

field for air at 1atm as 75V/µm for gaps below 5µm. Few experimental results have 

been reported on the breakdown of  air in very small gaps between two metallic 

surfaces, as illustrated in Table (2.2). The minimum reported breakdown field is 

50V/µm between an aluminum cathode and a nickel anode for 0.25-1.5µm gaps [29]. 

This value will be considered as a recommended upper limit for the electric field 

present in the actuator gap throughout this work. Test structures will be presented in 

the following chapters to help measuring the actual on-wafer breakdown field for the 

available materials and technology. 

It is worth mentioning that the polarity of the applied voltage to the electrostatic 

actuator has no effect on the obtained force, thus exchanging the cathode and anode 

will not affect the obtained force but may alter the breakdown field which is sensitive 

to the cathode material properties and surface quality. This should be considered for 

experimental validation. 

 

2.3. MECHANICAL STABILITY 

Several mechanical design challenges have to be considered while developing a 

reliable RFMEMS contact switch design [1]. The mechanical design seeks the 

satisfaction of the main actuator design goal; that is the high contact force in our case. 

Nevertheless, some mechanical reliability constraints and challenges have to be 

concerned about. 

A static mechanical analysis of the electrostatic actuator determines the upper 

electrode deflection profile and the contact force obtained for a certain applied voltage 

as will be explained in Chapter 3. The initial electrode profile is conventionally 
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assumed horizontally planar in such analysis. However, the technological processes 

employed to fabricate the actuator result in a vertical stress gradient in the structure, 

causing a permanent deflection of the released beam prior to applying the actuation 

bias. This stress gradient-induced deflection has to be within the allowed limits 

estimated from the properties of the final design reached. A problem-aware design 

should employ a large initial separation between the fixed and free electrodes to 

lessen the effect of such initial deflections as will be explained in later chapters. 

From a dynamical point of view, the top electrode of an electrostatic actuator 

represents a high order spring-mass system which possesses fundamental and 

harmonic mechanical resonance frequencies; the values of which depend on the mass 

of the beam, the stiffness of its suspension spring, and the shape of the overall 

structure. An acceptable range for the fundamental resonant frequency of electrostatic 

RFMEMS switches is 10-200KHz [1]. This range ensures the isolation of the system 

from any external mechanical vibrations. 

Another mechanical design challenge is the presence of the release holes in the beam 

as shown in Fig. (2.13). These holes are necessary to successfully etch away the 

sacrificial layer under the top electrode to release the structure. They are also useful 

for reducing the squeeze film damping, allowing for smaller switching time. This 

simply means they represent uniformly distributed exits for the air molecules under 

the beam, thus lowering the pressure of these air molecules which resists the 

downward motion of the beam. On the other hand, these holes reduce the overall 

rigidity of the beam causing a lower effective Young’s modulus than predicted from 

material properties. This deviation in the beam rigidity has to be considered during the 

design process. A technological solution to this issue is a slight increase in the beam 
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thickness while fabricating the device to increase the beam rigidity and effectively 

return to the expected rigidity. 

 

2.4. PACKAGING 

Packaging of RFMEMS contact switches is vital for their reliability. These devices 

are very sensitive to humidity and environmental contaminants as explained before in 

the discussion on microcontacts reliability. Hermetic packaging in nitrogen or dry air 

environments is recommended [1]. Though very critical for the performance of 

RFMEMS contact switches, this challenge is mainly a technological and cost 

challenge rather than a design issue. 
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Figure 2.1. SEMs of sample gold contact surfaces after failure due 
to wear, erosion (a), and material transfer (b) (after 
[19]). 

 

 

 

 

Figure 2.2. Lifetime comparison for different contact materials 
combinations. The sharp rise in contact resistance 
represents the failure of the contact and the end of its 
lifetime (after [19]). 
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Figure 2.3. Contact resistance/force characteristics of pure gold, a 
gold-nickel alloy, and rhodium (after [23]). 

 

 

 

 

Figure 2.4. A schematic diagram of the PLD setup at STRC, AUC, 
Egypt. 
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Figure 2.5. SEM of two different rhodium thin film samples 
prepared using the PLD setup at STRC, AUC, Egypt. 
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Figure 2.6. Diagram of the test structures used to characterize the 
contact resistance/force behavior of rhodium with gold 
and platinum. 

 

 

 

 

Figure 2.7. Diagram of the electrical setup and current flow for the 
resistance measurement. 
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Figure 2.8. The technique of measuring the resistive contribution of 
the top sample. 

 

 

 

Figure 2.9. The technique of measuring the resistive contribution of 
the bottom sample. The length (L) is the same as shown 
in Fig. (2.7). 
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Figure 2.10. Contact resistance versus contact force for 

rhodium/gold interface. The resistance of Probe 3 is not 
excluded in the corrected curve. 

 

 
Figure 2.11. Contact resistance versus contact force for 

rhodium/platinum interface. The resistance of Probe 3 
is not excluded in the corrected curve. 
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Figure 2.12. Modified Paschen curve, indicating a breakdown field 
of around 75V/µm for gaps smaller than 5µm (after 
[27]). 

 

 

 

 

 

Figure 2.13. Top view of part of an actuator beam indicating the 
presence of release holes. The holes are 10µm in 
diameter, with a horizontal pitch of 40µm. 
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Property Unit Rhodium Platinum Gold 

Density g/cm3 12.4 21.45 19.32 

Melting point °C 1960 1769 1063 

Elasticity modulus  GPa 359 152 80 

Bulk resistivity µΩ.cm 4.3 9.8 2.2 
 
Table 2.1. Comparing the main physical, mechanical and electrical 

properties of rhodium, platinum and gold [30]. 
 

 

 

 

Gap spacing 
(µm) 

Cathode 
material 

Anode 
material 

Breakdown 
field (V/µm) Reference 

0.9 chrome chrome 156 [27] 

<2.5 iron silver 70 [31] 

0.25-1.5 aluminum nickel 50 [29] 
 
Table 2.2. Experimental results reported in the literature on the 

electrostatic breakdown field of small air gaps. 
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CHAPTER 3 

SEMI-ANALYTICAL MODEL FOR 

ELECTROSTATICALLY ACTUATED BEAMS 

In order to achieve the goal of designing a high force RFMEMS contact switch and to 

be able to handle all the challenges described in Chapter 2, an accurate and fast model 

for the problem has to be developed. The speed of the solution normally contradicts 

with its accuracy. The most accurate known solution for an electrostatically actuated 

beam problem is a full 3D finite element analysis of the complete structure of the 

device. A typical solution time on an up-to-date desktop PC using a commercial finite 

element analysis tool optimized for MEMS analysis ranges between few minutes and 

few hours for an electrostatically actuated beam problem at given actuation voltage, in 

addition to the time consumed in modeling the problem geometry and describing the 

materials properties and boundary conditions. The exact time depends on the details 

of the structure and number of the mesh finite elements. The accuracy and solution 

time increase with increasing the number of mesh elements. If the designer needs to 

sweep any of the design parameters of a certain structure or even sweep the actuation 

voltage, then the solution time range jumps up between few hours and few days. 

