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A B S T R A C T

Flexible and stretchable piezoresistive strain sensors which can translate mechanical stimuli
(strain changes) into electrical signals (resistance changes) provide a simple and feasible de-
tection tool in the field of health/damage monitoring, human motion detection, personal
healthcare, human-machine interfaces, and electronic skin. Herein a detailed overview is pre-
sented on both strategies for sensing performance improvement and progress to medium or large-
scale fabrication. A broad range of matrices/substrates and incorporated nanomaterials is cov-
ered and attention is paid to the current state-of-the-art of feasible but low-cost manufacturing
methods. The sensor design parameters include sensitivity (gauge factor), stretchability, line-
arity, hysteresis, biocompatibility, and self-healing potential. Starting from fundamental sensing
mechanisms, i.e. the tunneling effect, the disconnection mechanism, and the crack propagation
mechanism, examples are provided from lab to application scale.

1. Introduction

Flexible and stretchable sensor devices have attracted tremendous attention in recent years, due to their various promising
applications, including structural health and damage monitoring [1–5], human motion detection [6,7], personal healthcare [6,8–13],
human-machine interfaces [14–17], electronic skin [18–20], and soft robotics [21]. A further distinction can be made between
piezoresistive [22], capacitive [23], piezoelectric [24], field effect transistor [25], fiber Bragg gratings (FBGs) [26], Raman shift [27],
liquid metal [28], and triboelectric [29] based sensor devices, showcasing the versatility and relevance of the sensor research field.

One of the strengths of flexible and stretchable sensor devices is the feasibility to address both low and high strain levels [30]. For
applications aiming at large deformation or intimate integration with irregular surfaces, the conventional metal sensors, which
sustain only maximum strains of ca. 5% [31], and inorganic semiconductor materials are limited by their intrinsic brittle and rigid
nature, low sensitivity, low fatigue life, environmental dependence, and poor biocompatibility.

Specifically conductive polymer composite (CPC) based sensors have been developed in the last decades [32–37]. Very promising
are piezoresistive CPC based strain sensors, since they exhibit great merits such as a rather simple fabrication process, a rather
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uncomplicated sensor configuration, a relatively simple read-out system, a potential high flexibility and stretchability, and acceptable
dynamic properties. The other strain sensor types mentioned are still faced with numerous challenges such as sophisticated mea-
surement equipment, low resolution, and poor to intermediate dynamic performance. In view of the above statements, the present
contribution is only focused on flexible and stretchable CPC based piezoresistive strain sensors.

In piezoresistive CPC based strain sensors, the change of electrical parameters under deformation is monitored as a signal for
environmental mechanical stimuli. One of the most critical aspects for sensor design is the choice of suitable materials for the
fabrication of flexible strain sensors that meet the sensing, mechanical and structural requirements imposed by a particular appli-
cation. For numerous CPCs with incorporated conductive fillers or devices embedded with conductive thin film layers, the polymer
matrixes/substrates and/or encapsulation materials are the stretchable component. However, these piezoresistive materials are still
facing some challenges, including unsuitability for small strain monitoring due to rather low sensitivity [38–40], degradation of
sensing performance by fatigue, and plastic deformation of the polymer substrate. Other aspects are inevitable resistance hysteresis
between the loading and unloading curves ascribed to the intrinsic viscoelastic nature of the polymer matrix, internal friction of the
composites, and unstable mechanical integrity during large cyclic deformation, which inhibits long-term use.

As flexible support materials the most commonly employed polymers are rubbers/elastomers, such as silicone-based rubber (e.g.
polydimethylsiloxane (PDMS) [41–44] and Ecoflex (SMOOTH-ON) [39,45]), thermoplastic polyurethane (TPU) elastomer
[38,46–49], styrenic block copolymers (SBCs) [50–56], natural rubber (NR) [57–59], styrene-butadiene rubber (SBR) [58,60], and
polyolefin elastomer (POE) [61,62]. Polypropylene (PP) [63,64], polyvinylidene fluoride (PVDF) [65,66], and epoxy [67–71] have
also been considered. The conductive materials typically contain carbon-based micro/nano-phases (e.g. carbon nanotubes (CNTs)
[46,47], carbon black (CB) [46,62], and graphene [47,59,72]), metal nanowires [40,73,74], nanoparticles [50,55], nanosheets [75],
conductive polymers (e.g. polypyrrole (PPy) [76], polyaniline (PANI) [74,77], and poly(3,4-ethylenedioxythiophene): poly(styrene
sulfonate) (PEDOT:PSS) [73]), ionic liquid (IL) [78,79], and liquid metals [80]. Hybrid materials such as multi-walled carbon na-
notubes (MWCNTs)/CB hybrid fillers [46,65], MWCNTs/graphene bifillers [47], silver nanowire/graphene hybrid particles [40], and
silver nanoparticle (AgNP)/single-walled carbon nanotubes (SWCNTs) composite [81] have also been employed. Alternatively, the
device stretchability is achieved by geometric engineering of the conductive materials with special structures such as the wrinkled
[82,83], thickness-gradient [41], double helical [84], buckled [85,86], wavy [87], accordion [88], coiled [89], serpentine pattern
[90], nanomesh [91], network [92], and island-bridge structure [93] accommodating the strain.

Ideally, the stretchability requirements can be quite varied so that the sensing device application range becomes broad. For

Nomenclature

Roman symbols

A cross-sectional area (m2)
L length (m)
m/m mass ratio (–)
R electrical resistance (Ω)

Greek symbols

ε strain (–)
ρ electrical resistivity (Ω·m)
τ time constant (s)
υ Poisson’s ratio (–)

Abbreviations

AFM atomic force microscope
AgNPs silver nanoparticles
AgNWs silver nanowires
[BMIM][BF4] 1-butyl-3-methylimidazolium tetra-

fluoroborate
CB carbon black
CNTs carbon nanotubes
CPCs conductive polymer composites
CSF carbonized silk fabric
CuNWs copper nanowires
DI deionized water
EG ethylene glycol
FBGs fiber Bragg gratings
FDM fused deposition modelling

FGS fragmentized graphene sponges
FSG fish-scale-like graphene
GF gauge factor (–)
GWF graphene woven fabric
IL ionic liquid
ILBW ionic-liquid-based wavy
MWCNTs multi-walled carbon nanotubes
LPG laser patterned graphene
NaCl sodium chloride
NR natural rubber
OBC olefin block copolymer
PANI polyaniline
PDMS polydimethylsiloxane
PEDOT:PSS poly(3,4-ethylenedioxythiophene): poly

(styrene sulfonate)
POE polyolefin elastomer
PP polypropylene
PPy polypyrrole
PVC poly (vinyl chloride)
PVDF poly (vinylidene fluoride)
rGO reduced graphene oxide
SBCs styrenic block copolymers
SBR styrene-butadiene rubber
SBS poly(styrene-block-butadiene-block-styrene)
SEBS styrene-ethylene/butylene-styrene triblock copo-

lymer
SEM scanning electron microscopy
SPX spandex
SWCNTs single-walled carbon nanotubes
TPU thermoplastic polyurethane
TPV thermoplastic vulcanizate
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sensing devices integrated directly onto joint skins [94,95] or embedded into clothing or textiles [96,97] for movement and load
measurements, high strain implementations are typically requested. In contrast for applications such as tiny skin motion detection
(e.g. phonation [98] and facial expression [15]) or personal healthcare with subtle strain induced by respiration [99] and heartbeat
[100], small but repetitive strain cycles or moderate one-time strains tolerances are required [37]. Essentially, the stretchability relies
on the robustness of the conductive network that provides electronic transmission paths and the stretchable limitations of the loaded
materials [101].

For the actual application, the flexible strain sensors need also to be assembled in a highly-integrated system composed of several
artificial intelligence modules, including power supply, signal detection, data processing, analysis, transmission, and display modules
[102]. Undoubtedly, numerous challenging issues related to reliability, reproducibility, robustness, long-term monitoring capability,
and the complexity to achieve fully-integrated sensor systems for highly accurate detection still exist. A strong multidisciplinary
character is thus obtained, requiring combined knowledge from for instance materials science, electronics, measurement methods,
mechanics, system and chemical engineering. As an essential part, the fabrication processes are supposed to be cost-effective and
scalable. However, most current fabrication techniques are still premature and the most as-prepared flexible sensors are still in their
prototype stage [102].

The present contribution provides a detailed overview of recent advances for research on flexible and stretchable (piezoresistive)

Fig. 1. Strain sensing mechanisms: (A) Schematic view of CNT conductive network including tunneling effect/mechanism [106]. (B) Disconnection
mechanism with (a) SEM image of a fish-scale-like graphene-based (FSG) strain sensor at 0% strain; the white arrows indicate two overlapping rGO
slices; (b) SEM image of a FSG strain sensor at 50% strain; (c) schematic illustration of the reduction of overlapped area of fish-scale-like graphene-
based strain sensor upon stretching; (d) schematic illustration of the resistance model of a sensing unit [7]. (C) Crack propagation mechanism with
(a) illustration of crack-based ultrasensitive strain sensor; (b) left, image of the spider-inspired sensor with a cracked layer; right, enlarged image of
the cracks in the surface; (c) SEM image of the boxed region of the right-hand image in (b); (d) SEM images of the zip-like crack junctions for
different applied strains [111].
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strain sensors, with emphasis on both strategies for sensing performance improvement and progress to medium or large-scale fab-
rication. It should be stressed that the relevance and novelty of the review relates to this combined description of these two research
achievements.

Attention is focused on the sensing mechanism, sensing performance, and the related optimization or design strategies. Building
blocks and their assembled structures are covered and comparisons of recently reported results to effectively guide the selection of
appropriate materials and structure design are incorporated. Feasible low-cost manufacturing methods to implement scale-up,
promising applications and application sensing platforms are also covered in detail. Finally, challenges and perspectives for future
research in view of industrial realization are presented.

2. Fundamental sensing mechanisms

Generally, the sensing function of a sensor material or its working principle originates from the variation of resistance R under
deformation. The resistance is given by l A/ , with ρ, l, and A the (electrical) resistivity, length, and cross-sectional area. The relative
change in resistance R R/ is expressed as + +(1 2 ) / , with υ and ε Poisson’s ratio and strain [103].

Change in the resistance of materials caused by structural deformation is known as piezoresistivity. In principle, the geometry
changes caused by structural deformation of the bulk material and the piezoresistivity of the conductive materials themselves
contribute to the observed change of the CPC resistance [104]. However, the impact of stress induced deformation of nanomaterials
[105] can be negligible with respect to the macroscale composite strain upon stretching. The latter is ascribed to the poor stress
transfer [32] due to the typically large elastic mismatch and weak interfacial adhesion strength between them [104]. In other words,
the effect of the piezoresistivity of conductive nanomaterials on the total resistance change in CPCs strain sensors can be marginal
[32,104,105].

Conductive filler networks within an insulated polymer matrix are proposed to be obtained not only by the perfectly contacted
inter-fillers, but also by neighboring fillers within a certain cut-off distance to allow electrons to path through polymer thin layers and
form quantum tunneling junctions [104,106] (Fig. 1A). Upon stretching, the increase of resistance is ascribed to several aspects,
including the breakup of the conductive pathway or the loss of contact between neighboring fillers, and the increase in the inter-filler
distance. The dominant working principle in the case of CPCs strain sensors arises here from the change in the tunneling resistance
[106]. This sensing mechanism is therefore elaborated as a tunneling effect [104].

In addition, the disconnection mechanism has been put forward [104]. This sensing principle is elaborated for thin films made of a
nanomaterial conductive network (e.g. silver nanowires (AgNWs) [107] and graphene [7]), in which electrons can pass through
overlapping nanomaterials within the percolation network. If stretching is applied, the electrical connection or the overlapping area
of adjacent nanomaterials decreases (Fig. 1B), leading to the increase of contact resistance [7]. The decrease of the overlapping area is
caused by the slippage of adjacent nanomaterials, mainly due to the low friction between overlapping nanomaterials [7], weak
interfacial binding, and large stiffness mismatch between the conductive nanomaterials and stretchable polymers [7,104,107]. For
few strain sensors with special connection characteristics such as reversible interlocked microdome [108], interlocked nanofibers
[109], or gecko-inspired microstructure [110], the change in effective contact areas or sites of the microstructure essentially con-
tributes to the change of resistance, rather than the disconnection between overlapped conductive nanomaterials [104,108–110].

For strain sensors with brittle nanomaterial thin films coated on flexible substrates, nano/micro cracks intend to initiate at the
stress concentrated areas to release the accommodated stress. If strain is applied, the rapid separation of adjacent crack junctions
(Fig. 1C) critically limits the electrical conduction through the thin film [104,111], which then substantially promotes the significant
increase of resistance. Meanwhile, the crack-based strain sensors are based on reversible disconnection and reconnection of cracks
[40,98,104,112,113]. This crack propagation mechanism [104] has been increasingly employed to develop ultrahigh sensitive and
stretchable strain sensors [39,40,81,98,111,112,114,115], as explained in detail below. The crack configuration, length, width,
density, cracked-area [39], and the depth [112] are critical factors that influence the final sensing performance and working range.

