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ABSTRACT Most conventional Fuzzy Logic Controller (FLC) rules are based on the knowledge and
experience of expert operators: given a specific input, FLCs produce the same output. However, FLCs do
not perform very well when dealing with complex problems that comprise several input variables. Hence,
an optimization tool is highly desirable to reduce the number of inputs and consequently maximize the
controller performance, leading to easier maintenance and implementation. This paper, presents an enhanced
fuzzy logic controller applied to a photovoltaic system. Specifically, both inputs and membership functions
are reduced, resulting in a Highly Reduced Fuzzy Logic Controller (HRFLC), to model a 100kW grid-
connected Photovoltaic Panel (PV) as part of a Maximum Power Point Tracking (MPPT) scheme. A DC
to DC boost converter is included to transfer the total energy to the grid over a three-level Voltage Source
Converter (VSC), which is controlled by varying its duty cycle. FLC generates control parameters to simulate
different weather conditions. In this study, only one input representing the current variation (4I) of the FLC
is used to provide an effective and accurate solution. This reduction in simulation inputs results in a novel
HRFLC which simplifies the solar electric system design with output Membership Functions (MFs). Both
are achieved by grouping two rules instead of using an existing state-of-the-art method with twenty-five
MFs. To the best of our knowledge, this is the first FLC able to provide such rules compression. Finally, a
comparison with different techniques such as Perturb and Observe (P&O) shows that HRFLC can improve
the dynamic and the steady state performance of the PV system. Notably, experimental results report a
steady state error of 0.119%, a transient time of 0.28s and an MPPT tracking accuracy of 0.009s.

INDEX TERMS Boost Converter, Current Variation, Grid Connection, High Reduced Fuzzy Based MPPT
Controller (HRFLC), Photovoltaic Panel, Three level VSC.

Nomenclature
Variables
ME(t) Error Variation
MI Current Variation
MP Power Variation
MV Voltage Variation
C Capacitor Value

D Duty Cycle
dPPV /dIPV Power derivation by current
E(t) Error
G Irradiation
Iin Input Current
Iout Output Current
IPh Photo Current

VOLUME 4, 2016 1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Nottingham Trent Institutional Repository (IRep)

https://core.ac.uk/display/333643629?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2020.3016981, IEEE Access

Farah et al.

IPV Light Generated Current
L Induction Value
Le VSC Level
N IGBTs Number
Ro Output Resistance
Req Equivalent Resistance
Rin Input Resistance
T Temperature
Vo DC/DC Output Voltage
Vab Output Line to Line Voltage of the VSC
Vcarrier Carrier Voltage
Vin DC/DC Input Voltage
VPV Module Output Voltage
Xi Input Fuzzy Data
YCOG Output Fuzzy Controller Value
Yi Membership Function Value
Acronyms
ADC Analogic to Digital Converter
AI Artificial Intelligence
ANFIS Adaptive Neuro Fuzzy Inference System
ANN Artificial Neural Network
COG Center Of Gravity
DC −DC Direct Current to Direct Current
FIS Fuzzy Inference System
FLC Fuzzy Logic Controller
HC Hill Climbing
Hi High
HRFLC Highly Reduced Fuzzy Logic Controller
IE Initial Error
InCon Incremental Conductance
Lo Low
MF Membership Function
MPP Maximum Power Point
MPPT Maximum Power Point Tracking
NPC Neutral Point Clamped
P&O Perturb & Observe
PMPP Power value at the Maximum Power Point
PPV Panel Power
PB Positive Big
PID Proportional, Integral and Derivation
PS Positive Small
PV PhotoVoltaic
PV G Photo Voltaic Generator
PWM Power Wave Modulation
S&H Sample and Hold
SSE Steady State Error
ST Steady Time
TOANC Third Order Adaptative Neuro Fuzzy Controller
TrC Triangular Carrier
TT Tracking Time
V SC Voltage Source Converter
Constants
A PV cell ideal factor
f Frequency
ICSr Short Circuit Current
Imp Optimal Current

Io Saturation Current
k Boltzmann Constant
NP Parallel connected cells Number in a PV Module
Ns Series connected cells Number in a PV module
Pm Maximal Module Power
q The electron charge
Rs Serial Resistance in PV Cell
Rsh Parallel Resistance in PV Cell
V Voltage Value
Vdc Input VSC Voltage
Vmp Optimal Voltage Module
Voc PV Module Open Circuit Voltage
Vref Reference Voltage