On the other hand, the fastest solution to the same problem is achieved by simplifying 

the problem to a parallel-plate capacitor with the top plate suspended by a spring of 

certain stiffness as explained in the following section. The oversimplification of the 

problem and neglecting details like the deflection profile of the top plate and the 

nonuniformity of the attraction force are the main causes of the inaccuracy of such 

solution. The numerical evaluation of the simple equations governing this simplified 
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model can take a fraction of a second using a general-purpose mathematical tool like 

MATLAB®.  

The third approach to the problem in hand is to use the beam deflection theory [32], 

together with the fundamental electrostatic attraction equations. This is the 

intermediate custom solution of the problem. Section 3.2 describes the development 

of this model, and the results it gives are compared to both the simplified analytical 

solution and the 3D finite element analysis. 

 

3.1. SIMPLIFIED ANALYTICAL MODEL 

For the switch structure shown in Fig. (3.1), Eq. (2.1) describes the electrostatic 

attraction force and can be rewritten as 

2
20 max

max 0 max2
min

1 1
2 2e

AVF A
d

ε ε ε− = =      (3.1) 

where  is the maximum obtained electrostatic force,  is the minimum 

spacing between the plates in the On state, and 

maxeF − mind

maxε  is the maximum allowed electric 

field in the structure which has been previously estimated as 50V/µm. 

The spring constant of the fixed-fixed flexures of the structure is given by [1] 

3

4s s
s

tk Ew
L

⎛ ⎞
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⎝ ⎠
     (3.2) 

where E is Young’s modulus of the flexures material, t is the thickness, sw  is the 

width, and sL  is the length of each of the flexures. 

Now the mechanical restoring force due to the travel of the top beam to any lower 

position is given by 

( )0r sF k d d= −      (3.3) 

where d is the final gap height. 
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Solving Eq. (2.1) and (3.3) to obtain the a relationship between the gap height and the 

applied voltage, we get 

( )2
0

0

2 sk d d d
V

Aε
−

=      (3.4) 

Eq. (3.4) can be rearranged as follows 

3
0

0 0 0

21 ; sk dV d d
d d

α
α ε
= − =

A
     (3.5) 

where α  is a constant. Fig. (3.2) plots the relation between V α  and 0d d . The plot 

shows that there are two equilibrium solutions for the equation, with a critical solution 

point at the maximum voltage on the curve where the gap height is 2/3 its initial 

value. If the applied voltage reaches or exceeds this maximum voltage, or pull-in 

voltage, the forces on the beam are no more in equilibrium and it collapses to its 

lowest allowed position. The pull-in voltage is given by 

0

3
0

2
3 0

8
27
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k dV V
Aε=

= =      (3.6) 

At this point, a design constraint is observed which necessitates that the pull-in 

voltage is lower than the breakdown voltage of air when the beam is in the down 

state. The applied voltage has to exceed the pull-in voltage to pull the beam down to 

the contact situation, assuming that min 0d d2 3< . 

In the down state, the electrostatic attraction is higher than the restoring force of the 

springs. The difference between these two forces appears as a pressing force at the 

three pairs of bumps shown in Fig. (3.1). The contact force is the pressing force at the 

middle pair of bumps. Using Eq. (3.1-3.3), the contact force can be given by 
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assuming a uniform distribution of the force among the three pairs of bumps. 

Considering a typical structure with the parameters shown in Table (3.1), the obtained 

contact force at the middle pair of contact bumps is around 1.2mN at 50V applied 

bias. The pull-in voltage has been calculated using Eq. (3.6) as 38.8V for this specific 

structure. At 42V, the model predicts a contact force of 0.76mN. 

It may be argued that losing 2/3 of the useful force at the two pairs of bumps at the 

sides of the actuator is not justified. They have been presented to enhance the stability 

of the beam in the contact mode as they prevent further collapse of the beam at the 

corners due to electrostatic attraction. This argument uncovers a drawback of this 

simplified model which does not give any information about the stiffness of the beam 

against possible collapse at the corners, and does not tell where are the optimum 

positions for those supporting bumps to prevent the beam collapse and preserve the 

highest portion of the usable force for the contact bumps. 

 

3.2. A 2.5D SEMI-ANALYTICAL MODEL 

A different approach is now considered for a similar problem as in the previous 

section. The new approach is more general and capable of solving both cantilever and 

bridge, or fixed-fixed, type beams. The cantilever problem is presented first and then 

a modification is described to handle the bridge problem. The solution of either the 

cantilever or the bridge problem is subdivided into three stages; each with different 

loading conditions. The fact that the solution is performed in a 2D manner with 
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consideration of some of the parameters in the third dimension is the reason why it is 

termed a 2.5D model. 

 

3.2.1. Before Pull-in 

The cantilever beam problem shown in Fig. (3.3) can be represented by the 2D free 

body diagram in Fig. (3.4) in case of no contact at the end tip, or before pull-in. This 

free body diagram represents a statically determinate problem, as the number of 

reactions, which are P and M0, is equal to the number of independent equations of 

equilibrium, which are the moment and vertical force equilibrium equations. The only 

external load in this problem is the nonuniform distributed electrostatic attraction 

force, q(u(x)). To determine the equilibrium beam profile, we have to solve the basic 

differential equation of the deflection curve. A derivation from first principles for the 

deflection curve equation can be found in [32], yielding the relation 

2
( )

( ) ( ) 2
x

x x

d u
M EI

dx
=      (3.8) 

where E is the modulus of elasticity of the beam material, and ( )xI  is the area moment 

of inertia of the beam around the beam axis. The product ( )xEI  is the flexural rigidity, 

and is a function of position because of the dependence of the area moment of inertia 

on the width and thickness of the beam which can vary from one section to the other 

as shown in Fig. (3.3). It can be easily shown that the area moment of inertia of a 

beam of rectangular cross-section is given by [32] 

3

12
wtI =      (3.9) 

where w is the beam width and t is its thickness. 
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The next step is trying to find the bending moment as a function of position. Using the 

diagrams in Fig. (3.5), it can be shown that 
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   (3.10) 

The reactions at the anchor can be obtained by applying the moment and vertical force 

equilibrium equations for the external load and reactions on the free body diagram in 

Fig. (3.4) as follows 
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The electrostatic attraction distributed load is obtained by differentiating Eq. (2.1) 

with respect to the beam length, given that the area is the product of the width and 

length. This yields 
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   (3.12) 

where  is the width of the actuated section of the beam as in Fig. (3.3). 2w

At this point, the nonlinearity of the problem is noticeable. The unknown deflection 

function in Eq. (3.8), ( )xu , is present to the second degree in the denominator of the 

electrostatic distributed force which is part of the several integrals used to obtain the 

bending moment on other side of Eq. (3.8). This nonlinearity does not allow for an 

analytical solution to Eq. (3.8), and a numerical solution is needed [33].  
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Substituting from Eq. (3.9-3.12) into Eq. (3.8), and taking into account the 

substitution with the appropriate beam width into the area moment of inertia of each 

of the three beam sections, we get 
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   (3.13) 

Eq. (3.13) can be numerically evaluated using an iterative approach. An initial 

deflection profile has to be assumed and used to evaluate the integrals on the right 

hand side, and then the ordinary differential equation is solved for the new deflection 

curve ( )xu . This new deflection curve is iterated back to evaluate the integrals, and so 

on. This procedure is repeated until convergence is observed for the deflection curve. 