3. Sensor design parameters

To allow for sensor design control over several parameters is needed. In this section, a detailed discussion is included related to
the key design variables with main focus on the sensitivity (or gauge factor) and stretchability. In addition, the discussion is com-
plemented with novel design variables (e.g. biocompatibility) that emerged during the last decades. Finally, attention is paid to the
multisensitive design in view of recent developments.

3.1. Sensitivity or gauge factor

The sensitivity or gauge factor (GF) reflects the capacity of active materials for appropriate responses to external mechanical
stimuli. It is considered as the most important design parameter, especially for subtle displacement or structural damage detection.
For resistive-type of strain sensors, the sensitivity/GF is quantified as the instant ratio of the relative change in electrical resistance to
the applied strain [41,78,102,104,116]. Note that the strain range for which the GF is determined needs to be specified to avoid a
biased interpretation. However, in some studies this information is lacking and/or a single point GF is only specified.

The GF value varies greatly, depending on the active materials, assembled structures, and the piezoresistive mechanism. The
sensitivity is also very dependent on the applied strain, as non-linear behavior is frequently obtained [58] (cf. Section 3.3). It is
important to point out that GFs have been calculated in a discrete strain interval in most research studies to facilitate the comparison
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of the samples although there is strictly a non-linear tendency [117].
With CPCs the performance depends on the type, content, dispersion, and morphology of the fillers, and the interaction between

fillers and polymer matrix. CPCs with a filler concentration near the electrical percolation threshold generally show the largest
variation in electrical resistance, whereas operation very close to the percolation threshold has a detrimental impact on device-to-
device reproducibility [118]. The key point for sensitivity improvement typically based on the tunneling effect is to increase the
tunneling resistance or the proportion of the tunneling resistance with respect to the total resistance, hence, not the total resistance
itself [65,106].

The sensitivity has been tuned by conductive network morphological control strategies [119]. For example, Ke et al. [65]
achieved tunable electrical conductivity and strain sensitivity by changing the mass ratio of CNTs to CB (mCNTs/mCB), which resulted
in a change of the conductive network structure in PVDF/MWCNTs/CB composites. Lower mCNTs/mCB ratios contributed to higher
sensitivity upon comparison at similar electrical resistivity or same total filler content. For a hybrid filler system with lower CNT
contents, the conductive network consists of a special structure with CNT acting as backbone for conductive pathways and parts of CB
particles located between the gaps of neighboring CNTs. Such a conductive assembly is more susceptible to tensile strain than those
consisting of only CNTs. During stretching, the bridging effect of CB is weakened and the distance between CB particles and CB
particles and CNTs is increased. This induced increase in the tunneling resistance and thus alters the GF at low strain levels.

Besides, strain sensitivity can be controlled by adopting processing procedures, as for instance explored in the research of Ma et al.
[120] by comparing one-step and two-step processing methods for conductive elastomeric materials based on MWCNTs filled
thermoplastic vulcanizate (TPV). Although a comparable initial conductivity is obtained, the one-step-TPV shows a high GF of ca. 103

at a strain of 100%, while the resistance for the two-step TPV composite is independent with strain, even at a strain of 200%. This
superior behavior has been ascribed to the much higher destruction rate of the more disordered MWCNTs conductive network in one-
step-TPV. In addition, strong interfacial binding between elastic nanomaterials (e.g. CNT [46,121] and graphene [122]) and polymers
also gives higher strain sensitivity.

A very effective way to achieve a high sensitivity is to allow for substantial connection or structural changes even under small
strain. Within this respect crack-assisted resistive strain sensors have been aimed at [39,40,81,98,111,112,114,115], inspired by the
crack-shaped slit organs of spiders [111]. For example, Liao et al. [115] recently developed an ultrasensitive and stretchable mi-
crocrack-assisted resistive strain sensor by using silver nanowires on patterned PDMS. The remarkable sensitivity (GF of 1.5 × 105

within 60% strain range) was attributed to the introduction of a patterned surface microstructure, consisting of regular and re-
markably uniform parallel concave lines and square plat arrays in the patterned PDMS substrate. The parallel concave lines inter-
weaved with each other and the features could be replicated and identified with high quality. Notably, many microcracks have been
observed inside parallel concave lines and square plats [115]. Similarly, an ultrasensitive cracking-assisted strain sensor fabricated by
Chen et al. [40] exhibits a GF as high as 2 × 10 (strain between 0 and 0.3%), 103 (strain between 0.3 and 0.5%), and 4 × 103 (strain
between 0.8 and 1%). This work illustrates a strategy to fabricate an ultrahigh sensitive strain sensor for subtle deformation detection
applications such as heartbeat monitoring, pulse beat detection, and sound signal recognition. Furthermore, it has been indicated that
fragmented SWCNT paper embedded in PDMS can sustain its sensitivity even at very high strain levels. A (single point) GF of over 107

is obtained at 50% strain [114]. Generally, the cracks are generated by pre-stretching [39,40,98,114,115] (Fig. 2A), thermal solvent
evaporation, and thermally induced stress during a cooling step [81] (Fig. 2B) or bending [112] (Fig. 2C). More information related
to cracking-assisted nanofabrication techniques can be found in the review of Kim et al. [123].

In addition to crack-assisted strain sensors, bio-inspired interlocked microstructure geometries [108,109,124,125] (Fig. 3A),
whisker structures [126,127] (Fig. 3B), silk [128,129] (Fig. 3C) and cotton fabric [130] molded structures, and 2D/3D micro/
nanostructures [110,131–133] (Fig. 3D) have also been employed to improve the performance of sensors [131–133] as well as to
introduce multiple sensing capabilities [108,109,126,127]. For instance, inspired by the interlocked epidermal-dermal layers in
human skin, the PDMS/MWCNTs tactile sensor developed by Park et al. [108] showed high sensitivity in distinguishing various
mechanical stimuli, considering opposing conductive interlocked microdome arrays (Fig. 3A). The high sensitivity has been attrib-
uted to the considerable increase in the resistance resulting from the large decrease of contact area between the microdomes [108].
Similarly, bioinspired e-whisker arrays (Fig. 3B) with good strain sensitivity (GF of 3.4 × 10), fast response (50 ms), and high
durability/stability have been developed by Hua et al. [127] via pencil-drawn paper. The e-whisker array sensor demonstrates good
performances on strain monitoring, 3D spatial mapping, and detailed localization of objects, orientation, and shape reconstruction
[127].

3.2. Stretchability

In the traditional field, such as structural health monitoring, relatively low stretchability below 1% is sufficient. However, for
flexible and stretchable electronic devices that need to be bonded to substrates with complex topography without becoming wrinkled,
a higher stretchability (e.g. > 50%, for skin-attachable and wearable strain sensors [134]) and thus a wider working range is
required. Essentially, the stretchability of the sensing device relies on the robustness of the conductive network that preserves the
interconnectedness under global strain. The stretchability has been enhanced by means of either adopting stretchable materials (first
approach) or structural conversion (second approach).

The first approach relies on the exploration of intrinsic stretchable materials as the elastic polymer matrix. Several kinds of active
component, especially 1-dimensional (1D) [134] or 2D nanomaterials [39,135] with high-aspect-ratio such as CNTs
[46,47,51,55,136], metallic nanowires [73,107], and graphene [58,72] or graphite [39], have therefore been mixed into an elas-
tomeric matrix [46,47,51,58,72]. They also have been integrated within [50,107,136] or on the top [39,107] of elastomeric
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Fig. 2. Crack generation methods. (A) Pre-stretching with (a) schematic illustration of pre-stretching and releasing process of strain sensors based on
silver nanowires/graphene hybrid particles/TPU composite; (b) resistance change upon stretching for the strain sensor under pre-stretch of 10%
strain. Insets are the SEM images during stretching [40]. (B) Thermal solvent evaporation and thermally induced stress during cooling steps with (a)
schematic of CNT-AgNP thin film fabrication process; (b) SEM image of CNT-AgNP thin film with CNT loading at 70 wt%, the scale bar is 3 μm; (c)
gauge factors of CNT-AgNP sensor at different CNT paste concentration with and without PDMS [81]. (C) Bending with (a) schematic of initial crack
generation by bending; (b-c) the 3D profiles and depths measured by AFM in bent cracks from (a) and propagated cracks from (d); (d) crack
propagation by additionally applied stretching; (e) gauge factor at 2% strain obtained by the sensors [112].

L. Duan, et al. Progress in Materials Science 114 (2020) 100617

6



substrates, and some are in the form of intentionally fractured [39,50,58,136] conductive thin films. Note that the matrix for this
approach can also be thermoplastic [65,121], although only in limited cases in which comparable sensitivity is shown and the
stretchability and resilience satisfy the working requirement. The first approach is typically simple and cost-effective, leads to high
yields, and allows easy handling [137], while a multistep process is needed for the construction of intentionally fractured conductive

Fig. 3. Strain sensors with some special structural design. (A) Interlocked microstructure with (a) schematic of CNT-PDMS composite film with
interlocked microdome array; (b) tilted SEM image of a composite film with microdome arrays; (c) cross-sectional SEM image of an interlocked
composite film; (d) stretch-sensing capabilities comparison of interlocked microdome arrays and planar films [108]. (B) Whisker structure with (a)
schematic illustration of cat's whisker and device schematic of pencil-drawn e-whisker; (b) normalized resistance change as functions of applied
strain (top x-axis) [127]. (C) Carbonized silk fabric (CSF) with (a) illustration of the hierarchical structures and the fabrication process of CSF strain
sensors; (b) resistance variation versus applied strain [128]. (D) 3D microstructure with (a) schematic illustration of structural change of the 3D
graphene foam composite under stretching and releasing; (b) relative resistance variation of the strain sensor under stretching [131].
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thin films [39,50,58,136]. In addition, a strong binding of the sensing component with the polymer matrix/substrate is beneficial for
achieving high stretchability [45].

The second approach is based on structural design through geometric engineering rather than by exploiting intrinsic material
properties. The structural configurations for rigid materials on an elastomeric substrate are divided into out-of-plane and in-plane
structures. Three-dimensional wavy [87], wrinkled [82], double helical [84], coiled [89] shapes are examples of out-of-plane
structures, whereas buckled structure [85], serpentine pattern [138], and mesh-like geometries [139,140] belong to in-plane design.
The latter design is proposed to effectively accommodate much larger applied strain and eliminate the concern of breaking under
external scratching [18]. However, compared to the first approach, the second approach is low-yield, high cost and involves a
complicated multistep fabrication process such as lithography, transfer, and vacuum deposition [102]. Additional information about
functional materials and strategies based on in-plane structures can be found in following reviews [14,141]. For a detailed description
of geometric engineering processes of flexible electronic devices, the reader is referred to the following review [44].

For the vast majority of strain sensors, a trade-off relationship between “high sensitivity” and “high stretchability” is concluded
[41,44,102,104]. Monitoring a wide range of deformation requires that the active material can keep its structural connections at high
strains, while detection of subtle displacement demands the microstructure of the sensing material to change dramatically even under
small strain [41]. Rational structure design and control of the connection types of sensing materials are requested to ensure both high
sensitivity and high stretchability [39,41,50,115,142]. For example, a sensor based on a thickness-gradient SWCNT film on a PDMS
substrate (Fig. 4A) was developed by Liu et al. [41] by employing a self-pinning method. The developed material possesses a GF as
high as 1.61 × 102 (ɛ < 2%), 9.8 (Avg., 2% < ɛ < 15%), and 5.8 × 10−1 (ɛ > 15%) and can withstand uniaxial strain of more than
150% [41]. Close inspection of these GF values shows that the deficiency is although the decrease of the sensitivity from 1.61 × 102

to 5.8 × 10−1 if the strain is up to 15%.
Another example is the work of Amjadi et al. [39] who developed an ultrasensitive and highly stretchable strain sensor based on

graphite thin films with parallel microcracks coated on top of Ecoflex (Fig. 4B). The sensors made of graphite thin films with short
microcracks possess high GFs (maximum value of 5.2 × 102 at 50% strain) and stretchability (ε ≥ 50%), while sensors with long
microcracks show ultrahigh sensitivity (maximum value of 1.1 × 104 at 50% strain) with limited stretchability (ε ≤ 50%) [39].
Furthermore, the combination of microcracks and the disconnection sensing mechanism was recently utilized by Zhao et al. [50].
These authors developed a high performance strain sensing platform with slit- and scale-like structures (Fig. 4C) through embedding
fragmentized graphene sponges (FGS) in a poly(styrene-block-butadiene-block-styrene) (SBS) matrix, followed by an iterative process
of silver precursor absorption and reduction. The microcrack configuration of the silver layer and the more effective contact area and
sponge structure of the FGS conductive block contributed to high GF (~107 at 120% strain) and stretchability (up to 120%) si-
multaneously, as well as a fast response and an excellent reliability and stability. An elaborate control of the fabrication process for
micro/nano crack and/or specific architecture construction is although required. The uniformity and repeatability need also still to be
further guaranteed. A more convenient method has been recently developed by Tao et al. [142] via one-step laser patterning. The
strain sensor was produced by embedding laser-patterned graphene in Ecoflex (Fig. 4D). The strain sensor exhibited excellent re-
peatability, self-adapted and tunable sensing performance with a GF up to 4.6 × 102 with the strain up to 35% and a GF of 2.7 × 102

with strain up to 100%. The sensing performance adapting to both subtle and large occasions can be tuned by adjusting the graphene
mesh density.

