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ABSTRACT

The IEEE standard on piezoelectricity recommends methods to determine the coefficients
of piezoelectric ceramics and the sizes of the samples to be used. A method to determine the
difference between the actual coefficients and the coefficients determined using the IEEE standard
is presented. The difference or error for samples of various shapes and sizes is presented. These
errors and manufacturing considerations are used to make recommendations of the actual sizes
of piezoceramics in various shapes to be used for material characterisation. Often, the IEEE
standard cannot be used to determine the coefficients of piezoceramics used in underwater
transducers and other devices because of their shapes and sizes. Radially polarised tubes
and axially polarised rings used in hydrophones and projectors, respectively, are the
examples. A method to determine some of the complex coefficients of tubes used for quality
control during production is presented. Finally, an analytical model that can be used to
develop a similar method for rings is presented. Several numerical results are presented to
illustrate the methods.

Keywords: Piezoelectric, polymeric materials, PVDF, hydrophones, acoustic signal, pressure-release
system, ceramics, piezoelectric ceramics
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1 . INTRODUCTION

Developers as well as users of new materials
of new materials are interested in the characterisation
of piezoelectric ceramics. The former are interested
in all the ten coefficients1 that define a material
and use material samples whose sizes satisfy the
recommendations, for characterisation, in the IEEE
standard on piezoelectricity2.

The latter are more interested in characterising
the piezoceramics used in devices and the sizes of
these usually violate the recommendations in the
IEEE standard. In this paper, characterisation of
some samples that satisfy and others that do not
satisfy the IEEE recommendations is presented
in brief.
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2 . ERRORS IN CHARACTERISATION
USING STANDARD EQUATIONS

The standard recommendations for the sizes
of slabs and rods used for characterisation are
L>>W and L>>t. Here, L, W and t are the length,
width, and thickness, respectively. These qualitative
requirements become more stringent as the piezoelectric
coupling increases2. The electrode area is L 

 

W
and W 

 

t for slabs and rods, respectively are
shown in Fig. 1. For slabs, W > 3 t is also recommended.
For discs, shown in Fig. 1, the recommendation is,
a > 20 t for finding Es11 and a > 40 t for finding,

Es12 where a and t are the radius and distance
between electrodes, respectively. Slabs are used
to find 33

T , Es11 and d
31

; rods are used to find 33
T ,
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DS and d

33
; and discs are used to find 33

T , Es11 ,
Es12 and d

31
. The coefficients are also used to find

the piezoelectric coupling coefficient k
31 

in slabs
and discs and k

33 
in rods.

The errors3 in the coefficients determined using
the standard equations are determined as follows:
The input electrical admittances of piezoelectric
slabs, rods, and discs, of various sizes, are first
computed using a set of 10 piezoelectric coefficients
and the 3-D finite element program ATILA4 as
shown in Fig. 2. It is possible, in principle, to
solve the inverse problem, i.e., use the computed
input electrical admittance to determine the 10
coefficients input to ATILA. If this is done exactly,
the set of coefficients input to ATILA can be recovered
exactly. However, this is not easy as some of the
coefficients have very little effect on the admittance
when the dimensions of the slab, rod or disc satisfy
the recommendations in the Standard. The 10
piezoelectric coefficients of PZT4 input to ATILA

are Es11 = 12.3 x 10-12 m2/N, Es12 = -4.05 x 10-12 m2/

N, Es13 = -5.31 x 10-12 m2/N, Es33 =15.5 x10-12 m2/N,
Es44

=39x10-12 m2/N,  d
31

= -123 x 10-12 C/N,

d
33

=289x10-12 C/N, d
15

= 496 x 10-12 C/N, 11
S , and

33
S . The values of 11

S

 
and 33

S

 
are computed using

the values of the other eight coefficients, 11 0/T =1475,

and 33 0/T =1300. The coefficients in the set input
to ATILA, and those calculated using the relationships2

between different sets, are the actual values.

The computed admittances and the approximate
1-D standard equations are then used to calculate
some piezoelectric coefficients. The difference between
the actual coefficient and that obtained using the
standard equations is the error for that particular
case. Errors exist because the standard equations
are based on 1-D models. Normally, measured values
are used in place of the computed admittances and
the actual coefficients are not known and the error
cannot be determined.