The model developed so far is capable of performing two useful functions, which are 

the prediction of the deflection curve of any cantilever beam structure at any applied 

voltage as well as detecting the pull-in of the beam. The exact calculation of the 

deflection curve is significant for the design of capacitive switch structures. Pull-in is 

detected by the divergence of the iterative solution of the differential equation and the 

quick collapse of the cantilever free end to the minimum gap height. Further increase 

in the applied voltage above the pull-in voltage always yields a divergent solution. 

The structural parameters of a sample structure are illustrated in Table (3.2), and the 

results of the semi-analytical model are shown in Fig. (3.6), together with the results 

of simulating the same problem with CoventorWare. The error in calculating the tip 
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deflection is less than 0.3%, and the time needed for the semi-analytical model 

solution is in the order of 0.5sec for 6 iterations, against 10-20 minutes for the 

CoventorWare simulation. A detailed discussion of the procedure of simulating such 

beam structures using CoventorWare is presented in Chapter 4. The iterative solution 

of the semi-analytical model is performed using MATLAB®, employing its built-in 

numerical ordinary differential equation solver. Fig. (3.7) shows a flowchart which 

describes the algorithm developed to solve model equation, additionally allowing for 

a sweep for any of the design parameters or the voltage. 

 

3.2.2. After First Pull-in 

Further increase of the applied voltage to the sample structure number (2) causes the 

beam tip to pass across the contact bump as shown in Fig. (3.8). After pull-in occurs, 

the cantilever beam tip deflection is restricted to a certain value, ht. Thus a new 

reaction appears in the free body diagram as shown in Fig. (3.9). The new reaction is 

the contact force. 

The problem is statically indeterminate because of the presence of three reactions 

against only two equilibrium equations. The missing equation is the boundary 

condition restricting the beam deflection at the end point according to the bump 

height. In an analytical fashion, one would solve for the deflection curve using an 

unknown contact force which is later obtained by applying the boundary condition to 

the obtained deflection curve. However, this is not possible in a numerical solution. 

The numerical value of the contact force has to be known prior to attempting to 

numerically obtain the deflection curve. The approach in this situation is a numerical 

search for the value of the contact force which satisfies the boundary condition. 
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In order to find the bending moment function, the diagrams in Fig. (3.5) describe the 

current situation, thus Eq. (3.10) still expresses the bending moment function. 

However, the equilibrium equations are different from the previous case because of 

the introduction of the contact force. The reactions at the anchor become 
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Substituting as before from Eq. (3.9, 3.10, 3.12, 3.14) into Eq. (3.8), we get 
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   (3.15) 

Eq. (3.15) is only different from Eq. (3.13) by the introduction of the contact force 

terms.  

Using sample structure number (2) as before, a comparison between the results of the 

semi-analytical model and CoventorWare simulation at 30V is shown in Fig. (3.10). 

The contact force of the device has been calculated with less than 0.4% error 

compared to the finite element simulation. The time needed to perform the semi-

analytical model iterations is in the order of 10 seconds, against 40-60 minutes for the 

finite element simulation. 
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The algorithm used to implement the model after first pull-in is similar to the iterative 

algorithm used before pull-in, with additional steps to find the value of the contact 

force which satisfies the problem boundary condition for each iteration. The flowchart 

in Fig. (3.11) explains the algorithm developed for this part of the model. 

In brief terms, the algorithm keeps iterating the deflection curve until convergence in 

the obtained contact force value is observed. The contact force is given a zero initial 

value, and the deflection curve is given the profile shown in Fig. (3.12). Other 

assumptions for the initial deflection curve yield approximately the same results, but 

may affect the number of iterations needed to reach the converged solution. More 

realistic assumptions yield lower number of iterations. Within each iteration, the 

contact force value is incremented and the solution is repeated until the boundary 

condition at the contact tip is satisfied. The steps of incrementing or decrementing the 

contact force are not constant. The increments are initially coarse, but as the boundary 

condition is approached, successive bisections of the incrementing or decrementing 

step yield a very fine resolution for the obtained contact force which satisfies the 

boundary condition. 

 

3.2.3. After Second Pull-in 

Further increase of the electrostatic attraction on the beam of sample structure number 

(2), causes the beam to collapse near its middle because it is now supported from both 

ends by the anchor and contact bump. This second pull-in is considered a failure 

mode for the device as it causes the two electrostatic actuator electrodes to be short-

circuited. No isolation dielectric layer is introduced between the electrodes in the 

proposed structure to simplify the switch fabrication technology and avoid any 

dielectric charging problems [1]. 
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A third sample structure is described in Table (3.3) for further illustration. Fig. (3.14) 

shows that this structure gives a maximum contact force of 0.328mN at 34V before 

the device fails due to second pull-in at 35V. The semi-analytical model is always 

capable of detecting the maximum electric field present in the structure by dividing 

the applied voltage value by the spacing between the bottom electrode and the nearest 

point on the beam curve. The maximum field in this case is 31.6V/µm as shown in 

Fig. (3.14). It is still below the recommended upper limit which is 50V/µm. To 

enhance the structure performance, we can shorten the structure springs to 250µm. 

The result of this modification is having 0.697mN contact force at maximum electric 

field of 50.6V/µm. This is almost the optimum operation point for the given actuator 

size and beam thickness. 

Further improvement of the contact force requires modifying the proposed geometry 

in Fig. (3.3). A suggested improvement to the situation is adding another bump, or a 

stopper, to the beam within the range of the bottom electrode to provide a third 

suspension point for the beam as shown in Fig. (3.16). 

This new situation involves a new reaction at the stopper as shown in the free body 

diagram in Fig. (3.17). The new problem is also statically indeterminate because of 

the presence of four reactions against two equilibrium equations. The two remaining 

equations are the boundary conditions at the contact and stopper bumps restricting the 

deflection curve to certain values at these two points. 

The diagrams in Fig. (3.18) allow for the calculation of the bending moment as 

follows 
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Referring to Fig. (3.17), the equilibrium equations can be written as 
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Substituting as before from Eq. (3.9, 3.12, 3.16, 3.17) into Eq. (3.8), we get 
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The results of solving Eq. (3.18) numerically for sample structure number (3) at 40V 

are compared to CoventorWare simulation of the same structure are shown in Fig. 

(3.19). The stopper in this case has the same height as the contact bump and is placed 

100µm from the left end of the bottom electrode. Table (3.4) summarizes the 

comparison between the model and CoventorWare results. The obtained contact force 

is around 0.85mN which is more than 20% higher than the maximum value obtained 

at the same peak electric field before introducing the stopper to the structure. 

In this case, the numerical solution algorithm has to find the values of the contact 

force and stopper reaction which simultaneously satisfy the two boundary conditions 

at the contact and stopper bumps. The algorithm developed to handle this situation is 

presented in Fig. (3.20). BC1 represents the boundary condition at the contact bump 

and BC2 represents the boundary condition at the stopper bump. The initial beam 

deflection curve can be taken as a null array or as the profile in Fig. (3.12). 

 

3.3. APPLYING THE SEMI-ANALYTICAL MODEL TO BRIDGE 

PROBLEMS 

Considering fixed-fixed type beams, or bridges, which are symmetrically double the 

structures in Fig. (3.3, 3.16), mirrored at the free ends. The analysis of the problem is 

made simpler by its symmetry. Only the half-structures shown in Fig. (3.3, 3.16) need 

to be analyzed with an additional symmetry boundary condition at the free ends. 