3.3. Linearity

Linearity refers to a directly proportional relationship between the electrical signal and the applied strain. The magnitude of
linearity can be evaluated with the coefficient of determination (R2) measured by a linear regression. A larger value of R2 signifies a
stronger linear relationship [143]. In general, a nonlinear relationship is active for resistive-type strain sensors, which hinders the
intuitive reflection of the accurate strain and the use of a simple calibration process [104].

The most prevalent explanation is that the nonlinearity is ascribed to the microstructural changes of the sensing component upon
undergoing a shift from a homogeneous to a heterogeneous morphology upon stretching [23,44,102,104,107,144]. For instance,
Amjadi et al. [107] reported a strain sensor based on AgNW/PDMS. The change of the topology of the percolating network with
emerging bottleneck locations that critically limit the electrical current resulted in a nonlinear sensing response for the low density
AgNW sensor. In contrast, a highly linear behavior was observed for the high density AgNW strain sensor due to the dense and robust
network with no bottleneck locations observed even at high strains up to 100%. A similar strain sensor based on a CNT percolation
network sandwiched between two Ecoflex layers was also produced by the same research group [45]. With a high dense network
formed, the strain sensor simultaneously possessed super stretchability of ~ 500%, high linearity (R2 > 0.95), very high reliability,
and fast response speed. Besides high network density, a significant contribution originated from the strong binding between CNTs
and Ecoflex and the excellent elastic behavior of the CNTs so that the slippage of CNTs inside the Ecoflex matrix was less probable
[45]. It should be noted that the linear responses described above are relative to the stretching amplitudes.

A crucial parameter for the (non-)linear behavior in CPC strain sensors is the filler content. For a filler content close to percolation
threshold, there are not enough conductive particles to create contact paths or the concentration is negligible so that the conductivity
is achieved by the tunneling effect [117,145]. The resistance then grows exponentially with the distance between adjacent particles
[117], and the number of filler particles involved in the percolation network is greatly reduced upon stretching [146]. Consequently,
nonlinear strain response and great increase of resistance are observed [147,148]. At concentrations well above the percolation
threshold, the resistance change depends on the structural changes with the variation of the dominating mechanism of conductivity in
distinct strain domains. The conductivity is then also less influenced by smaller strain as explained in detail in Selvan et al. [145]. The
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Fig. 4. Strategies to achieve high GFs and stretchability simultaneously. (A) Thickness-gradient film with (a) schematic illustration of thickness-
gradient structure that help to achieve both high GF and high stretchability; the microscope image of (b) film sample under 60% strain, the black
ring shows the thick part and (c) the ring region in (b); (d) the GFs of the sensor at different strains and cycles [41]. (B) Parallel microcracks based
strain sensor with (a) optical microscope images of the graphite thin film before and after microcrack generation; parallel microcrack opening in
perpendicular direction of strain; (b) GFs as a function of the applied strain [39]. (C) Slit- and scale-like structures with (a) concept of slit- and scale-
like architectures, slit-like structure provides sensitivity, while shell-like structure provides stretchability and sensitivity; (b) GF versus strain for
FGS/SBS and FGS/SBS/Ag composites [50]. (D) Mesh-like geometry with (a) optical images of laser patterned graphene (LPG) strain sensors with
different mesh densities under different strains; (b) relative resistance variation versus strain of the strain sensors with different mesh densities
[142].
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resistance change induced due to contact is the dominant mechanism under the initial strain, leading to a linear response, and the
higher the contribution of contact conductive paths the better the linearity is [110]. After a certain strain, the gaps between adjacent
particles widen on stretching, and tunneling behavior between neighboring fillers dominates the resistance change [147]. Further
increasing the strain to moderate levels, the variation in resistance is determined by a gradual disconnection in the percolation
network [149]. The tunneling effect and the loss of conductive paths therefore result in an exponential non-linear growth of re-
sistance.

In addition, the (non-)linearity may also influenced by the substrate property. For example, Yang et al. [150] recently developed a
highly sensitive strain sensor with graphene woven fabrics (GWFs) on PDMS substrate. By tuning the ratios of base to cross-linker
from 20:1 to 8:1, the Young’s modulus of the substrate PDMS increased from hundreds of kPa to a few MPa, and R2 was improved
from 0.91 to 0.98. Buckle-delamination in GWFs was formed upon using a stiff substrate. The delamination converted graphene
became bended for the subsequent tensile tests, which transferred the crack dominant transduction principle to a geometry dominant
one, thus leading to improved linearity [150].

In summary, the piezoresistive linearity is relevant to the change of the dominant conductivity mechanism corresponding to
specific strain domains [117,145,147,149], which is influenced by the variation of network morphology under stretching [107,145].
The network morphology variation inherently relies on the mechanical stability of the percolation network [151], thus, high dense,
stable and robust network structures give rise to a higher linearity [133,151].

However, similar to sensitivity and stretchability, there also exists a trade-off relationship between high sensitivity and high
linearity. Notably some researches achieved high strain sensitivity and linearity simultaneously. For instance, the sensitivity and
linearity of strain sensors based on polymer composites with CNTs can be improved simultaneously by considering hybrid sensing
nanomaterials [104,152]. In the work of Benchirouf et al. [152], reduced graphene oxide (rGO) and MWCNTs nanocomposite films
on a flexible substrate exhibited a GF of 8.5 with a high linearity (R2 of 0.98). The change of the number of tunneling contacts formed
between the rGO and MWCNTs within the conductive network significantly changed the total thin film resistance under strain,
contributing to a higher sensitivity [152]. Recently, by constructing well-controlled cracks in SWCNTs paper via laser engraving and
roll-to-roll pressing, Xin et al. [153] developed high performance strain sensors with high sensitivity, high stretchability (with a GF
over 4.2 × 104 at 150% strain), and high linearity (0.98 from 0% to 15% strain, and 0.96 from 22% to 150% strain), which were
ascribed to the dense and well-controlled network cracks. The microstructure of the cracks underwent a homogeneous propagation
response. However, the fragmentation process requires elaborate control and its adaptability to other cost-effective nanomaterial-
based structures still requires further exploration.

On an overall basis, a trade-off relationship between “high sensitivity”, “high stretchability” and “sufficient linearity” is often
proposed [45,104,107]. Highly sensitive strain sensors typically respond to the applied strain with a high nonlinearity and low
stretchability [104]. It is therefore still a great challenge to develop strain sensors with simultaneously ultrahigh sensitivity,
stretchability, and excellent linearity.

Fig. 5. (A) Comparison of the developed theory with the experiment results for the explanation of non-linear electrical response of NR/MWCNTs
composites [145]. (B) Hysteresis of MWCNT/segmented polyurethane (SPU) composite strain sensor under cyclic stretching [154].
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3.4. Hysteresis, response time and dynamic durability

The physical robustness and sensing reliability of strain sensors are quite crucial if dynamic forces are applied. As for this aspect,
hysteresis, response time, and dynamic durability are three key parameters. Inconsistent or non-monotonic piezoresistive variation is
referred as hysteresis. This is commonly depicted as double peaks for a single loading-unloading cycle [154] (Fig. 5B), displaying a
negative piezoresistive effect implying an inverse relationship between resistance and strain [47,51,154]. The response time de-
termines how quickly the strain sensor responds to the applied strain with accurate and steady indication. A 90% time constant (τ90%)
is commonly used as the standard response time for stretchable sensors [104,107]. In addition, dynamic durability demonstrates the
endurance of strain sensors to long-term cyclic loading-unloading profiles with stable and reproducible resistive response and me-
chanical integrity.

In general, the hysteretic behavior and response delay exist in all polymer based strain sensors. They are still not fully understood
and often explained by the competition of network breakdown and reformation during cyclic loading [69,154–156]. Several factors,
including the intrinsic viscoelastic nature of polymers, the viscoelastic characteristics of conductive fillers and retarded reaggregation
between filler-filler bonds/interactions in a relaxed state, poor interfacial adhesion, and imperfect recovery of conduction paths due
to ubiquitous friction between the solid-state sensing element and the elastomeric molecules [45,78,104,107] are assumed to con-
tribute to the hysteretic behavior. Friction is assumed to cause disparate time scales in detachment and slippage among filler par-
ticles, which leads to the delay in settling down of the fillers in the polymer matrix and inhibits the recovery of the percolation
network [104,148]. A larger interfacial area of conductive fillers and polymer prolongs the time delay [157].

For strain sensors with randomly incorporated nanocomposites [45], strong binding between the elastomeric nanomaterials and
the polymer matrix helps to minimize the hysteresis effect and promotes a faster response. Under such circumstances less slipping and
detachment between fillers occurs and the sensing elements rapidly go back to the initial state upon releasing [45]. Conversely, very
weak interfacial adhesion between rigid nanomaterials (e.g. metal nanowires) and polymers is expected for the full recovery of the
conductive network after the release of strain [104].

The use of an ultra-soft polymer matrix provides a lower force for the quick establishment of the percolation network [45].
Besides, the electrical conductivity becomes considerably more frequency dependent at higher strains [114]. The response time of
structure-based strain sensors (e.g. crack/gap-based strain sensors) is faster, due to the quick and easy reconnection-disconnection
transformation [158]. To ensure accurate and deterministic deformation detection, it is recommended to adopt polymers with smaller
viscoelastic properties or to suppress the viscoelastic effect of the elastomeric polymer matrix/substrate itself. For example, Choi et al.
[78] developed a highly stretchable and “hysteresis-free” strain sensor by introducing the IL of ethylene glycol (EG) and sodium
chloride (NaCl) with limitless deformability and a less hysteretic wavy structure of the fluidic channel (Fig. 6A). The resistance
relaxation of the sensor was nearly negligible even under 250% strain. This is thought to be derived from the suppressed viscoelastic
relaxation by the wavy structure of the elastomeric channel. Microfluidic strain sensors (Fig. 6B) show lower hysteresis and would
allow accurate sensing up the strain limits set by the encapsulating elastomer due to the high deformability of liquids. On the other
hand, some drawbacks such as leakage, electric circuit integration, and low GF limit their practical application [79].

Notably (buckled) sheath-core structured fiber/yarn/textile strain sensors (Fig. 6C) have attracted increasing interest due to the
substantial contributions to high stretchability [85], “hysteresis free” nature [159], and fast strain response [82] by overcoming the
viscoelastic delay of the polymer composites [82]. Generally, the piezoresistive fibers/yarns are fabricated by integrating conductive
functional materials as sheaths through methods of coating [143,160,161], ink writing [82], and continuous wrapping [159] on the
surface of (stretched) fiber/yarns as core.

In addition, it is evident that the hysteretic behavior depends on the integrity and robustness of the conductive network mor-
phology, as well as the strain amplitude [102,107]. For instance, the “shoulder peak” for 15 and 30% strain for CNT/TPU composites
strain sensor is much more obvious than for 5% strain [47]. The weak destruction of the entangled CNT network induced by small
strain is easy to recover after releasing, while the competition between the destruction and establishment of the conductive network
under large strain is remarkable. A single-peak response pattern is obtained for 5% strain amplitude for the stable CNT/graphene
synergistic network, but it is easy to be destroyed if subjected to larger strain amplitudes. As the morphology of the conductive
network almost remained unchanged under small strain, good reversibility and repeatability were thus then observed [47]. Similarly,
the evenly distributed and densely packed CNTs conductive network in SBS underwent almost no evident changes, thus, more stable
and consistent dynamic sensing performance under the strain amplitude of 10–50% was achieved [51].