I. INTRODUCTION

IN the last few years, there is a great deal of interest world-
wide in searching new energy sources able to replace the

dwindling fossil fuels. In this context, solar energy turned
out to be the most attractive alternative due to its advantages
of being cleaner, renewable and inexhaustible [1]– [2]. The
main function of Photovoltaic (PV) is to transform the solar
irradiance into electric power. However, the generated power
from PV depends not only on irradiance but also on other
factors such as temperature and spectral properties of sun-
light [3]– [5]. These conditions need to be controlled in order
to allow a PV panel to operate at the Maximum Power Point
(MPP). It is well known from MPP theory that the power
delivered to the load is maximum only when the internal
impedance is equal to the load impedance. For this reason, a
DC-DC converter is used. In the literature, many techniques
have achieved this adaptation between the PV panel and
the load impedance at different atmospheric conditions such
as the well-known Perturb and Observe (P&O) [3]– [6],
including the Incremental Conductance technique (InCon).
P&O is cost effective and relatively easy to implement for
controlling directions. However, this technique shows trade-
offs between tracking speed and steady state accuracy to
control atmospheric perturbations [3]– [7]. To overcome this
problem, several solutions have been proposed [8]– [10]. In
particular, it is worth mentioning that the perturbation step
increases when the working point is far from the MPP, since
the steps are proportional to the ratio dPPV /dVPV (and vice-
versa) [8]– [11].

In the recent years, with the emergence and development
of Artificial Intelligence (AI) [12], many applications such
as, text mining to biology, financial forecasting, rehabil-
itation systems, trust management and medical diagnosis
[13]– [21] have been efficiently improved. Furthermore, AI
also provided effective and robust solutions to the field of
electro-control systems by developing PID, fuzzy logic [11],
[22]– [38] and Artificial Neural Networks (ANNs) [39]– [41]
based-control approaches. A comprehensive fuzzy system
has been used by [11] to intelligently and adaptively tune the
PID gain. Adaptive neuro-fuzzy controller system has been
proposed for controlling MPPT with constant temperature
and varying irradiance [22]– [25]. Recently, fuzzy logic is
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used in several applications due to its simplicity and its inter-
pretability. Note that the main advantage of such technique
is the addition or withdrawal of membership functions (MFs)
without rehabilitation or re-learning. Fuzzy logic allows to
model natural language rules and also complex dynamic
systems. For this reason, fuzzy-based MPPT algorithms have
gained a great deal of attention [11], [22]– [31]. Notably, high
tracking performance have been obtained by using fuzzy-
based MPPT [11], [22]– [31]. Hitherto, most of the works
used two inputs and one output with five MFs to generate
twenty-five rules [22]– [32]. Others used one output and two
inputs of seven MFs, resulting in forty-nine rules [22]. In
[23], two inputs were used with three MFs, yielding nine
rules. Vicente Salas et al. [42] employed the variation of
current as the unique input in MPPT controller. Specifically,
the authors used one input with two MFs, one output with two
MFs and only two rules. To the best of our knowledge, this
was the first approach able to provide a significant reduction
in number of inputs and MFs. It is to be noted, as reported
in the literature, that different inputs can be selected. In par-
ticular, some used the temperature and irradiance variation
[23], whereas others used error variation and momentum
[24]– [28]. In [32], the proposed fuzzy controller employed
different input variables, such as: (1) slope of solar power
vs. solar voltage and slope changes; (2) slope and power
variation (MP); (3) MP and voltage variation (MV); (4) MP
and current variation (MI ); (5) sum of conductance and
conductance increment; (6) sum of conductance arctangent
angles and increment conductance arctangent. In [41] the
inputs were dPPV /dIPV and the error E(t) (defined as
PMPP - PPV ); or, E(t) and error variation (ME(t)). However,
for computational reasons, the best inputs turn out to be the
MPPV and MVPV (or MIPV ), power variation and voltage
(or current) variation, respectively [22]– [41]. Hence, as re-
ported in the aforementioned works, all controllers based on
MPPT used at least two inputs. In contrast, this paper propose
a highly-efficiency fuzzy-based MPPT controller with high
reduction inputs and MFs for a grid-connected photovoltaic
system. Notably, only two MFs were used. Furthermore,
MIPV = (IPV (k)− IPV (k− 1)) is selected as unique input.
Consequently, the calculation time, the number of variables
and the circuitry (Analog to Digital Converter (ADC), Sam-
ple and Hold (S&H), filter, etc..) are significantly reduced.
Moreover, the proposed fuzzy-based controller approach is
able to decrease the tracking time and concurrently increase
the tracking accuracy as compared with other state-of-the-art
controllers.

