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“Distraction is the only thing that 

consoles us for miseries and yet it is 

itself the greatest of our miseries.” 

(Blaise Pascal) 
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ABSTRACT 

Constant and dynamic change characterizes the surrounding world we are living in. In 

order to interact with our environment in an adaptive way, we need to decide which 

events to attend to and which ones to ignore. Predictions based on the regularities of the 

environment make it possible to foresee future events, which allows us to prepare for 

these events by forming selective attention sets. Rare, unexpectedly occurring sensory 

events disrupt these attentional sets, capture our attention, in other words, they distract 

us. It has been suggested that this balance between attention and distraction changes 

across the lifespan; specifically, the balance seems to be shifted towards distractibility 

in older adults, but the exact nature of this shift remains ambiguous. The aim of my 

doctoral dissertation was to investigate how the cognitive system extracts and exploits 

regularities to achieve the most efficient information processing in the face of 

distraction, and compared the time needed to recover from a distracted state in younger 

and older adults. We utilized the method of event-related potentials (ERPs) in all studies 

to follow-up cognitive processes with a high temporal precision. The first two studies 

focused on the effects of predictability: ERP results in Study I showed that when 

information on the presentation time of distracting events was constantly and explicitly 

provided, distraction was significantly diminished compared to the condition when no 

predictions could be formed. In Study II, we showed that participants detected and 

utilized probabilistic regularities in a tone pattern even when they were not informed of 

the structure of the acoustic stimulation. Study III and Study IV compared the duration 

of distraction between younger and older adults and revealed that although both age 

groups recovered from the distracted state by about 650 ms after distracter onset, the 

processing of fine temporal resolution was deteriorated in older adults. Importantly, 

however, in a task situation, older adults could compensate for this decline by the 

recruitment of additional cognitive sources and enhanced attention. 
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ABSZTRAKT 

A világ, amely körülvesz bennünket, folyamatosan és dinamikusan változik. Annak 

érdekében, hogy képesek legyünk megfelelően interakcióba lépni környezetünkkel, 

elengedhetetlen annak szelektálása, hogy mely eseményekre figyeljünk és melyeket 

hagyjuk figyelmen kívül. A környezet szabályosságai alapján képesek vagyunk olyan 

szelektív figyelmi beállítódásokat kialakítani, amelyek lehetővé teszik a közeljövőben 

bekövetkező események előrejelzését, valamint az ezekre való felkészülést. A váratlanul 

bekövetkező ritka szenzoros események azonban a figyelmünk megragadásával 

megszakítják ezeket a figyelmi beállítódásokat, tehát elterelnek bennünket. A figyelem 

és az elterelődés ezen egyensúlya az élet folyamán változik, ezáltal az idős személyek 

általában erősebb elterelődésre való fogékonysággal jellemezhetőek, azonban még nem 

egészen feltárt, hogy ez milyen okokra vezethető vissza. Így a doktori disszertációm 

célja egyrészt annak vizsgálata, hogy az emberi információfeldolgozó rendszer miként 

nyeri ki a környezetből a szabályosságokat és használja fel azokat az elterelődéssel 

szembeni lehető leghatékonyabb működés érdekében; másrészt az elterelt állapot idői 

jellemzőit is vizsgáltuk kutatásainkban idős és fiatal felnőttek körében. A kognitív 

folyamatok lehető legnagyobb idői pontossággal történő feltérképezése érdekében 

vizsgálatainkban az eseményhez kötött potenciálok (EKP, a későbbiekben event-related 

potentials – ERPs) módszerét alkalmaztuk. A disszertációban bemutatott első két 

tanulmány középpontjában a bejósolhatóság hatása állt: az első kísérletben kimutattuk, 

hogy amennyiben explicit és folyamatosan jelen lévő információval rendelkezünk az 

elterelő inger megjelenésének idejéről, szignifikánsan csökkent elterelődés tapasztalható 

ahhoz a feltételhez képest, amikor nincs lehetőség predikciók állítására. A második 

vizsgálatunk eredményei arra engednek következtetni, hogy egy akusztikus mintázat 

szabályosságait akkor is képesek vagyunk észlelni és felhasználni, amikor nem vagyunk 

a szabályszerűségekre vonatkozó tudatos információk birtokában. A harmadik és 

negyedik tanulmányban az elterelt állapot időtartamát hasonlítottuk össze idős és fiatal 

felnőttek körében, és bár eredményeink alapján mindkét életkori csoport esetén az 

elterelő esemény után 650 ms alatt véget ér az elterelődés, az akusztikus ingerek finom 

idői struktúrájának feldolgozása időskorra sérülést mutat. Fontos azonban kiemelni, 

hogy feladathelyzetben ez a változás megnövekedett figyelemmel és további kognitív 

források mozgósításával megfelelően kompenzálható.  
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INTRODUCTION 

Chapter 1: The attention-distraction balance 

 The concept of attention as a crucial factor in human performance extends back 

to the beginning of the experimental psychology, more than a century back. According 

to James, “every one knows what attention is. It is taking the possession by the mind, in 

a clear and vivid form, of one out of what seem several simultaneously possible objects 

or trains of thought. Focalization, concentration, of consciousness are of its essence. It 

implies withdrawal from some things in order to deal effectively with others, and is a 

condition which has a real opposite in the confused, dazed, scatterbrained state which in 

French is called distraction, and Zerstreutheit in German” (James, 1890, p. 403.).  

The duality of attention and distraction described by James (1890) can be 

experienced numerous times in everyday life. Imagine that you are reading a highly 

interesting book. You are absolutely engaged in this activity and try to ignore all the 

ambient noises like the sounds of neighbors or the traffic in the street. But suddenly, the 

fire alarm is starting with loud, salient sounds, capturing your attention, in other words, 

it is distracting you. Along with distraction, the sound of fire alarm also motivates you 

to evaluate the situation: does it worth more to continue reading or rather change your 

behavior and leave the room (as illustrated in Fig. 1.1). Apparently, it is important to 

being able not only to focus on an ongoing activity but to get distracted as well: 

distracting events might provide valuable information regarding our subsequent 

behavior and our survival in general, therefore, suppressing them entirely would not be 

ecologically adaptive (see e. g. Parmentier, 2014). As it will be presented later in detail, 

the balance of attention and distraction depends both on voluntarily directed top-down 

and involuntary bottom-up mechanisms.   
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Fig. 1.1. Schematic illustration of an everyday scenario demonstrating the attention-distraction 

balance. Rare, unexpected acoustic events from the environment capture one's attention, that is, 

they distract us. 

 

The main topic of the present dissertation is this dynamic balance between 

attention and distraction. First, I present several possible definitions and theories of 

attention and distraction, highlighting the distraction paradigm utilized and extended in 

our studies. Next, I describe several age-related changes in attentional processing 

reflected in behavior and relate these to structural and functional changes in the brain. 

After that, I introduce the event-related potential reflections of the processing stages of 

involuntary attention change and recovery from distraction, and formulate the questions 

and hypotheses which were investigated in our studies.    

1.1 What we talk about when we talk about attention?  

As pointed out by James (1890), everyone knows what attention is, however, its 

concept is remarkably broad, not only in the everyday use of language but in scientific 

terms as well. Without attention, it would be almost impossible to interact with our 

physical and social environment and to respond to them. However, the complexity of 

the external world and the limited capacity of human information processing system 

does not allow to process everything with an equal efficiency, so we need to select the 

relevant information. That is, attention is a mechanism for selection in order to choose a 
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specific source of external stimulation (e.g., a certain modality, or different features of 

the environment), internal thoughts or action plans, strongly connected to 

consciousness. Beside selecting the appropriate channel or response, we also need to 

take voluntary and conscious control over automatic and routine behavior which can be 

performed without investing too much mental effort or attention. For example, despite 

being a complex motoric act, riding our bike engages a very small amount of our 

cognitive capacity and we are able to perform different activities at the same time, like 

having a conversation or monitoring the traffic around us. This monitoring process is 

crucial to supervise and control our goal-directed behavior from time to time, to 

overcome and inhibit automatic actions and to detect errors. Moreover, the concept of 

attention includes the level of activation, such as being aroused, fatigue or drowsy. The 

optimal level of activation makes possible to pay attention in general. That is, attention 

can be defined as a multidimensional construct, in which the optimal level of activation 

enables to select task-relevant information and to control our mental, emotional and 

physical actions (Rueda, Posner & Rothbart, 2011; Rueda, Pozuelos & Cómbita, 2015).  

Attentional processes can be categorized based on the amount of voluntariness 

as well, that is, whether driven by external stimuli (bottom-up) or endogenous (top-

down) processes like expectations or intentions. Control processes such as error 

detection and monitoring the environment are considered as endogenous and voluntarily 

directed mechanisms in general. On the other hand, salient events from the environment 

such as the unexpected sound of the fire alarm can alert us and orient our attention to 

the eliciting object or modality in an automatic bottom-up manner, also labeled as 

distraction. An opposite phenomenon can also happen when we voluntarily choose what 

we aim to attend to because the event is relevant regarding our activity (for example, we 

focus on a book or conversation because it is interesting and keeps us alerted as well). 

The present dissertation focuses mainly on the fluctuations between automatic and 

controlled processes of alerting and voluntary attention, however, it is important to 

emphasize that all three aspects (alerting, orienting, control) of attention play important 

roles in maintaining everyday activities (Petersen & Posner, 2012; Rueda, Pozuelos & 

Cómbita, 2015).  

In the next subsections, I introduce two theories on attention and distraction. 

First, I describe the theory of attentional network (Posner & Petersen, 1990) which is 

one of the most influential theories of attention in the recent cca. 30 years. Second, I 
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focus on the distraction paradigm introduced by Schröger & Wolff (1998b) which 

provided the theoretical foundation for the studies in the present dissertation.  

1.2 Theory of attentional networks 

 The literature on the cognitive neuroscientific aspects of attention is dominated 

by the view that attentional functions can be related to three distinct networks: one plays 

a role in maintaining vigilance and alerting, the second is related to orienting attention, 

and the third one contributes to executive control (Petersen & Posner, 2012; Posner, 

2016; Posner & Petersen, 1990; Rueda, Pozuelos & Cómbita, 2015). The efficiency of 

these three functions is measurable with the Attention Network Test (ANT) which has 

visual (Fan, MacCandlis, Sommer, Raz & Posner, 2002) and auditory versions (Roberts, 

Summerfield & Hall, 2006) and also a variant adapted for children (Rueda, Posner & 

Rothbart, 2011). The visual ANT combines the flanker task (Eriksen & Eriksen, 1974) 

with spatial cueing task (Posner, 1980). The target stimulus is an arrow pointing either 

to the left or to the right and participants’ task is to press the corresponding button. 

Targets are surrounded by task-irrelevant flanker arrows pointing to the same 

(congruent) or to the opposite (incongruent) direction. The incongruency based on 

conflict between the direction of the arrow and the response button requires executive 

control and top-down regulation. Besides, cues preceding each trial indicate when or 

where the target will be presented, allowing participants to prepare for response (Fan et 

al., 2002; Posner, 2016).  

 In the auditory version, sinusoid tones (Zhang, Barry, Moore & Amitay, 2012) 

or spoken words (Roberts, Summerfield & Hall, 2006) are presented with high or low 

pitch to the one ear while monoaural or binaural cues precede them informing about the 

location (left or right ear) or the timing of target tones (Roberts, Summerfield & Hall, 

2006). Spatial cues induce the orientation of attention while non-spatial cues lead to 

alerting in both in vision and hearing (Stewart & Amitay, 2015). The alerting and 

executive control effects were demonstrated in both modalities reflected by speeded up 

response times following cues (alerting) and slowing to incongruent cue-target pairs 

(executive control). However, spatial orienting processes were more robust in the visual 

modality, that is, when cues indicated the presentation direction of targets, response 

times decreased in the visual task only (Roberts, Summerfield & Hall, 2006; Stewart & 

Amitay, 2015).  
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The widespread use of positron emission tomography (PET) in the ‘90s and later 

the other functional brain imaging techniques allowed to identify the contribution of 

different brain structures more accurately behind the behavioral effects (Petersen & 

Posner, 2012). The anatomy of the three networks are presented in Figure 1.2.1. The 

origin of the alerting network was located in the arousal-related areas in the thalamic 

and brain stem regions in the right hemisphere including locus coeruleus responsible for 

norepinephrine secretion (Aston-Jones & Cohen, 2005; Sturm & Willmes, 2001). These 

areas are usually active during cue processing, and cues presented before target events 

also support participants to prepare for the upcoming task-relevant events resulting in 

faster response times (Petersen & Posner, 2012). 

During attentional orienting, parietal cortical areas show enhanced activation 

with frontal contribution when selecting visual stimuli (Posner & Petersen, 1990). The 

later update of the model differentiates the orienting network to two further 

subnetworks. The dorsal system including parietal areas and a small set of frontal 

regions (frontal eye fields) is responsible for rapid attentional control related to cue 

utilization processes. In contrast, the ventral system becomes active after the occurrence 

of the target is presented and it consists of temporoparietal junction and parietal cortical 

areas with an enhanced contribution of ventral frontal cortex (Corbetta & Schulman, 

2002; Petersen & Posner, 2012). In order to achieve an optimal orienting function, the 

parallel activity of dorsal and ventral systems is required (Petersen & Posner, 2012). 

The third part of the attention network model is the executive control which is linked to 

middle and lateral frontal and anterior cingular cortex and is responsible for conflict 

monitoring and relates strongly on voluntarily directed, top-down processes (Zhang et 

al., 2012). The presence of two executive networks was later suggested by Dosenbach 

and colleagues (2008): the fronto-parietal system involved in fast, adaptive control and 

the opercular network playing role in sustained attention (Dosenbach, Fair, Cohen, 

Schlaggar & Petersen, 2008). 
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Fig. 1.2.1. The anatomy of alerting, orienting and executive networks based on imaging studies 

(Posner & Rothbart, 2007; Figure 2., pp. 6.).  

 

Although the framework of attentional systems provides essential information on 

how different attention-related mechanisms can be distinguished in their anatomical and 

functional aspects, and how they contribute to task performance, the time course of 

these processes remains ambiguous. Moreover, visual modality dominates the field of 

research therefore generalization of results from brain imaging studies to auditory 

modality is difficult (Alho, Salmi, Koistinen, Salonen & Rinne, 2015). In contrast, the 

auditory distraction paradigm which I introduce in the next subsection allows to 

investigate the distinct stages of auditory attention more accurately and gives insight to 

its temporal aspects as well. 

1.3 The distraction paradigm 

 Sensory events closely preceding task-relevant stimuli are not always in the role 

of cues: when they occur rarely or unexpectedly, they rather distract us. While the 

attention network task highlights the role of voluntary orientation of attention, the 
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distraction task emphasizes processes occurring when attention is captured by task-

irrelevant unexpected stimuli. The instructions and the context in the two types of tasks 

also differ: in contrast to paradigms investigating attention network with explicit 

instructions to pay attention to cues, in distraction tasks participants are instructed to 

ignore distracting events. Moreover, while the cues provide task-relevant information 

by allowing to form expectations about the forthcoming target events, distracters are 

regarded as task-irrelevant stimuli. Distraction paradigm can be therefore a useful 

method to follow-up the dynamic balance between the orienting and voluntary attention 

which is reflected well in the electrophysiological signals, particularly in ERPs. I 

introduce ERP correlates of distraction and attention in detail in Chapter 3.    

A widely utilized paradigm to investigate distraction is the so-called oddball 

paradigm in which rare (10-20%) sensory events, termed deviant, or novel stimuli 

unexpectedly break the regularity built-up by frequently presented stimuli (termed 

standards). In variations of the oddball paradigm, deviance might be delivered on the 

same or different stimulus and in the same or different modality than task-relevant 

events. In the auditory-visual version (Escera, Alho, Winkler & Näätänen, 1998) 

participants typically perform a visual classification task (e.g., 50-50% numeric 

odd/even discrimination) and each visual stimulus is preceded either by a standard or a 

pitch-deviant or novel environmental tone. The auditory paradigm was introduced by 

Schröger and Wolff (1998b) who presented short and long (100 and 200 ms) tones with 

50-50% probability. The pitch of the tones changed occasionally (deviants) and 

participants had to perform a duration discrimination task while ignoring pitch. These 

two-alternative forced choice tasks enable to attribute behavioral or electrophysiological 

(see later) differences between deviant and standard trials at least in part to distraction-

related processing because the same task has to be performed on both type of trials 

(Schröger & Wolff, 1998b).  

Behavioral distraction effects were clearly observable in both type of paradigms: 

deviant stimuli lead to increased reaction times in auditory-visual (Alho, Escera, Díaz, 

Yago & Serra, 1997; Escera, Alho, Winkler & Näätänen, 1998; Escera, Yago & Alho, 

2001; Yago, Corral, Escera, 2001) and auditory (Berti, Roeber & Schröger, 2004; Berti 

& Schröger, 2001; Horváth, Czigler, Birkás, Winkler & Gervai, 2009; Horváth, Winkler 

& Bendixen, 2008; Roeber, Berti & Schröger, 2003; Roeber, Berti, Widmann & 

Schröger, 2005; Roeber, Widmann & Schröger, 2003; Schröger & Wolff, 1998a, 1998b; 
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Wetzel, Widmann, Berti & Schröger, 2006) arrangement as well. Distracters were also 

accompanied with decreased accuracy compared to standards in most of the cases 

(except: Berti & Schröger, 2001; Horváth et al., 2009; Schröger & Wolff, 1998a; Yago, 

Corral & Escera, 2001).  

1.3.1 The role of predictability in distraction 

 The vast majority of the early studies on auditory distraction implicitly assumes 

that deviance or rarity is sufficient to induce behavioral distraction-effects (e. g. Escera 

et al., 1998). This view has been challenged by numerous subsequent studies using 

auditory-visual oddball tasks and found either abolished distraction or even reversed 

effects (Parmentier, Elsley & Ljungberg, 2010; SanMiguel, Linden & Escera, 2010; 

Wetzel, Widmann & Schröger, 2012; for a review see Parmentier, 2014) and 

consistently emphasized the importance the temporal structure of the tasks. That is, 

when target events always follow distracters with a certain temporal separation, 

distracters can be regarded rather as unspecific warning signals than task-irrelevant 

events (Li, Parmentier & Zhang, 2013; Parmentier, 2014). For example, Parmentier, 

Elsley and Ljungberg (2010) varied the predictive value of distracters regarding the 

presentation of the target in a digit-classification task: in the informative condition, 

target always appeared after a constant temporal interval, while in the uninformative 

condition, only 50% of the sounds were followed by a target with a varied temporal 

separation, and in the informative deviant condition only deviants carried information 

about the upcoming target. They found that distraction effect abolished when distracters 

were uninformative, otherwise it was present in case of informative conditions. In a 

similar paradigm, when participants had to make decision on pictures (cloth or animal), 

preceding deviant or novel sounds elicited distraction effect only when they provided 

information on the upcoming target (Wetzel, Schröger & Widmann, 2013). Moreover, 

when only the rare novels were informative, they even resulted in facilitation (Wetzel, 

Widmann & Schröger, 2012).  

 The constant temporal separation between task-irrelevant and task-relevant 

events can be observed in pure auditory tasks as well, however, not so evidently as in 

auditory-visual tasks. In auditory duration-discrimination tasks, target events 

correspond to the offsets of short tones because decision can be made at these time 

points (tones either stop or continue). In order to perform the task successfully, 

participants also need to attend to the onset of the tones (e. g. Li, Parmentier & Zhang, 
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2013; Parmentier, 2014). Therefore, unexpected pitch-deviant tone onsets capture 

participants’ attention and lead to distraction. In the auditory modality, only one study 

varied systematically the informative value of tone onsets. Li, Parmentier and Zhang 

(2013) presented buzzing tones binaurally moving from the center either to the right or 

to the left with 50-50% probability. In the event information condition, all tones 

included movements, but the onset did not predict its exact timing while in the temporal 

information condition, movement always occurred at 200 ms following tone onset but 

only in the half of the trials. In the uninformative condition, only the 50% of sounds 

included movements at variable times relative to sound onsets. Finally, in the fourth 

condition, tone onsets predicted both the occurrence and timing of movement. They 

found comparable results to auditory-visual studies: distraction occurred only when tone 

onsets were informative regarding the presence of movement (that is, movement was 

present at all trials), irrespectively of its timing (Li, Parmentier & Zhang, 2013).  

 Although the studies presented above suggest that participants can implicitly 

exploit the informative value of otherwise task-irrelevant events, a different set of 

studies demonstrated that cues presented before tones indicating whether it will be a 

standard or deviant prevented participants from distraction. In these studies, participants 

performed a duration discrimination task and visual cues preceding them in 340-900 ms 

indicated whether the following tone will be a standard or deviant but did not convey 

any information on the task-relevant dimension (duration). The consistent finding was 

that deviance-related reaction-time delay and distraction-related ERP-effects (see later) 

abolished when cues predicted the type (deviant or standard) of the forthcoming tone 

either fully (Horváth, Sussman, Winkler & Schröger, 2011; Sussman, Winkler & 

Schröger, 2003; Wetzel, Widmann & Schröger, 2007) or even with reliability of 80% 

(Horváth & Bendixen, 2012). Because in the everyday life situations – in contrast to the 

laboratory settings – almost no sound can be fully predicted, it is especially important to 

take into account some degree of variability when utilizing paradigms and models 

containing predictability (Winkler & Schröger, 2015).  

 In summary, behavioral results from auditory distraction paradigms suggest that 

deviance or rarity is not enough to induce distraction; rather those events capture 

attention which might be potentially useful or informative regarding the ongoing and 

future behavior. For example, when the occurrence of a task-irrelevant or deviant 

stimulus can be utilized to predict the presentation time of a task-relevant one, the 
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human cognitive system starts to treat them as potential alerting cues. In order to be able 

to exploit such regularities, a dynamic balance is necessary between voluntarily 

controlled top-down and the alerting bottom-up processes. This balance, however, shifts 

during lifetime, suggesting an enhanced distractibility in older adults. Chapter 2 

introduces shortly the cognitive and anatomical changes during healthy aging and 

describes the main theories explaining these processes.  
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Chapter 2. Age-related changes in attention and distraction 

2.1 Cognitive changes associated with aging 

 Given that societies of today are aging significantly, and age-related cognitive 

deficits are more and more widespread, it is crucial to understand the process of healthy 

aging and its impact on cognitive functions. Aging is often associated with decline not 

only at perceptual level but in higher cognitive functions as well, interacting with each 

other in a complex way. For example, older adults often struggle with peripheral 

hearing loss especially to high frequencies which is primary caused by inner ear damage 

(presbycusis; Gates & Mills, 2005). While audiogram is a widely used diagnostic tool to 

detect peripheral hearing loss, it is insensitive to declines at the level of central auditory 

system. A typical symptom for such central auditory system damage is that older adults 

often report difficulties in listening to and following conversations, especially in noise 

(Eckert, 2011; Humes & Young, 2016; Pichora-Fuller, 2003a), even when their 

audiogram falls in the normal range.  