Results of the computations are given here for
each of the 3 shapes considered in this study. The
piezoelectric coefficients determined for slabs, rods
and discs are shown in Tables 1, 2, and 3 respectively.
The “actual values” in the last row of each table
are those in the set input to ATILA or computed
from that set. It is of interest to note that the
percentage error in the coupling coefficient is often
less than the percentage error in the corresponding
SE, SD or d coefficient. It is also seen that the error
is not very large even when the sizes of the samples
are similar to those used in piezoelectric devices
and do not conform to the standard recommendations.
In most cases, d

31 
of slabs is underestimated by

a few per cent, d
33 

of rods is overestimated by a
few per cent, and d

31 
of thin discs is nearly accurate.

This is of interest to developers of new materials
and also to transducer designers.

3 . CHARACTERISATION OF RADIALLY
POLARISED TUBES

Radially polarised piezoelectric ceramic tubes
are widely used in hydrophones. It is difficult to
control their properties from one batch to the next
and this can cause variations in the characteristics
of hydrophones. One approach to reduce rejection
of costly tubes as well as large variations in the

Figure 1. (a) A length expander slab with perpendicular field.
Sides with area LxW are fully electroded, (b) A length
expander rod with parallel field. Sides with area
Wxt are fully electroded, (c) A disc of radius a and
thickness t. The flat surfaces are fully electroded. 
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characteristics of hydrophones is to bin the tubes
based on their material properties–particularly those
that affect hydrophone performance. Piezoelectric
coefficients determined for this application are likely
to have higher errors because the tubes are not
slender. Nevertheless, the results are useful if the
variation in hydrophone characteristics is reduced.

Ebenezer and Sujatha5 presented methods to

determine the coefficients 33
T , Es11 , Es12 , and d

31 
of

radially polarised piezoelectric tubes as shown in
Fig. 3. They used the membrane model. Later,
Ebenezer6  determined the complex coefficients using
thin shell theory and a method (briefly described
here). The method can be used for both: characterisation
of new materials and components for devices. In

this method, the value of 33
T

 

is first determined

Figure 2. Flow chart for finding errors. 

 
        

                                                      

 
3-D 
ATILA 
MODEL 

1-D 
STANDARD 
MODEL 

PIEZOELECTRIC 
COEFFICIENTS 

INPUT 
ELECTRICAL 
ADMITTANCE

 
PIEZOELECTRIC 
COEFFICIENTS 

ERROR 

+

 
- 

L 
(mm)

 

W

 

(mm)

 

t 
(mm)

 

033 /T Es11 

(pm2/N)

 

d31 
(pC/N)

 

k31 

100 30 10 1.30e3

 

12.4 -119 -0.310 

100 25 10 1.30e3

 

12.4 -120 -0.320 

100 12   5 1.30e3

 

12.3 -123 -0.330 

40 20   5 1.30e3

 

12.7 -108 -0.280 

40 10   5 1.30e3

 

12.4 -121 -0.320 

40 10   3 1.30e3

 

12.4 -120 -0.320 

40   8   3 1.30e3

 

12.4 -121 -0.320 

Actual values 1.30e3

 

12.3 -123 -0.327 

 

Table 1. Coefficients of slabs obtained using standard equations

L 
(mm) 

W                                                                                           
(mm) 

t 
(mm) 033 /T Ds33 

(pm2/N) 

d33 

((pC/N)

  

k33 

10 2 2 1.30e3 8.28 291 0.690 

10 3 3 1.30e3 8.34 293 0.690 

10 4 4 1.30e3 8.43 296 0.690 

10 5 5 1.30e3 8.55 300 0.690 

Actual values 1.30e3 8.24 289 0.684 

 

Table 2. Coefficients of rods obtained using standard equations

a 
(mm) 

t 
(mm)

 

033 /T

 

  Es11 

(pm2/N)

 

  Es12 

(pm2/N) 

  d31 

(pC/N) 
  k31 

10 1 1.30e3 12.6 -4.36 -123 -0.320 

10 2 1.30e3 13.8 -5.55 -124 -0.310 

30 1 1.30e3 12.3 -4.08 -123 -0.330 

40 1 1.30e3 12.3 -4.07 -123 -0.330 

60 1 1.30e3 12.3 -4.08 -123 -0.330 

25 4 1.30e3 18.4 -10.3 -127 -0.280 

Actual values 1.30e3 12.3 -4.05 -123 -0.327 

 

Table 3. Coefficients of dics obtained using standard equations 

a 

z 

r

 

h 

U 
W 

L 

Figure. 3. A thin radially polarized cylindrical tube of length
L and radius a. The inner and outer curved surfaces
are fully electroded.