For deeper understanding of the problem, it is noticeable in the bridge case that there 

are four anchor reactions, two moments and two forces, against only one moment and 

one force in the cantilever problem. Due to symmetry, the two force reactions are 

equal, and each of them is equal to half the net external load on the beam according to 

the vertical force equilibrium equation. The two moment reactions are also equal, but 
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the value of each is not determinate from the moment equilibrium equation. The 

reason is that if we try to apply the moment equilibrium equation at any point, we find 

that the two moment reactions are acting equally in magnitude and oppositely in 

direction, and thus cancel each other from the equation. 

In conclusion, the bridge problem involves one higher degree of indeterminacy than 

the cantilever problem. This higher indeterminacy is substituted by adding an 

unknown moment which substitutes for the unknown anchor moment reactions. The 

resulting free body diagrams of the half-bridge structures are shown in Fig. (3.21). 

The additional boundary condition to be satisfied is the symmetry boundary condition 

implying a null slope for the deflection curve at the symmetry plane, i.e. at x l=  [32]. 

The procedure to analyze the bridge problem is similar to the cantilever problem, 

given that the only difference in the free body diagrams of both cases is the presence 

of the additional unknown moment CM  in the bridge case. Applying the same 

procedures as before, the beam deflection differential equation for the bridge problem 

before pull-in becomes 
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The numerical algorithm to solve Eq. (3.19) is much similar to the algorithm 

presented in Fig. (3.11) by exchanging the contact force with CM  as the parameter 

under numerical search, and exchanging the contact tip boundary condition with a 

zero slope for the deflection curve at x l= . 

After first pull-in, the beam deflection equation becomes 
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Similarly, after second pull-in the beam deflection equation becomes 
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Considering the bridge version of sample structure number (3) which is illustrated in 

Table (3.3), the bridge model results are compared to CoventorWare simulation in 

Fig. (3.22). Both the semi-analytical and finite element solutions are performed using 

a symmetry boundary condition at the cantilever free end to represent the bridge. 

The structure analyzed in Fig. (3.22) has almost the same geometry as sample 

structure number (1) which has been analyzed using the simplified analytical model in 

Section (3.1). Table (3.5) summarizes a comparison between the results obtained 

using the three techniques and the respective errors considering the finite element 

simulation as a reference. 
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Figure 3.1. Structure of fixed-fixed flexures contact switch. A top 
view and two cross-sectional views are shown 
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Figure 3.2. Pull-in of electrostatic actuators. A plot of the 
dimensionless relationship between actuation voltage 
and gap height indicating the occurrence of pull-in at 
2/3 of the initial gap height. 

 

 

Figure 3.3. The general cantilever beam structure for the semi-
analytical model. 
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Figure 3.4. Free body diagram of the cantilever beam structure 
before pull-in. 

 

 

 

Figure 3.5. Bending moment calculation diagrams for a cantilever 
before pull-in and after first pull-in. 
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(b) 

Figure 3.6. Comparing the results of CoventorWare simulation (a) 
and the semi-analytical model (b) for sample structure 
number (2) at 10V. An error of less than 0.3% in the tip 
deflection is observed. 
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(a) 

 
(b) 

Figure 3.7. Flowcharts of the main program (a) and the subroutine 
for solving a cantilever problem before pull-in (b). 
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Figure 3.8. Pull-in detected for sample structure number (2) at 30V. 
The solution diverges and the beam passes through the 
bottom electrode shown as a red line. 

 

 

 

 

 

Figure 3.9. Free body diagram of the cantilever beam after first 
pull-in. 
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(b) 

Figure 3.10. Comparing the results of CoventorWare simulation (a) 
and the semi-analytical model (b) for sample structure 
number (2) at 30V. An error of less than 0.4% in 
calculating the contact force is observed. 
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Figure 3.11. A flowchart developed to implement the semi-
analytical model solution after first pull-in. 
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Figure 3.12. Initial deflection curve used for cantilever beam model 
after first pull-in. 
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Figure 3.13. Second pull-in of sample structure number (2) observed 
at 70V. 
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(b) 

Figure 3.14. Maximum contact force of 0.328mN obtained for 
sample structure number (3) at 34V (a) before second 
pull-in occurs at 35V (b). 
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Figure 3.15. Modified sample structure number (3), giving 0.697mN 
contact force at 55V. 

 

 

Figure 3.16. The modified cantilever structure, including a stopper 
to enhance the stability of the beam. 
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 Figure 3.17. Free body diagram of the cantilever beam structure 
after second pull-in. 

 

 

 

Figure 3.18. Bending moment calculation diagrams for a cantilever 
after second pull-in. 
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(a) 

 

 
(b) 

Figure 3.19. The model (a) and CoventorWare (b) results for sample 
structure number (3) at 40V. 
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Figure 3.20. A flowchart developed to implement the semi-
analytical model solution after second pull-in. The 
flowchart is divided into two pages for size limitations. 
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Figure 3.21. Free body diagrams for the bridge problem. An 
unknown moment Mc is introduced. Symmetry 
boundary condition is expressed by a null deflection 
curve slope at the symmetry plane. 
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Figure 3.22. The bridge model results (a) and CoventorWare 
simulation of the bridge version of sample structure 
number (3). 
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Parameter Description Value Unit 

A Actuator area 500x800 (µm)2

E Metal elasticity modulus 180 GPa 

t Spring thickness 10 µm 

sw  Spring width 25 µm 

sL  Spring length 400 µm 

0d  Initial gap height 4 µm 

mind  Minimum gap height 1 µm 

 
Table 3.1. Parameters of sample structure number (1) for the 

simplified analytical model. Parameters are visualized 
in Fig. (3.1). 

 

 

Parameter Description Value Unit 

xe1 Length of spring 50 µm 

Le Length of electrodes 100 µm 

Lp Length of passive extension 0 µm 

w1 Spring width 20 µm 

w2 Electrodes width 80 µm 

w3 Passive extension width 80 µm 

t1 Spring thickness 2 µm 

t2 Plate thickness 3 µm 

d0 Initial gap height 2 µm 

ht Contact bump height 0.2 µm 

E Beam material elasticity 220.5 GPa 

 
Table 3.2. Parameters of sample structure number (2) for the semi-

analytical model of a cantilever structure. Parameters 
are visualized in Fig. (3.3). 
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Parameter Description Value Unit 

xe1 Length of spring 400 µm 

Le Length of electrodes 400 µm 

Lp Length of passive extension 50 µm 

w1 Spring width 50 µm 

w2 Electrodes width 500 µm 

w3 Passive extension width 200 µm 

t1 Spring thickness 10 µm 

t2 Plate thickness 10 µm 

d0 Initial gap height 4 µm 

ht Contact bump height 1 µm 

E Beam material elasticity 180 GPa 

 
Table 3.3. Parameters of sample structure number (3) for the semi-

analytical model of a cantilever structure. Parameters 
are visualized in Fig. (3.3). 

 

 

 

 CoventorWare Model Error 

Contact force 0.85 mN 0.85 mN 0 % 

Stopper reaction 0.62 mN 0.61 mN -1.6 % 

Peak electric field 53.3 V/µm 50.6 V/µm -5 % 

PC simulation time 40-60 seconds 2-3 hours ----- 

 
Table 3.4. Comparing the semi-analytical model results to 

CoventorWare results for sample structure number (3) 
at 40V. 