There are several, not mutually exclusive potential explanations for this complex 

phenomenon: first, it is possible that aging affects both lower perceptual and higher 

cognitive processes as a general factor (“common cause hypothesis”), second, declined 

cognition might lead to poor performance in perceptual tests (“cognitive load on 

perception hypothesis”), third, an impoverished perceptual input possibly affects 

performance in cognitive tasks (“degradation hypothesis”) and fourth, over longer 

exposure to impoverished perceptual input can also result in cognitive decline (“sensory 

deprivation hypothesis”) (Pichora-Fuller, 2003b; Roberts & Allen, 2016). The decline 

of two fundamental cognitive factors contributing both to difficulties in everyday 

situations and to poor performance on test batteries are remembering and attention 

(Roberts & Allen, 2016). When explaining how cognitive processing changes in general 

with aging, two widely used approaches should be mentioned and described in detail. 

According these theories, aging is accompanied by a general slowing of cognitive 

processing (Salthouse, 1996) and the deterioration of inhibitory functions resulting in 

impaired ability to filter out irrelevant information (Hasher, Lustig & Zacks, 2007). 

2.1.1 Theory of general slowing 

 The idea of the slowing processing speed assumes that older age is associated 

with a decreased speed on motor, decision making or perceptual tasks and that the 
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processing speed is a major predictor in performance across cognitive tasks in older 

adults (Birren & Fisher, 1995; Eckert, Keren, Roberts, Calhoun & Harris, 2010; 

Salthouse, 1996; Salthouse, 2000). The speed of a response, however, is not a unitary 

phenomenon but tasks usually involve several cognitive processes, from simpler 

perceptual to more complex executive and motor functions which might decline 

differently during lifespan (Eckert, 2011).  

Studies in visual modality use a wide scale of tasks measuring processing speed, 

for example pegboard, inspection time, symbol coding (Ebaid, Crewther, MacCalman, 

Brown & Crewther, 2017), trail making, letter connection (Eckert et al., 2010), etc. 

tasks (for a review and enumeration of tests, see Salthouse, 2000). The results suggest 

that although older adults are systematically slower when motor response is needed as 

predicted by the theory of general slowing (Ebaid et al., 2017; Eckert et al., 2010; 

Kerchner et al., 2012; Salthouse, 1996; Salthouse, 2000), no difference was found 

between groups in case when only inspection time (that is, the time needed to correctly 

identify an object as target) was compared between older and younger adults (Ebaid et 

al., 2017). More importantly, the pattern of decline in inspection time was correlated 

with age within older adults group, suggesting that it might be a more accurate predictor 

of cognitive aging than reaction times per se (Ebaid et al., 2017). Comparable results 

were demonstrated by Deary, Johnson and Starr (2010) who tested several cognitive 

abilities longitudinally at ages 11 and above 70. They found that the inspection time was 

the only measure with correlated more strongly with cognitive abilities in older age than 

in childhood, proposing that inspection time might be a useful biomarker of cognitive 

aging (Deary, Johnson and Starr, 2010; Ebaid et al., 2017).    

In contrast with the manifold task categories in visual modality, auditory studies 

in the topic of processing speed were mostly limited to speech understanding or to gap 

detection tasks. For example, Wingfield, Poon, Lombardi and Lowe (1985) 

demonstrated that the increased presentation rates of speech led to a significantly 

steeper rate of decline in speech understanding in older adults compared to the younger 

ones. Moreover, when the rate of speech was increased by deleting its particular 

segments without affecting the critical features of the speech signal, older adults 

identified significantly less words correctly than younger adults, suggesting a slowing in 

their auditory sensory perception (Schneider, Daneman & Murphy, 2005). In paradigms 

testing speech perception in noise, participants typically identify words perfectly in the 
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absence of noise, but their performance decreases with the introduction of noise. At a 

certain signal-to-noise ratio, listening becomes effortful. Older adults typically enter this 

zone at lower higher signal-to-noise ratios as younger adults, that is, their performance 

starts to decline earlier (Pichora-Fuller, 2003a, 2003b). When following conversations 

either in silence or in background noise, adequate processing of fine temporal resolution 

of the auditory scene is essential and can be measured with gap detection tasks. While 

older and younger adults detected gaps with similarly high accuracy in sinusoid tones 

(Alain, McDonald, Ostroff & Schneider, 2004), processing of short gaps in noise was 

found to be slowed in older adults (Harris, Eckert, Ahlstrom & Dubno, 2010; Harris, 

Wilson, Eckert & Dubno, 2012) and they also missed more gaps compared to the 

younger adults (Harris, Wilson, Eckert & Dubno, 2012). Moreover, slower processing 

speed was correlated with higher gap detection thresholds when task difficulty increased 

(Harris, Eckert, Ahlstrom & Dubno, 2010).  

2.1.2 Inhibitory deficit theory 

 While the idea of general slowing suggests that aging affects both perceptual and 

motor speed in a general way, the inhibitory deficit theory introduced by Lustig, Hasher 

and Zacks (2007) emphasizes more strongly the role of controlled top-down processes. 

According to their theory the cognitive capacity available for information processing is 

limited, and in order to achieve efficient cognitive functioning, the processing of task-

irrelevant information need to be inhibited but this efficiency declines with aging. As 

the concept of inhibition is broad, Hasher, Lustig and Zacks (2007) proposed three 

functions of inhibition. The first function is to control access to the focus of attention, 

that is, one should prevent irrelevant information from catching attention. Second, once 

irrelevant information gets in the focus of attention, it needs to be deleted from there 

and should also be excluded from working memory. Third, suppression of strong, often 

automatic but incorrect responses is essential. All three functions may decline with 

aging. It has been suggested that older adults are susceptible to keep a larger amount of 

irrelevant information in their focus of attention and in their working memory compared 

to younger adults, even though the capacity of the two systems do not differ between 

the two age groups. Moreover, the time needed to select and suppress inappropriate 

prepotent responses was also assumed to be longer in older adults (Guerreiro, Murphy 

& Van Gerven, 2010; Lustig, Hasher & Zacks, 2007).  
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Although the theory provides an appealing framework, its weakness is that 

modality was not originally specified, suggesting implicitly that the inhibitory deficit in 

older adults is a global phenomenon, affecting several modalities similarly. However, in 

order to get a more detailed picture, it is important to disentangle different modalities 

from each other (Guerreiro, Murphy & Van Gerven, 2010; Van Gerven & Guerreiro, 

2016). The vast majority of studies on inhibitory deficits in older age utilized visual 

tasks with mixed results as pointed out by Guerreiro and colleagues (2010) in their 

review of studies from the past 30 years. In visual modality, older adults’ performance 

significantly decreased in the incongruent condition of the Stroop task in which color 

names are printed with different colors and participants need to respond to the color, 

suppressing the automatic response from word processing (e. g. Andrés, Guerrini, 

Phillips & Perfect 1998; Borella, Delaloye, Lecerf, Renaud & de Ribaupierre, 2009). 

Enhanced reaction times and error rates were also found in older adults in reading-with-

distraction tasks in which participants need to read a text including distracting words, 

strengthen the results from Stroop task that aging is associated with decline in 

suppressing concurrent distracting semantic information (e. g. Duchek, Balota & 

Thessing, 1998; Kemper, McDowd, Metcalf & Liu, 2008). Younger adults 

outperformed older adults in Simon task requiring response to a relevant dimension of a 

stimulus (for example color or direction of an arrow) with left and right buttons while 

ignoring its position (left or right) on the screen: the reaction time cost between 

compatible and incompatible response button and location was larger in older adults, 

suggesting that they were less able to suppress irrelevant spatial information (e. g. 

Germain & Colette, 2008; Van der Lubbe & Verleger, 2002). Tasks involving negative 

priming (selecting a target stimulus which was a distracter in the previous trial) or 

flankers (two-choice response to a target while ignoring flankers) did not show a 

consistent pattern, however.  

The number of studies administering the auditory versions of the above-

mentioned studies is much lower than those utilizing visual tasks. In auditory Stroop 

tasks participants need to identify a perceptual feature of spoken words (e. g. gender of 

the speaker) while ignoring the meaning. In the auditory Simon task, left or right 

buttons are coupled to high or low pitch tones presented in the left or right ear. Both 

tasks showed similar pattern to the visual versions, that is, older adults seemed to be 

able to suppress irrelevant location or semantic information to a lesser degree when 
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presented in the auditory modality (e g. Pick & Proctor, 1999; Sommers & Danielson 

1999; Wurm, Labouvie-Vief, Aycock, Rebucal & Koch, 2004). Older adults also tended 

to exhibit impaired performance on listening-in-noise-tasks, especially when they had to 

recall sentences later (Helfer & Freyman, 2008; Tun & Wingfield, 1999). 

Unfortunately, oddball paradigms which can reflect the impact of distracters more 

directly were mentioned only in the auditory-visual modality suggesting that older 

adults are more impacted by distracters when they are presented in the auditory 

modality (Guerreiro, Murphy & Van Gerven, 2010), therefore in the following I discuss 

results from studies investigating at which levels are older adults distracted by rare, 

task-irrelevant auditory stimuli.  

2.2 Age-related changes reflected in oddball paradigm 

 The alterations in auditory and cognitive abilities described above result in a 

shift in the balance of attention and distraction with aging. Beside of the subjective 

reports, studies also characterize older adults as being more susceptible for distraction 

than younger adults. When comparing behavioral results between older and younger 

adults, despite the diverse pattern of results, one can suggest that older adults either 

perform tasks comparably to younger adults or they are slower or make more errors. 

Nevertheless, faster response times and higher accuracy are not typical. Similarly, the 

amount of distraction effect (performance difference between rare and frequent stimuli) 

is either larger in older adults or similar to the younger group. 

In go-nogo tasks participants typically attend to streams of tones and rare stimuli 

(for example pitch deviants) serve as targets, that is, only one type of stimuli require 

response. In such target detection tasks (without preceding task-irrelevant distracting 

stimuli), older adults responded to targets with similar reaction times than younger 

adults (Amenedo & Díaz, 1998; Iragui, Kutas, Mitchiner & Hillyard, 1993) or slightly 

slower (Gaeta, Friedman, Ritter & Cheng, 1998). Accuracy was typically high and 

either did not differ between age groups (Amenedo & Díaz, 1998; Gaeta, Friedman, 

Ritter & Cheng, 1998) or older adults identified significantly less targets than younger 

adults (Iragui et al., 1993). In the study of Woods (1992), the identification of target 

tones (pitch deviants) was similarly fast and accurate in both groups in general, however 

distraction was larger in the older adults when target tones were preceded by salient 

novel stimuli. On the other hand, when the pitch belonged to the irrelevant dimension 

and short tones were targets and long tones were nontargets, rare pitch changes at the 
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tone onsets (deviants) impacted the reaction times and target detection accuracy of older 

and younger adults similarly (Horváth et al., 2009), that is, both groups were equally 

distracted. 

In two-alternative-forced choice tasks (2-AFC) participants need to respond not 

only to one but two types of stimuli, for example by pressing one button to one type and 

another button for another type of target stimulus. In such a forced-choice 

discrimination task, older adults tended in general slower than younger adults 

(Falkenstein, Yordanova & Kolev, 2006; Salthouse, 2000) but otherwise the results are 

similarly diverse than in case of the go-nogo tasks as described above. When 

participants’ task was to discriminate whether the presented digits are odd or even, the 

pitch-deviance in the preceding task-irrelevant tones led to similar amount of slowing 

both in the older and younger groups (Leiva, Parmentier & Andrés, 2015) but novel 

sounds distracted older adults at a larger extent (Andrés, Parmentier & Escera, 2006). 

Rare pitch deviants in duration discrimination tasks were accompanied by similar 

response slowing both in younger and the older groups in the studies of Getzman, 

Gajewski and Falkenstein (2013) and Mager and colleagues (2005); however, in the 

study of Mager and colleagues (2005) older adults were marginally less accurate. In 

contrast to these studies, Berti, Grunwald and Schröger (2013) demonstrated more 

pronounced distraction effect in the reaction times of older adults but not in case of 

accuracy. Woods (1992) found that distraction was larger in the older adults only when 

target tones were preceded by salient novel stimuli, otherwise their reaction times 

increased similarly to young adults.  

The inconsistencies in the results mentioned above could be brought about by 

the small age difference between groups (see Berti, Grunwald & Schröger, 2013), the 

small number of participants and the low statistical power to detect potential effects, 

therefore Leiva, Andrés and Parmentier (2015) administered a tone duration 

discrimination paradigm with larger group sizes. Similarly to the majority of studies 

using this paradigm, no difference was present between younger and older adults, and 

more importantly, Bayes factor-based analysis also supported the null effect. According 

to authors, beside the low effect and group sizes, participants with undetected cognitive 

impairment or strategy for maximizing accuracy at the expense of response speed could 

lead to the group-difference in the study of Berti, Grunwald and Schröger (2013).  
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When interpreting the null effects, it is also important to note the possibility that 

compensational mechanisms in older adults also could enhance their performance and 

lead to the lack of age differences (Getzman, Gajewski & Falkenstein, 2013; Reuter-

Lorenz & Cappell, 2008; Zanto & Gazzaley, 2014) or because the low cognitive 

demands of the tasks, strategical and motivational strategical differences between 

groups also could arise (Horváth et al., 2009; Iragui et al., 1993; Leiva, Andrés & 

Parmentier, 2015). First, because of age-related slowing or decreased inhibitory control, 

older adults might need invest attention in order to solve a task, that is, they compensate 

(Lustig, Hasher & Zacks, 2007; Zanto & Gazzaley, 2014) and this overall enhanced 

attention might make them more susceptible to be distracted by rare stimuli. A second 

factor might be present because they are more cautious in general. That is, as an 

additional factor to the general slowing, it is also possible that they press a button only 

when they are sure about the response even when they are instructed to favor speed 

against accuracy while younger adults might respond in a more impulsive manner 

(Forstmann et al., 2011). Third, motivation might be an essential difference between the 

two groups. While younger adults are often recruited for course credit or as a part-time 

student job, the motivation of older adults might originate from more incentive factors; 

besides, the perceived difficulty of the task can also modulate the motivation level 

(Horváth et al., 2009). In order to understand the effects of aging on cognitive processes 

and to interpret results from behavioral studies more accurately, it is essential to review 

what kind of changes happen to the brain in the older adults.     

2.3 The aging brain 

 The behavioral results mentioned above are supported by data from brain 

imaging studies revealing structural and functional changes with age. Although the size 

of the brain shrinks in general at older age, specific areas are more affected than other, 

including anterior insula, inferior, medial and superior frontal areas and cerebellum 

(Eckert, 2011). Recent studies suggest the presence of at least two distinct networks 

responsible for processing speed at frontal (anterior cingulate cortex, dorsolateral 

prefrontal cortex) and at cerebellar areas which play an essential role in motor functions 

(Eckert et al., 2010; Eckert, 2011; Hogan, 2004). In these areas, both grey and white 

matter are affected by aging: frontal grey matter modulation was found to be dependent 

on the frontal white matter change (Eckert, 2011) and grey matter volume in cerebellum 

modulated processing speed (Hogan, 2004). While grey matter consists mainly of 
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neuronal cell bodies, white matter contains myelin-coated neural projections which 

enable efficient neural communication, deterioration will affect processing speed as 

well (Nilsson, Thomas, O’Brien & Gallagher, 2014). The loss of white matter integrity 

might be caused by ischemia, microvascular disease, myelin degradation, fiber loss or 

arteriosclerosis (for a review see Cabeza and Dennis, 2012) and it was demonstrated at 

frontal and parietal areas as a significant cause of decreased processing speed in 

otherwise cognitively healthy older adults (Kerchner et al., 2012). Moreover, fewer 

functional connections were found at frontal cortex compared to other brain areas in 

older than in younger adults due to de-afferentation (Eckert, 2011).  

Frontal and prefrontal areas of the brain play an essential role in inhibitory 

functions as well, and form a common network including anterior cingulate cortex, 

dorsolateral prefrontal cortex, inferior frontal gyrus, posterior parietal cortex and 

anterior insula (Lustig, Hasher & Zacks; Wager et al., 2005) which show structural and 

functional changes during aging (Cabeza, 2002). The decreased grey matter volume in 

the prefrontal cortex also referred to as "the frontal lobe hypothesis" (Raz, 2004; West, 

1996), emphasizing the role of top-down control functions which are declined with 

aging. It is important to highlight that the measures used to assess either inhibition 

deficit or processing speed share mutual variance both in processes contribute to the 

task performance (Albinet, Boucard, Bouquet & Audiffren, 2012) and also in their 

neural correlates. 

Beside the structural changes demonstrated above that several brain areas are 

playing role both in the inhibitory and response speed processes, especially in the 

frontal and prefrontal locations, and the structural changes of these lead to decrease in 

cognitive performance. Apart from the structural differences, functional changes 

measured by blood flow or metabolic processes also show change with aging. Using 

functional imaging (PET, fMRI), numerous studies showed that older adults’ brain often 

show overactivation at several areas which are not significantly active in younger 

adults. Overactivation occurs especially in the dorsolateral prefrontal cortex (Cabeza & 

Dennis, 2012; Reuter-Lorenz & Cappell, 2008) which is one of the most flexible brain 

structures (Park & Reuter-Lorenz, 2009) and a more distributed activation pattern also 

can be found at posterior regions (Lustig, Hasher & Zacks, 2007). In parallel with 

activation enhancement, underactivation might occur at other areas (Cabeza & Dennis, 

2012; Reuter-Lorenz & Cappell, 2008). Underactivation usually characterizes brain 
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locations where declines are present, for example memory or sensory areas at occipital 

and temporal lobes. For the first sight it could seem controversial that this area exhibits 

the largest volume and connectivity decline but also the largest activation in the same 

time. This seemingly paradoxical pattern can be explained well by the compensation 

hypothesis, that is, older adults recruit extra neural support in order to shore up 

declining structures whose function become inefficient or noisy (Lustig, Hasher & 

Zacks, 2007; Park & Reuter-Lorenz, 2009) but only to a certain point at which age-

related decline is not too progressed (Persson & Nyberg, 2006).  

A major advantage of using functional brain imaging techniques is that they are 

highly informative when defining which brain structures are damaged or function less 

effectively than in the younger persons. Beside structural differences, these methods 

also shed some light on the rough time course of different cognitive processes. 

However, they can reflect the temporal proceeding in steps about 1 sec which is 

considerably too slow to capture distinct stages of cognitive processing. In contrast, the 

event-related potentials (ERPs) based on electro-encephalography (EEG), are a highly 

suitable tool to measure the timing of cognitive processes since its temporal resolution 

can be defined in milliseconds (Luck, 2005). For this reason, I also utilized this method 

across the studies in my thesis to characterize the different stages of processing between 

attention and distraction.  
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Chapter 3: Electrophysiological correlates of the attention 

and distraction 

In Chapter 3, I describe the method of ERPs in detail, focusing on components 

reflecting sensory and attentional processes. After the introduction of the method in 

general, I enumerate ERP components indexing the various stages of distraction in the 

so-called "distraction potential" (Escera & Corral, 2003), such as the detection of 

irregularity (mismatch negativity – MMN), orienting of attention (P3a) reorienting it to 

the original task after distraction (reorienting negativity – RON). I mention the effects 

of attentional control on these components as well. In the second part of the chapter, I 

argue why the utilization of sensory potentials (N1, processing negativity – PN) and 

their attention-related modulation could be a highly effective alternative when 

following-up the time course of attention, especially in case when comparing different 

age groups.  

3.1 The method of event-related potentials 

 Psychophysiology is a domain of psychology which is based on the presumption 

that physical (e. g. neural or hormonal) responses and events can be regarded as signals 

of human nature, such as perception, emotion, action or thought, analyzed on the 

transactions between the environment and the functional organism (Cacioppo, Tassinary 

& Berntson, 2000). Because the present thesis makes extensive use of the method of 

event-related potentials (ERPs) derived from electro-encephalogram (EEG) data, the 

following section introduces how this method and different ERP waveforms can be 

utilized to identify cognitive processes, with special focus on those related to the 

attention-distraction balance. 

Although Hans Berger was the first to register human EEG in 1929 and the first 

sound-evoked sensory EEG change was reported 1939 by Pauline and Hallowell Davis 

(Davis, 1939), the modern era of ERP research began in the 1960s when Grey Walter 

(Walter, Cooper, Aldridge, McCallum & Winter, 1964) and his colleagues discovered 

the first cognitive component, named contingent negative variation (CNV) eliciting 

following warning signals and indicated the participants’ preparation to the upcoming 

target (Luck, 2005). Since these discoveries, the method of ERPs became a favored and 

widely used technique in cognitive neuroscience (Woodman, 2010) reflecting 
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electrophysiological response to a certain sensory, motor or cognitive event (Luck, 

2005).  

In comparison to the brain imaging techniques mentioned in the previous section 

(fMRI, PET), EEG has several advantages: it can record signals which originate from 

the brain in a noninvasive way, the device is relatively inexpensive, and most 

importantly, it has a high temporal resolution. That is, we can investigate the unfolding 

of cognitive processes at millisecond resolution. Importantly, several aspects of 

perception and attention are characterized at such a time scale, ERPs provide essentially 

useful information when following-up the different stages of attention. ERPs can be 

quantitatively characterized by three main parameters: amplitude (indexing the extent of 

neural activity), latency (their temporal course) and scalp density maps (scalp areas 

where the component typically manifests). Although several components might arise in 

a certain time window overlapping each other, calculating difference waveforms 

between experimental conditions might be a promising way to isolate them (Luck, 

2005). 

3.2 Event-related potentials reflecting distraction 

 In the oddball paradigms, a widely used method to identify the effects of rare 

stimuli (e. g. 20%) is to calculate a difference wave between rare and frequent events 

(that is, subtracting frequent from rare). This subtraction method typically results in 

waveform consisting of three deflections: first a negative one between 100 and 250 ms 

(mismatch negativity – MMN; Alho, Paavilainen, Reinikainen, Sams & Näätänen, 

1986; Näätänen, 1982), followed by a positivity around 250-400 ms (P3a; Polich, 2007) 

and a late negative deflection arises at about 400-600 ms (reorienting negativity – RON; 

Schröger & Wolff, 1998a). The complex of these three distinct waveforms was named 

“distraction potential” (Escera & Corral, 2003) and is thought to reflect distinct stages 

of cognitive processing, beginning with detection of change in regularity of stimulus 

sequence, followed by the orientation of attention triggered by the rare event or stimulus 

evaluation and finally, the re-orientation of attention to the original task. Figure 3.2.1 

illustrates a schematic “distraction waveform” as a result of subtraction of frequent 

standards from rare deviants. Note that the negative voltages are plotted upwards which 

is a common method in the ERP research.  



