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I. INTRODUCTION

An understanding of physical phenomena has developed through the

interplay of experimental results and theoretical postulates. This is

clearly demonstrated by the development of our present thinking about

electrOTiagnetic radiation and quanta. Two postulates for the structure

and propogation of visible light withstood, to a limited degree, the tests

of experimental evidence. Light was first considered to have a corpus-

cular nature. Newton extended his ideas of particle mechanics to explain

light phenomena with considerable success but this concept was not satis-

factory for explaining the refraction, interference and diffraction of

light. During the middle of the 17th century, Christian aiygens developed

a wave theory that explained refraction, interference and diffraction

phenomena very nicely. In fact, the wave theory was so successful in

explaining light phenomena that the particle theozy was c<8apletely dis-

carded by the middle of the 19th century.

The continued study of light phenomena and the advent of atomic

investigations led to results that could not be adequately explained by

the wave theory. In 1900, Max Planck developed an empirical equation to

explain blackbody radiation. This equation agreed very nicely with the

independent experimental results of both Wein and Rayleigh. A physical

explanation of this new equation was desirable, the outccme of idiich was

the quantum idea. Abandoning traditional ideas, Planck made the bold

assumption that an ultimate source does not emit radiant energy in a

continuous manner but instead intermittently, and, what is more important,

in packets—quanta or photons~of very definite energy content. A photon

was assumed to have, after emission, a definite wave structure with a



frequency f , and an energy content E given by E«hf , where h is called

Planck's constant. The results of photoelectric eaqperiments led Albert

Einstein, in 1905, to extend Planck's postulate to include absorption of

radiation by discrete units of magnitude hf. Photoelectrons emitted by

a photocell exposed to monochromatic li^ht were noted to have a kinetic

energy equal to or less than hf and the kinetic energy of the electrons

was independent of light intensity. Classical mechanics could not ex-

plain the photoelectric effect but the phenomena could be explained if

light was considered to be a group of particles (photons) havii\g energy

hf.

A few years later Neils Bohr deviated somewhat from classical me-

chanics in postulating his model of the hydrogen atom. Radiant energy

was considered to be emitted from the atom in discrete amounts (equal

to hf) as the electron moved to an inner orbit. The great success of

Bohr's model of the aton, in explaining spectroscopic results, strength-

ened the quantum concept of light.

By the beginning of the 1920 's there was a feeling among physicists

that it was no longer a question of whether the particle theory or the

wave theory explained light phenomena but rather how could they be as-

sociated together to explain light phenomena. This was expressed by

H. A. Lorentz (1) in a discourse delivered to the Royal Institution on

June 1, 1923. %_.

Here is an important problem for the physics of the immediate
future. We can not help thinking that the solution will be found
in some happy combination of extended waves and concentrated quanta,
the waves being made responsible for interference and the quanta
for photo-electricity.

The theoretical solution was soon presented by Louis de Broglie in



notes (2, 3) at the end of 1923 and in a more complete exposition which

constituted his thesis for a dootrate, submitted in 1924. In these

de Broglie equated the energy of a wave packet and the kinetic energy of

a photon, hf=mc^, where m is the mass of the photon and c is the velocity

of light. De Broglie extended this relationship to include material

particles such as electrons and considered a wave to be associated with

the electron having a wavelength given by the expression, ''

^ ~p~mv

where p is the momentum, m the mass, and v the velocity of the electron.

Writing about this sometime later de Broglie commented (^4-)

... so also I foresaw, frcwi that moment, that it must be

possible to obtain with corpuscles, with electrons in particular,
certain phenomena of interference or of diffraction altogether
impossible to foresee with the aid of classical dynamics.

The association of waves with particles and the theoretical ccxabina-

tion of these two concepts led to fruitful theoretical and experimental

progress. In 1926 Erwin Schroedinger presented his famous wave equation

using the de Broglie wavelength for a particle moving in any field of

force with potential energy V.