 

 

 

62 



  CoventorWare Semi-analytical 
model Simplified model 

Value 2 mN 2.07 mN 0.76 mN Contact 
force 

Error 0 % 3.5 % -62 % 

Value 0.35 mN 0.37 mN 0.76 mN Stopper 
reaction 

Error 0 % 5.7 % 117 % 

Value 48 V/µm 49.2 V/µm 42 V/µm Peak 
electric 

field Error 0 % 2.5 % -12.5 % 

PC simulation time 3-4 hours 2-3 minutes 0.1 sec 

 
Table 3.5. Comparing the semi-analytical model and simplified 

model results to CoventorWare results for the bridge 
version of sample structure number (3) at 42V. 
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CHAPTER 4 

DESIGN AND TECHNOLOGY OF HIGH FORCE 

RFMEMS CONTACT SWITCHES 

The development of the relatively fast and accurate model presented in Chapter 3 is of 

significant value to the design process of high force RFMEMS switches. The model 

quickly provides the results of sweeping any of the design parameters, and thus 

promotes making quick and optimal design decisions. The model also predicts the 

optimum operating voltage for a specific design, which produces the highest contact 

force, given that the peak electric field is below the breakdown field. Furthermore, the 

model enables investigating the effect of possible deviations in the technological 

process outcomes or operating conditions. 

In this chapter, design issues will be discussed based on the model results. Moreover, 

full 3D finite element simulations for the final designs will be presented. The overall 

performance of the final designs will also be discussed. Finally, the fabrication 

technology for the presented designs will be explained together with test structures 

designed to determine the technology-dependent characteristics of the fabricated 

devices. 

 

4.1. DESIGN CONSIDERATIONS 

The design parameters of the problem in hand are the geometrical dimensions 

presented in Fig. (3.16), in addition to the beam material which determines the 

modulus of elasticity needed for the model calculations.  

The geometrical parameters in Fig. (3.16) are, however, not totally independent in 

their effect on the obtained contact force. For instance, the flexural rigidity of the 
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suspension spring is proportional to the product of its width ( ) and the cube of its 

thickness ( ), which means that increasing the spring thickness and decreasing its 

width by certain amounts can yield the same behavior. An efficient design procedure 

for a high force device should make use of such relations among the switch structural 

parameters. 

1w

3
1t

Moreover, the effect of certain parameters on the obtained contact force is roughly 

predetermined, like the direct effect of the electrostatic actuator area ( ), 

which is the area of the middle section of the beam, on the contact force as predicted 

by Eq. (2.1). 

2 eA w L= ×

Another consideration for the design process is the simplicity of the fabrication 

process of the obtained design. Presenting a high force device which requires the least 

complicated fabrication process is an important aspect of this work. The simplicity of 

the fabrication processes is achieved when the vertical variations in the structure are 

limited. For instance, giving the same thickness to the two sections of the beam 

( ) eliminates an extra mask and extra processing steps that would have been 

needed to differentiate between the lower and higher thickness regions. This 

constraint does not reduce the design flexibility of the structure, because of the 

redundancy of some of the parameters as discussed before. From another point of 

view, increasing the thickness of the beam is preferred to enhance its rigidity against 

any collapse due to the high electrostatic attraction to the bottom electrode. 

1t t= 2

Further technology simplification can be achieved by assigning the same value to the 

heights of the contact and stopper bumps. This enables defining both features in a 

single fabrication process rather than two. It may be argued that this new constraint 

limits the design flexibility of the structure. However, Fig. (4.1) shows the model 

results for different stopper bump heights and positions for sample structure number 
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(3) illustrated in Table (3.3). The results show that there is a different stopper position 

which provides approximately the same peak contact force for different stopper 

heights. It is worth mentioning that lower stopper position values would yield higher 

contact force values, but only at peak electric field values which are significantly 

higher that the recommended upper limit of 50V/µm. 

The initial gap height ( ) has limited effect on the obtained contact force. However, 

it is a significant performance and robustness enhancement factor. Increasing the 

initial gap height provides higher isolation between the contact surfaces in the Off 

state. Moreover, increasing the initial gap height lessens the effect of any undesirable 

technology-induced deflections in the implemented cantilever or bridge beams. The 

only drawback of increasing the initial gap height is the increase in the required 

voltage for the first and second pull-ins, causing a higher peak electric field in the 

structure after the pull-in events. The peak electric field has to be kept below the 

recommended upper limit of 50V/µm. 

0d

The rightmost section of the beam in Fig. (3.16) is a passive beam section which 

undergoes no electrostatic attraction, but provides the lateral space needed to isolate 

the bottom electrode from the signal line. The width ( ) and length (3w pL ) of this 

section are chosen to provide the necessary isolation and keep the overall rigidity of 

the beam high enough to transfer the electrostatic attraction at the contact tip. The 

effect of varying the passive section length and width for sample structure number (3) 

is shown in Fig. (4.2). The curves of the contact force versus the peak electric field 

are obtained by sweeping the applied voltage on the beam with steps of 2V in the 

semi-analytical model. The large transitions in the values of the contact force and 

peak electric field on the curves in Fig. (4.2) represent the occurrence of the second 
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pull-in. The effect of the width on the obtained results is very small because of the 

high beam thickness which dominates the rigidity of this section. 

On the other hand, the leftmost section of the beam represents the suspension spring. 

The model treats this section as a single beam of width ( ), however it is 

implemented as two narrow beams of width (

1w

1 2w ) for better mechanical stability of 

the structure. The width and length of the spring determine the stiffness of the beam 

suspension. For each combination of the rest of the design parameters, there is an 

optimum spring stiffness which provides the maximum contact force at the upper 

limit of the peak electric field. The optimization curves for the spring stiffness for 

sample structure number (3) are shown in Fig. (4.3). The optimum curve is one with 

second pull-in occurring shortly before reaching the peak electric field limit of 

50V/µm. Shorter spring lengths yield higher spring stiffness causing the second pull-

in to occur at higher peak electric field values, and larger spring lengths yield lower 

spring stiffness causing a lower gain in the contact force during the second pull-in 

transition. 

Finally, the choice of the beam material determines the modulus of elasticity part of 

the flexural rigidity needed for the model calculations. The beam material chosen in 

this work is nickel, deposited by electroplating. The main reason for this choice is the 

availability of a relatively mature technology to deposit thick layers of nickel up to 

10µm. The nominal Young’s modulus for nickel is 207GPa [30]. However, the actual 

hardness of the plated layer may deviate from this value. Furthermore, the presence of 

the release holes in the beam tends to reduce the effective rigidity of the beam. 

However, the beam thickness can be adjusted to correct the flexural rigidity value 

despite any deviations in the modulus of elasticity. The effect of varying Young’s 

modulus for sample structure number (3) is shown in Fig. (4.4). A 27% reduction in 
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Young’s modulus caused approximately 10% reduction in the obtained contact force 

at 50V/µm peak electric field. The large thickness of the beam is the reason of the 

relative stability of the contact force against elasticity modulus variations. 

 

4.2. COVENTORWARE SIMULATIONS 

High force switch structures have been designed using the semi-analytical model 

presented in Chapter 3, based on the design considerations discussed in the previous 

section. Further validation and enhancement for the obtained designs has been carried 

out using the 3D finite element electrostatic/mechanical coupled solver of 

CoventorWare. 