35 
 

 

Fig. 3.2.1 Schematic illustration of the distraction potential in a passive oddball task in which tones 

are unattended. The dotted line corresponds to the frequent standard and the solid line 

corresponds the rare deviant tones. The bold line marks the deviant-minus-standard difference 

including MMN, P3a and RON (that is, the distraction potential) and their typical latency windows 

are highlighted with grey shading (Honing, Bouwer & Háden, 2014; Figure 2., pp. 312.).   

 

3.2.1 MMN 

 The MMN is a negative-going waveform peaking between 100 and 250 ms 

around the fronto-central areas resulted from subtraction of frequent events from rare 

ones. It can be easily identified to frequency, duration, intensity (Giard et al., 1995), 

location deviants or to gaps inserted to the middle of tones (Garrido, Kilner, Klaas & 

Friston, 2009; Näätänen, Pakarinen, Rinne & Takegata, 2004), eliciting with an 

increased amplitude and decreased latency to larger differences between stimuli (Alho, 

1992; Näätänen, 2008). The evolutionary significance of MMN is presumably to 

automatically switch one’s attention to the auditory change as an attention-call process 

(Alho, 1992; Escera & Corral, 2007). MMN was originally thought to be elicited by 

sudden changes in the auditory environment based on automatic memory-based change-

detection which is independent of attention (Alho, 1992; Näätänen, Kujala & Winkler, 

2011). The automaticity of MMN and the sensitivity of auditory system to violations is 
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supported by its elicitation in coma patients (Morlet, Boucher & Fischer, 2000) or in 

sleeping newborns (Winkler et al., 2003) who cannot exhibit overt responses. 

 Regarding the origin and function of the MMN component, two main sets of 

theories are dominating the scientific literature which are based either on neural 

adaptation or on violation of expectations. The idea of MMN as a simple indicator of 

change or rarity detection might be underpinned well by the adaptation hypothesis 

stating that continuous or repetitive auditory stimulation leads to the decreased 

responsiveness of neurons in general in the auditory cortex to repeated standard 

auditory events. This decreased firing rate can be evolutionary adaptive in the protection 

against overstimulation which is one of the major functions of neural adaptation. This 

process is observable at several stages of auditory processing, from the auditory nerve 

to the cortex (Pérez-Gonzales & Malmierca, 2014). It was also suggested that neural 

adaptation processes play role in deviance detection, leading to MMN elicitation (Pérez-

Gonzales & Malmierca, 2014). Besides, the repetition of tones might facilitate the 

processing of the same stimuli and allows information to flow more rapidly, leading to 

shorter latencies of neural responses (Grill-Spector, Henson & Martin, 2006) as 

depicted in Fig. 3.2.1 as well. Since both the decreased latencies of neural firings and 

the attenuated neural responsiveness in general might result in the same EEG 

amplitudes measured on the cortex, both processes can manifest in MMN when 

subtracting frequent standards from neural response to deviant or novel stimuli, for 

example based on frequency difference (Jääskelainen et al, 2004).   

MMN was found to be elicited not only to the simple feature deviance but also 

when stimulation with a more complex structure was applied. According to the present 

models of MMN including the framework of hierarchical predictive coding, a memory 

trace is built-up cumulatively during auditory stimulation (Cowan, Winkler, Teder & 

Näätänen, 1993) which is violated by infrequent irregularities (Näätänen, Kujala & 

Winkler, 2011). It was also proposed that MMN is sensitive to the abstract sequence 

rules (Näätänen, Kujala & Winkler, 2011), for example to language-related disruptions 

like pseudowords (Pulvermüller et al., 2001), syntactic or semantic violations (Hasting, 

Kotz & Friederici, 2007) or violations in music (Koelsch & Seibel, 2005). These results 

go far beyond the simple physical difference between subsequent stimuli and suggest a 

mismatch between the auditory input and the predictions formed based on rules in the 

recent auditory stimulation (Garrido et al, 2009; Winkler, 2007; Winkler & Schröger, 
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2015). The Auditory Event Representation System (AERS) model proposed by Winkler 

and Schröger (2015) attempts to explain how representations from such highly complex 

auditory scenes are processed. They suggest that the auditory system continuously 

updates its representations based on comparisons of the predictions originating from 

existing representations from previous experiences and the incoming sensory inputs. 

More importantly, several regularities can be maintained in parallel in AERS with 

different levels of activation, which makes easier to detect small violations even when 

the stimulation is complex (Winkler & Schröger, 2015).  

A recent study by Symonds and colleagues (2017) aimed to distinguish MMN 

effects from the neural adaptation and predictive coding hypotheses. In the vast majority 

of the studies in the topic of deviance detection the deviant tones or patterns physically 

differed from standard ones. In contrast, Symonds and colleagues (2017) utilized 

sequences in which the pattern of deviant and standard sequences was physically the 

same and occurred in the same blocks. Participants listened to tone pips separated in 

200 ms and every 4
th

 tone was presented with a higher pitch (standards pattern). Two 

deviant patterns could occur infrequently: the higher pitch tone was presented either too 

early (following the first low tone) or too late (the lower tone was repeated 5 times 

instead of 3). In these terms, early deviant patterns both violated the expectations and 

involved physical change from the previous tone, while late deviants violated 

predictions only while no physical change was present. The results showed that the 

early deviants elicited a negativity with larger amplitude and shorter latency compared 

to the late ones, suggesting that the MMN traditionally measured in oddball tasks 

usually involves processes related both top-down predictions and physical change 

detection via neural adaptation and that MMN response can be elicited without physical 

change in the stimulation (Symonds et al., 2017). It is also important to highlight that 

adaptation is a broad concept which occurs at different levels of the auditory pathway, 

and it plays a crucial role in processesing of more complex regularities from the 

environment an also contributes to higher order cognitive mechanisms like attentional 

control (Pérez-Gonzales & Malmierca, 2014). That is, although the framework of 

predictive coding can explain well how brain does extract regularitites from the 

complex environment and build expectations whose violations are manifested in MMN, 

it is not enough per se to completely rule out the presence of neural adaptation processes 
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and of synaptic changes during the elicitation of MMN (Garrido et al., 2009; Symonds 

et al., 2017). 

Several studies revealed that besides of passive and automatic change-detection, 

attentional factors, regularity of the presentation and sound context may play a 

significant role in the elicitation and modulation of MMN (Sussman, 2007). For 

example, although no difference was found in MMN when standards and deviants were 

presented in random versus regular order (every 5
th

 tone was deviant, stimulus 

separation in 1.3 sec) in case of slow presentation (Scherg, Vajsar & Picton, 1989), 

faster presentation rate (stimulus onset interval = 0.1 sec) elicited MMN to rare sounds 

in case of random presentation only, suggesting that the unit of representation was not a 

single tone but the microsequence (Sussman, Ritter & Vaughan, 1998). MMN in regular 

tone sequences was also found when the dimension of deviance (for example pitch) was 

ignored (for review, see Sussman, 2007). When participants attended one ear and 

actively detected intensity deviants in low and high frequency tones, intensity deviants 

in the unattended ear elicited smaller amplitude MMN compared to the attended ear 

(Woldorff, Hackley & Hillyard, 1991). However, it is ambiguous whether attention 

directly influences deviance detection and leads to a pure MMN modulation because 

such effects are rather an overlap with other cognitive components and motor or 

premotor potentials (Alho, 1992; Sussman, 2007). 

In the scalp distribution of MMN the fronto-central areas are dominating, 

besides, it gets contribution from the auditory cortex as well (Winkler, 2007) as 

evidenced by the polarity reverse at the mastoid electrodes (Alho et al., 1986). 

Moreover, studies using magneto-encephalography (MEG) provide more precise 

information about the generator structures of different components because magnetic 

signals are not distorted by the tissues of the brain. The role of primary auditory cortex 

in auditory change detection was demonstrated by Hari and colleagues (1984) and Sams 

and colleagues (1985) who found the magnetic counterpart of MMN (MMNm) in 

healthy adults to rare deviant auditory events in the supratemporal plane over Sylvian 

fissure. Besides, evidence from generators in the frontal lobe in humans were also found 

healthy adults (Giard et al., 1995) and in patients with unilateral frontal lesions (Alho, 

Woods, Algazi, Knight & Näätänen, 1994) which might be related to the triggering of 

involuntary attention switch. Animal models suggest comparable results (intracranial 

recording from cats: Csépe, Karmos & Molnár, 1986) and indicate contributing activity 
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from thalamic and hippocampal areas as well (reviewed by Alho, Huotilainen & 

Näätänen, 1995). 

3.2.2 P3a 

 Once infrequent violations alerted the system as indicated by elicitation of 

MMN, attention shifts toward that event (Escera & Corral, 2007; Schröger & Wolff, 

1998a, 1998b). This orienting response or displacement of attention is thought to be 

reflected by the P3a eliciting around 250-400 ms which is the second deflection of the 

distraction-potential and considered as a subcomponent of P3 waveform (Polich, 2007; 

Soltani & Knight, 2000). The P3 (or P300) component was reported first by Sutton, 

Braren, Zubin and John in 1965, who manipulated the uncertainty of the presented 

stimuli and found that the amplitude of the late positive component was larger for 

uncertain auditory (clicking tone) and visual (light flash) stimuli (Sutton et al., 1965).  

 Subsequent studies utilized oddball tasks to investigate this late positive 

waveform and its relationship to uncertainty, and they suggested that it might play role 

in task-relevance and probability representations, irrespectively of modality 

(Courchesne, Hillyard & Galambos, 1975; Squires, Squires & Hillyard, 1975). It is 

important to note, however, that P300 waveform consists of two, partly independent 

subcomponents which must be interpreted separately (Spencer, Dien & Donchin, 1999): 

the earlier P3a and the later P3b (Squires, Squires & Hillyard, 1975). P3b is a slower 

waveform typically elicited by rare target stimuli – or by events requiring decision – at 

posterior parietal areas (Friedman, Cycowitz & Gaeta, 2001). Since the “distraction 

potential” involves P3a which is more relevant regarding the present paper, in the 

following section I describe it in detail. 

 Although the P3a usually evokes to infrequent stimuli – therefore often called as 

"novelty-P3" (Polich, 2007; Soltani & Knight, 2000) – there is no agreement regarding 

its functional significance. A highly prevalent explanation suggests that it reflects 

involuntary attention shift (Escera & Corral, 2003; Polich, 2007; Soltani & Knight, 

2000) and the amount of its amplitude change is in line with the salience of distracters 

which prepares the organism to deal with the novel stimulus (Friedman, Cycowitz & 

Gaeta, 2001). For example, rare sounds with larger frequency separation from frequent 

ones lead to larger P3a amplitudes (Berti, Roeber & Schröger, 2004; Wetzel, Widmann, 

Berti & Schröger, 2006; Yago, Corral & Escera, 2001). Similar amplitude enhancement 



40 
 

was found in case of novel stimuli both in auditory (sinusoid vs environmental tones, 

for example drill, telephone ring etc.; Escera, Alho, Winkler & Näätänen, 1998; Escera, 

Yago & Alho, 2001; Spencer, Dien & Donchin, 1999) and in visual modality (simple 

geometric shapes vs complex colorful figures: Courchesne, Hillyard & Galambos, 

1975).  

 Beside the stimulus salience, several other factors modulate the amplitude of 

P3a, leading to diverging explanations of its role in information processing. For 

example, when comparing novel stimuli during the time course of the task, gradually 

decreased P3a amplitudes were found toward the end of the task, suggesting that the 

novelty value decreases after a few repetitions (Friedman & Simpson, 1994). The 

amplitude decrease was more pronounced when sounds were presented in the 

background, that is, they were unattended, compared to the condition when participants 

had to perform a decision task about the tones (Friedman, Kazmersky & Cycowitz, 

1998). Enhanced P3a amplitudes were demonstrated in difficult discrimination tasks as 

well with a more frontal distribution (Katayama & Polich, 1998; Muller-Gass & 

Schröger, 2007) but P3a decreased when cues preceding distracters indicating whether 

it will be a deviant or standard helped participants to prepare for them (Horváth & 

Bendixen, 2012; Sussman, Winkler & Schröger, 2003; Wetzel & Schröger, 2007; a 

tendency: Wetzel, Schröger & Widmann, 2013). More importantly, the P3a decrease 

was accompanied by decreased behavioral distraction effects as well (see Chapter 

1.2.1), suggesting the role of attention and context in P3a generation and arguing 

against the complete involuntariness of attention switch.  

 An other set of studies proposes that the cognitive system needs to constantly 

monitor the environment in order to manage goal-directed behavior efficiently and P3a 

amplitude might reflect such update processes to decide whether an actual stimulus is 

relevant regarding our further actions. Based on the continuously incoming stimuli, the 

current mental representations of the environment (Dien, Spencer & Donchin, 2004; 

Donchin & Coles, 1988) and the allocation of the attentional resources must be revised 

and updated (Polich, 2007). Barceló, Escera, Corral and Periañez (2006) utilized 

Wisconsin Card Sorting Task in which participants had to select the matching card 

based either on shape, color or number. An acoustic cue induced before each trial 

whether participant needed to respond to the same feature than at previous trial or to a 

different one; that is, whether any task-set change needed. Such task-switch cues 
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elicited identical P3a responses to the novel tones, which might reflect the activation of 

a neural network associated with updating task-set information in order to select goal-

directed action depending on context (Barceló et al., 2006). Similarly, when deviant 

tones required evaluation in an otherwise irrelevant dimension (e. g. pitch), more 

pronounced P3a was found compared when no overt response was needed, suggesting 

that the attention switched completely only when distracters were task-relevant and 

triggered task-switch as well (Berti, 2008; Hölig & Berti, 2010). Horváth, Winkler and 

Bendixen (2008) also proposed that instead of attention switch per se, P3a reflects the 

detection of events for further processing because these provide new information or are 

significant regarding the organization of further behavior.  

 Not only the exact functional role of P3a is ambiguous but its generator 

processes as well (Luck, 2005; Polich, 2007). Patients with unilateral dorsolateral 

prefrontal cortex exhibited reduced frontal P3a amplitudes while P3b remained intact 

(Knight, 1984). Besides, temporo-parietal junction (including superior temporal plane 

and inferior parietal cortex) (Knight, Scabini, Woods & Clayworth, 1989) and posterior 

hippocampal (Knight, 1996) injury impaired P3a elicitation as well while parietal 

lesions had no effect on it (Knight, 1984; Knight et al., 1989). Frontal lobe was also 

found to contribute to detection to rare or alerting events in fMRI studies (McCarthy, 

Luby, Gore & Goldman-Rakic, 1997), suggesting the elicitation of P3a when such 

stimuli are processed, or sufficient attentional focus is engaged (Polich, 2007). Beside 

the frontal cortex, studies using MEG identified the magnetic counterpart of P3a in the 

auditory cortex during auditory stimulation (Alho et al., 1998; Kropotov et al., 1995). 

Results about the role of frontal areas and temporo-parietal junction in the generation of 

P3a potential are similar to the neural network responsible for the orienting to novel 

events (Posner, 2016) and orienting of attention in general (Mesulam, 1990), 

strengthening the ERP results described above and highlighting the role of attention to 

the potentially significance of distracters. 

3.2.3 RON 

 According to the theory of distracting potential, attention should be oriented 

back to the primary task following momentary distraction as indexed by the so-called 

reorienting negativity (RON) (Escera & Corral, 2003, 2007; Schröger & Wolff, 1998a). 

Reflecting its name, RON is a negative displacement between 400 and 600 ms with a 

typically frontal/prefrontal scalp distribution (Schröger, Giard & Wolff, 2000). RON 
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was recorded first by Schröger and Wolff in 1998, following P3a only when participants 

actively attended to the auditory stimulations and rare deviant stimuli acted as 

behavioral distractors (Schröger & Wolff, 1998a) and was registered later in visual 

modality as well (Berti & Schröger, 2001). Although for the first sight its role in 

cognition seems well-defined, its functional characterization is still debated (Berti, 

2008; Escera, Yago & Alho, 2001).  

 In auditory-visual oddball paradigms in which task-irrelevant tones preceded 

visual targets, it was also observed that RON consisted of two subcomponents, an early 

and a late RON. They showed different scalp distributions and the late one was 

associated more with the processing of the task-relevant stimulus (Escera, Yago & 

Alho, 2001). On the other hand, the early part of the component elicited when working 

memory was included into the task (classification task of odd/even numbers and colors), 

but when participants discriminated physical features, only the late subcomponent was 

present (Munka & Berti, 2006). Besides, RON was elicited to trials which triggered 

object switch in the working memory (that is, operating with a previously processed or 

with a new stimulus) (Berti, 2008). However, when the task was presented in the 

auditory modality only, response withhold (which is also a component of working 

memory) attenuated RON amplitude (Berti & Schröger, 2003) while working memory 

load enhanced its amplitude in a visual-auditory task (SanMiguel, Corral & Escera, 

2008).  

 Similarly to P3a, cues presented before deviant tones lead to reduced or 

abolished RON amplitudes (Horváth & Bendixen, 2012; Horváth, Sussman, Winkler & 

Schröger, 2011; Horváth, Winkler & Bendixen, 2008; Sussman, Winkler & Schröger, 

2003; Wetzel, Widmann & Schröger, 2009), proposing that since predictability 

theoretically reduces distraction, re-orientation should be required to a lesser degree 

than in case when deviants are completely unexpected. Besides, RON might also 

involve processes which integrate information both from alerting cues and target stimuli 

(Horváth & Bendixen, 2012) suggesting that even it reflects processes related re-

orientation of attention, it is not a "pure" indicator of that, but other higher order 

cognitive processes might be incorporated as well (Horváth, Winkler & Bendixen, 

2008).  
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 The cortical generator mechanisms of RON are not well mapped yet. According 

to some suggestions that multiple cortical generators might play role in the elicitation 

process of RON located mainly in the frontal areas (Schröger, Giard & Wolff, 2000) as 

well as in the superior temporal cortex, ventral and dorsal mid-cingulates and in the 

anterior cingulate (Rissling, Miyakoshi, Sugar, Braff, Makeig & Light, 2004). Besides, 

RON can get contributions from the primary motor areas which are related to the 

selection of action (Horváth, Maess, Berti & Schröger, 2008).  

3.2.4 The independence of MMN, P3a and RON 

 Although the three-phasic distraction potential seems to be a unitary chain 

response of the brain to the attention capture by unexpectedly occurring distracter and 

then to the release from that, MMN, P3a and RON are at least partly independent from 

each other. In most studies examining top-down processes such as prediction or 

working memory, MMN remains the same between conditions (e. g. Berti & Schröger, 

2003; Horváth et al., 2011; Sussman, Winkler & Schröger, 2003) suggesting the 

automaticity of deviance detection. The later components were, however, more sensitive 

to top-down manipulations and either changed systematically (e. g. Berti & Schröger, 

2003; Sussman, Winkler & Schröger, 2003) or independently from each other (e. g. 

Berti, Roeber & Schröger, 2004; Munka & Berti, 2006), hinting that probably they do 

not follow each other in an obligatory way. To investigate this systematically in an 

auditory oddball paradigm, Horváth, Winkler and Bendixen (2008) utilized a duration 

discrimination task (200 vs 400 ms) and compared micro-sequences differing in the 

number of repetition trials (2, 3, 4 or 5 standards) before a change trial (deviant). The 

change (deviant) minus repetition (standard) waveform exhibited MMN, P3a and RON 

deflections. However, P3a to the low amount of stimulus repetition (1 or 2) changed 

differently not only from RON but from MMN as well strengthening results from 

further studies suggesting the dissociation of MMN and P3a (Rinne, Särkkä, Degerman, 

Schröger & Alho, 2006; Winkler, Tervaniemi, Schröger, Wolff & Näätänen, 1998) and 

of P3a and RON (Bendixen, Roeber & Schröger, 2007).  

 When using difference waveforms to get information about cognitive processes, 

it is important to keep in mind that subtraction might smear overlapping components. 

For example, in the time window of RON, ERP components regarding target detection 

(P3b; Horváth et al., 2011) or remaining from processing of preceding distracters might 

be present (Escera, Yago & Alho, 2001). Because of the possible shifts in temporal 
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characteristics of these components with aging or within clinical groups, difference 

waveforms should be explained and interpreted especially carefully. Moreover, studies 

using duration discrimination tasks often average short and long trials together which 

might be problematic in the 200-400 ms interval since tone offsets also elicit sensory 

ERP responses (Hillyard & Picton, 1978), leading to misinterpretation of P3a or RON 

effects (Horváth, 2014a). In the next session I introduce how sensory ERPs might be 

used for investigating distraction with the avoidance of overlapping effects.  

3.3 The role of sensory ERPs in the time-course of attention 

3.3.1 N1 

 Once a selective attention set is established, the possibility to process task-

relevant auditory events across different stages of auditory processing is provided as 

suggested by Broadbent (1970; see Knight & Parkinson, 1975). When an auditory event 

occurs, its onset elicits a markable negative deflection around 50-150 ms named N1 

which – similarly to MMN – reflects sensory change detection, however, they are two 

separate components (Näätänen, 1982; Näätänen & Picton, 1987; Näätänen et al., 2011) 

corresponding to two different steps in the auditory processing (Näätänen et al., 2011). 

Their cortical generators might overlap in the supratemporal areas (see the more 

detailed description below) but the temporal source of MMN is more anterior than of 

N1 (Garrido et al., 2009; Näätänen, Paavilainen, Rinne & Alho, 2007) and probably 

involves different neural processes as well. Besides, generation and amplitude 

modulation of N1 is more likely to be related neural adaptation and refractory processes 

than of MMN (Näätänen et al., 2011). The auditory N1 was originally thought to be the 

part of the so-called vertex potential (coupled with a positive deflection around 200 ms 

named P2) representing a nonspecific sensory change and notifying the brain that 

something happened (Näätänen & Picton, 1987) and serving as an attention-call signal 

(Lange, 2013).  

 The auditory N1 wave was found to get contribution from several distinct brain 

areas. Intracranial animal and human recordings revealed superior temporal, frontal, 

midbrain reticular formation and thalamic activation when N1 was measured at scalp, 

suggesting that not only a specific area leads to N1 elicitation (summarized by Näätänen 

& Picton, 1987). According to Näätänen (1982), the “true” N1 wave consists of three 

components originating from different regions. Two of these subcomponents are related 
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to the auditory areas: the frontally distributed negative deflection coupled with 

positivity at mastoid sites under the Sylvian-fissure originates from the supratemporal 

cortex at primary auditory areas when measured with nose reference (Näätänen & 

Picton, 1987; Vaughan & Ritter, 1970). Magnetic recordings also support the presence 

of this generator (Hari, Aittoniemi, Järvinen, Katila & Varpula, 1980; Pantev et al., 

1995). The supratemporal N1 is organized tonotopically, which means that the location 

of the generator depends on the frequency of the pure tone; besides, the pure tone 

amplitudes also affect the generator locations (Winkler, Denham & Escera, 2015). 