The rest of the paper is organized as follows: in Section
II mathematical details of a PV panel are introduced; in
Section III the design of the DC-DC converter is presented;
Section IV and V describe the fuzzy based MPPT controller
and the Pulse Width Modulation (PWM) used for the three
level voltage source converter, respectively. In Section VI the
model and simulation of the PV system with HRFLC based
MPPT controller is presented. In Section VII the experimen-
tal results are discussed and in Section VIII conclusions are

FIGURE 1. Circuit model of a photovoltaic cell [35].

addressed.

II. MATHEMATICAL MODELING FOR A PHOTOVOLTAIC
PANEL
A solar cell is composed of two types of semiconductors,
called p-type and n-type. Photovoltaic transformation occurs
when solar cell is exposed to sunlight, by converting the elec-
tromagnetic solar irradiance to electricity. Incident irradiance
produces proportional electron-hole pairs if their energy is
greater than the energy of the semiconductor’s band-gap. Fig.
1 shows the circuit model of a standard photovoltaic model.
The photocurrent IPh is the current source of the PV cell,
generated when irradiation G occurs [42] [48]. Intrinsic shunt
and series PV cell resistances are Rsh and Rs , respectively.
It is to be noted that Rsh assumes typically high values
and vice-versa, Rs low values. PV cells associated to larger
units result in PV modules; these, interconnected together
in parallel-series configurations, lead to the production of
PV arrays. Equation (1) shows the current output when the
mathematical model of the PV panel is simulated [43].

IPV = NP IPh −NP ∗ I0[exp(
q ∗ (VPV + IPV Rs)

(NsAkT )
)− 1].

(1)
In this work, the SunPower SPR-305-WHT PV panel is

used with the following characteristics: Maximal Module
Power (Pm ) of 305W, optimal voltage (Vmp) of 54.7V,
optimal current (Imp) of 5.58A, saturation current (Io) of
1.1753e−08A, photo-current (IPh ) of 5.9602A, short circuit
current (ICSr ) of 5.96A, open circuit voltage (Voc) of 64.2V,
serial resistance (Rs ) of 0.037998Ω, parallel resistance (Rsh )
of 993.51Ω and number of cells equal to 96. As regards
the PV array, its characteristics are: serial modules number
of 5 and parallel modules number of 66. Hence, the PV
has a power of about 100kW, obtained as follows 66 ×
5 × 305W= 100650W= 100.65kW. Irradiance of 1kW/m2

and cell temperature of 25oC are the electrical specifications
under test conditions. I-V and P-V curves of the array are
depicted in Fig. 2. Here, the PV panel is directly connected to
a DC-DC converter. This converter is an impedance adapter
and allows to transfer the power captured from the PV panel
to the grid toward a three-level voltage source converter.
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FIGURE 2. Array characteristics curves I-V (a) and P-V (b).

FIGURE 3. The DC-DC Boost converter.

III. DESIGN THE DC-DC CONVERTER
A simple DC-DC boost converter transfers the power com-
sumption from the PV Generator (PVG) to the load, when
the adaptation condition (between PVG and load) occurs. The
adaptation is characterized by an adequate duty cycle signal
(0 <D <1). Note that the PWM signal controls the valve gate,
IGBT, in the boost converter. The wiring Simulink diagram
of the DC-DC boost is shown in Fig. 3.

The relationship between inputs and outputs variables of
the boost converter is represented by the following equations
[44]:

Vo = Vin/(1−D). (2)

Iout = (1−D)Iin. (3)

whereas, Equation (4) shows the equivalent resistance (Req )
of the DC-DC boost converter:

Req = Rin(1−D)2. (4)

The maximum power is transferred to the load when Req

is equal to the output resistance (Ro) of the PV system

[45]– [46]. Hence, according to the maximum power transfer
theorem the duty cycle can be obtained as follows:

Rin = Vin/Iin = Ro(1−D)2 =⇒ D = 1−
√

Rin

Ro
. (5)

Inductor (L) and capacitor (C ) functions of the DC-DC
boost converter are instead defined as:

L =
(Vo − Vin)Vin

f(M I)Vo
. (6)

C =
(Vo − Vin)Iout
f(M V )Vo

. (7)

where D is the duty cycle; f is the frequency (5 kHz in
this study); Vin and Vo are the inputs and outputs voltages,
respectively; MI and MV are the current and voltage ripple.
Here, L = 5e−3H and C = 12000e−06F. Fig. 4 depicts the
I-V curve of the panel studied with different working zone. In
particular, A-B area denotes the buck working zone, B-C the
boost working zone and finally A-C the buck-boost working
zone [47]. In this work, the boost converter’s working zone
(B-C) is the most important and, MI is the variable of greatest
interest. Note that in Fig. 4, B is the MPP point and C is
the open circuit point. At the B point Ro=Rin. Furthermore,
in this area, Ro�Rin with Rin = Ro(1 −D)

2. In order to
have a stable voltage at the grid, the VSC voltage must be
stable and constant. In this study, the voltage supplied to the
VSC is kept constant (V =500V) as shown in Fig. 10.