Furthermore, compared with strain sensors made of nanomaterial fillers inside a polymer matrix, stretchable strain sensors based
on disconnection gaps [157] (Fig. 6D) and the micro/nanoscale cracks (Fig. 6E) propagation mechanism [115,140] possess good
hysteresis performance. The bundles between gaps [157] or the lateral compression effect on the nanostructure connection around
the crack edges benefited the approximately complete recovery of the electrical resistance, if the applied strain was released
[39,158]. Whether constructing a super dense and robust conductive network or engineering structure-based morphology, the in-
fluence of the local weak destruction is not significant enough to retard the recovery of the conductive network, showing no or
negligible hysteresis. As such, the “integral size or unit” of the sensing element is much more crucial for the overall performances as
the “apparent enlarged” sensing unit is less influenced by the viscoelastic nature of polymers. Eventually, the integrity of the con-
ductive network morphology is greatly preserved upon releasing.

A declining trend of the relative change in resistance with increasing stretching/releasing cycle number and afterwards saturation
is often observed. Such phenomenon is explained by the formation of additional conductive pathways through breakdown and
subsequent formation of interface between matrix and filler [162]. However, a growing tendency with increasing cycles has also been
observed [163], this is because the breakdown of conductive networks can be more predominant than the formation of conductive
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Fig. 6. Some strategies to achieve low hysteresis or hysteresis-free strain sensors. (A) Ionic-liquid-based wavy (ILBW) sensor with (a) geometrical
dimensions of the ILBW strain sensor; (b) hysteresis-free curve of the ILBW strain sensor [78]. (B) Microfluidic strain sensor with (a) schematic
illustration of a linear microchannel embedded strain sensor in PDMS matrix; (b) relative electrical resistance variation of the microfluidic strain
sensors [79]. (C) Sheath-core conductive yarns with (a) schematic of the producing process of strain sensor based on knitted CNT-Sheath/Spandex-
Core (CNT/SPX) elastomeric yarns, and photograph of the CNT/SPX structures; (b) change in normalized electrical resistance versus applied strain
during loading and unloading for CNT/SPXn textiles [159]. (D) Strain sensor with bridging bundle gaps with (a) key steps in fabricating the SWCNT
strain sensor; (b) relative change in resistance versus strain for multiple-cycle tests [157]. (E) Microcrack-assisted strain sensor with (a) structure and
morphology of the strain sensor under stable strains; (b) multicycle stretching tests of the strain sensor with AgNW spin-coated on patterned PDMS
substrate [115].
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Fig. 7. Strain sensors with novel features. (A) Self-healing strain sensor with (a) schematic of the healing procedure of the strain sensor; (b) dynamic
stretch-release cycles response of the strain sensor [164]. (B) Self-powered strain sensor platform with (a) schematic diagram of the partial fab-
rication process of the sensing device; (b) a schematic of the energy generation mechanism and electrical performances of the device without any
strain; (c) the relative change in resistance versus strain curves [165]. (C) Waterproof strain sensor with (a) schematic architecture of the E-bandage
for wearable strain sensors; (b) relative resistance change as a function of bending strain [168]. (D) Transparent strain sensor with (a) schematic of
the strain sensor and the setup for charge injection; (b-d) photographs of the strain sensor under stretching up to 200%, showing increased
transparency as it gets stretched; (e) relative resistance variation under stretching [171].
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network in tension, which leads to their irreversible displacement under strain [163]. In addition, the degradation of the performance
of strain sensors has been attributed to the fatigue and plastic deformation of substrates under large strain, and buckling and fracture
of sensing nanomaterials [104,107].

In general and in line with the discussions above, the simultaneous achievement of high sensitivity, high stretchability, fast
response, low hysteresis, and long-term stability in a simple and cost-effective way is still a great challenge, especially for perso-
nalized healthcare applications in which tiny strain changes on the surface of human skin need to be captured. Frequently, it is shown
that strain sensors with stretchability over 100% strain and high sensitivity (GFs) over 50 are still challenging [104]. Each kind of
material has its unique electrical, mechanical and other properties. More importantly, the assembled structures associated with
processing strategies are more decisive for the final sensing performances, and special structure designs may help to create a unique
function that their counterparts do not possess, especially when conventional sensing elements based on non-structured composite
materials suffer from issues such as low sensitivity, slow response, and large hysteresis. Therefore, proper selection of materials,
rational structure design and control of the connection types of sensing materials are effective routes to realize balanced perfor-
mances for a specific application.

3.5. Additional novel design partners

Next to the above covered crucial performance parameters, more recent research has demonstrated that several novel design
partners such as self-healing, self-powering, self-cleaning, transparency, biocompatibility, and biodegradability need to be considered
as well to ensure a better application adaptability.

Foreseeably, the sensing performance and service lifetime of flexible strain sensors declines once they are exposed to abnormal
working conditions and even fail due to irreversible mechanical cracks or damages. Inspired by self-healing phenomenon of the
human skin, increasing efforts have been made to endow the flexible strain sensors with self-healing capacity to extend their lifetime
[164]. In general, self-healing of polymeric materials is achieved through extrinsic and intrinsic strategies. Extrinsic self-healing is
based on the leakage of a pre-embedded healing agent or catalyst from cracked microcapsules or a vascular network but is incapable
of multiple healing. On the other hand, intrinsic self-healing is a driven by reversible bonds, metal-ligand interactions, and con-
ductive network reforming after melting and diffusion [164] (Fig. 7A). Due the reversible nature it is applicable for multiple self-
healing. However, there are still great challenges for simple and (economically) feasible fabrication strategies and more importantly
to keep the strain sensors with high recovery efficiency even after multiple healing.

Another valuable design parameter attracting growing attention is self-powering [165] (Fig. 7B), as the external power supply is
an indispensable part for most sensor systems. To reduce the power consumption, a promising method is to combine the power
generator and storage device with electromechanical strain sensors [73,110]. The emerging development of energy-harvesting
technologies such as piezoelectric, triboelectric, pyroelectric, thermoelectric and energy-storage devices such as flexible batteries and
super capacitors makes it more feasible for the fabrication of all-in-one electronics. For example, the first contact-mode triboelectric
self-powered strain sensor was fabricated by Zhang et al. [166] by using an auxetic polyurethane foam, conductive fabric, and
polytetrafluroethylene. The auxetic foam expands once being stretched and through contact with a friction layer allows to generate
electricity. This sensor possesses the highest sensitivity of all triboelectric nanogenerator devices. However, the current energy and
power densities of most generators are still not sufficient for prolonged operation and further improvements are still required for
stretchability and sensing capabilities [19].

To maintain acceptable mechanical and sensing performances under complicated and changing working conditions, self-cleaning
capability needs also to be introduced. This has been recently covered applying novel geometrical structure design. Conventionally,
the self-cleaning ability is attributed to the ability of the hydrophobic hierarchical structure [110,167]. For example, super hydro-
phobic surfaces and self-cleaning capability were achieved by Kim et al. [110] with the gecko-inspired hierarchical structure design,
as the high-aspect-ratio micropillars with spatula tips greatly increase the contact angle between various types of liquid droplets with
the conductive dry adhesive surface. The hydrophobic performance was improved due to the increase of surface roughness in the
triaxially post-buckling microstructure foam, and the stretchability, toughness, flexibility, energy absorbing ability, conductivity,
piezoresistive sensitivity and crack resistance were also simultaneously improved [167]. In addition, by employing hydrophobic
fluoropolymer as the encapsulation layer, a high-performance wearable electronic-bandage strain sensor based on CNT-silver na-
noparticles (AgNP)/PDMS with sandwiched structure (Fig. 7C) was developed by Jeon et al. [168]. The bandage could be prevented
from physical and chemical contact with the daily life conditions. Note that the hydrophobic property is critical for sensitivity
maintenance as acuteness of the sensors tested at hydrous conditions will be very low [169].

Furthermore, for some special applications such as stretchable displays, human-skin attachable materials, and implantable sen-
sing platforms, optical transparency is an important feature for conformal and instantaneous visualization for users. However, most
reported stretchable strain sensors are nontransparent because of high loading of conventional nontransparent inorganic nanofillers
or utilization of opaque materials. The lamination or sandwich-like [146] structure designed by using transparent active materials
such as AgNWs [170], highly purified 99% metallic CNT [146], nanohybrids of CNTs and conductive elastomers [15], graphene/
AgNWs hybrid structures [171] (Fig. 7D), single-layer graphene with serpentine-shaped pattern [172] as the force sensing element in
conjunction with ultrathin and stretchable substrate enables conformal and transparent devices. More information about the ad-
vances in stretchable transparent thin-film electrodes especially based on in-plane structures can be obtained in the review of Kim
et al. [141]. A review of materials and devices for transparent stretchable electronics is recently provided by Trung et al. [173].

In addition, especially for implantable sensing platforms in personalized healthcare applications, biocompatibility and biode-
gradability are quite critical design parameters. In this context, electronic systems entirely built with biocompatible and
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Fig. 8. Multifunctional sensing with (A) multidirectional strain sensing with (a) schematic design of conventional strain gauge (left) and the design
of omnidirectional strain sensor (right); (b) relative change in resistance during dynamic strain measurements [175]. (B) Schematics of multi
mechanical stimuli (normal shear, stretching, bending, and twisting forces) sensing [108]. (C) Schematics of flexible multifunctional device for
temperature, acceleration, electrocardiograms monitoring [180]. (D) Flexible multifunctional electronics for human-motion and thermal therapy
detection with (a) schematic diagram of graphite transfer to PVC using a pencil; (b) resistance changes under compression and tension; (c) infrared
picture of the graphite-based flexible heater under tension [181].
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biodegradable materials are of growing interest for in vivo sensors [174]. Besides, the devices should be degraded and resorbed in the
body, and therefore no further operation is needed.

3.6. Multifunctional sensing

Strain sensors that can detect the direction of potential failures in engineering structures under multi-directional or multi-plane
deformations are highly desirable for applications such as structural health monitoring. However, the commercially available strain
sensors can only effectively monitor the deformation in one specific direction, i.e. they are uniaxial [175]. Also, the dominant
research work related to stretchable strain sensor development aimed at uniaxial sensing measurement.

One strategy to do allow for multidirectional sensing is to construct rosette-type strain gauges [176,177]. However, more inputs
into the data acquisition system are required as three individual sensors are used to build the rosette configuration [175]. On the
other hand, Zymelka et al. [175] recently demonstrated the concept of a single sensor structure that enables omnidirectional sensing
capability. The strain sensor possesses symmetrical design with 16 active elements along eight different axes (Fig. 8A). The developed
sensor device exhibited much more accurate measurements of both static and dynamic strain than conventional linear sensors [175].
Detailed optimization of the sensor structure and sensor performance, and exploration of applicability of this method for other
materials and the corresponding sensing performance evaluation need to be still conducted.

More recently, multifunctional sensing platforms integrating strain with some other stimuli such as pressure [108,167,178],
temperature [178–180], thermotherapy [181] (Fig. 8D), humidity [178], and biometric data [180] have drawn great attention due to
their potential for simultaneous multi-stimuli detection capability. Generally, unique structure designs are employed to achieve
multifunctionality. For instance, a device with a sensing film constructed from two parallel gold-nanoparticle strips with antiparallel
sensitivity gradients can detect the load strain and discriminate the spatial position of the strain [182]. Similarly, a stretchable
electronic skin with interlocked microstructures as for instance developed by Park et al. [108] can differentiate various mechanical
stimuli, including normal shear, stretching, bending, and twisting forces (Fig. 8B). Due to the different levels of deformation of the
arrays depending on the direction of applied forces, the flexibility and durability as a sensor are however limited.

Furthermore, Ho et al. [178] fabricated an all-graphene transparent conformable multifunctional electronic skin sensor through a
simple lamination process by integrating humidity, temperature, and pressure sensors into a single unit with all sensors working
simultaneously with an individual report. A printed, flexible multifunctional device equipped with a three-axis acceleration sensor
was developed by Yamamoto et al. [180]. This multifunctional device can simultaneously monitor skin temperature, heart rate, and
UV light exposure as well as physical movement and motion (Fig. 8C), which provided a proof-of-concept device that shows potential
for healthcare monitoring combined with physical activity detection.

Additional descriptions related to the controlled design of device structures into bioinspired micro/nanostructures and 2/3D
structures for the enhancement of multifunctional sensing properties of flexible electronic skins can be extracted from the review of
Park et al. [19]. However, some significant challenges such as the possible signal crosstalk, discrimination of distinct external stimuli
in particular the complicated structural engineering and integration process for most developed multifunctional sensing platforms,
low-yielding, and issues for the adhesion interface still remain.

4. Material types

One of the most challenging steps in strain sensor development is the selection of the material types, as they define the final
characteristics of the sensor to a great extent. In this section, the materials for flexible and/or stretchable strain sensors are sum-
marized making a distinction between the matrix/substrate and the conductive materials. Along with the material types, the fab-
rication methods are discussed.