Second, the idea of multiple generators was stated first by Wolpaw and Penry (1975) 

who discovered the T-complex which is a positive-negative going waveform between 

50 and 170 ms measured at temporal cortical areas originating from the superior and 

lateral temporal gyrus, corresponding to the secondary or supplementary auditory areas. 

T-complex consists of further subcomponents (Ta, Tb, Tc) overlapping the N1-P2, and 

subsequent studies confirmed its independent origin from N1 measured at vertex (e. g. 

Pantev et al., 1995; Ponton, Eggermont, Khosla, Kwong & Don, 2002; Scherg & Von 

Cramon, 1986). Besides, Näätänen and Picton (1987) suggested the presence of a third, 

non-specific generator which elicits a negative deflection at vertex around 100 ms. Its 

exact origin is unspecified, but the authors propose that it might be generated in frontal 

motor and premotor cortices influenced by thalamic areas.  

 As one the main functional role of N1 is to “alert” the organism that something 

happened in the environment (Lange, 2013), it was found to be sensitive to transient 

acoustic events or to sounds presented with longer temporal separation (Berti, Vossel & 

Gamer, 2017; Teder, Alho, Reinikainen & Näätänen, 1993; Näätänen & Picton, 1987). 

Rare acoustic events (deviants or novels) also lead to amplitude enhancement (Näätänen 

& Picton, 1987; Winkler, 2007) and N1 amplitude was found to be sensitive to 

processes linked to feature extraction and sensory memory (for example to loudness: 

Lu, Williamson & Kaufman, 1992). Besides, auditory stream segregation and sound 

organization (Szalárdy, Bőhm, Bendixen & Winkler, 2013) as well as general arousal 

changes also affected N1 amplitudes (Näätänen & Picton, 1987).  

3.3.2 Attention effects on the N1 waveform 

 Although the N1 ERP basically reflects sensory processes as introduced above, 

several studies suggest that it is sensitive to top-down cognitive processes as well and 

significantly affected by selective attention. In their classic study, Hillyard, Hink, 
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Schwent and Picton (1973) presented short tone pips concurrently to the two ears with 

short temporal separation (100-800 ms) and participants’ task was to count randomly 

occurring frequency deviants delivered to one designated ear while ignoring the other 

one. They found significantly larger N1 amplitudes to tones in the attended ear 

compared to the unattended one. The authors interpreted the results as the N1 

enhancement reflects the stimulus-set mode of attention as suggested by Broadbent 

(Knight & Parkinson, 1975), that is, providing a selection criterion to participants before 

the presentation of the stimulus will lead to more efficient processing. In this case, a 

stimulus set admits all sensory inputs to an attended channel while blocking or 

attenuating inputs from other task-irrelevant channels, already at the early stage of 

processing (Hillyard et al., 1973).  

 However, later studies argued against the interpretation that amplitude 

enhancement was due to a pure N1 modulation, but an overlapping negative shift 

emerged which was especially pronounced when the inter-stimulus-interval was longer 

and constant (800 ms). This negative displacement started slightly later than N1 and 

was observable both at vertex and at auditory areas at temporal cortex (Näätanen, 

Gaillard & Mäntysalo, 1978). The authors named this deflection “processing 

negativity”, reflecting its endogenous, attention-related nature (Näätänen, 1982) 

generated by a matching process between the sensory input and the attentional trace 

(Alho, 1992; Alho, Töttölä, Reinikainen, Sams & Näätänen, 1987). Processing 

negativity (PN) was found to be generated at independent sources from the N1 and 

consists of two subcomponents, and early and a late PN. The early PN begins around 

50-100 ms and lasts until the end of the processing of the auditory stimulus and 

originates from the auditory sensory and associational areas on the supratemporal plane 

and on the lateral temporal areas (Näätänen & Picton, 1987). The function of early PN 

is thought to select stimuli for further processing (Alho, 1992). In contrast, late PN acts 

as an attentional supervisor which feeds back to the auditory sensory areas and is 

probably generated in the anterior frontal cortex (Näätänen & Picton, 1987). The lack of 

polarity reversal at mastoid electrodes when recorded with nose reference also 

strengthens the independence from pure N1 (Alho et al, 1986). 

 During selective listening an attentional trace is actively formed and each 

incoming stimulus is compared with the trace. As attended relevant stimuli elicit 

enhanced PN compared to the irrelevant unattended ones, their difference is also 
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informative regarding the amount of time the attentional trace needs to reject the 

stimulus (Alho, 1992). Hansen and Hillyard (1980) named this fronto-centrally 

distributed difference waveform “negative difference”, reflecting selective attentional 

processes eliciting with larger amplitudes and shorter latencies when acoustic channels 

were easy to discriminate. 

 Irrespectively of contribution of PN, the enhanced N1 amplitudes tend to suggest 

that a specific acoustic event is in the focus of attention, therefore the modulation of this 

component might be a plausible tool to follow-up the balance between attention. The 

first study suggesting this was produced by Schröger (1996). In his study, participants 

listened to pairs of discrete tones separated by 200 or in 560 ms and they had to ignore 

the first tone of each pair (Stimulus 1 – S1) and make decision about the second one 

(Stimulus 2 – S2). In most cases, the S1 was presented with the same pitch than the 

task-relevant S2 but occasionally it was a pitch deviant differing from standard slightly 

or largely. He found that irrelevant deviant tones led to reduced accuracy and slowing in 

case of 200 ms separation in parallel with a significant decrease in N1 amplitude to S2 

stimulus. These effects, however, abolished in case of 560 ms separation interval in 

which preceding deviants did not decrease either behavioral performance or N1 

amplitudes. Deviant S1 tones also elicited a positive deflection, probably a P3a which 

overlapping with S2-related N1 could cause its attenuation.   

 Later studies using continuous stimulation paradigm attempted to measure more 

systematically the effect found by Schröger (1996). The continuous stimulation 

paradigm introduced by Horváth and Winkler (2010) mirrors the classical duration-

discrimination go/nogo (participants have to respond to short tones) oddball task in 

terms of its temporal parameters but instead of discrete tones, auditory stimulation 

consists of long, continuous tones. Tones alternate between two frequencies by 

occasional, quick glissandos (glides), corresponding to deviants and contain short gaps 

which serve as target events. Because glides serve as deviant events, they occur with the 

same temporal probability as discrete deviant tones in oddball tasks. Variations in the 

temporal separation between distracter glides and target gaps, the modulation of gap-

related N1 amplitudes provides information of the focus of attention and about the time 

when attention set is restored after distraction. In the study of Horváth and Winkler 

(2010), 50% of glides was followed by gaps either in 150 ms (50% of gaps) or were 

presented without any preceding glide (“gap only” trials; 50%). In this way, successive 
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glide-gap pairs reflect short deviant tones while gaps without any preceding glides 

correspond to standard tones. Glides presented without any succeeding gaps mirror long 

deviant tones (nontargets). They found that when participants maintained the go/nogo 

task, they responded significantly slower and less accurately to gaps preceded by glides 

in 150 ms compared to gaps without any preceding glides. Importantly, N1 amplitudes 

to these gaps were also significantly reduced compared to “gap only” trials. On the 

other hand, when participants’ attention was directed to a silent movie and auditory 

stimulation was presented in the background (passive condition), the N1 modulation 

showed an opposite pattern: 150 ms glide-gap separations lead to enhanced gap-related 

N1 amplitudes.  

 Utilizing the same active continuous stimulation paradigm, Horváth (2014a) 

compared the effect of rarely or frequently occurring glides to gaps presented in 150 ms 

or in 650 ms. He replicated the effect of attenuated gap-related N1 and lower behavioral 

performance following rare glides in 150 ms and also showed that these occasionally 

presented distracters had a much smaller impact to gaps separated from glides in 650 

ms. These results suggest that in the active conditions, infrequent, task-irrelevant 

distracter glides disrupted the attention set which restrained the overall processing of 

briefly succeeding gaps (in 150 ms). On the other hand, in case of “gap only” trials and 

in case of 650 ms glide-gap separations, the attention set could be restored. The lack of 

polarity inversion to gaps preceded by glides in 650 ms also suggests the presence of 

enhanced attention to these events as well (Horváth, 2014a). These results are also in 

line with those related to attentional blink. Attentional blink paradigms typically use 

rapid presentation of tones and participants have to respond to two targets separated by 

nontargets in various time intervals (Shen & Mondor, 2006; Tremblay, Vachon & 

Jones, 2005). When the two targets are separated briefly (270 ms or less), the processing 

of second target is impaired, that is, participants detect it less accurately (Horváth & 

Burgyán, 2011; Shen & Alain, 2010) 

 In contrast, when participants watched a movie or read a book and tones were 

presented in the background, the N1 enhancement to gaps closely following glides 

probably indexed an attention switch to the auditory modality, bringing the tons into the 

focus of attention which lead to the enhanced processing of the gaps closely following 

distracters (Horváth, 2014a; Horváth & Winkler, 2010). This result is in line with 

former studies in which identical tones presented separated by short intervals (<400 ms) 
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while participants’ attention was directed to somewhere else. For example, in the study 

of Loveless, Hari, Hämäläinen and Tiihonen (1989) found the largest N1 amplitudes to 

the second tones when tones followed each other in 150 ms. Similarly, when tones 

followed each other in trains, the largest N1s were measured to the second tones in 

trains when separated in 400 ms or shorter intervals (Budd & Michie, 1994; McEvoy, 

Levänen & Loveless, 1997; Sable, Low, Maclin, Fabiani & Gratton, 2004; Wang, 

Moraux, Liang & Iannetti, 2008).  

 Beside of the attention switch, N1 enhancement in passive paradigms can be 

explained in the context of the latent inhibition model as well: according to this theory, 

a general facilitation occurs in the auditory cortex following tone onsets which lasts 

until about 400 ms. After that, inhibitory processes start to dominate (Budd & Michie, 

1994; McEvoy, Levänen & Loveless, 1997; Sable et al., 2004). That is, it is also 

possible that in absence of attention, automatic excitatory neural processes modulate N1 

amplitudes, resulting in enhancement when tones are separated shortly, irrespectively of 

attentional orienting.  

 

Fig. 3.2.2 Schematic illustration of the attention-related modulation of the N1 and P2 amplitudes. 

Sensory events in the focus of attention elicit enhanced amplitudes. 
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In summary, irrespectively of the exact nature of neural processes leading to N1 

amplitude modulation, the above-mentioned results unambiguously suggest that N1 

amplitude is enhanced when the auditory events are in the focus of attention, whereas 

attentional disruptions lead to the decrease of N1. The time course of this process is also 

clearly followable when varying the temporal separation between distracter and target 

(or probe) auditory events. Therefore, patterns of the N1 component might allow more 

exact and direct interpretations than components in the “distraction potential” such as 

P3a or RON. 

3.3.3 Age-related changes in distraction-related event-related potentials  

 Therefore, characterizing different (age) groups with the attentional modulation 

of N1 and the neighboring negativities may be more readily interpretable than 

approaches based on the “distraction potential”. Regarding the “distraction potential”, 

results with older adults are diverse in oddball paradigm: amplitudes tend to be similar 

or smaller (sometimes larger) compared to younger adults; and latencies either delay or 

do not differ from the younger adults’. Amplitude-results show a high variability both 

for MMN (no age difference: Amenedo & Díaz, 1998; Berti, Grunwald & Schröger, 

2013; Gaeta et al., 1998; Mager et al., 2005; attenuation with aging: Getzman, Gajewski 

& Falkenstein, 2013; Horváth et al., 2009) and P3a (no age difference: Berti, Grunwald 

& Schröger, 2013; Getzman, Gajewski & Falkenstein, 2013; Mager et al., 2005; 

attenuation with aging: Gaeta et al., 1998; Iragui et al., 1993), which may reflect 

differences between the utilized tasks but also between individuals. Whereas the 

interpretation of amplitude differences may not be unequivocal, differences in latency 

may directly reflect between-group processing speed differences. While MMN latency 

basically remained unchanged with aging (Amenedo & Díaz, 1998; Gaeta et al., 1998; 

Getzman, Gajewski & Falkenstein, 2013; Horváth et al., 2009; Mager et al., 2005), P3a 

was elicited systematically later in the older adults (Gaeta et al., 1998; Getzman, 

Gajewski & Falkenstein, 2013; Horváth et al., 2009; Mager et al., 2005). As an 

exception, Berti, Grunwald and Schröger (2013) found delayed MMN in the older 

group and no group-differences in P3a; note that in their case, behavioral results were 

also incongruent with the rest of the studies assessing oddball tasks (Leiva, Andrés & 

Parmentier, 2015). 

 In case of N1 elicited by tone onsets, older adults usually exhibited larger 

(Amenedo & Díaz, 1998; Anderer, Semlitsch & Saletu, 1996; Chao & Knight, 1997) or 



51 
 

similar (Berti, Vossel & Gamer, 2017; Getzman et al., 2013; Horváth et al., 2009; 

Mager et al., 2005; Tomé, Barbosa, Nowak & Marques-Teixeira, 2014; Woods, 1992; 

but see Berti, Grunwald & Schröger, 2013) amplitudes than younger adults, suggesting 

that transient detection – irrespectively of the direction of attention – is probably intact 

in healthy aging (Berti, Vossel & Gamer, 2017). However, gaps inserted to tones 

resulted in lower N1s in older compared to younger adults which could be linked to the 

less efficient processing of temporal resolution (Alain, McDonald, Ostroff & Schneider, 

2004; Harris et al., 2011). Although inconsistencies regarding N1 are also present 

between age groups, these results are less ambiguous compared to the MMN-P3a-RON 

measured on deviant-minus-standard difference waveforms. This also suggests that N1 

amplitude modulation pattern might be superior to “distraction potential” in 

characterizing the temporal structure of attention-distraction balance between age 

groups. 
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Chapter 4: Research questions 

 This dissertation includes four ERP studies investigating the balance between 

attention and distraction and the changes of its dynamics with aging. The focus of the 

first two studies was directed to the role of predictability in prevention of distraction 

and in cue utilization reflected by the distraction potential and behavioral indices. While 

the first study applied an auditory distraction paradigm with discrete tones, the 

remaining three studies utilized continuous stimulation (Horváth & Winkler, 2010). In 

the first two studies younger adults participated only.  

 Study III and Study IV compared older and younger adults in terms of the 

duration of the distracted state by manipulating the temporal separation between 

distracter and target events during continuous stimulation. While Study III investigated 

event-related processing in the context of a gap detection task, Study IV explored the 

ERP reflections of cognitive processes in a passive arrangement. All data were analyzed 

in R (see the different versions in the corresponding studies); for variance analyses, we 

utilized the ezANOVA function from package ez (Lawrence, 2016).  

The main research questions and hypotheses were the following: 

Study I: Numerous studies found that predictability enabled by cues presented before 

distracting events leads to decreased distraction effects both behaviorally and in the 

ERPs (Horváth & Bendixen, 2012; Horváth, Sussman, Winkler & Schröger, 2011; 

Sussman, Winkler & Schröger, 2003; Wetzel, Widmann & Schröger, 2007). However, 

it is debated whether the reduced ERP amplitudes result from preparation or they are 

rather a byproduct of the processing of the previously presented cues. The aim of Study 

I (Volosin & Horváth, 2014 – Chapter 5) was to investigate whether knowledge of the 

sequence structure leads to decreased distraction effects similarly to the presentation of 

cues.  

Hypothesis: Behavioral distraction effect will be reduced, and the amplitude of the P3a 

and RON will diminish when participants can predict the occurrence of deviant event 

compared with the condition when no such predictions are available to be formed. 

Study II. The main question of Study II (Volosin, Grimm & Horváth, 2016 – Chapter 6) 

was whether task-irrelevant distracter events can be utilized as cues to prepare for the 
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presentation of the forthcoming task-relevant event. In one condition, task-irrelevant 

events preceded task-relevant ones with a fixed 400 ms time interval (informative 

condition) while in the other (uninformative) condition, no such temporal relationship 

was present. In order to manipulate the distractive value of task-irrelevant events, they 

could be presented either rarely or frequently.  

Hypothesis: In the informative condition the task-irrelevant distracters will elicit larger 

N1/PN and P3a ERPs, reflecting enhanced attention to these events. 

Study III: Study III (Volosin, Gaál & Horváth, 2017a – Chapter 7) compared the 

duration of distracted state between younger and older adults in an active gap-detection 

task as reflected in N1 amplitudes. We manipulated systematically the temporal 

separation between distracter and target (gap) events (150, 250, 650 ms or longer). 

Hypothesis: The distracted state manifested in reduced N1 amplitudes will take longer 

in the older compared to younger adults. 

Study IV: Study IV (Volosin, Gaál & Horváth, 2017b – Chapter 8) utilized the same 

paradigm than Study III (distracter-probe event separation in 150, 250, 650 ms or 

longer) but instead of a gap detection task, participants watched a self-selected silent 

movie with subtitles. Because in the active task, the utilization of compensatory 

mechanisms might be assumed, the passive arrangement provides essential information 

on the changes in the sensory processing and the enhanced sensitivity of acoustic 

system following rare changes in the background.  

Hypothesis: As in Study III, sudden changes in the background acoustic stimulation will 

affect the sensory processing in the older adults longer than in younger adults. 
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Chapter 5: Knowledge of sequence structure prevents 

auditory distraction7
 

5.1 Introduction 

 Many tasks in our everyday life require the filtering of task-relevant and task 

irrelevant sensory events: Task-relevant events have to be processed as fast as possible, 

while task-irrelevant events should not consume processing resources at all. Such a 

“perfect” selective attention set, however, cannot be established: Unpredictable, rare 

stimuli easily capture our attention and disrupt the ongoing task-related behavior, that 

is, we get distracted. A number of studies show that the sensory system automatically 

responds to unpredictable, rare stimulus events (for a summary, see Escera et al., 2000), 

which may lead to involuntary allocation of attention to such events (Schröger, 1997). 

Recent studies show that when forthcoming, potentially distracting events are preceded 

by informative cues, the effects of distraction are reduced or eliminated (Sussman et al., 

2003; Horváth et al., 2011; Horváth and Bendixen, 2012; Wetzel and Schröger, 2007; 

Wetzel et al., 2009, 2012). The goal of the present study was to investigate whether the 

prevention of distraction was also possible by providing information on forthcoming 

distracters without relying on explicit cues.  

Cognitive processing related to distraction is usually investigated in oddball-

paradigms, in which the presentation of frequent standard stimuli is interrupted by 

infrequent deviants. A variant of the oddball paradigm developed by Schröger and 

Wolff (1998b) allows unique insights into distraction-related processing. In this 

paradigm, long and short tones are presented equiprobably, and participants perform a 

duration discrimination task. Occasionally, randomly, the task-irrelevant tone pitch is 

changed (in about 10% of the trials). For such deviants, prolonged response times, 

reduced hit rates and more false alarms were found than for standards. Distraction 

effects can be found at the electrophysiological level as well: After deviance onset, a 

characteristic waveform can be observed in the deviant-minus-standard event-related 

potential (ERP) difference, starting with an enhanced N1 and mismatch negativity 

                                                           
7 Volosin, M., & Horváth, J. (2014). Knowledge of sequence structure prevents auditory distraction: An 

ERP study. International Journal of Psychophysiology, 92, 93-98. 

http://dx.doi.org/10.1016/j.ijpsycho.2014.03.003 
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(MMN) at 100-250 ms, followed by a positivity at around 300 ms (P3a), and finally a 

negative deflection occurs peaking around 500 ms (reorienting negativity – RON). The 

N1-effect and MMN reflect the activity of sensory change detection processes 

(Näätänen, 1982). P3a is generally assumed to reflect involuntary attention switching 

(Friedman et al., 2001; Polich, 2007), while RON is theorised to reflect the reorientation 

of attention to the original task (Schröger and Wolff, 1998a; Sussman et al., 2003). 

Similar results were found in auditory-visual paradigms in which targets were visual 

stimuli (e. g. odd or even numbers) and the distractors were sounds (Escera et al., 1998, 

2000, 2001). Although the early studies using either auditory (Berti and Schröger, 2003; 

Schröger and Wolff, 1998a; Schröger and Wolff, 1998b) or auditory-visual (Escera et 

al., 1998, 2000, 2001) paradigms consistently found prolonged response times (RTs) 

and decreased accuracy, recent studies found abolished or even reversed behavioral 

effects (Li et al., 2013; Parmentier et al., 2010; SanMiguel, et al., 2010a; 2010b; Wetzel 

et al., 2012). These studies suggest that alerting and fore-period effects differ between 

standards and deviants, and these differences influence the behavioral results.   

 Interestingly, the paradigm can be also utilized to assess whether distraction can 

be prevented or reduced. Sussman et al. (2003) utilized the paradigm developed by 

Schröger and Wolff (1998b) but they presented visual cues before each tone. In the 

predictable condition, cues indicated whether the forthcoming tone was a standard or a 

pitch-deviant. In the unpredictable condition, the cues did not allow predicting whether 

the forthcoming tone was a standard or a deviant. In the unpredictable condition, the 

expected distraction effects were found: (delayed RTs to deviants in comparison to 

standards, and the elicitation of N1/MMN, P3a, and RON). In the predictable condition, 

however, the RT-delay, P3a and RON were abolished (predictability had no effect on 

the N1/MMN). These results were replicated in several studies using different 

experimental designs and manipulations of presentation (Horváth et al., 2011; Horváth 

and Bendixen, 2012; Wetzel and Schröger, 2007; Wetzel et al., 2009). 

 These studies showed that cues providing different degrees of predictability 

allow the reduction of distraction, but the mechanism behind the cuing effect is not fully 

understood yet. Although the prevalent interpretation of the cuing effect is that cues 

allow one to prepare for, and prevent distraction caused by deviants (“preparation”-

hypothesis), other interpretations are also possible. The main alternative interpretation is 

that distraction-prevention is a “byproduct” of cue-processing: Because cues deliver 
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information commensurate to that of the forthcoming deviant (i.e. their presentation 

frequencies are necessary the same, therefore deviant cues are deviants themselves 

within the cue sequence), processing this sudden “burst” of information may 

temporarily deplete processing resources, which in turn, may lead to reduced distraction 

effects. Direct evidence against the “byproduct”-hypothesis is scarce. There is only one 

study, conducted by Parmentier and Hebrero (2013), which showed that cues allowing 

the prediction of forthcoming deviants reduced distraction-related response-time delays 

even if the cues preceded the deviants by as much as 2250 ms (i.e. the reduction of RT-

delay did not differ from that at 250 ms cue-tone separation). Because it seems unlikely 

that cue-related processing would block further processing for such a long time, this 

result supports the “preparation” account of the cuing effect.  