IV. FUZZY BASED MPPT CONTROLLER
A. FUZZY INFERENCE SYSTEM
A standard Fuzzy Inference System (FIS) consists of three
modules, as shown in Fig. 6. In the first stage, called fuzzifi-
cation, input variables are expressed in linguistic variables
by assigning a MF. Secondly, IF-THEN rules are applied.
Finally, in the defuzzification step, linguistic variables are
transformed into specific output values and parameters are
adjusted based on the input-output data relation [22]– [33].

B. FUZZY LOGIC CONTROLLER
A Fuzzy Logic Controller (FLC) is based on a FIS [32]. In
fuzzification, the selected linguistic variables are the Positive
Small (PS) and the Positive Big (PB). These linguistic values
attribute a fuzzy score to the input. In this paper, both input
and output MFs are triangular for its simplicity and ease of
implementation (Fig. 5). It is to be noted that a high number
of MFs lead to an increase of rules and consequently, the
control program is difficult to implement.
In this work, two rules are necessary to efficiently develop
the control and provide accurate results. Moreover, only one
input is used for the FLC, that is the current variation MIPV ,
defined as follows:

M IPV (n) = IPV (n)− IPV (n− 1). (8)
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TABLE 1. Fuzzy rules.

MIPV D
PS Hi
PB Lo

Table 1 reports the rules used in this paper. As can be
seen only two MFs are involved. In contrast, in [22]– [32]
higher number of rules are employed (i.e., from 9 to 49).
Note that the rules define the relationship between MI and
D, represented by the IF-THEN instructions. For example, if
the change in current is PS then D will be high.

YCOG =

∑n
i=1 Yi(Xi)Xi∑n
i=1 Yi(Xi)

. (9)

where COG stands for Centre Of Gravity. The final level
of FLC is the defuzzification able to produce a signal that
controls the MPP. The PV panel current and the PV current
variation MI are illustrated in Fig. 7. As can be seen, MI is
always positive in all irradiance variations.

V. THREE LEVEL PWM VOLTAGE SOURCE CONVERTER
In the literature, several multilevel inverter topologies have
been introduced, such as the diode clamped multilevel in-
verter, the flying capacitor multilevel inverters, and the cas-
caded H-bridge multilevel inverter. The most used is the
well-known Neutral Point Clamped (NPC) [49]– [50]. In
this paper, a three-level Voltage Source Converter (VSC) is
employed, since it is suitable for higher voltage inverters
and provides the following advantages than a common two-
level inverters: i) low output current ripples; ii) reduced
harmonic power as a result of a smaller output voltage that
leads to cleaner AC output waveform; iii) the IGBTs are
subjected to the half of the bus voltage; iv) the NPC inverter
is characterized by a low common-mode and line-to-line
voltage step. However, the three-level VSC provides a double
effective switching frequency, an augmented number of IG-
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FIGURE 5. Input (a) and output (b) Fuzzy Membership Functions (MFs).

BTs and a complex control strategy while increasing in level.
This means that the cost and magnitude of its components
is higher than the well-known two-level inverters, due to
the reduced output voltage steps. In order to achieve such
voltages, N IGBTs are added in each level:

N = 2(Le− 1). (10)

where Le the desired level. In this study Le = 3, so, four
IGBTs are needed for one leg, as shown in Fig. 8. In this
topology, half of the voltage (Vdc /2) is applied to the IGBT
achieved by the two equal capacitors in series. Furthermore,
two clamp diodes in each leg are responsible for driving
the half voltage to each specific IGBT [49]. For each of the
three phases, produced in each leg (Fig. 8), the output voltage

switches between −Vdc

2
and

Vdc

2
.

These voltages are obtained by turning on at the same time:
1) A1 and A2; 2) A2 and A3; 3) A3 and A4 as reported in
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FIGURE 8. Three phase voltage source converter.