4.1. Flexible matrix or substrate

For materials expected to cover only tensile modes of deformation (e.g. stretching or bending), it is often sufficient to have a low
tensile modulus and high crack-onset strain for the selected material. The most basic choice for supporting matrix/substrate is
intrinsic stretchable materials (e.g. elastomers/rubbers), especially for large-scale deformation (see also first columns in Table 1).
Elastomers can easily sustain dynamic strain (typically larger than 100%) for thousands of loading/unloading cycles [101]. Most of
the substrate materials are currently silicone or polyurethane based.

The most commonly employed elastomer as flexible substrate is PDMS [41–43], due to its excellent elasticity, high thermal
stability, transparency, chemical inertness, curability, non-toxicity, and biocompatibility [101,183]. Most of the reported skin-like
stretchable sensors are based on conductive nanomaterials and (microstructured) PDMS films. A hydrophobic to hydrophilic surface
modification is frequently utilized to control the interfacial adhesion between PDMS and conductive materials. Other elastomers such
as Ecoflex [39,45], NR [57–59,72], SBR [58,60], and thermoplastic elastomer TPU [38,46–49], SBCs [50–56], and POE [61,62] are
also used as matrix/substrate in systems that require higher stretchabilty than PDMS (maximum strain of 120–160%) [101]. Notably
the sensitivity may change with temperature variation, creep, and material fatigue [102].

In addition to high stretchable elastomer/rubber, attention has also been paid to thermoplastics such as PP [63,64], PVDF
[65,66,77,184], as well as epoxy [67,70] for high strength applications. However, if conductive fillers are incorporated, the ductility
and toughness generally decreases. A small elastic region is therefore obtained, which can result in a relatively narrow strain sensing
range [121]. A few percentage of strain may cause irreversible changes both in the substrate and in the conductive layer with
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thermoplastics. Strains smaller than 1% are practically invisible for elastomers embedded with conductive materials. Hence, elas-
tomers are more suitable for high strains monitoring (e.g. human motion detection with strain as much as 55% [157]) and ther-
moplastics are normally considered for structural health monitoring [65,66,184]. Next to these synthetic polymers, also silk fiber
[160] and paper [185,186] have been used as substrates.

In all cases, the extensibility, i.e. the crack-onset strain, of the active material should be equal to or greater than that of the
substrate, unless cracking itself is used to induce stretchability. For real applications, the ability to tune the sensitivity over a large

Fig. 9. Stretchable CB based strain sensors. (A) Random dispersed CB/PDMS strain sensor with (a) schematic illustrations of the morphology
evolution during stretching for CB/PDMS; (b) normalized changes of resistance as a function of strain for CB/PDMS [43]. (B) Resistance change
under stretching for random dispersed SEBS-CB strain sensor [54]. (C) CPC layer-decorated PU strain-sensitive yarn with (a) schematics of the cross
section microstructure of the CPC layer-decorated PU yarn; (b) schematic illustrations of different conductive networks development under small
strain; (c) relative resistance change of the CPC layer-decorated PU yarn with different LBL numbers [38]. (D) Cellulose nanowhisker modulated 3D
hierarchical CB conductive structure with (a) schematic illustration for the fabrication of cellulose nanowhisker modulated 3D hierarchical CB
conductive structure in NR matrix; (b) resistance change during a loading-unloading cycle [192].
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range of strain should also be considered. Experimental and theoretical results show that increasing the Young’s modulus of the
nanocomposites can improve the sensing performance [32]. As the mechanical hysteresis of polymers leads to imperfect sensing
performances and long response and recovery time, low-hysteretic matrix/substrates are preferable for strain sensor fabrication.
However, the impact of matrix/substrate on the flexible sensors response is not yet fully understood and further research is required,
as explained above.

4.2. Conductive materials

Diverse conductive materials, including carbon-based micro/nano phased materials (e.g. CNTs [46,47], CB [46,62], graphene
[47,72], graphite [39], carbon fiber [187]), and some recently emerged carbonized materials [128,130,188], metallic nanoparticles
[50,55,168] and nanowires [40,73,74,107,170] (e.g. AgNPs [168] and AgNWs [40,73,107,170]), conductive polymers (e.g. PED-
OT:PSS [73], PANI [74]), IL [78,79], and their heterogeneous hybrids have been utilized to prepare flexible strain sensors (see also
first columns in Table 1). Among them, so-called 1D nanomaterials (e.g. CNTs and metallic nanowires) have a high-aspect-ratio,
which makes them easy for conductive percolation path formation. Most stretchable conductive composites have therefore been
developed based on metal nanowires and CNTs as conductive fillers. CNTs and AgNWs are the most extensively studied 1D

Fig. 10. Stretchable CNT based strain sensors with structural design. (A) Illustration of hierarchical buckling structure of sheath-core conducting
fibers [85]. (B) Super aligned CNT film with structure of unidirectionally aligned and sandwiched MWCNT strain sensor [136]. (C) CNT-array
double helices [84]. (D) SEM image of two CNT entanglements [197]. (E) SEM image of a CNT mesh after purification [139]. (F) SEM image of
wrinkled CNT thin film on shrunken PS substrate [198]. (G) 3D continuous nanoporous conductive network structure with (a) schematic illustration
of the fabrication procedure for the 3D continuous conductive nanostructure; (b) relative change of resistance as a function of strain [203].
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Fig. 11. Stretchable graphene based strain sensors with structural design. (A) Fish-scale-like graphene (FSG) layer with (a) top view SEM image of
FSG strain sensor; (b) relative resistance-strain curve of a FSG strain sensor under stretching [7]. (B) Graphene woven fabric (GWF) with (a) top-view
optical image of GWF; (b) relative resistances and gauge factors as a function of applied strain [208]. (C) Crumpled graphene nanopaper with (a) top
view SEM image of macroporous structure based on crumpled graphene; (b) relative resistance change as a function of tensile strain [209]. (D)
Buckled graphene film with (a) schematic diagram of the buckled graphene ribbon on PDMS substrate; (b) resistance change as a function of strain
[86].
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nanomaterial candidates for the fabrication of flexible and stretchable strain sensors. A number of reviews have already discussed the
properties of the above conductive materials [102,134,189]. In what follows, the main important characteristics and limitations of
these materials are highlighted, including an overview of more recent developments.

4.2.1. Carbon-based micro/nano materials
Carbon-based micro/nano materials are the most promising candidates for scalable production of strain sensors, with 0D CB, 1D

CNT, and 2D graphene the most representative active materials for sensor fabrication. Compared to CNT and graphene, CB is much
cheaper with excellent health and safety performance. To date, CB based sensors produced in bulk volume that can be used in a range
of wearable products are fabricated via screen printing a composite of CB and silicon elastomer onto a fabric and connecting con-
ductive yarns [190,191]. Strong aggregation of CB brings however difficulties to achieve good dispersion and usually a high loading
is needed to obtain a satisfactory electrical conductivity due to their low aspect ratio. Until now, CB has been effectively employed
with elastomers such as SBS [52,53], PDMS [43] (Fig. 9A), styrene-ethylene/butylene-styrene (SEBS) triblock copolymer [54,56]
(Fig. 9B), and POE [62] for the fabrication of strain sensors.

Generally, with CB the sensitivities are relatively low for small or tiny strain detection. With microstructural design, a highly
sensitive strain sensor has been developed by Wu et al. [38] by coating a CPC layer consisting of CB and NR on a PU yarn (Fig. 9C).
This strain sensor exhibited high sensitivity (GF of 3.9 × 10) and a detection limit of 0.1% strain. The massive production feasibility
and practical application still need to be further guaranteed. In addition, a unique 3D hierarchical CB conductive network structure
has been constructed [192] by incorporating cellulose nanowhiskers via latex assembly technology (Fig. 9D). This unique conductive
structure endowed the CB/NR nanocomposites with a very low electrical conductivity percolation threshold (1.65 vol%), and a nearly
linear resistance-strain sensing performance. However, small hysteresis was observed under a cyclic loading process [192].

CNTs have been the most extensively studied conductive material used for strain sensor fabrication. Compared to SWCNTs,
MWCNTs have relatively high purity and are more economical. MWCNTs based strain sensors exhibit exceptional sensing char-
acteristics and are characterized by a larger working range. CNTs-based strain sensors are typically produced by dispersing CNTs into
polymer matrix or directly depositing a CNT film or transferring CNT arrays with fine architectures onto flexible substrates.
Generally, the sensitivity is tuned by controlling the filler loading [193] and filler functionalization [194], the dispersion [195], the
fabrication process [51], the interaction between CNTs and polymers [46], and the network configurations [46]. Homogeneous
dispersion and alignment of CNTs in the composites contribute to positive piezoresistive response with improved sensitivity and
linearity. Despite the high stretchability, the GF of elastomeric polymer composite filled with CNTs is relatively low (<5) under low
strain. A linear piezoresistivity is usually obtained under low strains, followed by nonlinearity at larger strains. Moreover, elastomer-
CNTs based strain sensors typically exhibit resistance hysteresis under a cyclic stretching/releasing profile [46–49,51], which in-
dicates the irreversible conductive network change and deterioration of the CNT/polymer interface.

In addition to direct dispersion, many design and processing techniques have been developed to assemble CNTs with different
architectures (buckled CNTs layers [85] (Fig. 10A), aligned and suspended CNTs [157], super-aligned CNT films [136,196]
(Fig. 10B), spring-like CNT yarns [197] (Fig. 10C) and CNT-array double helices [84] (Fig. 10D), CNT meshes [139] (Fig. 10E), and
wrinkled CNT thin film [198] (Fig. 10F)) onto flexible substrates. And generally, the fabrication of CNT with those well-defined
architectures [84,136,139,157,197] involves chemical vapor deposition (CVD) [199–201] synthesized process of CNT and later
transfer and assembly procedure. These network configurations can accommodate to high strain with low hysteresis, high durability,
fast response [136] due to the compact and a nearly-intact intertube network composed of a high ratio of CNTs. On the other hand,
the sensitivity is relatively low. The structural stability is critical and many strategies have been adopted to resist the destruction
induced by buckling and bundling of CNT network during cyclic deformation [202]. In order to avoid segregation or agglomeration,
highly porous 3D network [203] (Fig. 10G) has been fabricated before integration into elastomeric polymers. Despite the excellent
performance and advancement of CNT based strain sensors in prototypes, there are still numerous challenges to be addressed to fulfill
the large scale utilization, such as the elevated cost of high purity CNTs and their scalable controlled dispersions, as well as hazardous
concerns.

As a 2D material, graphene exhibits extraordinary electrical and mechanical properties, and is also non-toxic. Generally, graphene
has been assembled to various types of nanostructures through different fabrication strategies. For example, Liu et al. [7] developed a
high-performance strain sensor with fish-scale-like configuration (Fig. 11A) by stretching/releasing the graphene films on elastic
tapes. The strain sensor could detect strain up to 82% and ultralow limit strain (<0.1%), showing high sensitivity (GF of 1.62 × 10 in
the strain range of 0–60 % and 1.5 × 102 at strain >60%) with excellent reliability and stability (>5000 cycles). Inspired by this
work, Li et al. [204] developed large-area ultrathin graphene film with “fish scale” like structure for a highly sensitive flexible strain
sensor via a novel self-assembly technique based on the so-called Marangoni effect [205–207], and the strain sensor possessed a GF of
1.0 × 103 at 2% strain with high transparency (94%–86% at 550 nm). Graphene woven fabrics fabricated by Yang et al. [208]
through chemical vapor deposition using a copper mesh also showed ultrahigh GFs of 5 × 102 under 2% strain and 104 over 8% strain
due to the synergistic effect of the formation of position-controllable, locally oriented zigzag cracks and large interfacial resistance
between the interlaced ribbons. Similar research work related to highly sensitive graphene woven fabric based strain sensors has also
been recently reported by Liu et al. [133].

Moreover, some research groups developed graphene [40] (Fig. 2A) or similarly graphite [39] (Fig. 4B) crack-assisted strain
sensors, which exhibit ultrahigh piezoresistive sensitivity under small strains (cf. Section 3.1). In general, the piezoresistivity of the
above high performance graphene-based strain sensors originates from the breaking of contacts, the change of spacing, and over-
lapping area upon stretching. Although these strain sensors exhibit ultrahigh GFs, the repeatability of the resistance signals needs to
be further investigated. In addition to sensitivity increment, some other structural designs such as patterned graphene mesh [142]
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(Fig. 4B), crumpled [209] (Fig. 11C), or buckled [86] (Fig. 11D) structure can help to increase the working strain range. Besides good
electrical property, graphene is highly stretchable and almost transparent [210], which helps achieve strain sensors with good
transparency [171,172]. Despite much advancement of using graphene for strain sensor fabrication, a critical problem lies however in
the preparation of high-quality and well-defined graphene in bulk quantities [210].