 The goal of the present study was to investigate distraction-prevention using the 

method of ERPs in a setting in which information on forthcoming distracters was not 

delivered in “bursts”, but was available continuously. Investigating whether distraction 

can be reduced in this setting is important, because such an arrangement would allow 

the comparison of distraction-prevention ability between groups potentially differing in 

their ability to process and utilize “bursts” of information. That is, the continuous 

availability of cue-information would eliminate confounds due to potential between-

group cue-processing abilities. For example, if processing “burst”-like cues required 

300 ms on average in one group, but required 500 ms in another, then cues appearing 

400 ms before distracters would allow one group to fully prepare for the forthcoming 

distracters, while leaving the other group prone to their distracting effects. In this 

example, one would measure between-group differences in the efficiency in distraction-

prevention, but these differences would not reflect the ability to prevent distraction, 

rather, they would reflect a difference in cue information processing speed. 

Furthermore, even if the cue-distracter separation allowed both groups to process cue 

information in time, the utilization of this information depends on the willingness of 

participants to do so. The amount of effort needed to process cue information in the 

short time available may reduce the participants’ motivation to utilize cue information 

at all (Horváth, 2013).  

 We administered an auditory distraction paradigm in which the presentation 

order of tones was either predictable (every 7
th

 tone was pitch-deviant) or random (with 

1:6 deviant:standard ratio). The tones virtually moved either to the left or to the right 
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and participants responded to the direction of the movement, ignoring sound frequency. 

As in previous studies, deviants in the predictable condition should be less distracting 

than those in the random condition because of the availability of information on 

forthcoming deviants. This arrangement, however, still provides a challenge: 

participants have to keep the current position within the sequence in mind to be able to 

prepare for forthcoming deviants. In order to minimize the effort needed, a visual 

counter showing the sequence position was presented as a constant reminder, which 

made information on forthcoming tones continuously available throughout the 

experimental blocks of the predictable condition. We hypothesized that knowledge 

about the stimulus sequence would reduce or abolish behavioral and ERP effects of 

distraction. 

5.2 Material and methods 

5.2.1. Participants 

 14 healthy young volunteers participated in the experiment (9 women, aged: 19-

26 years, mean age: 22 years). All participants reported normal hearing and normal or 

corrected-to-normal vision. They received either modest financial compensation or 

course credit for participation, and gave written informed consent before the 

experiment, after the experimental procedures were explained to them.  

5.2.2. Materials and procedure 

Participants were sitting in a comfortable chair in a sound-attenuated room 

during the experiment. Each experimental block consisted of either random or 

predictable sequences of complex spatial sounds with 1300 ms SOA, through a 

Sennheiser (HD-600, Sennheiser, Wademark, Germany) headphone. The intensity of 

sounds was individually calibrated to 50 dB sensation level above the hearing threshold, 

determined by the method of limits. 

Tones were generated with Csound version 5.7.11, using the head related 

transfer function tool “hrtfmove2” to simulate virtual movement. Due to a programming 

error, tones were generated with 44.1 kHz sampling frequency, but replayed with 48.0 

kHz, which did not substantially alter the perceived virtual movement. The frequency 

and velocity data values reported below correspond to what participants actually heard. 
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The duration of each tone was 643 ms, with 9 ms rise and fall times. Each tone 

started on the virtual midline (they could be heard in both ears equally), then after 184 

ms they moved 20° toward the left or right (50-50% probability) with constant angular 

velocity in 459 ms, i.e. angular velocity was 43.54°/sec. The tones were complex tones 

with six harmonics. The fundamental frequency of the tones was either 254 Hz (high) or 

202 Hz (low). The amplitudes of the five harmonic overtones were 80%, 40%, 50%, 

30% and 90% of the amplitude of the fundamental. Both frequencies could function as 

deviant (14.28%) or standard (85.71%). The role of frequencies (standard or deviant) 

was counterbalanced between participants: For seven participants, standards were high, 

for the other seven standards were low.  

The participants’ task was to indicate whether the tone moved to the left or to the 

right (regardless of its frequency), by pressing the key held in their corresponding hand. 

The instruction was to respond as fast and accurately as possible, immediately when the 

direction of the virtual movement could be assessed (without waiting for the sound-

offset). Participants were informed before each block whether the presentation of the 

block was predictable or random. Each block consisted of frequent standard and rare 

deviant stimuli, presented with a 6:1 ratio. Thus, 154 tones were presented in each block 

(132 standards and 22 deviants). In predictable blocks every 7
th

 tone was deviant, in 

random blocks the tone order was randomized while keeping the 6:1 standard:deviant 

ratio.  

To support keeping the current sequence position (and the forthcoming deviant 

tone) in mind, a visual counter was presented on a screen. Black digits from 1 to 7 were 

presented continuously in linear order in the middle of the gray screen, under a viewing 

angle of about 7°. The transition between digits occurred 44 ms before each tone. In the 

random condition where the order of the standards and deviants was completely 

unpredictable, the digits and their transition gave information only about the onset of 

the forthcoming tone (i. e., that it will be presented in 44 ms) but not about its pitch 

(deviant or standard). In contrast, in the predictable condition, one of the transitions 

indicated that the next will be a deviant. The transition that was followed by the deviant 

was varied randomly between the participants (e.g., for some participants, the 1-to-2 

transition was followed by a deviant, for others it was the 4-to-5, etc). Participants were 

explicitly told which transition was followed by the deviant. Each block started with a 

so-called “reminder” sequence, that is, the first four tones were presented in alternating 
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order to the left and right directions, in order to make the direction discrimination 

easier. These four tones were not included in the analyses.  

Estimating the effect of predictability is not trivial. Because in the predictable 

condition every 7
th

 stimulus was a deviant, one could select micro-sequences ending 

with a deviant and preceded by exactly six standards (but not seven, that is, the micro-

sequence should end but also start with a deviant) from the random condition as a 

comparison. However, the proportion of such sequences is quite small. Therefore, we 

included deviants preceded exactly by 4, 5, 7 or 8 standards as well. It is well-known 

that deviance-related processing activity is stronger when the deviant follows a longer 

regular stimulus sequence (Bendixen et al., 2007; Horváth et al., 2008; Sams et al., 

1983; Winkler et al., 1996). Furthermore, it is plausible that the activity-increase in 

deviance-related processing brought about by adding further stimuli to the preceding 

regular sequence decreases with each addition: For example, the activity increase when 

a deviant is preceded by 5 instead 4 standards is larger, or at least not smaller, in 

comparison to when it is preceded by 6 instead of 5. Because of this, adding the 

deviants preceded by 4-, 5-, 7- and 8-standard micro-sequences results in less (or at 

least equal) deviance-related activity on average than for the deviants preceded by a 6-

standard micro-sequence. That is, this selection of deviants results in an 

underestimation of the distraction-effects. Furthermore, in a random sequence, the 

frequency of micro-sequences with deviants preceded by a given number of standards 

decreases as the function of the number of preceding standards (e.g. there are less 

deviants preceded by exactly 5 standards than that preceded exactly by 4), which results 

in an even more conservative estimate (because more deviants with shorter preceding 

standard-micro-sequences are included in the average). Because we only included 

deviants preceded by 4-5-6-7-8 standards in the random condition, in order to achieve a 

similar number of trials as in the in predictable condition, about 2.5 times more random 

blocks were needed. Therefore, the experiment consisted of 5 predictable and 13 

random blocks. The order of blocks was randomized with the constraint that predictable 

blocks could never immediately follow each other. The approximately 3.5 minutes-long 

blocks were separated by 1-2 minute long breaks, depending on the participant’s 

preferences, with a longer, 10-15 minute break after 9 blocks. After each block, 

feedback on behavioral performance was given, which consisted of correct response 



60 
 

rates, average response time and a distribution plot of correct response times within the 

block. 

 Before administering the experiment, the participants were familiarized with the 

task: Two practice blocks were presented, one before mounting the electrodes and one 

when the electrodes were already mounted. The practice blocks were about 3.5 minutes 

long and consisted of either only low or only high tones.  

5.2.3. EEG recording 

The EEG was recorded with a sampling rate of 500 Hz with a Neuroscan 

Synamp 2 (Compumedics Inc., Victoria, Australia) amplifier, from 63 Ag/AgCl 

electrodes mounted on an EasyCap (EASYCAP GmbH, Herrsching, Germany) arranged 

according to the 10% system (Nuwer et al., 1998), and filtered online with a 100 Hz 

lowpass filter. The reference electrode was placed on the tip of the nose, the ground 

electrode on the forehead. Horizontal electro-oculogram was measured from two 

electrodes placed at the outer canthi of the eyes. Vertical electro-oculogram was 

calculated off-line as the difference between the signals of the Fp2 and an electrode 

under the right eye.  

The EEG data were filtered offline, using a 20 Hz lowpass filter (Kaiser-

windowed sinc finite impulse response filter, beta of 10.06, 1603 coefficients; 2 Hz 

transition bandwidth, and stopband attenuation at least 100 dB). 1344 ms long epochs 

were extracted from each trial, including a 144 ms pre-tone interval. Amplitude 

calculations were referred to the first 100 ms of the epochs (i.e. the interval before the 

visual stimulus transition). Epochs with a signal range exceeding 150 µV on any 

channel, as well as the first four epochs of each experimental block (“reminder 

sequence”) were discarded from the analyses. The epochs selected according to the 

preceding micro-sequences as described above were averaged separately by condition 

(predictable or random) and stimulus type (deviant or preceding standard), so 

predictable standard, predictable deviant, random standard and random deviant tones 

were included in the analyses.  

5.2.4. Statistical analysis 

For each participant medians of the response times were calculated, which gives 

more accurate results than means because of the skewed distribution of response times. 

Only correct responses between 300 and 1200 ms (following tone onset, i.e. between 
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100 and 1000 ms after the onset of virtual movement) were included in the response 

time analysis. d’ sensitivity scores were calculated according to the signal detection 

theory (MacMillan and Creelman, 1991). Response times and d’ were analyzed in 

repeated measures Condition × Stimulus analyses of variance (ANOVAs).  

Distraction-related ERPs (N1/MMN and P3a) were identified in the group 

average deviant-minus-standard waveforms of the random condition. Individual ERP 

amplitudes were calculated in both conditions as the average signals in 40 ms long 

windows centered at peak latencies at the FCz electrode (where these ERPs typically 

peak in similar experiments, see e.g. Horváth et al., 2011; Horváth and Bendixen, 2012; 

Jankowiak and Berti, 2007). Additionally, and unexpectedly, two slow ERP waveforms 

were also observed, which were analyzed in 200 ms long windows. The amplitudes 

were submitted to Condition (random vs. predictable) × Stimulus (deviant vs. standard) 

repeated measures ANOVAs. Mean square error (MSE) and generalized effect sizes 

(η
2

G) are reported (Bakeman, 2005; Olejnik and Algina, 2003). 

5.3 Results 

5.3.1. Behavioral performance 

Neither the analyses of d’ nor that of response times showed significant effects. 

The group-mean response time in the predictable condition was 576 ms in standard 

(standard deviation, SD=50 ms) and 579 ms in deviant trials (SD=55 ms), while in the 

random condition 577 ms was the average speed on standards (SD=49 ms) and 578 ms 

on deviants (SD=59 ms). These response times are referred to the onset of the tones 

(and not the time point the virtual movement started). Neither the main effect of 

Condition (F[1,13]<.001,p=.99, MSE<0.001, η
2

G<.001), nor the main effect of 

Stimulus: standard or deviant (F[1,13]=.015,p=0.7, MSE<.001, η
2

G<.0001) was 

significant; and the Condition × Stimulus interaction did not show any significant effect 

either: (F[1,13]=.133,p=.133, MSE<.001, η
2

G <.001). Regarding sensitivity, the mean of 

d’-s in the predictable condition was 2.91 for standards (SD=0.65) and 2.8 for deviants 

(SD=0.58). In the random condition, the mean of d’-s was 2.98 for standards (SD=0.79) 

and 2.85 for deviants (SD=0.73). No significant effects were found (Condition main 

effect: F[1,13]=.22,p=.65, MSE=.183, η
2

G=.002, Stimulus main effect: 

F[1,13]=.72,p=.408, MSE= .287, η
2

G=.008, Condition × Stimulus interaction: 

F[1,13]=.011,p=.916, MSE=.034, η
2

G <.001). 
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5.3.2. ERPs 

After excluding artifact-contaminated epochs, individual ERPs were averaged 

for 88 deviants in the predictable condition (SD: 13.6); for 65 deviants in the random 

condition (SD: 13.44); 81.5 standards in the predictable condition (SD: 12.19) and 64.6 

standards in the random condition (SD: 14.36). The group-average ERPs elicited at 

midline electrodes in the two types of trials and conditions, and corresponding deviant-

minus-standard waveforms are presented in Fig. 5.1.  

 

Fig. 5.1 Group-average (N = 14) ERPs to deviants, and standards preceding them in the random 

(left) and the predictable (right) conditions, and the corresponding deviant-minus-standard 

difference waveforms (middle column) at selected midline and averaged mastoid leads. 
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The ERP waveforms at FCz showed a negative-going trend before tone onset 

suggesting preparatory activity for the forthcoming tone. Tones elicited an N1 and a P2, 

which was followed by a negativity between 200 and 300 ms and a negative sustained 

activity of duration comparable to that of the tone. For deviants, the second negativity 

was overlapped by a positive waveform, and the sustained negativity persisted longer 

than for standards. This suggests that participants probably kept their attention slightly 

longer on deviants than on standards. The deviant-minus-standard difference waveform 

in the random condition showed an early negative difference (N1-effect/MMN/N2b) 

with two negative peaks at 100 ms and 162 ms, and a fronto-central P3a peaking at 286 

ms. In parallel with the differential fronto-central negativity resulting from the 

persistence of the sustained negativity for deviants, the difference waveform also 

showed a slow positive activity after 500 ms, peaking at 634 ms on the POz lead in the 

random condition (identifiable as a P3b).  

The ANOVA of the amplitudes at the first peak of the early negativity showed a 

significant Stimulus main effect: F(1,13)=39.766, p<.001, MSE=1.667, η
2

G=.102, 

indicating larger (more negative) N1 (and possibly MMN) amplitudes. Neither the 

Condition main effect (F[1,13] = 2.14,p =.16, MSE=1.69, η
2

G=.006 nor the Stimulus × 

Condition interaction ( F[1,13] = .019,p = .89, MSE= 2.629, η
2

G < .001) was significant. 

For the second peak only a marginal Stimulus main effect was found: 

F(1,13)=3.75,p=.075, MSE=6.53, η
2

G=.034. Neither the main effect of Condition: 

(F[1,13]=.75,p=.4, MSE=5.53, η
2

G=.006), nor the interaction of Stimulus × Condition 

(F[1,13]=1.02,p=.32, MSE= 3.048, η
2

G=.004) reached statistical significance. The 

ANOVA of the amplitudes in the P3a latency-range showed a significant Stimulus main 

effect: F(1,13)=25.05,p<.001, MSE= 22.15, η
2

G=.35 and a Condition × Stimulus 

interaction: F(1,13)=8.20,p=.013, MSE=2.04, η
2

G=.016, showing that P3a amplitude 

was smaller in the predictable than in the random condition. A significant Condition 

main effect was not found: F(1,13)=.095,p=.76, MSE=4.52, η
2

G<.001. The topography 

of the P3a in the two conditions, and the modulatory P3a-effect (the difference of the 

deviant-minus-standard differences) are presented in Fig. 5.2. The ANOVA of the P3b 

activity on POz lead showed significant stimulus effect: F(1,13)=30.366,p<.001, 

MSE=3.837, η
2

G=.053, indicating that deviants evoked larger positive responses than 

standards. Neither the main effect of Condition (F[1,13]=.008,p=.92, MSE=8.813, 

η
2

G<.001) nor the Stimulus × Condition interaction was significant (F[1,13]=1.64 p=.22, 
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MSE=8.033, η
2

G=.014). The ANOVA of the negative difference on AFz electrode 

showed a stimulus main effect: F(1,13)=4.80,p=.047, MSE=8.495, η
2

G=.028, indicating 

that amplitudes for deviant tones were more negative than for standards. No 

significance was present regarding the Condition main effect (F[1,13]=.69,p=.42, 

MSE=8.654, η
2

G=.028) and the Stimulus × Condition interaction (F[1,13]=.92,p=.76, 

MSE=6.37, η
2

G<.001).  

 

Fig. 5.2. Group-average (N = 14) topographical distribution of the P3a in the random (left panel) 

and in the predictable condition (middle panel). The P3a-effect (right panel) is calculated as the 

between-condition difference of the deviant-minus-standard ERP difference. 

5.4 Discussion 

The present study introduced an oddball paradigm in which the prevention of 

distraction was supported by the constant availability of information on the temporal 

structure of the stimulus sequence instead of supplying information on forthcoming 

distracters “in bursts” shortly before the distracter was presented. The results generally 

fit current views on distraction-related processing. Deviants elicited an N1-effect/MMN, 

P3a, a longer sustained frontal negativity, and a parietal P3b in comparison to standards 

preceding them. Importantly, P3a amplitude was significantly reduced in the predictable 

condition, despite using a conservative estimate of this effect. This supports the 

“preparation”-hypothesis, that is, this suggests that information on forthcoming deviants 

allowed participants to reduce the effects of distraction. The results also show that the 

present stimulation arrangement, which was designed to allow the elimination of 
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confounds stemming from (between-group) differences in cue-processing abilities, is a 

viable alternative to the typically used cueing arrangements. 

 Although at first sight, the absence of distraction-related behavioral effects may 

seem to contradict the assumption that distraction had happened, it has to be kept in 

mind that behavioral responses in such paradigms are influenced by a number of factors 

(for example, differences in stimulus-triggered arousal level changes), which, in sum, 

may lead to reduced, but also to enhanced performance in a given paradigm (Li et al., 

2013; Parmentier et al., 2010; SanMiguel et al., 2010a, 2010b; Wetzel et al., 2012). It is 

also possible that the lack of a significant behavioral distraction-effect is partially due to 

the “natural” stimulus-response mapping (congruent stimulus- and response side), 

which may allow for a faster response, and less interference than in studies with 

arbitrary mappings (e.g. duration discrimination). Note that although behavioral 

distraction effects have been observed in previous studies using a laterality-based 

discrimination task (Wetzel et al., 2009), in these studies distracters were unique, 

spectrally rich, novel sounds (i.e. highly deviant sounds, differing in a number of 

features from standards), while in the present study deviants differed only in their pitch 

from standards. 

 Although P3a was significantly reduced in the predictable condition, the N1-

effect/MMN was not similarly modulated by predictability. This is in consonance with 

previous studies, in which cue-information on forthcoming distracters did not affect the 

N1-effect/MMN (Horváth et al., 2011; Horváth and Bendixen, 2012; Wetzel and 

Schröger, 2007; Wetzel et al., 2009). In contrast with these studies, however, in the 

present study there was a definite theoretical possibility that knowledge of the sequence 

structure could lead to MMN reduction. It has been demonstrated that that under the 

right circumstances the deviant-detection system underlying MMN elicitation can 

represent regularities similar to that in the present study, and therefore, it may not 

respond to predictable deviants: Sussman et al. (1998) showed that in a passive 

arrangement (i.e. participants were reading during tone presentation), in a tone sequence 

in which every fifth tone was a deviant, deviants did not elicit an MMN, presumably, 

because the unit of representation was not the single tone, but the five-tone micro-

sequence. The lack of MMN elicitation depended, however, on the rate of presentation: 

MMN was not present when the onset-to-onset interval (stimulus onset asynchrony – 

SOA) was 100 ms, but a clear MMN was elicited when it was 1300 ms (see also Scherg 
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et al., 1989). In a further study (Sussman et al., 2002), in which tones were presented 

with an SOA of 1000 ms, and participants actively monitored whether the repeating 

five-tone-pattern was violated, no significant MMN was observed. Importantly, a 

significant MMN was, however, present in a condition in which participants actively 

monitored the sequence, but were unaware of the five-tone repeating structure. 

Similarly, significant MMNs were found in the study by Jankowiak and Berti (2007), in 

which deviants were presented at regular sequence positions (SOA of 2500 ms) and 

participants were unaware of the regularity. This set of results suggests that top-down 

processes may influence the regularity representation underlying MMN elicitation even 

at a 1/s presentation rate, but the presence of the regularity in itself is insufficient to 

influence the MMN-mechanism. Based on these findings, one might expect that MMN 

would be reduced in the predictable condition of the present study, however, no such 

effect was found. The lack of modulation may be due to a number of differences 

between the paradigms: First, we used a relatively long SOA (1.3s vs. 1.0s) and micro-

sequence length (every 7
th

 was a deviant vs. every 5
th

 was a deviant). Second, also, in 

contrast with Sussman et al.’s (2002) study, in which the feature defining the micro-

sequence pattern and the task-relevant feature was the same (pitch), in our study the two 

features were different (pitch and lateral movement). Third, in Sussman et al.’s (2002) 

study the task was to detect a highly infrequent (2%) pitch variant (which required a 

response only rarely), whereas in the present study the task was a 50-50% 

discrimination (which required a response on each trial). 

The reduction of P3a in the predictable condition indicates that knowledge about 

the stimulus sequence allowed the reduction of distraction. This result fits previous 

studies which used cues preceding deviants to prevent distraction (Horváth et al., 2011; 

Horváth and Bendixen, 2012; Sussman et al., 2003; Wetzel and Schröger, 2007; Wetzel 

et al., 2009). Because information on the tone sequence and forthcoming deviants was 

constantly available during stimulation, a “burst”-like cue processing was not required. 

This supports the notion that distraction is actively prevented by the use of predictive 

information, and the prevention is not (solely) a by-product of cue processing. In 

summary, the present study showed that knowledge of the stimulus sequence allowed 

one to prevent distraction as reflected by the P3a. This result is compatible with the 

notion that distraction can be prevented when information is available on forthcoming 

distracters. Moreover, the constant availability of information on forthcoming 
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distracters eliminates potential processing bottlenecks inherent in other cue presentation 

based procedures. Therefore, the present stimulation arrangement may be more suitable 

to assess between-group differences in the ability to prevent distraction.  
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Chapter 6: Exploiting temporal predictability: Event-related 

potential correlates of task-supportive temporal cue 

processing in auditory distraction8
 

6.1 Introduction 

When performing tasks requiring overt or covert reactions to stimulation events, 

the predictability of the stimulation can often be exploited to streamline processing. If 

we know what types of stimulus events may occur, we can establish selective attention 

sets, which makes it possible to prepare for task-relevant sensory events while ignoring 

task-irrelevant ones (e. g. Parmentier, 2014). We can also make use of cues that predict 

when task-relevant events can occur, and prepare for their processing at a given moment 

in time (Holender and Bertelson, 1965). Numerous studies have shown that selective 

attention sets can be disrupted by rare, unpredictably occurring, or conspicuous stimulus 

events (distracters). In the present study, using the method of event-related potentials 

(ERPs), we investigated whether such distracters can nonetheless be utilized as 

temporal cues to support task-related processing in a continuous auditory stimulation 

paradigm. 