Table 2, where A1, A2, A3 and A4 are the IGBTs in each
leg. Such switching control options generate

Vdc

2
, zero and

−Vdc

2
. After filtering, a sine waveform is obtained at the AC

output. The connection to the 0 Volt (neutral point) is assured
by the clamp diodes D3 and D4. It can be seen from Table
2 that A2 and A3 conduct more than A1 and A4 causing a
conduction loss on A2 and A3 and a switching loss on A1
and A4 [50]. The capacitors C1 and C2 are coupled in series
to generate the neutral point (0 Volt). Setting an equal voltage
in the capacitors and establishing a neutral tension in the
mid-point is important for the proper operation of NPC. Any
unbalance voltage in the capacitors will affect directly the
AC output. In this work, the sine triangular PWM waveform
method is used [50]– [51]. Specifically, in order to create
the sine-carrier PWM, a comparison of the three references
control signals, the pure sine waveform with 120o, and the
two triangular carrier waves TrC1 and TrC2 is performed.
Fig. 9 shows the comparison of one reference with the two
triangular carriers. Specifically, the comparison of the sine
waveform with TrC1 and TrC2 produces the on/off switch of
A1 and A2, respectively. The switching on and off of A3 and
A4 are the inverse of A1 and A2, respectively.

TABLE 2. IGBTs switching options.

IGBT Vout

A1 A2 A3 A4
1 1 0 0 Vdc /2
0 1 1 0 0
0 0 1 1 -Vdc /2

The corresponding control signals for the IGBTs can be
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expressed as follows:

V =

{
1 if Vcarrier > Vref

0 if Vcarrier < Vref
(11)

A zoom of the line-to-line voltage (Vab), obtained at
the VSC, is illustrated in Fig. 10. Here, the total harmonic
distortion calculated for Vab is 0.39%.

VI. MODELING AND SIMULATION OF PV SYSTEM WITH
HRFLC BASED MPPT CONTROLLER
The simulation model of the incremental conductance tech-
nique was performed by using constant temperature and by
varying irradiance. Fig. 11 depicts irradiance and temperature
selected as input to the PV panel. Fig. 12 represents the
proposed HRFLC of a PV panel connected to the grid. In
particular, Fig. 12 (a) depicts the synoptic scheme of the
panel connected to the grid toward the VSC with the High
Reduced Fuzzy based MPPT controller; whereas, Fig. 12 (b)
illustrates the global scheme of the PV panel connected to the
grid toward the boost DC-DC converter and the VSC.
The power transfer between the PV panel and the boost
DC-DC converter at 25oC is shown in Fig. 13 (a); while,
comparison results with 40oC, 20oC are reported in Fig. 13
(b). The steady state error (SSE) and tracking time (TT) are
shown in Fig. 14 and 15, respectively. Fig. 16 (a) depicts the
Steady Time (ST), SSE and TT at 40o; whereas, Fig. 16 (b)
highlights ST, SSE and TT at 20oC.
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FIGURE 11. Irradiation (a) and temperature (b) as a function of time.

However, it is to be noted that a significant improvement was
observed when the proposed HRFLC is employed. In particu-
lar, as regards the simulation carried out at 25oC, TT, ST and
SSE were of 0.008s, 0.08s, 0.12 kW, respectively. This re-
sulted in an error percentage of 0.12kW/100.65kW= 0.119%.
In relation to the simulation at 20oC, instead, TT, ST and
SSE were of 0.01s, 0.04s, 0.005kW, respectively. In this case
the error percentage was of 0.005kW/100.65kW=0.0049%.
Finally, as regards the experiment at 40oC, TT, ST and SSE
were of 0.01s, 0.22s, 0.01kW, respectively, achieving an
error of 0.01kW/100.65kW=0.0099% and an initial loss of
about 9.5kW. The relationship between the boost power and
grid power is depicted in Fig. 17. Specifically, Fig. 17(a)
reports the simulation results at 25oC. In this scenario, TT
is less than 0.004s (Fig. 19), ST is about 0.3s and SSE is of
100.54kW-98.83kW = 1.71kW (Fig. 18), providing an error
percentage of 1.71kW/ 100.65kW = 1.69%. Results show
high tracking efficiency and a good performance due to the
use of the three level converter. Note that this performance
can be improved when using five level converter or more.
As regards simulation performed at 20oC as shown in Fig.
20(b), the ST is 0.02s, TT is 0.005s, SSE is 2kW, resulting
in an error of 2kW/100.65kW=1.98%. As regards the 40oC
simulation (see Fig. 20(a)), the following errors 0.03s TT,
0.17s ST and 1.4kW SSE were achieved, resulting an error
percentage of 1.4kW/100.65kW=1.39%. It is to be noted
that in 20oC simulation there is a gain in power due to the
materials characteristics of the PV. In this work, a stable
voltage (i.e., 500V) was used to supply the VSC. By this
assumption, the power variation depends on the current.
Hence, the power estimated at the grid is 98.83kW and the
power of the boost is 100.54kW , as shown in Fig. 18. The
global power transfer between the PV panel and the grid at
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(a)