72

DEF SCI J, VOL. 57, NO. 1, JANUARY 2007

using the measured complex admittance, Y, at a
frequency much lower than the lowest resonance
frequency. Alternatively, if dispersion is significant,
it is measured at a few low frequencies and its
value at higher frequencies is determined by
extrapolation. The real and imaginary parts of

Es11 , Es12 , and d
31 

are then determined by iteratively

refining them until the measured values of six functions
are nearly equal to those computed using the analytical
model7 and the refined coefficients.

The six functions used to determine the piezoelectric
coefficients are all frequencies. These are the

frequencies L
sf and U

sf in the lower and upper

branches, respectively, at which the conductance,

G, reaches a local maximum; the frequency U
pf in

the upper branch at which the resistance, R, reaches
a local maximum; and the three bandwidths

L
sf 2/1 – L

sf 2/1 , U
sf 2/1 – U

sf 2/1 , and U
pf 2/1 – U

pf 2/1

 

where

L
sf 2/1 and L

sf 2/1

 

are the frequencies in the lower

branch at which B reaches a local minimum and
maximum, respectively, and are the frequencies in
the upper branch at which B reaches a local minimum

and maximum, respectively, and U
pf 2/1 and U

pf 2/1

are the frequencies in the upper branch at which
the reactance, X, reaches a local minimum and
maximum, respectively.

Then, an initial guess is made for the six

unknowns –real and imaginary parts of Es11 , Es12 ,

and d
31

. The real parts of the initial guess are
values obtained using ‘book values’ and the imaginary
parts are small, non-zero, and satisfy the conditions
in Ref. 8. In the first step of iteration of the first
cycle, the guesses for Re( Es11 ) and Re( Es12 ) are
refined using the measured frequencies L

sf  and U
sf ,

and 

N
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where ix , ix , ˆix , if , M
if , i = 1, 2, …N, are the

unknowns, the initial guesses, the refined guesses
at the end of the current step, functions whose
values are measured, and measured values of the
functions, respectively, and N = 2. The partial derivatives
and are evaluated using the analytical model at ix ,
i = 1, 2, …N and jy , j = N+1, N+2 …6 where

jy

 
are the guessed values of the unknowns

that are not refined in the current step of the
iteration. Equation (1) is based on a Taylor
series expansion for each function in terms of
the piezoelectric coefficients and the Newton-
Raphson method.

In the second step of the cycle, the value of

Re(d
31

)  is refined using U
pf and Eqn (1) with N = 1.

In the third step, the values of Im( Es11 ), Im( Es12 ),

and Im(d
31

) are simultaneously refined using the
three bandwidths and Eqn (1) with N = 3. Each
step is done twice before proceeding to the next
step. The three steps together constitute one cycle.
The entire cycle is repeated twice or thrice or until
some prescribed convergence is obtained.

Numerical results are presented to illustrate
the robustness and accuracy of the iteration method.
All calculations are done using the four sets of
dimensions shown in Table 4 that are representative
of those used in hydrophones. Sets of the four
complex coefficients and determined by iteration
are shown in Table 5(a). These, together with the
six coefficients shown in Table 5(b), form a set of
10 coefficients necessary to completely describe
piezoelectric materials. The density is 7750 kg/m3.
The functions that are usually measured are calculated
using the coefficients in Table 5(b), any one set
from Table 5(a), and the finite element model ATILA.

(1)

Dimension L 
 (mm) 

a 
 (mm) 

t  
(mm)

 

A 20 15 1 

B 10 10 1 

C 20 15 3 

D 10 10 2 

 

Table 4. Dimensions of radially polarised cylindrical tubes
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Critical frequencies are computed using ATILA
with a resolution of 10 Hz and input to the iteration
procedure. The low resolution is used to account
for measurement errors that may occur. For example,

the values in kHz of L
sf 2/1 , L

sf , L
sf 2/1 , U

sf 2/1 , U
sf ,

U
sf 2/1 , U

pf 2/1 , U
pf , and U

pf 2/1

 

for dimension A,A,

Case a are 29.17, 29.44, 29.70, 75.09, 75.80, 76.50,
86.34, 87.20, and 88.08, respectively. The refined
coefficients obtained from the iteration    procedure
are shown in Table 6, after rounding-off, for the
various dimensions and cases shown in Tables 4
and 5, respectively.

The initial guess for the four complex coefficients
is the same in all cases and is shown in row a of
Table 5(a). It is seen from Table 5(a) that both the
real and imaginary parts of the coefficients in the
other rows differ considerably from row a. This
indicates that the method is not sensitive to the
initial guess.