 

4.2.1. Contact Switch Simulation Procedure 

The steps to simulate an electrostatically actuated contact switch and obtain the 

contact force and peak electric field at a given applied voltage using CoventorWare 

are summarized in the following list: [34] 

1. Simulation project initialization and material properties database setup: The 

custom material properties needed for the device are defined in this step using 

the easy-to-use material editor interface of CoventorWare 

2. Process definition: In this step, a sequence of virtual fabrication processes is 

defined to create the 3D model from a 2D layout. The processing steps are 

mainly layer growth steps with defined materials and thicknesses, as well as 

patterning steps using the layout masks. 

3. Layout editing: A mask is needed for each of the etch steps defined in the 

process sequence. These masks can be edited in any standard layout editor or 

using the layout editor available in CoventorWare.  
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4. Building the 3D model: In this step, CoventorWare builds a 3D model for the 

structure, based on the information in the 2D layout and the processing 

sequence. A 3D model for a 10µm thick cantilever with 400µm long folded-

springs, obtained by performing the previous steps, is shown in Fig. (4.5). 

5. Naming entities: In this step, the solid bodies and surfaces of interest are 

assigned distinct and expressive names. These names will be used later to 

assign boundary conditions and other simulation constraints to each specific 

entity. 

6. Meshing: In this step, the volumes and surfaces of the 3D model are divided 

into a mesh of small elements. The shape and size of the mesh elements are 

chosen to accurately represent the volume or surface geometry. The type of 

the mesh elements is chosen based on the function of the entity they represent. 

For instance, a metallic fixed electrode is represented by surface elements 

rather than volume elements as its only role in the simulation is the presence 

of a surface charge distribution, with no mechanical deflections. Contact 

surfaces are also assigned surface mesh elements if they encounter no 

mechanical deflections. The meshed model of the structure in Fig. (4.5) is 

shown in Fig. (4.6). The edge length of the mesh elements of the beam is in 

the order of 10-12µm. It is worth stressing that choosing the suitable meshing 

options and mesh element sizes is important for the accuracy of the solution 

and influences the simulation time [34]. 

7. Defining simulation type and boundary conditions: For the problem in hand, a 

coupled electrostatic/mechanical simulation is needed. Electrostatic boundary 

conditions are defined in this step by assigning a zero voltage to the bottom 

electrode and the desired voltage is applied to the beam. Mechanical boundary 
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conditions are also defined by defining a contact constraint between the beam 

and the contact and stopper bumps, as well as total mechanical fixing for the 

bottom sides of the anchors. 

8. Simulation: This coupled field problem is solved in CoventorWare in an 

iterative fashion similar to the method used for the semi-analytical model in 

Chapter 3. The solver first solves the electrostatic problem to determine the 

attraction pressure on the beam, and then this pressure is delivered to the 

mechanical domain solver to determine the corresponding beam deflection 

profile. After that, the new beam profile is iterated back to the electrostatic 

solver to find the new capacitance of the structure and the corresponding 

electrostatic pressure, and so on until the solution converges in both the 

electrostatic and mechanical domains. 

9. Extracting the results: The contact force is directly obtained after simulating 

the problem for the contact surfaces defined earlier in the mechanical 

boundary conditions. The maximum beam deflection is also provided which 

allows for calculating the peak electric field in the structure. CoventorWare 

allows for a wide variety of simulation results to be visualized as contours on 

the model geometry in an advanced 3D result viewer. The obtained results for 

the cantilever switch in Fig. (4.5, 4.6) are shown in Fig. (4.7). 

 

4.2.2. High Force Contact Switch Structures 

A high force bridge-type switch structure has been introduced in Chapter 3. The 

results shown in Fig. (3.22) indicate that the switch produces 2mN contact force at 

48V/µm peak electric field. Moreover, changing the spring shape to a folded style has 

been investigated. The performance of the folded-spring version of the switch is 
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illustrated in Fig. (4.8). The folded-spring switch produces 1.8mN contact force at 

50V/µm peak electric field. 

 

4.2.3. Stress Gradient Deflections 

The effect of stress gradients can be simulated using CoventorWare by introducing a 

vertically varying stress function to the elements of the beam mesh. The effect of 

introducing 2MPa/µm and 5MPa/µm vertical stress gradients to the folded-spring 

bridge structure is shown in Fig. (4.9) before applying any actuation bias. Max 

downward deflections of 0.8µm and 2µm are caused by these values of stress 

gradient, respectively. By actuating these initially non-uniform structures, the 0.8µm 

deflected structure gave approximately the same contact force as the initially uniform 

structure, but the 2µm deflected structure gave a 25% reduced contact force because 

of the large nonuniformity of the beam profile. Based on these results, the acceptable 

range for stress-gradient deflections is roughly estimated as ±1µm for such structures 

with 4µm initial gap height. 

For cantilever structures, the effect of stress gradients is more pronounced causing 

larger initial deflections. A cantilever of exactly half the shape of the bridge structures 

described above encounters an approximately 4 times the magnitude of the deflection 

of the corresponding bridge structure at the same stress gradient. This is the reason of 

preferring bridge structures for their relative immunity against stress gradient effects 

 

4.2.4. Mechanical Resonant Frequency 

The modal mechanical analysis available in CoventorWare allows for calculating the 

mechanical resonant frequency of switch structures. The largest size bridge structures 

presented in this work encounter a fundamental resonant frequency of more than 
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11KHz. This value is relatively low, but remains within the acceptable range for 

MEMS switches as discussed earlier. Smaller size structures which produce lower 

contact force are expected to encounter higher resonant frequency, due to the lower 

beam mass. 

 

4.3. RF PERFORMANCE 

The main function of the RFMEMS contact switch is to switch signals in the DC and 

relatively low RF range; a distinction for contact switches over capacitive switches 

which can only switch high frequency signals. Increasing the RF band of operation for 

a contact switch allows for a wider range of applications in the RF and wireless 

communication systems. 

The RF performance of an RFMEMS contact switch design is best validated by 3D 

finite element electromagnetic simulator such as Ansoft HFSSTM. This widely used 

electromagnetic simulator uses an adaptive meshing technique. The solver keeps 

decreasing the sizes of the mesh elements for several iterations until the 

electromagnetic solution converges among two or more successive iterations. RF 

signal excitation ports are defined in the 3D model created for the problem, and the S-

parameters can be directly obtained after the electromagnetic field solution is 

performed for the specified frequency range. 

Fig. (4.10) shows a 3D model prepared for electromagnetic simulation of a high force 

bridge structure. Most of the model dimensions are declared as simulation parameters 

to enable the simulation of all switch structures with different actuator and spring 

dimensions by simple assignment of different values to the geometrical parameters. A 

sample small area switch structure is shown in Fig. (4.11). Furthermore, the vertical 

gap between the switch beam and the bottom metal layer is a variable dimension to 
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allow simulating the switch performance in both the On and Off states. A vertical 

cross-section of the model at one of the contact bumps is shown in both states in Fig. 

(4.12). The excitation ports in this model are defined to have 50Ω source or matching 

impedance. The CPW feed lines are also designed for 50Ω line impedance. 