Variants of the oddball paradigm especially suitable for investigating 

distraction-related processing have been introduced by Schröger and Wolff (1998b) and 

Escera, Alho, Winkler and Näätänen (1998). In these distraction paradigms, a discrete 

stimulus sequence is presented, and participants perform a discrimination task related to 

one aspect of the stimulation. Distraction is induced by infrequently, unpredictably 

changing a task-irrelevant aspect of the stimulation. In the paradigm introduced by 

Schröger and Wolff (1998b), participants perform a duration discrimination task in a 

sequence of short and long tones, in which (the task-irrelevant) tone pitch is 

occasionally changed (distracter trials). In the paradigm introduced by Escera et al. 

(1998), participants perform odd/even discrimination for visually presented numbers. 

Each number is preceded by a task-irrelevant sound, and distraction is induced by 

                                                           
8 Volosin, M., Grimm, S., & Horváth, J. (2016). Exploiting temporal predictability: event-related 

potential correlates of task-supportive temporal cue processing in auditory distraction. Brain Research, 

1639, 120-131. http://dx.doi.org/10.1016/j.brainres.2016.02.044 
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occasionally replacing the (task-irrelevant) sound with a different sound. The rationale 

of these arrangements is that behavioral and ERP response-differences between 

distracter and non-distracter trials reflect processes related solely to distraction because 

participants perform the same task on both types of trials. 

Variations of these initial paradigms (see e.g.; Berti and Schröger, 2003; Escera 

et al., 1998; Escera et al., 2000; Escera, Yago and Alho, 2001; Polo et al., 2003; Roeber, 

Berti and Schröger, 2003; Roeber, Widmann and Schröger, 2003; Schröger and Wolff, 

1998a, 1998b) showed a consistent pattern of results. Response times in distracter trials 

were longer than in non-distracter trials, and more mistakes were made. In the ERPs 

(Escera et al., 2000; Escera and Corral, 2007) the distracter-minus-non-distracter 

difference waveforms showed an enhanced N1 and mismatch negativity (MMN) 

between 100-250 ms following the onset of the distracting stimulus event, followed by a 

P3a in the 250-400 ms interval; and finally a negative waveform termed reorienting 

negativity (RON) could be observed between 400 and 600 ms. These ERPs are usually 

described in a three-stage model of distraction. The deviant-related N1 enhancement 

and MMN are generally thought to reflect processes related to auditory change 

detection (e.g. Näätänen, 1982; Näätänen et al., 2007). P3a is thought to reflect an 

involuntary selective attention set change, that is, distraction (Friedman, Cycowicz and 

Gaeta, 2001; Polich, 2007). Finally, RON may reflect processes involved in the 

restoration of the task-optimal attention set after the distracting event (Berti, 2008; 

Schröger and Wolff, 1998a; Sussman, Winkler and Schröger, 2003). 

To better understand information processing in these paradigms, it is useful to 

point out that all of these paradigms feature two types of stimulation events which differ 

in terms of their task-relevancy: 1) One type of event is task-relevant in the sense that 

the occurrence of the event provides the information necessary to select the correct 

response. For example, in the paradigm introduced by Escera et al. (1998), the onset of 

the number is the task-relevant event. In the paradigm introduced by Schröger and 

Wolff (1998b), the task-relevant event occurs at the time point of the short tone offset, 

at which the tone either stops or continues. 2) The second type of event is task-

irrelevant in the sense that it does not convey information regarding the response to be 

given, but nonetheless, it is a well-detectable transient change in the stimulation which 

allows the temporal structuring of the stimulation. In the Schröger and Wolff (1998b) 
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paradigm, this event is the tone onset, whereas in the paradigm introduced by Escera et 

al. (1998) such events are the tone-onsets and -offsets.  

These task-irrelevant events may play an important role in distraction 

paradigms, because these events can be used as temporal cues to predict the onset of the 

task-relevant events, especially if they precede the task-irrelevant events by a constant 

interval (foreperiod effect, see e. g. Capizzi, Correa and Sanabria, 2013; Holender and 

Bertelson, 1975; Leynes, Allen and Marsh, 1998). Indeed, this is the case for all the 

studies referred to above: in these studies, irrelevant and relevant events were presented 

with constant temporal separation, typically in the range of 100-200 ms (e.g. Wetzel, 

Widmann and Schröger, 2012; Berti and Schröger, 2001; Schröger and Wolff, 1998a, 

1998b), but even as high as 600 ms in some experiments (Ruhnau et al., 2010). Because 

of this, it seems reasonable to assume that task-irrelevant events play a “supportive” 

role in performing the task by allowing temporal preparation for the forthcoming task-

relevant event.  

There is substantial evidence for the supportive, temporal cueing function of the 

irrelevant events in these paradigms. In some arrangements, task-irrelevant events 

cannot be disregarded at all: in a duration discrimination task (Schröger and Wolff, 

1998b) the stimulus onset is a crucial reference point, and therefore even small 

deviations – for example, otherwise hardly noticeable (1%) pitch changes – occurring at 

the onset result in robust distraction effects (Berti, Roeber and Schröger, 2004). Recent 

behavioral studies, in which the separation of task-relevant and –irrelevant events was 

manipulated, as well as whether the irrelevant event was followed by a relevant one on 

each trial, showed that the distraction-related response time delay was reduced when the 

foreperiod was not constant and the irrelevant event was unreliable (50% or less) in 

signaling the forthcoming task-relevant event (Berti, 2013; Jankowiak and Berti, 2007; 

Li, Parmentier and Zhang, 2013; Parmentier, 2014; Parmentier, Elsley and Ljungberg, 

2010; Wetzel, Widmann and Schröger, 2012). These results suggest that in distraction 

paradigms, participants actually use the “task-irrelevant” events as temporal cues to 

enhance their task performance, that is, these events are not disregarded at all, but are 

incorporated in the task-behavior of the participants.  

One may even argue that “distraction”-effects observed in these paradigms 

actually reflect the disruption of the regular task-behavior: That is, despite having the 
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same between-event relationship as for the standard stimulation, distracters may not 

enable the same preparatory activity for the task-relevant event. The goal of the present 

study was to investigate whether it was at all possible to exploit a regular temporal 

relationship between a task-irrelevant distracter and a task-relevant event, that is, 

whether distracting events could be utilized as temporal cues to support task 

performance.  

In contrast with previous studies, in which the discrete, trial-based stimulation 

protocol established a standard between-event relationship and occasionally changed the 

identity of the cue event on a low proportion of trials, we used a continuous stimulation 

protocol in which the identity of the cue events was not varied at all, and distraction was 

induced by manipulating the presentation frequency (the probability of presenting an 

event within a given time interval). We administered a continuous stimulation paradigm 

(Horváth and Winkler, 2010), in which 4-5 minutes long, continuous tones are 

presented, which feature occasional gaps and frequency glides (rapid – 10 ms long – 

transitions from one pitch to another). In the present study, the task-relevant events were 

the gaps: participants performed a gap discrimination task: they indicated by key 

presses whether a long (100 ms) or short (10 ms) gap was presented (note that due to the 

short gap duration, the gap onset is too close to the task-relevant moment to be useful in 

any preparation). The glides were task-irrelevant.  

Similarly to discrete paradigms, in which distraction is induced by introducing 

rare task-irrelevant stimulus variations, in the present study, the probability of the glides 

was manipulated to induce distraction: glides occurred frequently or rarely in separate 

conditions, and based on previous studies (Horváth and Winkler, 2010; Horváth, 2014b) 

it was assumed that rare glides lead to distraction. Note that although numerous studies 

compare responses elicited by rare and frequent stimuli presented within the same 

condition to assess the effects of distraction, these effects (as detailed above) are mainly 

brought about by the difference in presentation frequency, and not by the difference in 

tone identity (see e.g. Horváth, Winkler and Bendixen, 2008; but see also Horváth, 

2014b, and Horváth, in press).  

The temporal cue function of the glides was manipulated by randomly inserting 

glides and gaps independently in one condition, while creating an 80% reliable, 

predictive temporal glide-gap arrangement in another (glides preceded gaps by 400 ms, 
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see Fig 6.1). 80% predictability was chosen because this level of reliability seems to be 

sufficient to compel participants to exploit cues (Posner et al., 1980; in the context of 

the distraction paradigm: Horváth and Bendixen, 2012). 400 ms separation was chosen, 

because this would allow efficient preparation (Holender and Bertelson, 1965), while 

allowing the observation of the relevant ERPs (see below). The orthogonal combination 

of the two manipulations resulted in four conditions: an informative frequent glide, an 

informative rare glide, an uninformative frequent glide, and an uninformative rare glide 

condition. In this design, ERPs related solely to distraction would be observable in the 

uninformative rare-minus-frequent waveforms as described above, whereas solely cue 

utilization-related ERP effects would be observable in the frequent informative-minus-

uninformative difference waveforms, and the main question of interest is whether 

interactions between these “pure” effects would occur in the informative rare glide 

condition. 

 

Fig. 6.1 The schematic design of the experimental paradigm, including glides, short gaps 

and long gaps. The thick black line represents the continuous tone alternating between two pitches 

(non-target glides) and the short breaks mark the gaps (short and long targets). The difference 

between glide – gap time intervals and the predictive values in the informative and uninformative 

conditions are marked with dashed lines. 

In this paradigm, the utilization of temporal cues may be manifested in the ERPs 

in various ways: First, participants may form a selective attention set allowing the 

enhanced detection of the cue, which may be manifested as the enhancement of the N1 

waveform (e.g. Hillyard et al., 1973; Kauramäki, Jääskeläinen & Sams, 2007; Lange, 

2013), which may include contributions from the processing negativity (PN) or negative 

difference (Nd; Alho et al., 1986; Alho, 1992; Mueller et al., 2008) signaling that an 

attentional trace for the cue was established (Näätänen, 1982). Second, rare temporal 

cue events may also elicit an N2b (Alho et al., 1986; Folstein and Van Petten, 2008; 
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Näätänen and Gaillard, 1983; Näätänen et al., 2007; Ritter, 1979, 1982, 1992), signaling 

that the event was registered as being task-relevant. Third, preparatory activity for the 

task-relevant event is likely to be manifested in a contingent negative variation 

following the cue (CNV; Dien et al., 2004; Donchin et al.1975; Leynes, Allen and 

Marsh, 1998; Liu et al., 2013; McCallum, 1988; Mento, 2013; Smith, Barry and Steiner, 

2013; Tecce, 1972; van Rijn et al., 2011; Verleger et al., 2012; Walter et al., 1964), 

even if the following, target event is omitted in 15-25% of the cases (Bauer, 1993; 

Walter et al., 1964). 

Interestingly, some studies also hint at the possibility that the P3a, which is 

generally regarded as a reflection of distraction, may be sensitive to cue predictability 

and cue utilization. Wetzel, Schröger and Widmann (2013) compared a condition with a 

constant (100 ms) foreperiod between task-irrelevant and -relevant events, and a 

condition in which the foreperiod varied between 0, 50, 100, 150 and 200 ms. Although 

individual P3a assessments did not show a between-condition amplitude difference, the 

group average ERP waveforms seem to show a P3a amplitude increase for constant 

foreperiods (Wetzel et al., 2013, p. 926, Fig.3; and also a negative shift, potentially a 

CNV). A further hint for the potential effect of predictability on the P3a amplitude 

comes from the continuous stimulation distraction paradigm (Horváth and Winkler, 

2010). In the study by Horváth and Winkler (2010) although glides occurred 

unpredictably, the glide-gap separation was 150 ms for 50% of the glides, therefore, 

participants may have used the glides as a temporal cue for the forthcoming, task-

relevant gap. In this arrangement glides elicited a P3a. When glides and gaps were 

interspersed independently, and therefore the glides could not be used as cues, the glides 

did not elicit a P3a (Horváth, 2014a). Although fully independent and coupled glide-gap 

presentation protocols were not compared directly, these results also hint at the 

possibility that P3a may be enhanced by the temporal predictive value of the distracter 

with respect to the task-relevant stimulus event. In a variant of the paradigm introduced 

by Schröger and Wolff (1998b), Hölig and Berti (2010) made the distracting events 

explicitly task-relevant: for the distracters participants had to discriminate the distracter 

pitch (high or low), instead of its duration. Such distracters elicited an N2b and an 

enhanced P3a in comparison to the condition when distracter events did not require such 

a task-change, which may indicate that P3a, at least in part, is involved in task-

switching or task-set activation (Berti, 2008; Hölig and Berti, 2010, for similar 
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suggestions see Dien, Spencer and Donchin, 2004; Barcelo et al, 2006; Horváth, 

Winkler and Bendixen, 2008). 

In the present study, we hypothesized that in the informative conditions glide-

related ERPs will feature an enhanced N1 (possibly involving PN or Nd) due to the 

establishment of a selective attention set for the glide, and that the glide will be 

followed by a CNV reflecting preparation for the forthcoming gap. It was further 

hypothesized that the rare-minus-frequent glide difference waveforms would show the 

characteristic distraction waveform: an enhanced N1, as well as MMN and P3a. 

Importantly, we hypothesized that the cue value of the glides would modulate the rare-

minus-frequent glide difference waveforms: informative glides would lead to the 

emergence of an N2b, and the enhancement of the P3a in the difference waveform. 

Conversely, if cue utilization would be interrupted by distraction, the CNV would be 

elicited with lower amplitude in the informative rare glides condition than in the 

informative frequent glide condition. 

6.2 Methods 

6.2.1 Participants 

16 paid volunteers took part in the experiment but data of 2 participants were 

excluded from further analyses (one performed the task at chance level, i.e. accuracy 

between 46% and 58%; d’-s between -.2 and .4; and one had a high number of 

movement artifacts resulting in the rejection of about 85% of all epochs). The remaining 

14 participants (mean age: 23, from 19 to 31 years, all right-handed, 12 women) 

reported normal hearing and normal or corrected-to normal vision. They received either 

modest financial compensation or course credit for participation. All participants gave 

written informed consent after the experimental procedures were explained to them. 

6.2.2 Stimuli and procedure 

During the experiment, participants listened to continuous tones (through 

headphones, Sennheiser HD 25-1, Wedemark, Germany) generated off-line with 

Csound 5.16 (www.csounds.com), with a sampling rate of 44.1 kHz. The tones 

consisted of three harmonics with equal amplitude: the fundamental, the second and 

third harmonics (the first harmonic was missing). The fundamental frequency was either 

220 Hz (low) or 277 Hz (high). Tone intensity was 68 dB SPL (measured with an 

artificial head, HMS III.0, Head Acoustics, Germany). The tone featured two types of 
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events: pitch changes with an exponential transition over a duration of 10 ms from low 

to high or back (glides), and short silent periods (gaps) breaking the continuous tone for 

10 or 100 ms (with additional 10 ms linear fall and 10 ms linear rise times). Participants 

performed a gap discrimination task: they indicated by keypresses whether a long or 

short gap was presented, while ignoring frequency glides. The assignment of left and 

right keys to short and long gap durations was counterbalanced between participants. 

Participants were familiarized with the gap duration discrimination task in two 4-

minute-long training blocks at the beginning of the experiment. These blocks did not 

feature any frequency glides in order to demonstrate the difference between long and 

short gaps (i.e. the pitch was constant in these blocks - in one it was high, in the other it 

was low). The probability of the two gap durations was 50 per cent each and they 

followed each other in random order. The between-gap intervals (measured between the 

onsets of the amplitude decreases) was random: it contained a fixed, 1.3 s period and an 

additional time period randomly drawn from an exponential distribution characterized 

by a mean of 1.5 s. Glides were presented either frequently or rarely in different 

conditions. The glide-to-glide interval was chosen randomly from a uniform distribution 

of intervals between 4.0 and 16.0 s in rare glide blocks, and between 1.0 and 4.5 s in 

frequent glide blocks. (On average, frequent glide blocks featured 87 glides and 85 

gaps, whereas rare glide blocks featured 23 glides and 85 gaps). Because glide and gap 

presentation times were independently generated, glides and gaps could occur 

temporally close to each other. To avoid glide-gap overlaps, for gap and glide events 

scheduled to occur within 150 ms, the starting point of a long gap was re-scheduled to a 

time point 150 ms earlier, whereas short gaps were re-scheduled to be presented 80 ms 

earlier. If the gap was scheduled to be preceded shortly by a glide, the gap was re-

scheduled to be presented 80 ms later, irrespectively of its duration. In the 

uninformative conditions, no further manipulations were administered. In the 

informative condition, however, gaps immediately following glides were re-scheduled 

to exactly 400 ms following glide onset in 80% of the cases (randomly chosen), thereby 

creating an event sequence in which 80% of the glides were followed by a gap exactly 

by 400 ms. To be able to collect a similar number of ERP epochs in each condition, and 

for each glide presentation frequency (with timing parameters described below) without 

overlaps from other events, a simulation of the scheduling was run. Based on the results 

of this simulation, the informative glide condition was administered in 5 rare and 2 
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frequent glide blocks, the uninformative glide condition in 6 rare and 2 frequent glide 

blocks.  

The experiment was conducted at the University of Leipzig. Participants were 

sitting in a comfortable chair in a sound-attenuated chamber. The experiment was run in 

two parts. The first part featured the informative condition blocks for seven participants, 

while seven others started with the uninformative condition blocks. The duration of an 

experimental block was approximately 4 minutes. Before each condition, a short (2 

minutes long) practice block reflecting the structure of forthcoming experimental blocks 

was presented. 

During each block a black fixation cross was presented on grey background on a 

screen in front of the participants. At the beginning of each block, the task instruction 

was displayed on the screen, and stimulation started when participants pressed a key. 

Data from the practice blocks were not analyzed. Between the blocks short (1-2 min) 

pauses were available, and at about the half of the experiment, participants had the 

opportunity for a longer (5-15 min) break. At the end of each block, feedback about the 

accuracy was displayed on the screen.  

6.2.3 EEG recording 

The EEG was recorded with 512 Hz sampling rate with an Active Two 

(BioSemi B. V., Amsterdam, Netherlands) amplifier, from 64+2 active electrodes 

mounted on a headcap according to the 10% system (Nuwer et al., 1998). A further 

electrode was placed on the tip of the nose for off-line re-referencing. Horizontal 

electro-oculogram was measured by two electrodes placed to the outer canthi of the 

eyes, and vertical electro-oculogram was measured from electrodes attached above and 

below the left eye. Because of the malfunction of the electrode at Fp1 position this 

channel was discarded from the analyses. 

The continuous EEG was referenced to the nose and was filtered offline, using a 

30 Hz lowpass filter (Kaiser-windowed sinc finite impulse response filter, beta of 5.65, 

929 coefficients; 2 Hz transition band width, stop-band attenuation at least 60 dB). 500 

ms long glide-related epochs were extracted, including a 100 ms pre-glide interval. 

Only epochs corresponding to glides not preceded by any event in 600 ms and not 

followed by any event in 390 ms were retained for analysis. Epochs with a signal range 

exceeding 100 µV on any channel were also discarded from the analyses. The 
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remaining epochs categorized according to Cue Function (informative / uninformative) 

and Glide Frequency (frequent / rare) were averaged separately, that is, rare 

informative, frequent informative, rare uninformative and frequent uninformative glides 

were included in the analyses. 

6.3 Statistical analyses 

Only correct responses occurring within 120 to 1000 ms after the beginning of a 

gap were included in the reaction time analysis. Individuals were characterized by the 

median reaction time, because it better represents the typical response time than the 

mean due to the skewed individual reaction time distribution. d’ sensitivity scores for 

gap discrimination were calculated according to the Signal Detection Theory 

(MacMillan and Creelman, 1991). Reaction times and d’-s were analyzed in repeated 

measures ANOVAs including the factors Cue function (informative / uninformative) 

and Glide Frequency (rare / frequent).  

The glide-related N1 latency and maximum was measured in the group-average 

uninformative frequent glide condition: it reached its maximum (negative) peak at Fz, at 

107 ms. The N1/MMN deflection was identified in the rare-minus-frequent difference 

waveform of the uninformative condition: it peaked at 129 ms at FCz. For identifying 

informativeness-related negative ERP waveforms, and the P3a, however, the 

informative condition was chosen since these components should be elicited with 

maximal amplitudes in this condition. The negative peak overlapping the N1/MMN 

peaked at 158 ms at FCz in the informative rare-minus-frequent difference waveform; 

the P3 peaked at 346 ms at Pz. Finally, as an exploratory step, we calculated the 

difference of the frequent-minus-rare difference waves, to better characterize this 

negative difference. For all analyses individuals were characterized by the average 

amplitude measured in 20-ms windows centered on these peak latencies, at the 

electrodes, and the data were submitted to Cue Function × Glide Frequency ANOVAs. 

To assess whether amplitude differences were caused by topographical differences 

between ERP waveforms or difference waveforms (and not by genuine amplitude 

modulations), the effects were compared in ERP × Electrode (for N1/MMN and N2b: 

AFz, FCz, CPz, POz; for P3: Fz, Cz, Pz, Oz, respectively) ANOVAs, in which the 

amplitudes were vector-normalized as described by McCarthy and Wood (1985). In 

such analyses a significant interaction would mean that the shapes of the two ERP 

topographies differ, that is, that the manipulations result in the activation of different 
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ERP generators as well. Statistical analysis was conducted in R (version 3.1.0, R Core 

Team, 2014). Generalized eta squared (η
2

G) effect sizes are also reported (Olejnik and 

Algina, 2003; Bakeman, 2005). 

6.4 Results 

6.4.1 Behavioral results 

Although the present study was not designed for the investigation of the gap-

related behavioral and electrophysiological responses, a liberal trial-selection procedure 

still made it possible to assess distraction- and cue function-related effects manifested in 

the accuracy and reaction time data. To make meaningful and unbiased between-

condition comparisons, we selected glide-gap pairs with a similar temporal structure: 

we selected gaps which were preceded by a glide in 300-500 ms and were not followed 

by any glides in 1 s. The 300-500 ms interval was used for the following reason: In the 

informative conditions, 80% of the glides were followed by a gap in 400 ms. In the 

uninformative conditions, however, this 400 ms glide-gap separation is extremely rare 

because of the independent presentation of glides and gaps. To include a reasonable 

number of trials with close to 400 ms separations, gaps with 300-500 ms glide-gap 

intervals were selected. The 1 s glide-free interval following the gap was chosen to 

make sure that no interference from glides presented during the response interval 

contaminated the data. Even with the liberal trial selection, two participants did not have 

trials with responses, that is, they failed to respond to gaps in the selected trials in the 

rare uninformative condition. For this reason they were not included in the following 

accuracy and reaction time analyses. 

To assess gap-related accuracy, correct response rates were calculated. The 2 × 2 

ANOVA of the correct response rates showed no significant main effect of Glide 

Frequency (F(1, 11) = .38, p = .55, η
2

G = .002) or Cue Function (F(1, 11) = .04, p = 

.848, η
2

G < .001). The Glide Frequency × Cue Function interaction was not significant 

(F(1, 11) = 3.74, p = .08, η
2

G = .004) either. Participants performed the task in average 

with 88.9% (SD = 9.4) correct response rate. 