Experimental verification of the wave nature of electrons was soon

made by C. J* Davisson and L. H. Qenaer (5) and independently by Q. P*

Thomson (6). Low voltage electrons of order of 100 volts, were used to

strike the (ill) surface of a nickel crystal in the Davisson-Genner

experiment. Davisson and Genaer were studying the reflection of second-

ary electrons from nickel. An unusual reflection pattern was noted for

those electrons that had a velocity equal to the striking velocity of

the original beam. After careful study they concluded the pattern was



a result of electron diffraction. Thcmson used high voltage electrons*

i.e. 30,000 volts, to penetrate thin polycrystalline films and observed

diffraction patterns of the Debye-Scherrer type. He observed this with

filjiiB of gold and aluminum.

In both these experiments, the crystal spacing s calculated by the

Bragg diffraction law were the same for electron diffraction as those

obtained from X-Ray diffraction experiments. This strong experimental

evidence left little doubt as to waves associated with material particles

and established the dual nature of matter. It established a firm founda-

tion for the wave theory of quantum mechanics.

These concepts are important to the science student today, and,

therefore, a simple experiment with electron waves is desirable for

modem physics laboratories. Such an experiment could aid the student

in gaining an intuitive feeling for these important facts and could

provide experience in experimental techniques in this important field.

Developing such an experiment was the underlying objective of the work

presented in this report.

II. STATEMENT OF THE PROBLEM

The purpose of the work reported here was to develop a relatively

simple and inexpensive classroom demonstration of matter waves associated

with electrons. Electron diffraction by thin polycrystalline films was

considered the most desirable.



III. PREPARATION OF APPARATUS

The plan for demonstratiiig electron diffraction was 1) insert a ,

thin polycrystalline film into a cathode ray tube, 2) reevacuate the tube,

3) allow the electron beam to penetrate the film, and 4) observe the dif-

fraction pattern on the screen of the cathode ray tube. The 5CP-1 Cathode

ray tube was selected from a stock of surplus tubes because there were a

number of them available and it was electrostatically controlled. The

tubes were opened by one of two methods. The first was to file a small

hole in the neck of the tube to allow air to enter and then cut the glass

tube with a diamond or carborundum circular saw. This method requires

cooling water for the saw which gets inside the tube and may damage the

phosphor screen of the electron gun. The other method is to first scratch

the neck of the tube with a file. Then heat the tip of a small glass rod

and press this heated tip at the end of the scratch. The glass will crack

for a short distance, and with repeated applications of the hot glass rod

the crack can be guided around the neck of the cathode ray tube. For

several tubes, air was allowed to fill the tube before cracking it. This

was done by filing a hole in the neck of the tube. A number of cathode

ray tubes were opened and no implosions occurred, however, precautions

were taken to cover the tube to prevent injury from flying glass in case

of an implosion.

The diffraction tube (the reassembled cathode ray tube) is shown

before assembly in Plate I, Figure 1. The glass envelope was cut 3/4 of

an inch from the base of the cathode ray tube and this length of tube

remained an integral part of the electron gun assembly. The electron

gun was fitted into one end of a 2" copper T pipe fitting. It was



positioned by the shoulder on a copper insert placed in the T fitting.

The specimen holder and the glass bulb of the cathode ray tube were held

in the other end of the copper T fitting. The assembled diffraction

tube is shown in Plate I, Figure 2« Apezion W wax and tackiwax were

used to seal the tube. A glass seal was more desirable but this was

not practical because the cathode ray tube is constructed of soft glass

which is very difficult to reassanble without cracking. The assembly

was adequate for development purposes and a vacuum of 5x10"' Torr was

attained by continual pumping, A glass seal would have made a permanently

sealed tube possible.

The diffraction tube was evacuated with the pumping systom shown in

Plate II, Figure 3. This consisted of two mechanical pumps and two oil

diffusion pumps in series. One of the mechanical pumps was used only as

a roughing pump and was cut off from the system by a valve when the pres-

sure was low enough for the diffusion pumps to operate,

A power supply was designed and constructed to accelerate and control

the electron beam. The accelerating voltage was obtained with a selenium

rectifier in the secondary circuit of a high voltage transfonuer. The

brightness control, focusing and deflection voltages were taken off the

high voltage circuit. The circuit diagram is shown in Plate IH. The

accelerating voltage potentiometer shorted out and was, therefore, removed

from the circuit. This simply provided a constant-accelerating voltage

equal to the maximum accelerating voltage with the potentiometer in the

circuit. The filament voltage was supplied by a variac to obtain a

Torr is a pressure unit essentially equal to 1 mm of Ife.