The performance of an RFMEMS contact switch is basically measured by the 

variation of two RF parameters versus frequency; these are the isolation and insertion 

loss. The isolation is the ratio between the signal power leaking at the drain port and 

the power delivered at the source port when the switch is Off. Ideal isolation value is 

zero, or dB. Non-ideal isolation is mainly caused by the capacitive coupling of the 

signal through the switch structure. The isolation undesirably increases with 

frequency increase because of the decreasing impedance of the capacitances in the 

structure. On the other hand, the insertion loss is the ratio between the signal power 

received at the drain port and the power delivered at the source port when the switch 

is On. Ideal conditions yield an insertion loss value of 1, or 0dB. Non-ideality of the 

insertion loss is mainly caused by the losses in the signal line and switch structure, as 

well as signal reflection due to the disturbance of the switch structure to the CPW line 

geometry. The insertion loss decreases with frequency increase due to the growing 

effect of the discontinuities in the structure as well as the increased resistive losses 

due to the reduction of the skin depth. Several RF matching techniques can be used to 

enhance the RF performance of RFMEMS switches [1]. 

−∞

The isolation and insertion loss variations versus frequency for the high force bridge-

type switch structure of Fig. (4.10) are shown in Fig. (4.13). Table (4.1) compares the 

simulated RF performance of this high force switch structure with experimental 

measurements reported on one of the most recent commercial RFMEMS contact 

switch projects [18]. 
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Another configuration for the signal conduction style of the switch is shown in Fig. 

(4.14). In this series switch configuration, the switch structure serves as part of the 

signal line. The simulated RF performance of this structure is shown in Fig. (4.15). 

The insertion loss is much enhanced compared to the previous case because the two 

contact bumps are now functional in a parallel, rather than a series, manner. The 

drawback of this inline configuration is the degraded isolation. However, the obtained 

isolation can be enhanced by reducing the overlap area between the beam and the RF 

line near the contact tips. 

 

4.4. TECHNOLOGY CHARACTERIZATION 

A special surface micromachining technology based on thick electroplated nickel for 

the beam is proposed for the prototyping of the contact switch designs presented in 

this work. This technology is developed by the RFMEMS team at IMEC vzw, 

Leuven, Belgium. A vertical cross-section describing the proposed technology and the 

associated 5 masks is given in Fig. (4.16). 

 

4.4.1. Technology Features 

The technology provides a 0.5µm ground metal layer for the routing of the RF and 

DC signals and to implement the fixed bottom electrode. This layer is optionally a 

stack of two metal layers, the top of which is the contact metal. Mask no.1 is used to 

pattern this layer. 

A polyimide sacrificial layer is then used to define the required air gap between the 

beam and the bottom metal layer. Two values for the air gap height are investigated in 

the first set of prototype devices; these are 2µm and 4µm. Mask no.2 is used to pattern 

the sacrificial layer to define the suspended and anchored regions of the Ni beam. 
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Contact and stopper bumps are then defined by controlled etching for small 

cylindrical dimples in the sacrificial layer of 1µm depth. The contact and stopper 

bumps are defined by mask no.3. 

Since the contact metal has to be present on the two contact surfaces, another thin 

layer of the contact metal is deposited and patterned to cover the contact dimple in the 

sacrificial layer, using mask no.4. 

Finally, thin electroplating seed layers are deposited by sputtering all over the wafer 

and a masked growth of nickel is performed. Then the mask material is removed and 

the seed layers are etched from the regions where no nickel has been plated. Mask 

no.5 is used to define the nickel structures. Two values for the nickel thickness are 

investigated in the first set of prototype devices; these are 7µm and 10µm. 

For all suspended nickel structures of dimensions greater than 40µm x 40µm, release 

holes are added to the nickel plating mask to allow for uniform and fast etching for 

the sacrificial layer. A hexagonal mesh distribution is mainly adopted to provide the 

most uniform area coverage. Two release hole-diameters of 10µm and 16µm are 

investigated, with pitches of 40µm and 45µm respectively. 

 

4.4.2. Characterization Test Structures 

Being a custom developed technology, some characteristic parameters need to be 

determined by measurements on test structures implemented with its specific process 

flow. These technology-sensitive parameters include: the contact resistance/force 

characteristics of the employed contact material, the electrostatic breakdown field of 

the air gap between the beam and the bottom electrode, the effective elasticity of the 

beam material including the release holes, and the RF losses encountered per unit 

length of the fabricated CPW lines. 
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To characterize the contact resistance/force behavior of the contacts implemented 

using the proposed technology, the test structure layout in Fig. (4.17) has been 

designed. The structure includes a nickel disk with four contact bumps, suspended by 

low stiffness springs. The force is applied to the disk by an external needle, and the 

resistance is measured by means of four-point Kelvin setup, in which a current is 

biased in a specific metal route through any two of the contact bumps and the voltage 

across the contacts is measured using another metal route to exclude the resistance of 

these metal routes from the measured resistance.  

The electrostatic breakdown of air between the beam and bottom electrode is 

determined using the structures in Fig. (4.18, 4.19). The first structure is a stiffly 

anchored square beam that does not encounter pull-in before the breakdown electric 

field is reached, and thus allows determining the breakdown field at gap heights of 2 

and 4µm according to the sacrificial layer height used. On the other hand, the second 

structure employs much less stiffer springs which allow the beam to be attracted down 

until the many bumps of 1µm height reach their respective landing islands. And then 

by increasing the applied voltage, the breakdown field can be detected at 1µm air gap 

height between the two electrodes. 

The mechanical properties of the fabricated nickel beams including the effect of the 

release holes can be determined by means of tip displacement versus force 

characterization of simple cantilever structures implemented using the proposed 

technology. 

Finally, the RF signal losses caused by the implemented CPW lines can be simply 

determined by fabricating specific lengths of the CPW structures and measuring the 

ratio between the drain and source signal power. These losses are expected to be 

relatively high in the proposed process flow because of the relatively low thickness of 
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the RF bottom metal layer. Further technology enhancements are expected to include 

a thicker and higher conductivity bottom metal layer. 

 

4.5. SAMPLE DEVICE DESIGNS 

Even with the relative simplicity of the available technology, it provides a wide range 

of design variations to practically test different device structures and configurations. 

Allowed variables include: nickel beam thickness, air gap height, electrical test 

configuration, actuator size, beam shape, and spring shape. The design tree presented 

in Fig. (4.20) illustrates the different suggested variations to be investigated for 

implementation using the proposed technology. Each mechanical device configuration 

requires a different mechanical design for maximum contact force production. This 

mechanical design has been performed using the relatively fast and accurate semi-

analytical model presented in Chapter 3. Two sample design curves are shown in Fig. 

(4.21, 4.22) for large area and small area actuators respectively. The different 

prepared designs cover a wide range of contact force between 0.1mN and 2.4mN. 

It is worth mentioning that all the designs are prepared using 180GPa modulus of 

elasticity for the beam material, which is 13% lower than the 207GPa typical nickel 

modulus of elasticity [30]. This reduced value is used to lessen the effect of the 

release holes on the rigidity of the fabricated beams. The electroplating process can 

also result in a lower material hardness. 