Gap discrimination performance was assessed in a 2 × 2 ANOVA of the d’-s. 

Although a tendency of Glide Frequency × Cue Function interaction effect (F(1, 11) = 

4.14, p = .067; η
2

G = .023) was found, the main effect of Glide Frequency (F(1, 11) = 

.029, p = .86, η
2

G < .001) and Cue Function (F(1, 11) = .164, p = .69, η
2

G = .004) were 
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not significant. The mean gap duration discrimination sensitivity was 2.62 (SD = .88) in 

the sample.  

For the reaction times, a significant Cue Function main effect was found (F(1, 

11) = 9.19, p = .011, η
2

G = .125), showing that informative foreperiods allowed faster 

responses than uninformative ones. The average response time was 526.76 ms (SD = 

70.92) in the informative and 591.02 ms (SD = 99.98) in the uninformative conditions. 

Neither Glide Frequency main effect (F(1, 11) = .11, p = .75, η
2

G < .001), nor the Glide 

Frequency × Cue Function interaction (F(1, 11) = .12, p = .735, η
2

G < .001) was 

significant.  

Due to the nature of the task, participants may also inadvertently respond to 

glides and not only to gaps. The tendency to respond to task-irrelevant glides was 

assessed by selecting sequences where a response to a gap was preceding a glide at least 

in 100 ms, and where these glides were not followed by any other event (glide or gap) 

in 1 s. Then, the ratio of keypresses to such glides in 1 s was calculated. Using this 

method, we ensured that the keypress is actually a response to the glide and not a late 

reaction to a previously presented gap. The number of keypresses to such glides was 

rare (in average between 0% and 18%), suggesting that participants did understand the 

task properly, and followed the instructions. 

 

6.4.2 ERPs 

Individual ERPs were on average calculated from 109 epochs (range: 79 to 130; 

SD = 14.4) from the frequent informative condition, 64 (range: 50 to 83; SD = 9.33) 

from frequent uninformative condition, 54 (range: 30 to 73; SD = 11.47) for the rare 

informative condition, and 56 (range: 38 to 77; SD = 11.02) for the rare uninformative 

condition.  

The group-average ERPs and the corresponding difference waveforms are 

presented in Fig. 6.2. Glides elicited a clear N1, which was peaking at 107 ms in the 

frequent uninformative condition at Fz. The rare-minus-frequent glide difference 

waveform in the uninformative condition showed a fronto-centrally negative deflection 

(labeled as N1/MMN, because this may include both change-detection-related 

waveforms), peaking at FCz at 129 ms, with its polarity inverted on the mastoids. In the 
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informative condition, an additional negativity following the N1/MMN was observable 

peaking slightly later (158 ms) at FCz. This peak showed no polarity-inversion at the 

mastoids. These negative deflections were followed by a centro-parietally distributed 

positive waveform peaking at 346 ms at the Pz electrode, which was present in the 

uninformative condition as well. Due to its parietal distribution, we labeled this 

waveform P3 instead of P3a (which usually exhibits a fronto-central maximum).  

 

Fig. 6.2 Group-average (N=14) glide-related ERPs in the frequent informative, rare 

informative, frequent uninformative and rare uninformative conditions (left column) and the rare-

minus-frequent difference waves measured at midline electrodes (FCz, Cz, CPz, Pz, POz) and at the 

averaged mastoids (M) in the informative and uninformative condition (middle column). The 
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informative-minus-uninformative difference waveforms showing the effect of informative 

foreperiod are presented in the right column. 

The Glide Frequency × Cue Function ANOVA of the amplitudes measured the 

N1 time range (97-117 ms), at Fz showed only a Frequency main effect: F(1, 13) = 

16.788, p = .001, η
2

G = .123, indicating that rare glides elicited higher N1 amplitudes 

than frequent ones. Neither the Cue Function main effect (F(1, 13) = .466, p = .507, η
2

G 

= .005), nor the Glide Frequency × Cue Function interaction (F(1, 13) = 1.061, p = .321, 

η
2

G = .007) was significant.  

The Glide Frequency × Cue Function ANOVA of the N1/MMN amplitudes 

(measured in the 119-139 ms interval at FCz) showed only a significant Glide 

Frequency main effect: F(1, 13) = 41.009, p < .001, η
2

G = .27, showing that rare glides 

elicited higher (more negative) N1/MMN amplitudes than frequent ones. Neither the 

main effect of Cue Function (F(1, 13) = .457, p = .52, η
2

G = .006) nor the Glide 

Frequency × Cue Function interaction were significant (F(1, 13) = 2.9, p = .11, η
2

G 

=.02). The comparison of the N1/MMN topographies showed no Cue Function × 

Electrode interaction (F(3, 39) = .338, p = .80, η
2

G = .003), that is, N1/MMN 

topographies were not significantly different in the informative and uninformative 

conditions. 

 The Glide Frequency × Cue Function ANOVA of the amplitudes of the early 

negative waveform overlapping the MMN (measured at FCz in the 148-168 ms interval) 

showed a significant Glide Frequency main effect (F(1, 13) = 24.08, p < .001, η
2

G = 

.075), but the main effect of Cue Function failed to reach statistical significance (F(1, 

13) = 1.19, p = .296, η
2

G = .008). In addition, a significant Glide Frequency × Cue 

Function interaction was present (F(1, 13) = 23.01, p < .001, η
2

G =.02) indicating that 

the ERP was larger (more negative) in the informative than in the uninformative 

condition. The topographical comparison of the rare-minus-frequent glide difference 

waveforms showed a significant Cue Function × Electrode interaction (F(3, 39) = 9.2, p 

< .001, η
2

G = .077), suggesting that the topographical distributions differed between the 

informative and uninformative conditions across electrodes, that is, this effect was not a 

modulation of the N1/MMN. Additionally, the difference of the two difference 

waveforms (i.e. the Glide Frequency × Cue Function interaction effect) was explored in 
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a 150-ms long window (from 90 to 240 ms), to determine the latency of its (negative) 

maximum. The negativity peaked at Cz, at 162 ms (see topography in Fig 6.3).  

 

Fig. 6.3 Group-average (N=14) topographical distribution of the MMN, N2b and P3 

waveforms in the uninformative (first row) and in the informative condition (second row). The 

MMN, N2b and P3 are based on rare-minus-frequent difference waveforms and the between-

condition difference is plotted in the third row. Note that the scales differ in order to highlight 

differences and similarities in the shape of the distributions. 
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Based on its topographical and latency characteristics, this cue function-related 

negativity might be labeled both as N2b and PN/Nd. Both waveforms are typically 

elicited by active attention (Alho et al., 1986; Alho, 1992; Mueller et al., 2008) to 

register task-relevant events (Ritter, 1992) and reflecting template matching processes 

(Alho, 1992; Näätänen, 1982; Näätänen et al., 2007; Ritter et al., 1992). However, since 

N2b is related more strongly to attended rare deviations (Patel and Azzam, 2005; Ritter 

et al., 1992) than PN/Nd, it is more likely that the overlapping negativity is an N2b 

effect to the attended task-irrelevant events, as it can be seen in the right panel of Fig. 

6.2, elicited by rare informative glides.   

The Glide Frequency × Cue Function ANOVA of the P3 peak showed a 

significant Glide Frequency main effect: (F(1, 13) = 27.783, p < .001, η
2

G = .148). The 

main effect of Cue Function (F(1, 13) = 2.96, p = .11, η
2

G = .05) and the interaction 

were not significant (F(1, 13) = .08, p = .783, η
2

G = .001). The topographical 

comparison of the rare-minus-frequent glide difference amplitudes showed no Cue 

Function × Electrode interaction at Fz, Cz, Pz, and Oz electrodes (after scaling: F(3, 39) 

= .018, p = .908, η
2

G = .001), that is, the P3 topographies were not significantly different 

in the two conditions. The informative-minus-uninformative difference waveforms are 

also presented in Fig 6.2, in the right panel. These difference waveforms show that the 

lack of the hypothesized P3 difference might be due to the overlap of CNV in the time 

window of P3, and Fig. 6.4 represents its topographical distribution.  
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Fig. 6.4 Group-average (N=14) topographical distribution of CNV in the uninformative 

(first row) and in the uninformative condition (second row). Since CNV is basically elicited under 

informative foreperiod, the informative-minus-uninformative differences are relevant in this case. 
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6.5 Discussion 

The goal of the present study was to investigate whether it was possible to 

exploit a regular temporal relationship between a task-irrelevant distracter event (a 

glide) and a task-relevant event (a gap) to prepare for the moment the task-relevant 

event (gap) was likely to occur. Distraction was induced by the manipulation of glide 

presentation frequency (rare vs. frequent), which resulted in a characteristic distraction 

ERP waveform: Rare glides elicited an early negative deflection (probably composed of 

an enhanced N1 and MMN) in comparison to frequent glides, indicating that rare glides 

triggered automatic auditory change detection mechanisms. The N1/MMN was 

followed by a similar P3 in both informative and uninformative conditions. The 

manipulation of cue function (i. e. whether the glide allowed the prediction of the task-

relevant moment) was also successful, as evidenced by the N2b elicited by the rare 

informative glides, and CNV elicited in both informative glide conditions. An N1 

difference between informative and uninformative conditions, which would reflect the 

establishment of a selective attention set for the informative, but not for the 

uninformative glides, was, however, not observable.  

The rareness-related early negativity (presumably the mixture of an enhanced 

N1 and MMN) reflects auditory change detection, potentially leading to the orientation 

of attention to the eliciting event (Näätänen, 1982; Näätänen et al., 2007). Importantly, 

this negative waveform was further modulated by the cue function of the glides: 

somewhat later, an N2b was observable in the informative rare-minus-frequent glide 

waveform but not in the uninformative one. This finding is in line with previous 

findings, which showed that N2b is elicited only by sounds which are rare in the terms 

of a sound-related task (Sams, Alho and Näätänen, 1983; Ritter et al., 1992). In the 

present context the presence of the N2b indicates that participants included the 

informative glides into their task-behavior, that is, they utilized the distracter glides as 

temporal cues. It is important to note, however, that we found no evidence that 

participants formed an attention set tuned for glides in the informative glide conditions, 

as no N1-enhancement was observed in the informative-uninformative glide contrast. 

That is, the inclusion of the glides into the task-behavior seems to be limited to a post-

perceptual level: whereas the N1 reflecting the auditory processing of the glides was 

unaffected, the task-relevance was nonetheless reflected by the elicitation of the N2b, 

and the following CNV.  
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The hypothesized P3a enhancement in the informative condition was not 

observable and the measured waveform also showed a parietal distribution, therefore we 

labeled it more generally as P3. Beyond the trivial explanation (i.e. the predictability of 

the task-relevant moment has no effect on the P3), the lack of the expected effect has at 

least two further explanations.  First, it is possible that the rare informative glides may 

have elicited ERPs which overlapped, and presumably cancelled the P3a-effect. Beside 

the N2b, the CNV observed in the informative conditions may have contributed to such 

an overlap. Since the CNV is a long lasting negative deflection, it might affect the later 

components in the time window of the foreperiod, including the P3a related to the first 

event (Dien, Spencer and Donchin, 2004; Verleger et al., 2012; Wetzel, Schröger and 

Widmann, 2013). In the study of Wetzel, Schröger and Widmann (2013) P3a and CNV 

waveforms were also observable when the distracter was informative regarding the 

presentation probability and occurrence time of the target (300 ms following distracter, 

that is 300 ms foreperiod). In their study, similarly to our results, P3a amplitude did not 

differ significantly between informative and uninformative conditions either, although 

for informative distracters a P3a latency shortening was present and informative 

distracters elicited a late negative shift interpreted as CNV, but it did not overlap P3a. 

The lack of overlap of these two waveforms could be explained by the relatively early 

occurrence of P3a (between 220 and 300 ms) compared to CNV (between 330-400 ms) 

and the utilization of cross-modal stimulation (auditory distracters and visual targets). In 

the present study, however, CNV started around 300 ms, which coincided with the P3 

time-range. There is also evidence that rare cue events are followed by enhanced CNVs 

in comparison to frequent cues (Bauer et al., 1992), suggesting that an enhanced CNV 

to rare informative glides could cancel a potentially significant P3a-increase which 

might explain both the null-effect and the parietal distribution of the component in the 

present study.  

Second, one might also argue that participants were not motivated enough to 

rely on glides as cues and to extract the temporal information they provided because this 

would essentially transform the single-task into a – more difficult – dual-task situation 

(detect the glides as well as discriminate the gaps). Because cue utilization is voluntary, 

and cue utilization behavior was not measured on-line, participants could “opt-out” 

from using the cues without notice (as demonstrated by Horváth, 2013). However, this 

explanation is not convincing, because of the presence of the attention- and preparation-
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related negativities to rare informative glides (N2b, CNV), indicating that participants 

evaluated these as task-relevant events.  

In line with the ERP data, the behavioral results also suggest that informative 

glides were utilized as cues allowing task-related preparation: although correct response 

rate and gap duration discrimination scores were not affected, participants responded 

significantly faster when an informative foreperiod was provided. It is important to note 

that data from two participants were excluded from the reaction time- and accuracy 

analysis, because they did not respond in the selected trials in the uninformative rare 

glide condition. Such response omission to task-relevant stimuli following a distracting 

event has also been reported by Pacheco-Unguetti, Gelabert & Parmentier (2016), who 

interpreted it as a temporary suspension of cognitive activity after distraction.   

The behavioral results basically fit into the literature using either discrete (e. g. 

Li, Parmentier and Zhang, 2013; Parmentier, 2014; Parmentier, Elsley and Ljungberg, 

2010; Wetzel, Widmann and Schröger, 2012) or continuous (Horváth, 2014a; Horváth 

and Winkler, 2010) stimulation. In studies where temporal intervals between task-

irrelevant and task-relevant events (in audio-visual paradigms: distracter tone onset and 

offset and the onset of visual target stimuli) were manipulated, the fixed foreperiod 

between rare distracters and targets had the potential to enhance behavioral performance 

(e. g. reduced reaction times or at least reduced distraction effect) on a second, task-

relevant event in a 2-choice task, even though the task-irrelevant first event did not 

provide any specific information on the type of the succeeding second one (Holender 

and Bertelson, 1975; Parmentier, Elsley and Ljungberg, 2010; Wetzel, Widmann and 

Schröger, 2012, but see Li, Parmentier and Zhang, 2013), and implicit timing 

expectations improved reaction times and accuracy as well (Rimmele, Jolsvai and 

Sussmann, 2011). In the present study, participants also responded faster when the task-

relevant event was preceded by an informative foreperiod, which is in correspondence 

with the studies cited above, suggesting that they exploited the temporal cue value of 

the glides. 

Most of the studies cited above did not find any change in hit rates when a 

temporally informative foreperiod was present in discrete stimulation protocols (Li, 

Parmentier and Zhang, 2013; Wetzel, Schröger and Widmann, 2013; Wetzel, Widmann 

and Schröger, 2012, but see Parmentier, Elsley and Ljungberg, 2010), which is in line 
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with the present findings. Using continuous stimulation, in Horváth and Winkler’s 

(2010) study, gap detection rate was significantly reduced and participants got slower as 

well when only 50% of the glides were followed by a gap. However, when glides and 

gaps were presented in a fully independent manner, reaction times were not impacted 

(Horváth, 2014a), which suggests that randomly presented glides did not enhance 

readiness for response, while in case of 50% gap probability, participants might have 

treated task-irrelevant glides and succeeding gaps as a common unit and glides as 

potential cues. In the present study, the 80% gap presentation chance after glides in the 

informative condition let participants to form stronger associations between the two 

types of stimuli and to mark glides as task-relevant events exploiting their cue value as 

reflected in ERPs (enhanced N2b, CNV) and in decreased reaction times to gaps. 

Correct response rates and d’-s were, however, not significantly impacted by glide 

presentation frequency. This difference to Horváth’s (2014a) study might be explained 

by the task-difference between the two studies: while in Horváth’s (2014a) experiment, 

the task was gap detection, which required fast simple responses, the present study, 

however, featured a discrimination task, in which the frequently presented glides 

without any information regarding the correct answer (i. e. the duration of the target) 

might have interfered with the discrimination process.  

In summary, the present study showed that the constant foreperiod between task-

irrelevant distracter and task-relevant target events allowed participants to exploit the 

temporal cue value of rare distracters and to support the temporal preparation for the 

task-relevant second event. This supportive effect was not manifested in an enhanced 

perceptual processing of the informative glides (as no cue function-related N1 

differences were found), but it was manifested in ERPs reflecting post-perceptual 

processing: the characteristic rare-minus-frequent difference waveform featured an N2b 

in the informative condition, and informative glides were also followed by a CNV, 

suggesting preparational effects. The task-supporting effect was present behaviorally as 

well: the presence of informative glides enhanced participants’ response-behavior to the 

gaps reflected by decreased reaction times, even though it did not increase accuracy. 

Our results basically fit the results of studies varying the temporal cue value of the 

distracter events not only in discrete (Hölig and Berti, 2010; Parmentier, Elsley and 

Ljungberg, 2010; Wetzel, Schröger and Widmann, 2013; Wetzel, Widmann and 

Schröger, 2012) but in continuous stimulation paradigms (Horváth, 2014a; Horváth and 
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Winkler, 2010) as well. Finally, and most importantly, the present study supports the 

idea that both prediction- and distraction-based information processing are manifested 

in various distraction paradigms.   
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Chapter 7: Task-optimal auditory attention set restored as 

fast in older as in younger adults after distraction9
 

 

7.1 Introduction 

Aging is associated with deteriorated frontal lobe functions which result in a 

decreased ability to inhibit the processing of irrelevant information (Guerreiro, Murphy 

& Van Gerven, 2010; Hasher, Lustig & Zacks, 2007; Zanto & Gazzeley, 2014). This 

leads to greater susceptibility to distraction, that is, an inability to filter out task-

irrelevant aspects of stimulation (Chao & Knight, 1997; Lustig, Hasher & Zacks, 2007; 

Mager et al., 2005). Numerous studies demonstrated that the impact of distracters on 

task-performance was stronger in older than in younger adults (e.g. Berti, Grunwald & 

Schröger, 2013; Carlson, Hasher, Connelly & Zacks, 1995; Woods, 1992). Distraction, 

however, is not a unitary phenomenon, and ageing may affect some distraction-related 

processes while sparing others, which might be reliably delineated by method of event-

related potentials (ERPs).  Differences in distraction-related processes can be reflected 

by amplitude- or latency-differences in specific ERP components (Escera & Corral, 

2003; Horváth, Winkler & Bendixen, 2008). For example, Chao and Knight (1997) 

suggested that the age-related enhancement of the Pa mid-latency auditory ERP 

reflected decreased inhibition of incoming stimulation. Moreover, based on P3a latency 

differences, Horváth, Czigler, Birkás, Winkler and Gervai (2009) suggested that 

involuntary attention switching took longer in older than in the younger adults. The goal 

of the present study was to investigate how fast younger and older adults could restore 

the task-optimal attention set after distraction occurred. We utilized a recently 

developed, continuous stimulation distraction paradigm (Horváth & Winkler, 2010; 

Horváth, 2014a), which relies on the attentional modulation of the auditory N1 ERP. 

In most studies investigating the effect of aging on distraction and its 

electrophysiological correlates, involuntary attention switching was induced by rare 

(oddball) stimuli which broke the regularity of a sequence comprising frequent stimuli. 

                                                           
9 Volosin, M., Gaál Zs. A., & Horváth, J. (2017a). Task-optimal auditory attention set restored as fast in 

older as in younger adults after distraction. Biological Psychology, 126, 71-81. 

http://doi.org/10.1016/j.biopsycho.2017.04.007 
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Distraction was characterized by rare-minus-frequent (behavioral or ERP) response 

differences. Studies comparing distraction effects between younger and older adults 

showed either no significant differences or differences with the same sign. Specifically, 

behavioral distraction effects (e.g. rare-minus-frequent reaction time differences) were 

mostly comparable between younger and older adults (Amenedo & Diaz, 1998; Gaeta, 

Friedman, Ritter & Cheng, 1998; Getzman, Gajewski & Falkenstein, 2013; Horváth et 

al, 2009; Iragui, Kutas, Mitchiner & Hillyard, 1993; Leiva, Parmentier & Andrés, 2014; 

Mager et al., 2005), or, in some cases, older adults were more impacted by distracters (i. 

e. larger reaction time increase to rare stimuli, see Berti, Grunwald and Schröger, 2013; 

Woods, 1992).  

The ERPs observable in the rare-minus-frequent difference waveform are 

generally interpreted as reflections of distraction-related processes: Sensory change- and 

deviance detection is thought to be reflected by the mismatch negativity (MMN, 

Näätänen, 1982), and the enhancement of the N1; the involuntary change in attentional 

orientation (distraction) is reflected by the P3a (Friedman, Cycowicz & Gaeta, 2001; 

Polich, 2007). Most studies found that in older adults the ERP amplitudes were smaller 

(MMN: Getzman, Gajewski & Falkenstein, 2013; Horváth et al., 2009; P3a: Gaeta et 

al., 1998; Iragui et al., 1993), or similar to those recorded in younger adults (MMN: 

Amenedo & Diaz, 1998; Berti, Grunwald & Schröger, 2013; Gaeta et al., 1998; Mager 

et al., 2005; P3a: Berti, Grunwald & Schröger, 2013; Getzman, Gajewski & 

Falkenstein, 2013; Mager et al., 2005). Similarly, the distraction-related ERPs were 

delayed (P3a: Gaeta et al., 1998; Getzman, Gajewski & Falkenstein, 2013; Horváth et 

al., 2009; Mager et al., 2005) or were elicited with similar latency as in younger adults 

(MMN: Amenedo & Diaz, 1998; Gaeta et al., 1998; Getzman, Gajewski & Falkenstein, 

2013; Horváth et al., 2009; Mager et al., 2005).  