Plate I

Figure 1. Exploded View of Electiron • .:
'- "H

Diffraction Tube ^^,

A. Electron gun and
'^;>i''

deflection plates ••:•

B. Specimen Holder ^.,.

C. Copper Insert Ring
D. Glass Tube and Screen

Figure 2. Assembled Electron
Diffraction Tube
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Plate I

Figure 1

w WLm^
\

Figure 2



Plate II

Figure 3. Electron Diffraction Tube
Mounted on Vacuum Pump Systan

Figure k,

A. Power Supply
B. Filament Variac
C* Vacuum Gage Indicator

O'
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Plate II

Figure 3

Figure k
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variable voltage from 0-13 volts. The higher voltage was needed to heat

the cathodes for activation of the oxide coating. The diffraction tube

was operated with a filament voltage between 7 and 12 volts. The higher

voltages provided a greater intensity electron beam and did not appear to

damage the electron gun although it is rated at a 6.3 filament voltage.

The power supply together with the vacuum gauge indicator are shown in

Plate I, Figure k.

The phosphor screen of the cathode ray tube was not altered and was

mounted perpendicular to the central electron beam. It emitted a green

light. .;'

Several attoapts to re-activate the cathode coating on four different

electron guns were unsuccessful. The procedure was to slowly increase the

filament voltage after the diffraction tube had been evacuated. It was

expected that the cathode would be heated enough for reactivation but

this failed even when the filament voltage was increased on one occasion

to 35 volts at which point the filament burned out.

The mechaniaa whereby electrons are emitted from an oxide coating

is not fully understood. For some unknown reason when the oxide coating

is exposed to air it will not function again even in a vacuvim. In some

cases it is possible to reactivate the coating by heating but as stated

above this was found to be unsuccessful with the indirect heating by the

filament. There is a possibility that the oride coating did not reach

a high enough taaperature. In some cases it is reported that the cathode

coating can be reactivated by induction heating. This, however, was not

tried because an induction heater was not available at the location of

the vacuum pumps.



Plate III

Power Supply for

Electron Diffraction Tube
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It was supposed that oxygen in the air might be responsible for the

deactivation of the oxide coating. Therefore, a cathode ray tube was

opened, reassembled and connected to the vacuum system while in a nitrogen

atmosphere to prevent oxygen from reaching the cathode coating. This

procedure, however, failed to produce an electron beam. Oxygen may have

inadvertently reached the cathode or it may be that nitrogen also has a

deactivating effect upon the oxide coating.

The oxide coatings are usually obtained (7) by applying a 50-50

mixture of barium and strontium carbonates in a binding material to the

cathode. The cathode is activated by heating the coated cathode to 1500°K

and simultaneously applying a voltage, about 150 volts. In the process

barium and strontixira oxides are formed on the cathode and become profuse

electron emitters. Nottingham (8) proposed that oxygen vacancies in the

oxide are responsible for the unusual electron availability and that when

exposed to the air these vacancies are filled. However, he considered it

also possible that other electro-negative gases may also fill the vacan«

cies and prevent normal operation of the prepared oxide.

An electron beam was obtained in the diffraction tube by re-coating

the cathode with a type 50 ^nission coating produced by the Callite

Products Co. It is supposed that this was a mixture of bariiun corboiuite

and stronium carbonate. This method was at first avoided because of the

inacessability of the cathode. The cathode was surrounded by a metal

cylinder that functioned as the grid of the tube. To remove and then

realign either grid or the cathode would be both tedious and time consum-

ing. However, it was noted that the cathode could be seen through two

small openings on the side of the grid. By inserting a very aaall piano
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wire thixjugh one of these openings it was possible to remove some of the

old oxide coating from the cathode. The emission coating was applied

with a very snail diameter capillary tube with a rubber bulb on one end

used as a dropper. The piano wire was used to remove the excess coating

material from the cathode and to open the anall hole in the center of

the grid, if it was blocked by the coating material.