It is seen from Table 6 that the error increases
when the ratio of wall thickness to radius or wall
thickness to length increases. The error in the real

parts of the coefficients is minimum for Es11 , slightly

greater for d
31

, and greatest for Es12 . Re( Es11
) and

Re( Es12 )

 

are underestimated, and Re(d
31

)

 

is

overestimated. Im( Es11 )

 

and Im( Es12 ) are

overestimated except for case e where Im( Es12 ) is

Dimen-

 
sion 

Case Es11 

(pm2/N) 

Es12 

(pm2/N) 
31d 

(pC/N) 

A a 16.4-j0.30 -5.72+j0.095 -171+j3.0 

 
b 15.5-j0.80 -6.48+j0.50 -150+j0.98  

c 17.5-j0.81 -6.48+j0.51 -150+j0.98  

d 15.5-j0.80 -6.49+j0.50 -190+j1.0 

B a 16.4-j0.30 -5.64-j0.097 -172+j3.0 

 

b 15.5-j0.80 -6.40+j0.50 -151+j1.0  

c 17.5-j0.80 -6.41+j0.50 -151+j0.98  

d 15.5-j0.80 -6.40+j0.50 -191+j0.95 

C a 16.3-j0.30 -5.47+j0.095 -173+j3.1 

 

b 15.4-j0.80 -6.26+j0.50 -152+j0.97  

c 17.4-j0.80 -6.25+j0.50 -152+j0.98  

d 15.4-j0.80 -6.26+j0.50 -192+j0.98  

e 16.3-j0.30 -5.47+j0.097 -168+j3.0 

D a 16.3-j0.30 -5.30+j0.089 -176+j3.1 

 

b 15.4-j0.79 -6.07+j0.50 -155+j0.95  

c 17.4-j0.79 -6.08+j0.50 -155+j0.99  

d 15.4-j0.80 -6.07+j0.50 -194-j0.96  

e 16.3-j0.30 -5.30+j0.090 -171+j3.1 

 
Table  6. Coefficients obtained by iteration for dimensions

and coefficients shown in Table 1 & 2 respectively

underestimated, and Im(d
31

) is sometimes overestimated
and sometimes underestimated.

The value of g
31 

has a strong influence on the
receiving sensitivity of radially polarised cylindrical
tube. Here, the percentage error in Re(g

31
) is

equal to the percentage error in Re(d
31

) because

g
31 

= d
31

/ 33
T

 

and it is assumed that 33
T

 

is exactly

determined. For Dimension A, there is no error to
three significant digits in Re(g

31
) as seen from

Table 3. For the other dimensions and cases, Re(g
31

)
is consistently overestimated by a small amount.
Therefore, it is concluded that the iteration procedure
can be used to estimate Re(g

31
) and bin tubes

produced in large numbers according to their properties.

4 . CHARACTERISATION OF AXIALLY
POLARISED RINGS

Consider an axially polarised piezoelectric ceramic
ring of length L, inner and outer radii a and b,

Case 
033 /T Es11 

(pm2/N) 

Es12 

(pm2/N) 

d31 
(pC/N) 

a 1700(1-j0.02) 16.4-j0.30 -5.74+j0.10 -171+j3.0 

b 1700(1-j0.02) 15.5-j0.80 -6.50+j0.50 -150+j1.0 

c 1700(1-j0.02) 17.5-j0.80 -6.50+j0.50 -150+j1.0 

d 1700(1-j0.02) 15.5-j0.80 -6.50+j0.50 -190+j1.0 

e 1700(1-j0.02) 16.4-j0.30 -5.74+j1.0 -166+j3.0 

 
Table 5(a). Piezoelectric coefficients input to ATILA and

determined by iteration

011 /T

 

Es33 

(pm2/N) 

Es13 

(pm2/N) 

Es44 

(pm2/N) 

31d

 

(pC/N)

 

31d

 

(pC/N)

 

1730 
(1-j0.02)

 

18.8-j0.30

 

-7.22+j0.15

 

47.5-j1 374-j7 584-j10

  

Table 5(b). Additional piezoelectric coefficients input to ATILA
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respectively as shown in Fig.4. The inner radius is
a few-time the wall thickness, which is nearly the
same as the length. The top and bottom surfaces
are fully electroded and a known voltage is applied
between these. The input electrical admittance and
a few characteristic frequencies are of interest.

these coefficients are obtained using certain coefficients
for Navy type I piezoceramics.