4.2.2. Metallic nanoparticles and nanowires
Metallic nanoparticles and nanowires possess a very high conductivity. A particularly attractive research venue for metallic

nanoparticles is to develop micro/nano-crack assisted strain sensors (Figs. 1C, 2B–C) with ultrahigh GFs (especially for tiny strain
detection) through printing [81], sputtering [111], or depositing [112] on flexible substrates. However, the disconnections between
nanoparticles under high strain can lead to the formation of irreversible inter-particle gaps/cracks, and the devices can only be
operated within a limited strain range. Increasing the diameter of the nanoparticles results in a higher disorder within the constituent
nanoparticle assemblies, which results in a GF and hysteresis increase [211]. For high strain detection, serpentine design is employed
to prevent the materials delamination and/or cracking [134,212].

AgNPs-based conductive inks have been developed to enable large area printing of stretchable strain sensors. However, limita-
tions such as small sensing range, reduced sensitivity, nonlinear behavior under certain degree of mechanical deformations may
appear due to the weak interparticle connectivity, which is ascribed to their simple spherical architecture [189]. Metallic nanowires
have excellent mechanical compliance, which makes them very promising candidates for stretchable strain sensor fabrication. This
can be explained by the high conductivity and stretchability in nanowire percolation network, and the high resistance to oxidation
and corrosion. AgNWs have been widely used to fabricate transparent, flexible, and stretchable strain sensors via embedding in the
elastomeric substrate [40,73,107]. For instance, highly stretchable and sensitive strain sensors based on sandwiched PDMS/AgNWs/
PDMS composite was developed by Amjadi et al. [107]. The sandwiched structure contributed to high linearity and negligible
hysteresis upon comparison with a simple AgNWs/PDMS layer structure. In addition to a 2D film-based layout, hierarchical 3D
assemblies [213] for stable electromechanical performance and 1D-fiber-based structures [214] for high stretchability have also been
reported. However, AgNWs are relatively expensive and based on a nonabundant metal.

Copper nanowires (CuNWs) are a promising alternative due to their merits such as being inexpensive, high availability, and also
high electrical conductivity. On the other hand, CuNWs are extremely prone to oxidation, which requires further approaches to
alleviate or prevent the oxidation. For example, Zhu et al. [215] developed a strain sensor with a hybrid conductive film by em-
bedding CuNWs into water-dispersible modified graphene sheets. The hybrid film exhibited excellent anti-oxidation stability even
after exposure in air for 8 weeks.

On an overall basis it can be concluded that despite the performance and advancement issues such as roughness, structure and
performance stability, high cost, and low abundance still hinder the scalable utilization of metallic nanoparticles/nanowires in
industry.

4.2.3. Conductive polymers and analogues
Most conductive polymers are composed of rigid π-conjugated chains in highly aggregated morphologies, which are responsible

for charge transport and also render these materials stiffness and brittleness. PANI [216,217], PPy [76], and PEDOT:PSS [15] are the
most explored conductive polymers up to date. Generally, the original conductive polymers are insoluble and non-fusible, as well as
exhibit unsatisfying conductivity and sensitivity [44]. Normally, in-situ polymerization [216–218] is adopted for the fabrication of
functional composites based on conductive polymers or a doping process [217] is needed to increase the conductivity and solution
processability.

PEDOT imbedded in PSS forms the water-based PEDOT: PSS complex, which receives the most attention in strain sensor fabri-
cation due to its high conductivity, low density, high flexibility, and processability. For instance, sandwich-like stacked piezo-
resisitive nanohybrid films based on PU-PEDOT:PSS and SWNT layers have been developed by Roh et al. [15]. The patchable strain
sensor possessed a high GF of 6.2 × 10 and stretchability up to 100%. However, the conductive polymers are sensitive to moisture,
and their semi-conducting transport mechanism can imply an exponential drop in conductivity with decreasing temperature [219].
The environmental stability [44] and processing routes therefore still limit the utilization of conductive polymers for scalable sensor
production.

In addition, ILs [78,79] and liquid metals [80], which are other conductive materials than polymers, have also been used for
strain sensor fabrication. Specifically, microfluidic strain sensors [79,220] fabricated by employing ILs or liquid metals show eligible
hysteresis and allow accurate sensing up to the strain limits of the encapsulating elastomers, which are quite promising for the
fabrication of strain sensors with excellent stretchability and self-healability [79,221]. Generally, the sensing performance of the
microfluidic strain sensors depends on the fluid type, cross-section geometry, depth, and relative lateral position of the embedded
channel [102]. However, the repeatability improvement requirement, the relatively complicated and time-consuming fabrication
process, the low GF, as well as the high cost still limit the processing scalability.

4.2.4. Hybrid materials
Each material has its own strengths and weaknesses for a specific application. To compensate for the disadvantage of a single

material, numerous researches have focused on hybrid nanomaterials of 0D/1D [46], 1D/1D [222] and 1D/2D [202] combinations,
as also briefly highlighted above. For example, compared to other graphene and CNT strain sensors, strain sensors based on graphene
hybridized CNTs films developed by Shi et al. [202] depicted advantages of high linearity and reproducibility under cyclic tensile
strains up to 20%. This was ascribed to the strong interaction and effective load transfer within the hybridized films that effectively
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resisted the buckling deformation of CNTs.
Another usefulness of hybrid conductive fillers is to tune the piezoresistive sensitivity of CPCs based strain sensors. For instance,

the incorporation of CB reduced the entanglement in the MWCNT conductive network, which increased the resistivity-strain sen-
sitivity [46]. Similarly, CPCs with high sensitivity, high repeatability, and electrical stability under fatigue cycles have been reported
in the work of Ning et al. [223], which was ascribed to the synergistic effect of a dual conductive network of CNT arrays and CB.

In summary, hybrid fillers exhibit advantages for the fabrication of piezoresistive CPCs due to their diverse connections or
contacts among fillers with different geometries, which also contributes to the electrical conductivity improvement through a sy-
nergistic effect.

5. Fabrication and design methods

As highlighted above, one of the common methods to obtain flexible and stretchable strain sensors is to disperse conductive fillers

Fig. 12. Illustration of strain relief structures for stretchability. (A) Strain sensor with serpentine pattern with (a) optical image of the boundary
between the single-layer graphene channel and the graphene flake electrode. The red square in the insets describing the sensor schematic indicates
each part of the optical image in the entire graphene sensor device; (b) the resistance changes with tensile strain for the all-graphene strain sensor
[172]. (B) kirigami-structured stretchable strain sensor with (a) schematic of an integrated device with printed electrodes; (b) normalized resistance
change ratio of ecoflex grid-wrapped device with 130 mm-thick polyimide [228]. (C) Mogul-patterned stretchable electrode with (a) schematic of
the substrate with a mogul pattern under stretching; (b) average value of relative resistance change at each strain of the Au layer on a mogul-
patterned stretchable substrate [229]. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of
this article.)
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in an elastomer polymer matrix. In general, the most commonly used dispersing techniques include shear mixing [64,193], solution
mixing [43], and in-situ polymerization [77]. In case of solution dispersion, surface functionalization or incorporation of surfactants
is adopted to achieve a more uniform dispersion. Each method has its own advantages and disadvantages. More details can be found
in for instance following review [119].

Depending on the final morphology and shape of the composites, further processing is possible by extrusion [224], compression
molding [47,51,65], film casting [3,46,51,82,154,161,194], and spinning [225]. The piezoresistivity of these CPCs can be tuned by
controlling the concentration of the conductive fillers [225,226], the interaction between the fillers and matrix [46,194], and the
conductive network morphology [47,65,161,202,227]. Normally, a compromise between sensitivity, conductivity, mechanical
stretchability, and stability is required through the optimization of the filler loading and conductive network morphology. This
approach has some significant inherent advantages, such as simple fabrication processes, low cost, and high structural integrity.
However, the sensing performance and mechanical integrity may deteriorate under long-term large cyclic mechanical deformation.

Strain sensors can also be produced by assembling conductive material layers on or embedded in flexible substrates. Typically, the
fabrication methods are classified into two categories. The first category relies on the conductive materials layers deposited on top of
the flexible substrate through direct coating (e.g. drop-casting [50], dip-coating [38], Meyer rod coating [160], spray coating [45],
bar coating [39], spin coating [15], transferring [139], infiltration [40], or printing [42]). The strain sensors with layered structure
are generally fabricated on or embedded in stretchable substrate like PDMS [41], Ecoflex [45], due to their appropriate flexibility and
strength for flexible electronics. Such strain sensors can be used for both integral measurement on a certain surface or local mea-
surement at a certain position depending on the sensor geometry. However, some limitations still exist, including that the solution-
based process is not environmentally friendly, the uniformity of the nanomaterials film is hard to control, as well as the bonding
interaction between nanomaterials layers and elastomeric substrate is weak, which may lead to delamination and/or buckling of the
conductive layers. The second category relies on conductive materials encapsulated within the flexible substrate, which is suitable for
fabricating conductive networks with relatively large thickness [101].

Another method for realizing stretchable strain sensors is based on structural design of strain absorbing interconnections, such as
wrinkled [82] (Fig. 10F) and buckling [85] (Fig. 10A) structures, wavy [87] (Fig. 6A) and serpentine [172] (Fig. 12A) patterns, open-
mesh geometry [139] (Fig. 4D), and Kirigami-like structure [228](Fig. 12B). Next to stretchable electrode making, a mogul-patterned
stretchable substrate [229] (Fig. 12C) also offers a possible strategy for stretchability enhancement for layer structured strain sensor.
These strain-relief structures permit the use of metallic films and semiconductor nanoribbons. For example, multiscale wrinkled
microstructures have been built through coating AgNWs/waterborne polyurethane composite layers on the surface of pre-strained
commercial PU fibers [82]. The wrinkled microstructures inside the piezoresistive fibers made contributions to the elimination of the
viscoelastic delay of polymer composites [82]. Similarly, highly stretchable (up to 1320%) sheath-core conducting fibers have been
fabricated by Liu et al. [85] through wrapping carbon sheets oriented in the fiber direction on stretched rubber fiber cores. The
resulting structure exhibited a distinct short and long-period sheath buckling structure. The pre-strain process is however not pre-
ferable for large-scale manufacturing. Alternative approaches are being developed for the fabrication. More information can be found
in following review [44].

The anisotropic property of wrinkled and buckling structures can also be used to discriminate strains of different directions, which
enables the sensors precise monitoring of movement and surface conditions of targeting objects. In contrast, these conductive fibers
exhibit a very small resistance change even under large strain [82,85]. Fabricating the substrate into a wavy shape largely improves
the stretchability of the whole system. Serpentine structures [172,230] are 2D or 3D arrays of a repeating horseshoe-shaped unit,
which might be selected if digital patterning and low cost are more important considerations than complex function or high-per-
formance operation. Current research on this topic is focused on new material and specialized structure design. As for the structured
strain sensors, it should be noted that the adhesion between the conductive layer and the substrate should be strong enough to remain
the structural integrity. Otherwise, the use of inherently rigid materials can lead to cracks and fractures during long-term use.

By specific structure design, the strain sensors can be very sensitive to detect very small mechanical motions. Some bio-inspired
micro/nanostructures such as interlocked microdomes [108] (Fig. 3A) or nanofiber arrays [109], whisker arrays [126,127] (Fig. 3B),
and silk-molded microstructures [129] (Fig. 3C) are efficient ways for improving the sensitivity or obtaining multiple sensing cap-
abilities or enhanced interfacial adhesion [231]. Piezoresistive strain sensors based on elastomer/rubber filled with conductive fillers
normally show slow response and high hysteresis. However, the structured strain sensor with interlocked microdome arrays [108]
shows fast response with a minimal dependence on temperature. On the other hand, the stretchability of these materials is low. In
addition, while these strategic structural design are effective for creating sensors, they often need complex, multistep, and time-
consuming microfabrication processes, which normally requires elaborate adjustment of the experimental conditions. They also still
need to confirm their long-term reliability, economic feasibility and possibility for a high yield.