The procedure for activating the cathode was 1) to evacuate the

diffraction tube to a pressure of 10" Torr or better; 2) to increase

the filament voltage slowly and allow the cathode to outgas slowly; 3) to

connect power supply when filament has reached 5 volts and the pressure

is below 10 Torr; h) to increase the filament voltage slowly until an

electron beam appears. In one case the electron beam appeared with the

filament voltage as low as 9 volts but at other times the filament volt-

age was between 11 and 13 volts.

Two materials were used for electron diffraction specimens, magnesixim

oxide and aluminum. The MgO specimens were prepared in two waysj 1) a

fin© mesh brass screen was partially coated by merely holding it in the

"anoke" of burning magnesium, and 2) a brass screen was first coated with

a thin nitrocellulose film and then the MgO smoked onto the nitrocellulose

film. In the second method a coarse mesh brass screen was used as well

&s the fine mesh screen. The aluminum specimens were prepared by coating

both fine and coarse mesh copper screens with a nitrocellulose film and

then vapor depositing a very thin aluminum coating on the nitrocellulose

filia. The specimens were mounted in the diffraction tube with the surface

of the film perpendicular to the electron beam. Some dimensions of the

diffraction tube are shown in Plate IV, Figure 5 and Figure 6.



Plate IV

Figure 5* Electron Diffraction Tube
D. Deflection Plates
G. Grid
H. Specimen Holder
S. Phosorescent Screen

Figure 6, Electron Gun
A. Anode Apertures 0.20 cm.

C, Cathode
D. First Deflection Plates
F. Focus Aperture 0.12 cm,
a« Grid Aperture 0*07 cm.
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IV. EXPERIMENTAL PRDCEDUBE

Electron diffraction was expected by electron transmission through

thin polycrystalline layers of magnesiiMn oxide or aluminum. This wcmld

give a Debye-Scherrer type diffraction pattern with a small bright spot

as the center of several concentric circles. The surface of the specimen

that could be exposed to the electron beam was a circular area with a

diameter of 2 cm. The electron beam had an approximate diameter of 2

to ^ mm and could be electrostatically deflected to explore all parts of

the specimen. A slight a-c ripple on the deflection plates made the beam

cross-section appear ellipitical on the screen but it was probably very

nearly circular. It was supposed that by searching over the specimen

surface that a spot could be located that would produce a diffraction

pattern. This would require a thin layer of crystals that could be pene-

trated by the electron beam and yet have enough properly oriented crystals

to produce a visible diffraction pattern.

Three MgO specimens and one Al specimen were used in an attempt to

produce a diffraction but a pattern was not detected* Time exposure

photographs of the screen gave no indication of a diffraction pattern

froQ the specimen. There was, however* a diffraction pattern produced

by the electron gun that may have obscured diffraction patterns produced

by the specimen.

Photographs of several observed diffraction patterns are shown in

Plate V. These were time exposures taken with a Polaroid camera mounted

on a Type 26l4 oscilloscope camera.
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V. CALCUUTIONS AND RESULTS

The diffracted electron vaves, according to Bragg 's diffraction law,

will be reinforced at angles \^ich satisfy the foxmula,

n =« 2 d sin 6. (1)

Where, ^ is the electron wavelength, d the spacing between reflecting

planes, d the grazing angle of incidence, and n » 1 , 2, 3, - - •>.

The de Broglie wavelength for electrons is,

'i
2

2 m e E ,
/ (2)

or.

fl Angstroms.

Where, h is Planck's constant, m the mass and e the chaise of the

electron, E is the accelerating potential, and V is the accelerating

voltage in volts. The electron wavelength was 0.33 Angstroms for the

1^0 volt electrons used in this study.

The diameter of a diffraction pattern projected on the tube screen

can be calculated by solving equations 1 and 2 simultaneously for sin d,

then substituting _2L ^or sin e, where D is the diameter of the dif-

fraction pattern circle and S is the distance from the crystal specimen

to the screen. The expression for the diameter is,

150 ,_ n S ifTso
"

d
If

V

The diameters expected from a MgO crystal diffraction pattern are

shown in Table I. These values are all larger than patterns that were

observed as listed in Table U. The aluminum crystals are face-oentered
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cubic and have a lattice constant nearly the same as MgO. Therefore,

the alvuninum diffraction pattern diameters wovild also be larger than

the observed values.