The parameters computed and shown in Table 8
are the lowest frequency,  f

s
, at which the conductance

G is maximum; the maximum value of G; the

frequency, 1/ 2sf , at which the susceptance B is locally
maximum; the maximum value of B; the frequency,

1/ 2sf , at which B is locally minimum; the minimum

value of B; and the frequency af

 

at which B is
zero. All the computations are done for both the
lower and the upper branches but the upper branch
is of more interest for transducer designers. Results
are shown for rings with various dimensions and
are compared with those obtained using the Flugge
model13 and ATILA.

It is seen from Table 8 that the values computed
using the present model are closer to the values
computed using ATILA in most cases than those
computed using the Flugge model. In cases A, B,
and C, the length is equal to or greater than the
wall thickness and all the frequencies computed
using the present model, except f

a 
in the upper

branch for case B, are closer to ATILA values. In
cases C and D, wall thickness is equal to length
and the present model is always better. In cases
A, B, and F, length is less than twice the wall
thickness and the maximum and minimum values
of G and B in the upper branch computed using
the Flugge model are closer to ATILA values. In

Property Value 

Ec11   (GNm-2) 
138.995 + j 0.695 

Ec12   (GNm-2) 
77.835 + j 0.389 

Ec13   (GNm-2) 
74.282 + j 0.371 

Ec33   (GNm-2) 
115.409 + 0.577 

31e   (Cm-2) -5.203  

33e   (Cm-2) 15.080 

  (kgm-3) 7500 

S
33   (pFm-1) 5.872 - j 0.018 

 
Table 7. Material parameters of piezoceramic used in the

model 

Z 

r 

a 
b 

h

 

Figure. 4. A piezoceramic ring with electrodes on the flat
surfaces.

Ebenezer9-11, et al. analysed axially polarised
solid cylinders. They assumed9 that the axial
displacement and potential are functions of only
the axial coordinate and that the radial displacement
is a function of only the radial coordinate. They
showed9 that, for example, the analysis is exact
when shear stress is zero on all the surfaces and
the normal displacements are specified on the surfaces.

They extended the model to analyse rings with
free boundary conditions12. An exact solution to
the governing equations is written as

zkeA

rkQYrkBJ

zkA

W

U

z
S

rr

z

sin)/(

sin

3333

11              (2)

where, U and W are the axial and radial components
of displacement respectively,  is the electric potential,

11/ E
rk c , SED ecc 33

2
333333 / and 11/ E

rk c ,

and J
1 

and Y
1 

are the first-order Bessel functions
of the first and second kind, respectively.

The input electrical admittance of piezoceramic
rings is calculated after using the boundary
conditions to determine the coefficients in Eqn. (2).
Material losses are accounted for using complex
coefficients shown in Table 7. The real parts of
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Dimension  
2b, 2a, L, b-a 
(mm) 

Branch Model fs (kHz)  
and  

max (mS) 

f1/2s (kHz) 
 and  

Bmax (mS) 

f-1/2s (kHz)  
and  

Bmin (mS) 

fa  

(kHz) 