To further reflect the current status of the field, the last two columns in Table 1 summarize the fabrication process and special
structural design, experimental GFs and hysteresis behavior extracted for more recently reported flexible and stretchable strain
sensors. A distinction is made between strain sensors fabricated based on mainly blending of two or more components, including also
processes such as infiltration, coating, transfer and filling (Part A) and strain sensors fabricated via multi-steps, which may involve
the above mentioned or other processes employing special structural design for the conductive functional component and/or sub-
strate (Part B). It is again shown that each approach has its own advantages and disadvantages (e.g. contributing to high sensitivity
[39,40,50] or low hysteresis [39,59,136] while involving a multi-step process [39,40,50,59,73,136], or offering a simple fabrication
route while showing less satisfied sensing performances [42,46,48]. The proper selection of matrix/substrate and conductive ma-
terials is therefore crucial for optimum performance achievement, while the preparation and formulation methods have even stronger
impact on the final performance [48,136]. A more practical, cost-effective, mass-producible, faster and easier way to fabricate
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Fig. 13. Summary of printing techniques for strain sensor fabrication. (A) Non-digital printing with (a) screen printing and spray printing [226]; (b)
inkjet printing [235]. (B) Conductive ink based 3D printing with (a) schematic illustration of the embedded 3D (e-3DP) printing process; (b)
photograph of e-3DP for a planar array of soft strain sensor; (c) electrical resistance change as a function of elongation for sensors subjected to cyclic
deformation [42]. (C) Fused deposition modelling with (a) TPU/MWCNT fused deposition modelling process; (b) relative resistance change under
cyclic strain [248]. (D) Aerodynamically focused nanoparticle (AFN) printing with (a) a simplified schematic illustration of the AFN printer; (b) in-
situ image captures silver nanoparticle printing; (c) relative resistance change as a function of strain of the printed strain sensor [246].
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flexible and stretchable strain sensor with high sensitivity, high stretchability, low hysteresis, and long-term durability still needs to
be developed.

6. Scale-up potential

Numerous strategies have been adopted to fabricate flexible and stretchable strain sensors, ranging from lab scale approaches (see
Section 5) to scalable extrusion-based processing [64] and printing [42,230,232] techniques. The lab scale methods are normally
employed for exploratory studies, involving either new materials or new applications for established materials, or performance
optimization. The majority of current lab scale manufactured strain sensors are one-off prototypes. They lack manufacturing ex-
tensibility and scalability, as mass production is required for practical applications. Printing technology is a quite promising can-
didate for large-scale manufacturing. This is due to the large-area and high-throughput production capabilities, and the ability to
create complex conductive geometries on a single printing platform that cannot be easily achieved by previous and non-automated
approaches. It also does not require a mold [28,230]. Also, printing technology is more efficient and cost-effective [36,224,230,233].

Key components for printed flexible and stretchable strain sensors are flexible substrate or monitored structural parts [234] and
conductive materials such as conductive inks [42,235]. It is crucial to use an elastomer that can be easily printed and has no impact
on the subsequent process. The choice of the base elastomer should be optimized on the hardness and elasticity. Silicon rubbers
[28,42] (e.g. PDMS, Ecoflex) are considered to be the best choice as substrate with remarkable stretchability and flexibility [36].
Conductive materials such as graphite [236], graphene [237], CNTs [235], PEDOT:PSS [238], and silver [234,238,239] in pure form
or in the form of composites with elastomers and in general polymers [240] have been employed to fabricate printed strain sensors.
Generally, nanoparticle-based inks possess the ability to create precise patterns, while 1D and 2D materials are difficult to pattern
with good electrical properties [36]. CNT inks are widely used for printed flexible strain sensors [42,147,235]. Except conductive
inks, some kinds of 3D printing filaments infused with CNTs and graphene are already commercially available [241].

Printing techniques are sub-divided into two categories: (i) master printing and (ii) digital printing [37]. A pre-patterned printing
plate as a master is required for the master-printing techniques, which include flexography, gravure printing, offset printing, and
screen printing. These techniques are suitable for applications without high complexity and superfine resolution requirement [101].
Digital printing technique is “master free” and based on the relative motion between substrates and the printing head or nozzle [37].
The digital printing techniques encompass inkjet printing, direct ink writing, and laser patterning, which are more attractive due to
their easily controlled programmable fabrication process [37] and architecture [227]. Generally, the printed flexible and stretchable
strain sensors are fabricated by screen printing [126,224,226,239,242,243] (Fig. 13A (a)), inkjet printing [224,235,238] (Fig. 13A
(b)), and three-dimensional (3D) printing [42,232,244] (Fig. 13B and C), which has drawn much attention for directly realizing
complex objects [36].

Among all-printing techniques, screen and inkjet printing are well suited for smaller-scale prototyping and have drawn much
interest due to their maturity of printing procedures and availability of compatible inks and substrates [234]. The variation in
characteristics of printed sensors is especially large in manual screen printing, which makes digital printing more attractive [234].
Inkjet printing shows great advantages of high spatial precision of ink droplet and feature design for personalized electronics, while it
is only appropriate for application scales ranging from device prototyping up to medium-scale production throughputs, due to its
serial printing nature [233]. The rheological properties of inks, in terms of surface tension and viscosity may although bring problems
for inkjet printing process. Besides, the wetting and adhesion between substrate and conductive inks, the substrate swelling, thermal
hardening, and thermal expansion [101] may inhibit the printing process. Moreover, cracking and low stretchability may be the
resulting issues found in the printed stretchable devices. Additional information related to recent advances in inks, and strategies
about inkjet printing can be found in following reviews [101,245]. More recently, the aerodynamically focused nanoparticle (AFN)
printer (Fig. 13 D) was utilized for strain sensor printing of for instance silver nanoparticles [246]. Compared to inkjet printing, this
method is solvent-free, room temperature adaptable, and has some advantages for flexibility and compatibility [246].

While further exploration and improvement of dynamic strain sensing performance are still required, 3D printing technology is
increasingly been used for directly printing sensing components [42,230,232,247,248]. For example, Muth et al. [42] fabricated a
flexible and stretchable strain sensor with conformal and extensible elastomeric matrices by embedded 3D printing (e-3DP) tech-
nology (Fig. 13B). A viscoelastic ink made of carbon conductive grease was directly printed into an elastomeric reservoir. Different
finger gestures can be monitored by resistance variations. The GF for all sensors collapsed to a single value of 3.8, while significant
hysteresis was observed during cyclic stretching. Alternate inks are needed for the optimization of sensor performances [42]. Besides
conductive ink printing, multidirectional embedded strain sensors based on pure TPU and TPU/MWCNT nanocomposites were re-
cently fabricated by Christ et al. [232,248] through 3D printing in tandem using a low-cost multi-material fused deposition modeling
(FDM) printer (Fig. 13C). The printed sensors showed strong piezoresistive response to strain as high as 100% in both the axial and
transverse directions [232]. The strain sensor depicted possesses low sensitivity and evidenced hysteresis [232,248], which is ob-
served for the majority MWCNT-elastomer based CPCs strain sensors. CNTs as an additive incorporated into filaments for FDM are
relatively new [241], as the difficulties in mixed material filament production and especially the additional problems associated with
the rheology and flux during FDM extrusion are still needed to be properly addressed. Moreover, maintaining uniform performance
during the printing process is challenging [102]. In addition, 3D printing technologies involve some inevitable problems such as the
requirement of expensive machines, limited printable materials, intellectual property rights and legal ethics problems, as well as low
mass production efficiency [244].

Overall, low-cost printing methods potentially enable the medium and large scale volume production of flexible electronics, while
some problems still exist. For example, inks used for printing strain gauges are sensitive to temperature variations [234]. Also, the
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prepared ink is not solvent free [235] and rheological properties should be tailored to meet the printing requirements [42,147].
Moreover, several criteria must be fulfilled to achieve successful device fabrication [42], which inevitably limit the printing
adaptability for most materials. To promote widespread adoption of printing technology by industry, the printing process should be

(caption on next page)
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further optimized to produce printable devices with more uniform performances and high resolution [233]. Also, in order to achieve
robust and reproducible devices by reducing or avoiding the influence of surrounding changes, further exploration is demanded for
practical system-packing solutions. For extremely large scale and high-throughput application, roll-to-roll printing methods are
although more applicable [233]. The top-down approach with roll-to-roll techniques has seen remarkable success for CNT-based
electronics due to their compatibility with batch fabrication. However, it is challenging to realize large-scale manufacturing of
nanowire-based electronics because of their large-scale synthesis methods and bottom-up assembly methods through which it is
difficult to achieve the same level of precision, uniformity, and scalability. Except the printing process optimization, an emerging
trend is also to develop all-printed sensor devices [224,249] with full integration systems [36,250] without any external processing.
Issues here are still the fabrication of flexible circuits, batteries, protecting layers by printing methods and/or comparable low-cost
fabrication strategies for seamlessly structural integration [126].

In recent years, fiber or fiber assemblies (textile/fabric structures) have been utilized to prepare flexible strain sensors via add-on
or built-in approaches, which make it possible to develop large-area electronic systems for wearable devices. Generally, the ap-
proaches for the fabrication of fiber-based flexible and wearable electronics are divided into two categories. The first category is the
single fiber type, which is made from conductive polymer, metallic nanoparticles/nanowires, carbon-based micro/nano materials, or
conventional fibers/yarns surface modified with conductive materials. A good example is the sheath-core structured strain sensors by
using ultrafine graphite flakes as the sheath and single silk fibers as the core through a Meyer rod coating strategy [160]. The second
category is the fabric type with electronic functions imparted through coating, printing or a lamination process on the surface of the
fabrics [251]. The flexibility and comfort of the fabric may be compromised when using rigid components, thus, imparting electronic
functions at the fiber level is more desirable [251]. Fabric-based sensors have been not only demonstrated as prototypes but also used
in real applications [96,251]. More information about fiber/fabric-based strain sensors can be found in following review [251].

Some explorations for scalable fabrication of flexible and stretchable strain sensors based on fabrics or off-the-shelf materials are
emerging. For example, a flexible conductive cotton fabric used as strain sensor has been fabricated through vacuum filtration of
graphene oxide solution, which is now readily available on the market, and a hot press reduction method. The as-prepared strain
sensors showed reproducible sensing characteristics [252]. Wang et al. [128] fabricated wearable strain sensors that can be stretched
up to 500% with high sensitivity (GF of 9.6 for strain within 250% and 3.8 × 10 for strain of 250–500%) by utilizing carbonized
plain-weave silk fabric (Fig. 3C) as sensing elements embedded in Ecoflex. Similar strain sensors based on cotton have also been
developed [130]. They exhibit a GF (slope) of 2.5 × 10 and 6.4 × 10 under strain of 0%–80% and 80%–140%, separately, and
superior capability for detecting subtle strain as low as 0.02%, inconspicuous drift, and long-term stability. The high performances
are attributed to the reversible contact and separation of tentacle-like cotton fibers [130]. Similarly, Shi et al. [253] have fabricated
high performance composite strain sensors with tunable GFs of 2.8 × 10–1.7 × 102 by pressing graphene platelets on a medical tap.
The sensors also presented fast response, ideal linearity and reproducibility to tensile strains. As sensors from ordinary textile fabrics
have relatively small strain range and low long-term stability, Cai et al. [254] developed a fabric strain sensor by dip-coating
graphene oxide on elastic nylon/PU fabrics and then conducting a reduction process. The strain sensor showed high sensitivity, fast
response, and great stability with a working range up to 30%. The aforementioned methods are thus promising for cost-effective and
scalable fabrication. However, the performance stability after a prolonged period of wearing or repeated deformation cycles needs to
be still guaranteed as most reported fabric-based sensors suffer from deterioration upon application [251].

Despite the progress described above, some issues or disadvantages such as the need for a high temperature heat treatment
process [128,130], the use of non-abundant active materials [252], performance uniformity, and structural robustness still need to be
addressed before the actual implementation of large scale production. Hence, more research efforts are critically needed for de-
veloping simple, reliable, low-cost, and large-scale manufacturing strategies.

7. Applications

The low working voltage and energy consumption make resistive-type devices ideal for wearable/portable electronic systems.
Promising applications of flexible and stretchable strain sensors include structural health/damage monitoring [1–5], human motion
detection [6,7,136], personal healthcare [6,8–13], human-machine interfaces [14–17], and electronic skin [18–20]. Since there are
several recent and detailed reviews [14,102,104] summarizing the application potential of flexible strain sensors in the present
contribution only three major application fields are covered.

Fig. 14. Diagram of some applications of flexible and stretchable strain sensors. (A) Structural health monitoring/damage detection with (a)
illustration of a “smart aircraft” with fully embedded sensory network for damage detection; (b) comparisons between various structural health
monitoring methods and their possibility of in situ damage detection in composites [4]. (B) Human motion detection and healthcare with (a) data
glove with CNT strain sensors for finger joint motion detection [136]; (b) smart patch for human motion (walking, running, standing) state detection
[97]; motion detection induced by (c) human emotions [146]; (d) muscle movement of trachea and esophagus [149]; (e) respiration [99]; (f)
heartbeat [110]; and (g) wrist pulse [150]. (C) Human machine interface with (a) layout of wearable device; (b) schematic illustration of a wearable
wireless music instrument based on GWF/PDMS woven fabric strain sensor [133]. (D) Electronic skins with (a) an exploded view of artificial skin for
prosthetic; (b) an image of the prosthetic limb tapping keyboard and the corresponding resistance change versus time [138]; (c) images of a robot
wears fiber sensors at movable joints [281].
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7.1. Structural damage and health monitoring

Cracking or damage monitoring in large structures such as maritime applications, airplanes, bridges, and buildings requires
typically high GFs and large strain measurement capability. With the increasing demand of fiber-reinforced composites (e.g. carbon
fiber reinforced composites [255,256]) in e.g. the aerospace, marine, and automobile industry, a significant safety and reliability
concern is to monitor the structural integrity of such materials. Especially for laminated composites (Fig. 14A), whose out-of-plane
properties are weak compared to their excellent in-plane properties, this monitoring is highly recommended [4].