(b)

FIGURE 12. (a) Synoptic scheme of the PV panel connected to grid. (b) PV panel connected to grid with the HRFLC.
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FIGURE 13. Simulation results of panel power and boost power at 25oC (a)
and 40oC, 20oC, 25oC (b).

25oC is shown in Fig. 21. In this case, TT (Fig. 23), ST and
SSE (Fig. 22) were of 0.005s, 0.09s and 1.82kW, respectively.
For 20oC simulation, as shown in Fig. 24 (b) the ST was
0.02s, TT 0.02s, SSE 1.8kW, leading to an error percentage of
1.8kW/100.65kW=1.78%. Finally, as regards the 40oC sim-
ulation (Fig. 24 (a)) reports 0.04s of TT, 0.17s ST and 1.4kW
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FIGURE 14. Simulation results of the steady state error between the panel
power and boost power at 25oC.
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FIGURE 15. Simulation results of the tracking time between panel power and
boost power at 25oC.

of SSE, resulting in an error of 1.4kW/100.65kW=1.39%.
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FIGURE 16. Errors between panel power and boost power at 40oC (a) and
20oC (b).

0.5 1 1.5 2 2.5 3
Time (s)

(a)

-100

-50

0

50

100

150

P
o

w
e

r 
(k

W
)

Boost Power vs. Grid Power

Boost Power

Grid Power

0.5 1 1.5 2 2.5 3

Time (s)

(b)

-20

0

20

40

60

80

100

120

P
o

w
e

r 
(k

W
)

Boost Power vs. Grid Power

Boost Power

Grid Power

25°C20°C40°C

FIGURE 17. Simulation results of boost power and grid power at 25oC (a)
and 40oC, 20oC, 25oC (b).

VII. EXPERIMENTAL RESULTS
In this paper, a HRFLC-based MPPT controller connected
to grid with only one input is developed. More specifically,
here, the variation of irradiance and temperature in time has
been taken into account. Note that three temperatures has
been studied 40oC, 25oC, and 20oC. An excellent tracking
between the power grid and the PV panel power was achieved
as reported in Fig. 21, 22, 23 for the 25oC; in Fig. 24 (a) and
Fig. 24 (b) for 40oC and 20oC, respectively. In addition, a
complete adaptation was observed in the results related to the
PV panel power and the boost power as illustrated in Figs 13,

14 and 15 for the 25oC; Fig. 16 (a) and 16 (b) for 40oC and
20oC, respectively. It is worth mentioning that a fast reaction
and adaptation to different working conditions was observed.
In Fig. 24 (a), with the proposed HRFLC, the efficiency was
98.83kW power transmission from the PV panel to grid out of
100.65 kW, meaning 98.19% of transmitted power for 25oC,
89.8kW for 40oC and 100.2kW for 20oC as illustrated in Fig.
24 (b). The variation of the duty cycle was between only
two values: 0.463 and 0.478 to get the highest and lowest
irradiance, respectively.