Table 1. Ring diameters expected from electron diffraction patterns

of MgO crystals. Accelerating voltage I^WO volts. Electron

wavelength 0.33A. .

Reflection
Plane

Crystal '

Spacing (A)

Diameter of Expected Bright Ring

Diffraction Pattern ^cm.)

2.102

n = 1 • n = 2 n= 3

10 3.26 • 6.25 9.78

110 1.^85 ^.6^ ' 9.28 13.92

1 1 1 1.820 • 3.78 7.56 11.3^

Table 2. Ring diameters of electron diffraction patterns as measured
from photographs shown in Plate V.

Diffraction Dianeter of Dark Rings (cm.) Diameter of Bright Rings (an.)

Pattern 1st 2nd 3rd 1st 2nd 3rd
Plate V 1

(a)

MgO ' 0.5

0.7

0.5

0.6

0.6

1.2

1.5

1.3

1.3

1.3

1.9

2.0

2.1

0.9

1.0

0.9

r 0.9

0.9

1.6

1.8

1.7

1.7

1.7

2.k

(b)

Alumiraim 2.7

(c)

Edge of Holder 2A

(d)

Aluminum

,. _,. ,..„..

Average 2.5
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VI. DISCUSSION OF RESULTS

The inability to produce a definite diffraction pattern from the

specimen was very disconcerting. It seems most likely that the difficulty

arose in the preparation of the specimen. The specimen's thickness may

be rather critical. It was presumed that by having a large axrea of the

specimen that a few positions could be located where diffraction would

occur. The aluminum specimen had a good appearance. There was a definite

layer of aluminum on the nitrocellulose film, and it was thin enough for

light to pass through it. No att«apt was made to measure the thickness

of the layer. The electron beam was definitely able to penetrate parts

of the aluminum layer but was stopped in other positions. The magnesium

oxide layer on the nitrocellulose film appeared thin in places but was

not particularly uniform. A diffraction pattern of the electron beam

passing through this MgO specimen is shown in Plate V, (a). Three con-

centric rings were visible but the inner two were definitely too aaall

for MgO diffraction. The third ring was the proper diameter for diffrac-

tion from the (111) plane, but it is very unlikely that this occurred

because the first order diffraction from the other planes should also

appear at a greater diameter. The three concentric rings were also

visible in the 5CP-1 cathode ray tubes that were not opened. Therefore,

this diffraction pattern is most certainly caused by the electron gun.

The six bright spots to the left of the diffraction pattern resulted

from the geometry of the brass screen holding the specimen. The specimen

was thin at that point and sufficient number of stray electrons penetrated

between the wire grids to produce the spots.

A similar diffraction pattern was obtained by passing the electron
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Plate V

Figure 7» Diffraction Patterns from

1^0 Volt Electrons
(a) Magneziura Oxide Polycrystalline

Film. 20 minutes exposure.
(b) Alurainura Evaporated Film.

20 minutes exposure.
(c) Edge of Specimen Holder.

^ second exposure.
(d) Aluminum Evaporated Film.

6^ minute exposure.
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Figure 7 (a) Figure 7 (b)

Figure 7 (c) Figure 7 (d)



2if

beam through an aluminum specimen as shown in Plate Vf (b). The diameters

of these rings were slightly larger than those from the MgO specimen but

were also considered to result from the electron gun. Different electron

guns were used in obtaining these two patterns which may account for the

difference in ring size.

The accelerating voltage of 1^0 volts may have been inadequate to

produce the diffraction patterns from the specimens that were used. Al-

though the electrons definitely penetrated the specimen it may be that

an insufficient number of electrons were diffracted to be visible on the

fluorescent screen. If the intensity of the diffracted waves was email

it could be masked by the diffraction from the gun. Higher acoeleratlog

voltages should reduce this masking effect.

The diameter of the electron beam was not measured accurately but

it was estimated to be between 2 and k millimeters. A analler beam is

required for a sharp diffraction pattern; however, this size beam was

considered adequate to demonstrate diffraction. The combination of a

higher accelerating voltage and a analler diameter beam would most likely

be beneficial in obtaining a diffraction pattern.