Existing solutions are using combinations of FBGs and ultrasonic sensors to track the displacement evolution and crack propa-
gations in the composite [5]. However, the complicated method requires expensive instrumentation for signal analysis. Also as FBGs
are sensitive to moisture and chemicals, a protected polymer sheath is needed, so that the diameter becomes at least ten times larger
than that of reinforcement fibers, possibly leading to localized weak points in the composite part. Additionally, the production costs
for large parts can be too high. If damage or cracks occur at different locations without crossing one of the FBG sensors, there is also a
lack of performance [5].

An electrical resistance measurement strategy can be seen as an effective approach with advantages in price and simplicity. The
self-sensing of carbon fibers [2,255,257–259] or CNTs [2,4,5,67,148,260,261] has been utilized to detect internal damage and
failures in composites, taking into account the intrinsic electrical conductive nature. However, due to the anisotropic structure and
complex failure pathway, the majority of damage and fractures dominated by the matrix is hardly to be monitored with conductive
fibers [5]. Carbon fiber laminates are comparatively less sensitive to matrix damage [262]. Compared with traditional carbon fibers,
CNTs are smaller and have an outstanding reinforcement efficiency in both mechanical and electrical properties [68]. A great
potential for isotropic reinforcement and damage self-sensing thus arises. The modification of the polymer matrix with CNTs provides
also opportunity to increase damage sensitivity [262]. In any case, one still needs to control the initial resistance of the developed
sensors as a too high values imply difficult signal processing and reading. In this respect promising are multicomponent mixtures
based on basic conductive fillers that upon design of the formulation variables can cover a wide range of initial resistances
[293–295].

It should be put forward that fiber-reinforced polymer composites are still an important class of engineering materials in case fiber
breakage is not an issue [263]. As for this aspect, in-situ structural health monitoring has been recently pushed forward by trans-
ferring the conductive network from the matrix to the interface of fiber-reinforced polymer composites [264]. Generally, the con-
ductive network within the interphases is built up by incorporating CNTs [260,263,265–268] or graphene [266,269], onto the
reinforcing fiber surface (e.g. glass fiber [263,265,267,269], carbon fiber [260]) via coating [265,269] or a deposition process
[260,263,266,267]. Electrophoresis, and in-situ growth of the CNTs (e.g. by chemical vapor deposition [267]) on the surface of the
fibers have allowed improving interlaminar properties and increasing through-thickness conductivity for carbon, glass and alumina
fibers [219]. A major benefit is that the diameter is smaller or comparable with those of the reinforcing fibers of the composite unlike
FBGs which are much thicker [264]. Due to their small size, CNTs are able to create electrically conductive networks surrounding
structural fibers [270] and are adopted in most cases [260,263,265–268,270]. Composites with MWCNT-modified fibers show great
potential for in-situ fiber- and fiber/matrix interface damage sensing [263], or localized structural health monitoring by controlled
CNT deposition into damage prone zones [263,265]. Furthermore, CNTs in the relevant interphase or designed region have the
advantage to reduce the weight usage [265,268] and flow distances [219], exclude structure distortions of the composites owing to
their early warning ability [268], and avoid nanofiller drawbacks such as filtering or increased resin viscosity [219,260,265].

Producing highly conductive hierarchical composites of nanofiller/macroscopic fiber/polymer matrix is although still a challenge
[219]. Despite the huge potential of CNT loaded composites [2,4,5,67,148,261] or CNT interface modified fiber reinforced com-
posites [268] for structural health monitoring, numerous challenges relating to processing, integrity of the structure, cost, safety, and
environmental issues are still relevant in view of real industrial application [4]. In addition, precisely detecting and locating cracks in
structural components and joints that have specific densities are still challenging problems and demands sensors with much higher
sensitivity [271].

7.2. Human motion detection and healthcare

As the mechanical properties of flexible and stretchable electronics resemble those of human tissues and their functional behavior
can be similar to conventional rigid sensing electronics, these sensors can be used to measure and quantify electrical signals generated
by human activities. In other words they can be considered for human-motion detection and personal healthcare (Fig. 14B).

Generally, flexible and stretchable strain sensors are utilized in skin-mountable [73,136] (Fig. 14B (a, c, e, f)), fabric wearable
[96,97] (Fig. 14B (b)), or implantable forms [9]. The detection of human motions ranges from large strain (e.g. bending strain of
joints [94,95] of fingers [42,98,136] (Fig. 14B (a)), hands [220], and knees [98] induced by movements such as grasping, walking,
and running [97] (Fig. 14B (b)) to small strain motions (e.g. tiny skin motion induced by facial expression [15,146] (Fig. 14B (c)),
phonation [149] (Fig. 14B (d)), respiration [99], and heartbeat [100,110]). By mounting the strain sensors in different parts of the
human body, the sensing signal can be used for real-time movement and load measurements of athletes [272]. A problem that persists
in the current research field is that many of the human activities are still not addressed for monitoring purposes [169]. On the other
hand, the real-time tracking of physiological signals, such as respiration rate [99] (Fig. 14B (e)), heart-beat rate [110] (Fig. 14B (f)) or
pulse rate [150] (Fig. 14B (g)) provides a convenient and non-invasive way for disease diagnoses and health assessments.

Currently sensors have been placed mostly on the trunk, upper arm, the forearm, the wrist, and the finger to measure the
kinematics and/or posture [273]. Sensors are typically attached rather than embedded in wearable devices and garments [273]. For
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wearable devices, smart textiles have been predicted to be the future of wearable technologies [169]. Typical functions of smart
textiles are sensing and reacting, possibly also energy supply, data processing, and communication [274]. Conductive textiles have
been developed with the purpose of health monitoring [169,274,275] as strain gauge sensors as well as for detection and monitoring
posture, position of body segments, and body motion [169]. The most important progress in textile sensors for health monitoring is in
the area of heart beats sensing [169,274,275].

For these particular applications, however, various challenges exist for practical usage. For example, to distinguish different body
movements and/or to extract other physiological information, the precision, sensitivity, long-term stability, and biocompatibility of
devices must be improved to meet the standard requirements. Robust interfacial adhesion between the devices and tissues is also
demanded for high measurement quality. Additionally, cost-effective, reproducible fabrication strategies are required for mass-
production and commercialization.

Printing and 3D printing electronic technology are promising in this respect. However, there still exists the problem that the
flexible printed sensors used for health monitoring are not of the optimum quality which affects the long-term sensitivity. This has
been ascribed to the design and fabrication procedure of the sensor [169]. In addition, miniaturization and simplicity of configuration
of the devices, as well as decreasing power consumption are still considerable challenges. Self-powered sensing devices have been
developed to meet the power demands of wearable health monitoring systems [216–219], while the power generation efficiency and
power capacity should be further improved to satisfy the practical long-time application. Except the performance optimization, multi-
functionality, long-term sustainability, and multifunction integration of wearable healthcare devices have attracted increasing at-
tention [19]. For a more detailed description on the flexible and stretchable strain sensors for human motion detection and healthcare
applications, the reader is referred to the following references [8–11,19,276].

7.3. Human machine interfaces and electronic skins

For human machine interfaces, flexible and stretchable strain sensors are capable to integrate with curved surfaces [15,16]. This
allows to detect the contact force and location, physical activities, health status, and the surrounding environment, and to send the
monitored data to the integrated smart systems [15,17]. A good example is the recent work from Liu et al. [133] with a highly flexible
and sensitive strain sensor based on graphene woven fabric (GWF)/PDMS composite integrated with wearable interface and wireless
communications into a musical instrument, which can convert human body motions to controllable music (Fig. 14C) [133]. The
sensors can be also potentially used as electronic skin [19,20] (Fig. 14D) in prosthetics [138,277,278] and robotics [279,280]. The
flexible, soft and compliant strain sensors can be used as prosthetic skins (Fig. 14D (a)) to mimic the real-skin and transmit the
stimuli-responsive electrical signals to specific peripheral nerves for nerve stimulation [138]. This allows patients to comfortably use
their devices during intimate interactions [278]. To fully mimic the natural properties of skin, it is important to implement materials
with low elastic moduli and good stretchability [278].

For robotics applications, the electronic skins can be used to monitor complicated robotic movements in real time [281], to
remote control [74] and to actuate the smart robots [280], to detect the environment, and to interact with surrounding objects [279],
or to perceive tactile [282]. Additional information about the human-machine interface and electronic skins can be found in fol-
lowing reviews [14,18–20]. The integration of flexible and stretchable sensors into wearable platforms is in the form of skin patch
[15,98,129], wrist band [56,133], neck band [73,215], data glove [95,136], belt [190], and strap [283]. More information about the
advances in wearable sensing systems and representative examples of integrated sensor devices are included in a recent review from
Lee et al. [189].

7.4. Common challenges

Despite the intense research in the above application fields, the development of flexible and stretchable strain sensors for practical
usage is still at the early stage. Sensing systems that are used for monitoring are of high technical complexity [169]. The integration of
sensors with power, data analysis, data processing, wireless data transmission, as well as display and operation systems [102] in a soft
and compact device with robustness, high reliability, and long-term monitoring potential has not yet been achieved.

Most studies are proof of concept [249]. Several fundamental and technical challenges still remain to be addressed, including
rational sensing platform and device configuration design for a specific application, simple, economical and macroscale fabrication,
and full integration of all components. Considering scalability and costs, fully printed artificial devices are more attractive for the
future sensing platforms. Supplying self-sustainable power is another important requirement. In addition, further development of
advanced techniques for seamless integration [284] will make it possible to bring the developed physical sensing platforms closer to
reality.

8. Conclusions

The present contribution highlights that the working principle of piezoresistive strain sensors, which translate strain alternations
into resistance changes, is fundamentally based on a tunneling effect, a disconnection mechanism or a crack propagation mechanism.
In view of maximization of the sensor performance the rational selection of the conductive materials and the matrix/substrate, the
control over interfacial interaction, and in particular delicate assembly of conductive fillers and unique structural features are crucial.

The main design variables are the sensitivity or gauge factor, the stretchability, the linearity, and the hysteresis. More novel
variables are self-healing, self-powering, self-cleaning, transparency, biocompatibility, and biodegradability. The sensitivity can be
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optimized by conductive network morphological control strategies and by adopting processing thus manufacturing procedures.
Stretchability can be increased by adapting the stretchable materials or through structural conversion. Linearity can be most easily
quantified by the coefficient of determination and a switch to non-linearity is ascribed to an alternation from a (quasi-)homogeneous
to a more heterogeneous morphology. Hysteresis is in turn explained by the competition of network breakdown and reformation
during cyclic loading.

Despite that strain sensing performances have been significantly improved and progress has been made for the development of
more basic fabrication techniques and material structural engineering, most piezoresistive strain sensors developed to date are still
one-off prototypes and many challenges still exist. For scale-up, main focus has been on extrusion-based processing and printing
techniques. The latter techniques are promising due to the large-area and high-throughput production possibilities, in particular for
more complex geometries. Disadvantages for large-scale production are performance uniformity and structural robustness. A chal-
lenge is also to guarantee the comparable advantages of capacitive stretch strain sensors. Here focus should be put on the mini-
mization of electrical and mechanical hysteresis, which cause slow response due to relaxation time of the conductor, and low
sensitivity under small strain. In addition, the viscoelastic nature of the rubber/elastomer may suffer from a relatively late response
time, which prevents its use in high-frequency applications. Another challenge for piezoresisitve strain sensors is their electrical and
structural stability, especially under large stretching with possible irrevocable collapse of the structure.

Major challenges and research opportunities from an application point of view also originate from the rational sensing device
design and elegant integration of flexible strain sensors with other critical components such as power, data processing, analysis, and
transmission. For multiple stimuli monitoring, strain sensors should be effectively integrated with other transducers. It is further
challenging to achieve integrated devices with diminishing size and weight. At the same time, the corresponding fabrication tech-
niques, software, and protective and packaging techniques should be further improved.

Hence, it can be concluded that more comprehensive property control of piezoresistive strain sensors is still needed to enable real
monitoring beyond lab scale application demonstration and commercialization. As the predominant motivation for stretchable and
flexible strain sensor is for complicated human motion or other 3D objectives deformation capture/monitoring, research for rea-
sonable multidirectional and geometrical design of such strain sensors should also be conducted to a larger extent.
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