A 50, 38, 8, 6 Lower Present 23.99 (3.99) 23.93 (2.16) 24.05 (-1.85) 25.44 

   
ATILA 23.96 (3.98) 23.90 (2.15) 24.02 (-1.84) 25.41    

Flugge 23.87 (3.87) 23.81 (2.09) 23.93 (-1.78) 25.27   

Upper Present 192.2 (102)  191.7 (51.4) 192.7 (-50.1) 246.9    

ATILA 189.4 (95.9) 188.9 (48.6) 189.9 (-47.3) 236.0    

Flugge 205.4 (98.8) 204.9 (50.2) 205.9 (-48.6) 254.4 

B 50, 38, 10, 6 Lower Present 23.97 (3.24) 23.91 (1.74) 24.03 (-1.49) 25.43    

ATILA 23.95 (3.22) 23.89 (1.74) 24.01 (-1.49) 25.40    

Flugge 23.85 (3.12) 23.79 (1.69) 23.91 (-1.44) 25.26   

Upper Present 159.3 (66.4)  159.0 (33.6) 159.7 (-32.8) 203.6    

ATILA 157.5 (64.1) 157.1 (32.5) 157.9 (-31.6) 198.5    

Flugge 163.6 (60.1) 163.2  (30.6) 164.0 (-29.5) 193.5 

C 50, 38, 6, 6 Lower Present 24.00 (5.30) 23.94 (2.86) 24.06 (-2.44) 25.44    

ATILA 23.97 (5.26) 23.91 (2.84) 24.03 (-2.43) 25.41    

Flugge 23.88 (5.12) 23.82 (2.77) 23.94 (-2.35) 25.27   

Upper Present 234.6 (159.5) 234.0 (80.9) 235.2 (-78.6) 296.9    

ATILA 228.7 (136.8) 228.1 (69.7) 229.2 (-67.1) 267.5    

Flugge 274.3 (178.1) 273.6  (90.4) 275.0 (-87.7) 341.7 

D 50, 34, 8, 8 Lower Present 25.32 (5.53) 25.26 (2.97) 25.38 (-2.55) 26.89    

ATILA 25.27 (5.49) 25.21 (2.95) 25.33 (-2.53) 26.83    

Flugge 25.08 (5.15) 25.01 (2.78) 25.14 (-2.37) 26.54   

Upper Present 176.7 (113) 176.3 (57.5) 177.0 (-52.2) 223.2    

ATILA 172.2 (96.5) 171.8 (49.1) 172.7 (-47.3) 201.1    

Flugge 204.9 (125) 204.4  (63.6) 205.4 (-61.6) 254.3 

E 50, 42, 8, 4 Lower Present 22.84 (2.61) 22.78 (1.41) 22.89 (-1.20) 24.19    

ATILA 22.83 (2.60) 22.77 (1.40) 22.88 (-1.20) 24.18    

Flugge 22.79 (2.58) 22.73 (1.39) 22.85 (-1.19) 24.13   

Upper Present 202.2 (73.1) 201.6 (37.2) 202.7 (-36.1) 251.5    

ATILA 200.0 (71.0) 199.5 (36.0) 200.5 (-35.0) 252.2    

Flugge 202.0 (42.9) 201.5 (23.0) 202.5 (-19.7) 209.2 

F 40, 28, 8, 6 Lower Present 31.19 (4.14) 31.11 (2.23) 31.26 (-1.92) 33.12    

ATILA 31.14 (4.12) 31.06 (2.22) 31.21 (-1.91) 33.06    

Flugge 30.93 (3.91) 30.85 (2.11) 31.01 (-1.80) 32.75   

Upper Present 192.8 (77.9) 192.3 (39.5) 193.2 (-38.5) 247.2    

ATILA 189.9 (73.5) 189.5 (37.3) 190.4 (-36.2) 236.4    

Flugge 204.7 (74.7) 204.2  (37.9) 205.2 (-36.7) 251.9 

Table 8.  Computed parameters for piezoelectric rings with internal losses.
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case E, the length is twice the wall thickness and
the upper branch resonance frequencies computed
using the Flugge model are a little closer to ATILA
values. The good agreement indicates that the
analytical model and the measured values of the
parameters shown in Table 8 can be used to
determine the piezoelectric coefficients of axially
polarised rings.

5 . CONCLUSION

Methods to characterise slabs, bars, discs, radially
polarised tubes, and axially polarised rings have
been summarised. The errors in determining the
real coefficients of slabs, bars, discs using the
IEEE standard method are quantified for various
dimensions. Based on these, it is recommended
that slabs of size 100 x 12 x 5 mm and rods of size
10 x 2 x 2 mm be used for characterisation. For
discs, even though the IEE Standard recommends
a > 40 t for finding Es12 , it is seen that the results
are quite accurate for some applications even for
smaller radius to thickness ratios. However, discs
of size 40 x 1 mm can be precisely made and used
for characterisation. An iterative method, that can
be used if a fairly accurate analytical model is
available, is also presented. It is illustrated by finding
the complex coefficients of radially polarised tubes.
The analytical model is based on thin shell theory
and is therefore fairly accurate even when the wall
thickness to radius ratio is not very small as is
often the case in tubes used in hydrophones.

An analytical model of piezoelectric rings is
also presented and numerical results are presented
to illustrate the accuracy of the model. The iterative
method used to determine the coefficients of radially
polarised tubes can be used to determine the coefficients
of axially polarised rings also.

Certain assumptions are made in the analytical
standard models and in the models developed by
Ebenezer10, et al. and co-workers. These approximate
models are used to solve the inverse problem though
the forward problem is solved exactly using the
finite element method. The errors arise because of
the approximations made in the analytical models.
More numerical results are presented by
Ebenezer,3,6 et al.
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