Recently (May, 1963) , the Welch Scientific Company placed an electron

diffraction tube on the market. The tube was developed by Harry F. Meiners

and Stanley A. Williams of Rennsselaer Polytechnic Institute with the

cooperation of the General Electric Company, This electjron diffraction

tube is quite similar to the one described in this report. However, the

commercial tube has the added feature that it is permanently sealed. Two

materials are mounted on a 2x2-cm. target located about halfway between

gun and screen. Accelerating voltages are variable up to 10,000 volts
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and it was indicated that diffraction patterns have been obtained with

potentials between 3500 to 10,000 volts. A report of a preliminary

developmental tube had been published (9) by Meiners and Williams but

only recently came to the writers attention.

The source of the electron diffraction pattern produced by the

electron gun is somewhat questionable. It seems most likely that it is

produced by the electrons passing through one of the four circular ap-

ertures of the gun. The size of the diffraction pattern, however, is

much too large, approximately 60 thousand times, to be produced by 1^400

volt electrons going through the smallest opening. There is the pos-

sibility that low voltage electrons passing through the 0.07 cm. circular

aperture in the grid produced a diffraction pattern that is then magnified

by the focussing and accelerating electrodes. For example, a 3 volt

electron, which has a wavelength of approximately 7a, would produce a

diffraction pattern with the inner bright ring having a diameter of 1.3 x

-4
10 cm. at the screen. A magnification of 6000 to 7000 tines would en-

large the diffraction pattern to the degree observed on the screen. This

amount of magnification appeared reasonable although no attempt was made ;

to calculate the magnification caused by the electrostatic field. These

low energy electrons are possible at the grid but are accelerated rapidly

beyond that point, which is another reason for believing the diffraction

originates at the grid.

A diffraction pattern of this type could be used to demonstrate the

wave nature of electrons. Particles would not be expected to concentrate

in concentric rings as they come out of the gun so it would be concluded

that the rings resulted from waves associated with the electrons. The
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demonstration could be further extended by allowing the electron beam to

pass near the edge of a barrier. The full diffraction pattern appears

on the screen even though a portion of it is in the "shadow" of the

barrier. This is shown in (c) of Plate V. The barrier in this case

was the outer edge of the circular specimen holder. The specimen holder

is between the gun and the right half of the diffraction pattern shown

on the screen. Particles travel in a straight line so they would be

unable to get around the holder; therefore, only the left hand part of

the diffraction pattern would be visible on the screen if the beam was

made up of particles alone. The appearance of the full diffraction pat-

tern can be explained if waves are associated with the electrons. This

effect can also be noted from (a) , (b) , and (d) of Plate V. The dif-

fraction pattern in (d) is from the electron beam which had passed through

a thin alviminum specimen. The asymmetry of the pattern is caused by a

slight a-c ripple on the deflection plates of the tube. In other words

the beam is oscillating between two positions a small distance apart. In

(a) and (b) the beam was oscillating in the same manner but only penetrated

the specimen at one end position. The beam was unable to penetrate the .'

specimen at the other end position, but the diffraction pattern appears

to have "passed through" the specimen. Again this must be explained by

waves associated with the electron beam.
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An electron diffraction apparatus was constructed by modifying a

5-inch cathode ray tube, and building a 1500 volt regulated power supply.

This apparatus was intended for classroom demonstrations of electron

diffraction. A simple and economical method of studying matter waves

was expected and the quantitative measurement of crystal spacing s by

Bragg angle scattering of electrons was considered possible.

Electron diffraction patterns were not obtained from the two types

of polyciystalline films (MgO and Al) used. However, an electron dif-

fraction pattern (concentric ciiviles) was produced by the cathode ray

tube. It is supposed that this electron diffraction develops frcwi the

circular apertures in the electron gun. According to calculations, a

3 volt electron diffraction pattern magnified 6000 times will correspond

to the pattern obtained on the screen. Magnification of this order may

be possible with the accelerating and focusing potentials used in the

apparatus. This diffraction pattern provides a method for demonstrating

matter waves.