Finally, the semi-analytical model has been described as a 2.5D model because it 

includes the effect of some parameters in the third dimension like the width of each 

beam section which is included in the flexural rigidity terms. However, the model 

assumes that the contact and stopper bumps exist all along the third dimension of the 

device. This can be validated for the stopper by implementing it as a line of several 
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bumps as shown in the sample switch layout in Fig. (4.23). However, this is not 

desirable for the contact tips as we seek the highest pressure on these bumps. Only 

two contact bumps are present in each device, which is one of the main sources of 

error in the model results compared to 3D finite element simulation as in Table (3.5). 
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Figure 4.1. Contact force results for different stopper bump heights 
and positions (top). Peak electric field values for the 
same data points are shown (bottom). Other design 
parameters values are taken from Table (3.3). 
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Figure 4.2. Effect of the passive section length and width on the 
obtained contact force. Other design parameters are 
given in Table (3.3). 
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Figure 4.3. Effect of the spring stiffness on the obtained contact 

force. An optimum spring length of 400µm for sample 
structure number (3) gives the highest contact force at 
50V/µm peak electric field. 
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Figure 4.4. Effect of the beam material elasticity on the obtained 

contact force. Other design parameters are taken from 
Table (3.3). 
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Figure 4.5. A 3D model developed using CoventorWare for a 
cantilever switch with folded springs. The view is to 
scale. 

 

 

Figure 4.6. Meshed 3D model for a cantilever switch with folded 
springs. The view is exaggerated in the z-axis to show 
the small structural details. 
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Figure 4.7. Deflected beam shape after simulating the structure in 
Fig. (4.6). 

 

 

 

 

Figure 4.8. A folded-spring bridge-type switch structure. 
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(a) 

 
(b) 

Figure 4.9. The effect of introducing stress gradients to the folded-
spring bridge switch. The stress gradients cause the 
beam to bow downwards by different strengths for 
different stress gradient values. 
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Figure 4.10. A parametric 3D model prepared for HFSS 
electromagnetic simulation of bridge switch structures. 

 

 

Figure 4.11. The 3D model for a small area device, obtained by 
reconfiguring the geometrical parameters of the model 
in Fig. (4.10). 
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Figure 4.12. Varying the gap distance between the beam and the RF 
line to simulate the Off and On states. 

 

 

 

 
(a) 
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(b) 

Figure 4.13. Simulated isolation (a) and insertion loss (b) variation 
versus frequency for the high force bridge structure of 
Fig. (4.10). 

 

 

Figure 4.14. HFSS model for a cantilever inline series switch. 
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(a) 

 
(b) 

Figure 4.15. Simulated isolation (a) and insertion loss (b) variation 
versus frequency for the inline cantilever switch 
structure of Fig. (4.14). 
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Figure 4.16. RFMEMS contact switch technology cross-section. A 
5-masks processing flow is involved. This cross-section 
is provided by P. Ekkels, IMEC vzw, Leuven, Belgium. 
The dimensions are not to scale. 

 

 

Figure 4.17. Layout of the contact resistance/force characterization 
structure. 
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Figure 4.18. Layout of test structure to determine the electrostatic 
breakdown for 2/4µm air gaps. 

 

 

 

 

Figure 4.19. Layout of test structure to determine the electrostatic 
breakdown for 1µm air gaps. 

 

 

 

 

90 



 

Figure 4.20. Design tree for the different suggested contact switch 
designs. Entries with gray background invisibly bear 
the same sub-tree as their white coworker entries. 
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Figure 4.21. A high force bridge design producing more than 2.3mN 
contact force before breakdown. Design parameters are 
visualized in Fig. (3.16) 
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Figure 4.22. A low force cantilever design producing around 180µN 
contact force before breakdown. Design parameters are 
visualized in Fig. (3.16) 

 

 

 

Figure 4.23. Sample cantilever switch layout. 
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Frequency Parameter TeraVicta switch 
experimental results [18] 

High force bridge 
simulation results  

Isolation -30 dB -45 dB 
1 GHz 

Insertion loss -0.1 dB -0.1 dB 

Isolation -25 dB -27 dB 
7 GHz 

Insertion loss -0.4 dB -0.5 dB 

 
Table 4.1. Comparing the simulated RF performance of the 

presented high force bridge structure with the recently 
reported TeraVicta commercial switch measurements. 
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CHAPTER 5 

CONCLUSIONS AND FUTURE WORK 

 

5.1. CONCLUSIONS 

The main achievements of this work are the development of the relatively fast and 

accurate semi-analytical model for electrostatically actuated beams, and using this 

model to design high force RFMEMS contact switches with acceptable RF 

performance to be implemented in a simple all-metal surface micromachining 

technology based on thick electroplated nickel beams. 

Several basic and advanced design considerations and reliability challenges for 

RFMEMS contact switches have been discussed in this work, including: reliability of 

microcontacts, air gap breakdown, mechanical stability, and the effect of stress 

gradients and release holes. 

A simplified analytical model for electrostatically actuated beams has also been 

presented for the sake of comparison with the developed semi-analytical model. For a 

typical high force structure, the contact force calculated using the semi-analytical 

model deviated by 3.5% from the 3D finite element simulation, compared to -62% 

error in the value obtained by the simplified analytical model. 

Many RFMEMS contact switches producing contact force in the range between 

0.1mN and 2.4mN have been designed using the semi-analytical model. The 

numerical solutions of the model equations have been performed using MATLAB®. 

The results of the model have been verified for different cases using CoventorWare 

which is a 3D finite element simulator optimized for MEMS devices. The RF 

performance of the designed structures has been simulated using Ansoft HFSS. An 
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isolation of -27dB and insertion loss of -0.5dB at 7GHz are predicted for a typical 

high force structure producing more than 2mN contact force, which is principally 

sufficient to reduce the contact resistance of the switch, and hence reduce the RF 

losses at the contact interface. 

 

5.2. FUTURE WORK 

Several RFMEMS contact switch designs will be realized using the special 

technology described in Chapter 4, which is provided by the RFMEMS team at IMEC 

vzw, Belgium. Subsequently, measuring the DC and RF performance of the fabricated 

devices will be carried out, with emphasis on the role of the contact force on the 

device behavior. 

The technology characterization test structures described in Chapter 4 will also be 

implemented and tested. The results obtained from these measurements will allow for 

better understanding of the effect of the fabrication technology and other conditions 

on the performance of the RFMEMS contact switches. Obtaining the exact values of 

certain interesting parameters, like the breakdown electric field of the air gap between 

the beam and the bottom metal, will allow for further optimization of the contact force 

in future designs. The micromachined contact resistance/force characterization 

structures will contribute to faster and more accurate characterization of the different 

contact material options. 

Investigating other applications for the developed modeling technique is another 

aspect of the future work. With simple modifications, the model can be used to design 

relay structures which encounter a dielectric section in the beam to electrically isolate 

the top electrostatic actuator electrode from the contact tips and the signal path. This 
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modification increases the number of practical applications of the devices, but 

requires a more advanced technology for its implementation. 

Another application of the developed model and the proposed technology is to design 

air-gap capacitive switches. Traditionally, a capacitive switch employs a dielectric 

layer which isolates the bottom RF line from the beam. The presence of the dielectric 

necessitates dealing with complicated dielectric charging issues [1]. However, using a 

rigid beam with side stoppers as shown in Fig. (5.1) can permit the device operation 

without an isolation dielectric layer. The beam profile can be easily obtained using the 

semi-analytical model, and hence both the up and down state capacitances can be 

accurately calculated. With high accuracy, the model can predict the suitable 

actuation voltage which allows for beam pull-in without exceeding the breakdown 

field. 
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Figure 5.1. A proposed all-metal capacitive switch structure, to be 
implemented using the available technology and to be 
designed using the developed semi-analytical model. 
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