For the power transferred from the panel to the grid in
the case of 25oC the tracking time error was about 0.005s
as shown in Fig. 23. Fig. 22 depicts a steady state error of
1.82 kW and a steady time of about 0.09s. Since the panel
power was 100.65kW, the steady state error was 1.8% (or
98.19% tracking efficiency). Hence, for 20oC and 40oC the
tracking times were 0.02s and 0.04s respectively; whereas,
the steady state error were 1.8kW and 1.4kW, respectively.
It is to be noted that even the steady state error for 40oC
was less than 20oC the power transmitted from the panel
to the grid was higher than those achieved in 40oC (i.e.,
100.2kW and 89.8kW respectively). As regards PV-Boost
simulations high accuracy and efficiency were reported (Fig.
13 - 15). The tracking time was 0.009s, the steady state
error was 0.12 kW and the transit time was 0.08s for 25oC.
For 20oC and 40oC the efficiencies are 99.99% and 90.7%
respectively. This was due to: i) the use of few MFs which
reduce the calculation time of the output; ii) the adequate,
simple and fast choice of the duty cycle D by only two MFs.
In relation to the results obtained between the boost and the
grid at 25oC, a transit time of about 0.01s and a tracking
time of 0.004s, were achieved (Fig.19). In Fig.18 the steady
state error was of 1.71 kW which means an error of 1.69%
for 20oC and 40oC. Fig. 20 (a) and (b) report, instead, the
efficiency values that are 99.51% and 89.7% respectively.
Most state-of-the-art works performed simulations at 25oC.
For example, in [31], the best fuzzy system reported a transit
time of 0.91s, a tracking accuracy of 99.93% with an error
of 5.86Wh and a steady state error of 0.37%. The P&O
(0.5%) in [31] reported a transit time of 0.25s and a steady
state error of 7.16%. The ANNs used in the literature, the
steady state error was approximately 3W for 30W (10% of
error) [52]. The ANN-based system proposed in [53] provised
a transit time of 0.05s with a steady stat error of 0.6%.
In [54] the proposed fuzzy system reported a transit time
of 0.25s, and a mean steady state error of 2.36%. In [22]
using adaptive neuro-fuzzy controller the steady stat error
was about 0.5%. In [24] the tracking time error estimated was
1.58s. For further evaluation, Table 3 illustrates the results
presented in [45]– [46] such as Third Order B-spline Adap-
tive Neuro-fuzzy Controller (TOANC), fuzzy logic controller,
PID–incremental conductance (PID–InCon) and PID–Hill
climbing (PID–HC). As can be observed, TOANC achieved
the highest efficiency and the lowest error as it employed the
MPPT error and its derivative.

Kamal et al. [45]– [46] compared the proposed method
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TABLE 3. Summary of the comparative study

Controllers Efficiency % Error %
TOANC 99.12 0.88
FLC 91.51 8.49
PID-IC 87.67 12.33
PID-HC 84.01 15.99

TABLE 4. Comparison of power efficiencies

Controllers Efficiency% Error %
TOANC 99.12 0.88
Sliding mode controller 97.30 2.7
Integral Backstepping controller 98.04 1.96
Predictive 95.80 4.20
MPPT with irradiance sensor 98.62 1.38
P&O-ANFIS 85-97 15-3
Three-point weighted 96.00 4.00

TOANC with sliding mode controller, integral backstepping
controller, predictive, MPPT with irradiance sensor, ANFIS
and three point weighted. Comparative results are reported in
Table 4. Hence, the proposed HRFLC-based MPPT, which
achieved an efficiency of 99.12%, with only one input, one
output, and two rules. This FLC can be easily implemented
and widely used. Results are summarized Table 5.

The results achieved for 20oC and 40oC are reported in
Table 6.

The proposed HRFLC provided high performances with a
reduced number of MFs and rules, making its architecture
very simple. In fact, the main idea was to keep the voltage
stable while the current control the irradiance variation. The
choice of the single input MI simplifies considerably the
implementation. The reasons of using MI can be summarized
as follows: first, the voltage of the VSC must be kept constant
and stable in order to supply the grid with fixed AC voltage.

TABLE 5. Summary of the comparative studies.

Controllers Inputs Steady
State error

Tracking
time

Architecture Implementation

P&O MP and
MV

until 10% 0.25s Very Easy Very Easy

ANN GMPP and
VGMPP

0.6% 0.05s Difficult Difficult

Neuro-
Fuzzy

E and ME 0.5% 0.5s Heavy Difficult

Fuzzy MP and
MV

0.37% 0.91s Quite Easy Quite Easy

TOANC W and
MW

0.88% / Heavy Difficult

HRFLC MI 0.119% 0.008s Very Easy Very Easy

TABLE 6. Results achieved for simulations carried out at 20oC and 40oC.

40oC 20oC
PP/BP BP/GP PP/GP PP/BP BP/GP PP/GP

IE 9.5kW / / ≈0 / /
SSE 0.01kW 1.4kW 1.4kW 0.005kW 2kW 1.8kW
TT 0.01s 0.03s 0.04s 0.01s 0.005s 0.02s
ST 0.22s 0.17s 0.17s 0.04s 0.02s 0.02s
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FIGURE 18. Simulation results of the steady state error between the grid
power and boost power at 25oC.
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FIGURE 19. Simulation results of the tracking time between the grid power
and boost power at 25oC.

Second, the current is more sensible in the B-C zone than the
other zones as this work deals with Boost controller. Third,
components, time and memory are reduced significantly.

VIII. CONCLUSIONS
In this work, an HRFLC-based MPPT method is proposed as
an accurate, simple and representative approach. The design
and simulation of the method are discussed in detail. In
this paper, only the current variation is used under differ-
ent weather conditions (i.e., irradiation at 20oC, 25oC and
40oC), achieving high accuracy and efficiency, by employing
a number of inputs less than usually used in the literature,
mainly twenty-five rules or over. This reduction means that
the calculation is simplified significantly. Comparing to the
conventional P&O method, the proposed MPPT method
can satisfactorily address the trade-off between the tracking
speed and steady state oscillations. Moreover, a connection
to a grid is achieved. This connection provided high per-
formances. Moreover, the use of Fuzzy in MPPT control
(HRFLC) achieves better results than the classical approach,
especially for static error and tracking time. Furthermore,
in comparison with other controllers like fuzzy, ANNs and
so on, the HRFLC reported higher accuracy and efficiency
in tracking time, transit time, and steady state with a high
reduction in variables and functions. This reduction allows
not only to simplify the implementation process but also to
achieve a significant gain in terms of time and cost (by using
a smaller number of components). This will make an easy
process for installation and maintenance. As an alternative
perspective, in the future, exploitation of deep and/or re-
inforcement learning methods [13]– [18], [55] will be also
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FIGURE 20. Errors between boost power and grid power at 40oC (a) and
20oC (b).
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FIGURE 21. Simulation results of panel power and grid power at 25oC (a)
and 40oC, 20oC, 25oC (b).
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FIGURE 22. Simulation results of the steady time and steady state error of
the grid power and PV Panel power at 25oC.
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FIGURE 23. Simulation results of the tracking time between the grid power
and PV panel power at 25oC.
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FIGURE 24. Errors between panel power and grid power at 40oC (a) and
20oC (b).
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Design of Linguistic Fuzzy Regression Systems with Adaptive Defuzzifi-
cation in Big Data Environments," Cogn Comput, vol. 11, no. 3, pp. 388–
399, 2019.

[36] L. Zhang and Y. He, "Extensions of Intuitionistic Fuzzy Geometric
Interaction Operators and Their Application to Cognitive Microcredit
Origination," Cogn Comput, vol. 11, no. 5, pp. 748-760, 2019.

[37] X. Tang and G. Wei, "Multiple Attribute Decision-Making with Dual
Hesitant Pythagorean Fuzzy Information," Cogn Comput, vol. 11, no. 2,
pp. 193-211, 2019.

[38] G. Sun, X. Guan, X. Yi, and Z. Zhou, "Improvements on Correlation Co-
efficients of Hesitant Fuzzy Sets and Their Applications," Cogn Comput,
vol. 11, no. 4, pp. 529–544, 2019.

[39] L.M. Elobaid, A.K. Abdelsalam, and E.E. Zakzouk, "Artificial Neural Net-
work Based Maximum Power Point Tracking Technique for PV Systems,"
IECON 2012 - 38th Annual Conference on IEEE Industrial Electronics
Society Pp:937-942, 2012.

[40] A.M. Ameen, J. Pasupuleti, T. Khatib, W. Elmenreich, H.A. Kazem,
"Modeling and Characterization of a Photovoltaic Array Based on Actual
Performance Using Cascade-Forward Back Propagation Artificial Neural
Network," J. Sol. Energy Eng., vol. 137, no. 4, pp. 041010.

[41] E. Karatepe, T. Hiyama, "Artificial neural network-polar coordinated fuzzy
controller based maximum power point tracking control under partially
shaded conditions," IET Renew. Power Gener., vol. 3, no. 2, pp. 239–253,
2009.

[42] V. Salas, E. Olias, Alasaro, A. Barrado, "New algorithm using only one
variable measurement applied to a maximum point tracker," Solar Energy
Materials and Solar Cells, vol. 87, no. 1-4, pp. 675-684, 2005.

[43] S. Berclin Jeyaprabha and A. Immanuel Selvakumar, "Model-Based
MPPT for Shaded and Mismatched Modules of Photovoltaic Farm," IEEE
Transactions on Sustainable Energy, vol. 8, no. 4, pp. 1763-1771, 2017.

[44] N.S. D’Souza, L.A.C. Lopes, X. Liu, "Comparative study of variable
size perturbation and observation maximum power point trackers for PV
systems," Electr. Power Syst. Res., vol. 80, pp. 296-305, 2010.

[45] T. Kamal, M. Karabacak, F. Blaabjerg, S.Z. Hassan, L.M. Fernández–
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