In the present study, we utilized a different approach to measure the effects of 

distraction (Horváth & Winkler, 2010). Instead of interpreting the ERPs observable in 

the rare-minus-frequent difference waveforms, the present study exploited the well-

known attentional modulation of the auditory N1 waveform to measure the time of 

recovery from distraction. In the following, we first briefly summarize the literature on 

the effects of attention on the N1. Then an overview of the studies suggesting that N1 

might be a suitable tool to measure the recovery time from a distracted state is 

presented. Finally, we discuss these phenomena in the context of aging.  
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N1 is associated with the detection of change in auditory stimulation (Näätänen 

& Picton, 1987). Numerous studies found that N1 was enhanced when the eliciting 

auditory event was in the focus of attention or the attention set was optimal to perform 

the task (Hansen & Hillyard, 1980; Hillyard, Hink, Schwent & Picton, 1973; Lange, 

2013; Okamoto, Stracke, Wolters, Schmael & Pantev, 2007). In contrast, attentional 

disruptions led to reduced N1 amplitudes (Horváth & Winkler, 2010; Horváth, 2014a, 

2014b). The attentional enhancements might not only reflect a genuine N1 modulation, 

but also the emergence of other ERP components (Woods & Clayworth, 1987), like the 

negative difference (Nd: Hansen & Hillyard, 1980) or processing negativity (PN: Alho, 

Paavilainen, Reinikainen, Sams & Näätänen, 1986; Alho, 1992; Näätänen, 1982), which 

may overlap with the N1 (Näätänen, 1982; Woods & Clayworth, 1987). However, Nd 

and PN can be separated from the N1, because in contrast to the N1, they do not show a 

polarity inversion at the mastoids when the EEG is recorded with a nose reference 

(Alho et al., 1986). While the enhancement of N1 is considered to reflect enhanced 

auditory event and feature detection (Näätänen & Winkler, 1999), Nd and PN are 

regarded as correlates of voluntary, task-relevant processes, possibly indicating 

template-matching to the attentional trace (Alho, 1992; Näätänen, 1982), and related to 

sustained attention (Jemel, Oades, Oknina, Achenbach & Röpcke, 2003). 

That the modulation of the N1 amplitude could be used to measure the recovery 

time from a distracted state is supported by several studies. First, Schröger (1996) found 

that when tone pairs were presented to participants, response accuracy to the second 

tone was reduced when it was preceded by a distracter in 200 ms (in comparison to 

those preceded by a distracter in 560 ms). The performance decrease was accompanied 

by a positive shift in the ERP at around 100 ms following the tone onset. Because the 

positive shift also followed the distracter by about 300 ms, it could not be, however, 

decided whether it reflected an attenuation of the target-related N1, or the distracter-

related P3a. Studies using the continuous stimulation paradigm introduced by Horváth 

and Winkler (2010) showed that task-relevant auditory events indeed elicited lower 

amplitude N1s when shortly preceded by distracter events. In this paradigm, continuous 

tones are presented, which alternate between two pitches by rare, short glissandos 

(glides). The participants’ task is to detect and respond to frequently occurring short 

silent periods (gaps) while ignoring the glides. It was found that a 150 ms glide-gap 

separation resulted in reduced gap-related N1s and lower gap detection rates in 
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comparison to gaps not preceded by other events in at least 1300 ms. In a later study 

using the continuous stimulation paradigm Horváth (2014a) found that the distraction 

effects (N1 amplitude and detection rate reductions) did not last longer than 650 ms. 

These results fit well into the literature of the auditory attentional blink (see for 

example, Shen & Mondor, 2006; Tremblay, Vachon & Jones, 2005). In most attentional 

blink paradigms, two target stimuli are embedded in a rapid tone-sequence, and 

detection of the second target is impacted when the separation of the targets is short 

(e.g. shorter than 270 ms: Horváth & Burgyán, 2011; 90-150 ms: Shen & Alain, 2010). 

Furthermore, Shen and Alain (2010) found that the second target elicited lower-

amplitude N1 when it was immediately preceded by the first target, in comparison to the 

case when the targets were separated by six intervening tones. 

N1 elicitation also differs between age groups. For N1s elicited by tone onsets, 

N1 amplitude was mostly found to be higher in older adults (Anderer, Semlitsch & 

Saletu, 1996; Amenedo & Diaz, 1998; Chao & Knight, 1997), or no age-related 

differences were observed (Getzman, Gajewski & Falkenstein, 2013; Horváth et al., 

2009; Mager et al., 2005; Pfefferbaum, Ford, Roth & Koppel, 1980; Woods, 1992; but 

see also Berti, Grunwald & Schröger, 2013). In contrast, gaps in continuous tones seem 

to elicit lower amplitude N1s in older than in younger adults (Alain, McDonald, Ostroff 

& Schneider, 2004; Harris, Wilson, Eckert & Dubno, 2012).  

Experimental data on the duration of the distracted state induced by rare 

auditory events, and its dependence on age is scarce. Slawinski and Goddard (2001) 

presented short sinusoidal tones in a rapid auditory stream, and participants had to 

identify the pitch (low, medium, high) of the tone with higher sound pressure than the 

others. When only the probe stimulus was presented with higher sound pressure, both 

groups completed the task adequately, although the younger adult group slightly 

outperformed older adults. When both probe and targets were salient, the performance 

of older adults was significantly reduced compared to the younger adult group in 

general, and older adults showed an impaired performance in time intervals from 90 to 

450 ms. Both groups detected probes poorly from 90 to 360 ms, suggesting that 

recovery from distraction – reflected by behavioral indices – happens by about 360 ms 

in younger adults and slightly later in the older adults.  
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Based on the studies summarized above, the aim of the present study was to 

compare the duration of the distracted sensory state induced by task-irrelevant, rare 

stimuli between older and younger adults, as reflected by the modulation of the N1 

ERP. We administered the continuous stimulation paradigm introduced by Horváth and 

Winkler (2010) with minor modifications. The participants’ task was to listen to the 

continuous tone and press a button when a gap occurred, while ignoring glides. The 

presentation frequency of the glides (serving as task-irrelevant distracter events) was 

identical to the one used in the study by Horváth and Winkler (2010), that is, they could 

occur with 1/7 probability at every 1300 ms. Glides preceded potential gap-positions by 

150, 250 or 650 ms. Gaps were presented with 50% probability every 1300 ms at one of 

these time-points. Gaps not preceded by any glides in at least 1450 ms (gap only trials) 

allowed the measurement of the maximal gap-related N1 amplitude. We hypothesized 

that shorter glide-gap separations would lead to stronger N1 amplitude reductions 

because the optimal attention set for detecting a gap could not be fully restored after 

distraction occurred. We also hypothesized that in older adults, the effects of distraction 

– manifested in lower N1 amplitudes – would persist longer. 

 

7.2 Methods 

7.2.1 Participants 

52 healthy adult women participated in the experiment: 25 younger (age: from 

19 to 26; mean: 22.2 years) and 27 older (age: from 62 to 75; mean: 67.5 years) adults. 

Because of excessive amount of eye movement artifacts (3 younger adults) or poor task 

performance (false alarm rates above 40% - further 1 younger, and 9 older adults, or 

detection rates for 150 and 250 ms gaps below 66% - resulting in low epoch numbers – 

another 5 younger and 2 older adults), only 32 participants remained in the final 

analyses. That is, our results are based on the behavioral and ERP data of 16 younger 

(age: from 19 to 26; mean: 22.6 years) and 16 older (age: from 62 to 74 years, mean: 

67.3 years) persons. Participants were free of any neurological or psychiatric disease by 

their own admission. They were compensated by modest amounts of money for taking 

part in the experiment. The study was approved by the United Ethical Review 

Committee for Research in Psychology (Hungary), and all participants gave written 

informed consent. 
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All participants reported correct or corrected-to-normal vision. Only persons 

with hearing threshold differences not more than 20 dB between the two ears in the 250 

- 2000 Hz range (as measured by a SA-6 audiometer, MEDIROLL, Debrecen, Hungary) 

participated in the experiment. Older adults had higher thresholds than younger adults at 

all frequencies (see Table 1). To compensate for threshold differences, the amplitude of 

the experimental sounds was individually adjusted to 50 dB above the 75% hearing 

threshold for the continuous tone used in the experiment (as described below), using the 

single interval adjustment matrix (SIAM) method (Kaernbach, 1990; Shepherd, Hautus, 

Stocks & Quek, 2011). The older adult group was characterized with significantly 

higher IQ score than the younger adult group (Welch’s unequal variances t-test: 

t[29.521] = 4.963, p < .001) as assessed by the Hungarian version of the Wechsler 

Intelligence Scale (WAIS-IV; Wechsler, 2008) administered in a separate session. The 

total mean score was 130.8 (SD = 14.18) in the older adults and 107.3 (SD = 12.4) in 

the younger adults group, suggesting that both groups were characterized with 

intelligence higher than the average as shown by one-sample Student’s t-tests (older 

adults: t[15] = 8.673, p < .01; younger adults: t[15] = 2.344, p = .03). 

Group 250 Hz 500 Hz 1000 Hz 2000 Hz 

Younger 14.38 (±4.16) 8.91 (±5.34) 2.81 (±4.91) 3.59 (±4.62) 

Older 25.78 (±7.94) 23.125 (±10.75) 14.69 (±10.54) 23.125 (±12.94) 

 
t = 7.195, p < 

.001 

t = 6.695, p < 

.001 

t = 5.776, p < 

.001 

t = 8.043, p < 

.001 

Table 7.1. Group-mean hearing thresholds (dB) and standard deviations in the younger and older 

adults groups. 

 

7.2.2 Stimuli and procedure 

Participants were sitting in a comfortable chair in a dimly lit, sound-attenuated 

room and listened to 4-minutes-long continuous tones through Sennheiser (HD-600, 

Sennheiser, Wedemark, Germany) headphones. The tones were generated with Csound 

version 5.17.11 (www.csounds.com), with a sampling rate of 44.1 kHz. The tones 

consisted of three harmonics: the fundamental and the second and third harmonics (the 

first harmonic was missing), with equal amplitude. The base frequency was either 220 

Hz (low) or 277 Hz (high), and the pitch of the tone changed occasionally from high to 

low, or low to high with a 10 ms transition time (glide). Glides could occur in the 4 
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minutes-long continuous tone at discrete time points separated by 1300 ms steps, and 

they occurred randomly with 14.28% probability at each time point, with the constraint 

that successive glides were separated by at least 3900 ms. That is, in average, 27 glides 

were presented in a block. Beside glides, short gaps (10 ms long silent periods preceded 

by a 10 ms linear fall and followed by a 10 ms linear rise) were also inserted in the tone. 

Gaps could occur at time points following the potential glide-time points within 650 ms 

with 50% probability. 35.7% of such gaps followed the potential glide time point by 

150 ms, 28.6% by 250 ms, and 35.7% by 650 ms. Gaps following actual glides within 

650 ms, are referred to as 150 ms, 250 ms and 650 ms gaps in the following. The rest of 

the gaps (i.e. those which were not preceded by a glide within 1450 ms) are termed 

“gap only” trials. The schematic illustration of the tones including glides and gaps is 

presented in Fig. 7.1.  

 

Fig. 7.1. The schematic design of the experimental tones reflecting glide-gap separation 

intervals and epoch types. The different colors represent the different glide-gap separations in the 

continuous tone. 
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Participants performed a gap detection task: they were instructed to press a 

button held in their dominant hand when they detected a gap, while ignoring the glides. 

The first block was a training block which allowed participants to get familiar with the 

task. After the training block, 15 experimental blocks were presented. Each block 

started with a black “START” text displayed on grey background. After 10 s, the 

“START” text changed to a black fixation cross and the tones started to play. At the end 

of each block, feedback about the gap detection rate (the ratio of correctly detected gaps 

to all presented gaps) and the mean reaction time was displayed on the screen. Between 

the blocks, short (1-2 min) pauses were available as needed, with a longer (5-10 min) 

break after the 7
th

 experimental block. 

 

7.2.3 EEG recording 

The continuous EEG was recorded with a sampling rate of 500 Hz (with 100 Hz 

online lowpass filtering) with a Neuroscan Synamp 2 (Compumedics Inc., Victoria, 

Australia) amplifier with 61 Ag/AgCl electrodes mounted on an elastic cap (EASYCAP 

GmbH, Herrsching, Germany) arranged according to the 10% system (Nuwer, 1998). 

Two additional electrodes were placed at the mastoids. The reference electrode was 

placed on the tip of the nose and the ground electrode was attached on the forehead. 

Horizontal electro-oculogram was measured by electrodes attached near the outer canthi 

of the left and the right eye, and the vertical electro-oculogram was calculated offline as 

the difference of the signal between the Fp1 electrode and an additional electrode placed 

under the left eye. The continuous EEG data was filtered offline using a 30 Hz lowpass 

filter (Kaiser-windowed sinc finite impulse response filter, beta of 5.65, 907 

coefficients; 2 Hz transition bandwidth, stopband attenuation at least 60 dB).  

For an overview of the ERP epochs selected for the analyses, see Figure 7.2. For 

all the ERP analyses, glides and gaps with no keypresses in the preceding 300 ms were 

selected, as well as gaps following such glides in 150 ms, 250 ms or 650 ms. “Gap 

only” trials were also selected: these gaps were not preceded by a glide in at least 1450 

ms or by another gap in at least 3400 ms, that is, no distracting events were present 

before them. To estimate the gap-related ERP activity without potentially overlapping 

glide-related ERP waveforms, timepoints were selected in which gaps could but did not 

occur (i. e. 150 ms, 250 ms and 650 ms after potential glide timepoints and after the 
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onset of glides which were not followed by any events in 650 ms), labeled as control 

gaps. 800 ms long epochs were extracted for each of these time-points including a 150 

ms pre-timepoint baseline. Epochs with a signal range exceeding 150 µV on any 

channel were discarded from further processing. Average ERPs calculated from the 

control epochs were subtracted from the corresponding gap-related (150 ms, 250 ms, 

650 ms and gap only) average ERPs. The resulting waveforms are referred to as 

corrected waveforms in the following. The averaged ERPs, control gaps and the 

corrected waveforms are presented in Fig 7.2. 
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Fig. 7.2. The gap-related raw ERPs, the corresponding control ERPs and their difference 

(corrected waveforms) for each glide-gap separations. 
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7.2.4 Statistical analyses  

Reaction times were analyzed only for detected gaps which were not preceded 

by any keypress in 300 ms, separately for each glide-gap separation (150 ms, 250 ms 

and 650 ms and gap only). Only responses which occurred between 120 ms and 1000 

ms after the gap onset were included into analysis. Median reaction times were 

calculated for every participant, which were submitted to Group (younger adults / older 

adults) × Gap Type (150 ms / 250 ms / 650 ms / gap only) ANOVA. Detection rates 

were submitted to an ANOVA of the same structure. The number of false alarms was 

also calculated by selecting glides with no preceding events in 300 ms which were 

followed by a keypress in 120 to 1000 ms. The ratio of these responses to all presented 

glides defined the false alarm rate which was compared between groups by Welch’s t-

tests.  

Although our primary hypotheses were related to the modulation of N1 

component, later waveforms (P2, N2, P3b) were elicited and modulated as well, 

therefore we included them into the analysis. Gap-related ERPs (N1, P2, N2, P3b) were 

identified in the group-average corrected waveforms for detected “gap only” trials. 

Individual N1, P2 and N2 amplitudes were measured as the average signal in a 20 ms 

long windows centered at the “gap only” peak latency in a fronto-central (FCz, Cz, Fz, 

FC1 and FC2) electrode cluster; P3b amplitudes were measured as the average signal in 

100 ms long window centered at the “gap only” peak latency at a parietal cluster (Pz, 

POz, CPz, P1, P2) of electrodes to enhance signal-to-noise ratio. The “gap only” 

amplitudes were compared by Welch’s t-tests between groups, then one-way ANOVAs 

were used to assess for different Gap Types (150 ms / 250 ms / 650 ms / gap only) 

separately for the two groups. Significant Gap Type effects were followed up by 

pairwise t-tests. To compare the glide-gap separation related modulation of the N1 

amplitude between groups, the amplitudes were normalized by the gap-related N1 

amplitudes measured in the corrected gap only waveforms for each group. These 

normalized amplitudes were submitted to Group (younger adults / older adults) × Gap 

Type (150 ms / 250 ms / 650 ms) ANOVAs.  Glide-related N1 and P2 amplitudes 

measured at the fronto-central cluster for glides which were not followed by any gaps in 

650 ms (glide only) were compared between younger and older adults groups using 

Welch’s t-test. All statistical tests were conducted by using R (version 3.1.0, R Core 
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Team, 2014). Generalized eta squared (η
2

G) effect sizes are also reported (Olejnik & 

Algina, 2003; Bakeman, 2005). 

 

7.3 Results 

7.3.1 Behavioral performance 

Reaction times and gap detection rates are presented in Fig. 7.3. The Group × 

Gap Type ANOVA of the reaction times showed a significant Gap Type main effect 

(F[3, 90] = 16.45, p < .001, η
2

G = .07), and a significant Group × Gap Type interaction 

(F[3, 90] = 4.83, p = .004, η
2

G = .022). The Group main effect was not significant (F[1, 

30] = .002, p = .961, η
2

G  < .001). Analyzing the two groups separately, in older adults a 

Gap Type main effect was found: F(3, 45) = 20.07, p < .001; η
2

G = .11, which was 

followed up by pairwise t-tests. Responses were significantly slower with decreasing 

glide-gap separations (i.e. all but the 650 ms vs. gap only comparison showed 

significant differences: t-scores > 3.238, p-values < .01). In contrast, no significant Gap 

Type effect was found in the younger adults group: F(3, 45) = 2.67, p = .06, η
2

G = .04.  

 

Fig. 7.3. Group mean reaction times (left) and gap-detection rates (right; both with 

standard errors of the means indicated by whiskers) in the younger and older adult group for the 

four types of gaps (150, 250, 650 ms glide-gap separation, and gap only trials). 
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The ANOVA of the gap detection rates (Fig. 7.3., right) showed a significant 

Gap Type main effect only: F(3, 90) = 6.946, p < .001, η
2

G = .093, indicating that 

participants in both age groups detected more gaps with increasing glide-gap separation. 

Neither the Group main effect (F[1, 30] = .778, p = .385, η
2

G = .014), nor the Group × 

Gap Type interaction effects were significant (F[3, 90] = .58, p = .63, η
2

G = .001).  

Participants could also inadvertently respond to glides as well, not only to gaps. 

To assess this, we selected glide only trials (no following gaps in 650 ms) and the ratio 

of keypresses to them in 120 to 1000 ms interval was calculated. The occurrence rate of 

such false alarms did not differ between the older and younger adults (t[21.542] = .385, 

p = .703): older adults responded in average to 11.72% of glides and younger adults in 

12.74% (note that participants with higher than 40% false alarm rate were omitted from 

the original sample). 

 

7.3.2 Event-related potentials 

Individual ERPs were averaged separately for the two age groups and for the 

four gap types (gap only, 150 ms, 250 ms, 650 ms) on the corrected waveforms, as well 

as for glide only trials. The average number of epochs in the younger adults group was 

50 (±12) for 150 ms gaps, 41 (±9) for 250 ms gaps, 51 (±11) for 650 ms gaps, 604 (±95) 

for gap only trials and 138 (±20) for glide only trials. In the older adults group, the 

number of epochs was 58 (±12) for 150 ms gaps, 44 (±9) for 250 ms gaps, 55 (±8) for 

650 ms gaps, 666 (±96) for gap only trials and 150 (±20) for glide only trials. 

On the corrected gap only waveforms, a negativity (N1) was peaking at 152 ms 

at FCz in the younger and at 160 ms at Cz electrode in the older adult group. However, 

the mastoid polarity inversion peaked earlier in both groups (114 ms in the younger and 

110 ms in the older adults), suggesting that the fronto-central waveform included 

multiple components: a supra-temporal N1 and a PN (or Nd; Alho, 1986). Indeed, in the 

older adult group, two slightly overlapping peaks were elicited for short glide-gap 

separations. In the younger adults, these components might have completely 

overlapped, resulting in only a single observable peak. To investigate whether the 

supra-temporal N1 component was affected, an additional analysis was conducted in the 

time window of the earlier (mastoid) peak both at the fronto-central cluster and at the 

averaged mastoids. In the younger adults group, N1/PN was followed by a positivity 
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(P2) peaking at 218 ms at Cz lead but this component was absent in the older adults. 

Although a well identifiable P2 was not present in the older adult group, a positive peak 

was nonetheless observable at 230 ms at AF8 electrode in the group-average corrected 

gap only ERP, therefore, in the older adult group the P2 amplitude was characterized as 

the average signal in the 220-240 ms interval. P2 was followed by a negativity (N2), 

peaking for gap only trials at 326 ms at Fz in the younger adults and at 328 ms at C1 in 

the old adult group. The P3b waveform for gap only trials reached its maximum 

amplitude at Pz in both groups, with 428 ms latency in the younger adult group, and at 

504 ms in the older adult group.  

Glide only trials elicited a clear N1 in both groups, peaking at 130 ms at FCz in 

the younger, and at 106 ms at Fz in the older adults. The ERP amplitudes were 

compared between the two groups using Welch’s t-test. In the younger adult group, N1 

was followed by a P2 peaking at 206 ms at Cz. This component was less obvious in the 

older adult group (the maximum amplitude peak was at AF8 at 216 ms). The ERP 

results are plotted in Fig. 7.4 and the corresponding scalp topographies of the analyzed 

components are presented in Fig. 7.6 and Fig. 7.7. 
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Fig. 7.4. The ERP results of the study. In the left side of the figure gap-related ERPs are 

presented plotted at the investigated clusters for younger and older adults separately. In the right 

side the control glide-related ERPs are shown. The grey bands index the time windows (20 ms for 

N1, P2 and N2 and 100 ms for P3b) where statistical analyses were assessed. 

In the later N1 time window, younger adults exhibited significantly higher (more 

negative) amplitudes in the corrected gap only waveforms than older adults (t[29.382] = 

-3.14, p = .004). Therefore, we compared the amplitudes elicited by the four Gap Types, 

separately for the two age groups. Significant Gap Type main effects were present both 

in the younger (F[3, 45] = 23.133, p < .001, η
2

G = .28) and the older adult group (F[3, 

45] = 6.462, p < .001, η
2

G = .138). The follow-up paired t-tests revealed that in the 

younger adults all four amplitudes differed from each other (all t values > 3.218; all p 

values < .006), except for the 650 ms gaps and gap only trials which were similar (t[15] 

= .068, p = .947). In the older adults, the 150 ms gaps amplitudes differed only from 

650 ms (t[15] = 2.739, p = .015) and from gap only trials (t[15] = 3.999, p = .001); and 

the 250 ms gap amplitudes were also lower than amplitudes elicited by gap only trials 

(t[15] = 2.459, p = .027). For the normalized amplitudes, the Group × Gap Type 

ANOVA showed only a significant Gap Type main effect (F[2, 60] = 16.661, p < .001, 
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η
2

G = .163), indicating that N1 amplitudes increased with increasing glide-gap 

separation (Fig. 7.5, left). Neither the main effect of Group (F[1, 30] = .012, p = .914, 

η
2

G < .001), nor the Group × Gap Type interaction (F[2, 60] = .335, p = .717, η
2

G = 

.004) were significant, however. For normalized amplitudes, see Fig.7.3. 

 

Fig. 7.5 ERP Group-mean normalized gap-related N1 amplitudes (with standard errors of 

the means indicated by whiskers) for of 150, 250 and 650 ms glide-gap separations measured at a 

fronto-central cluster (FCz, FC1, FC2, Fz, and Cz). The amplitudes were normalized by the 

corresponding group-mean ERP amplitudes for the corrected gap only trials. 

In the earlier N1 time window (i.e. at the latency of the mastoid polarity 

inversion), amplitudes in the corrected gap only waveforms did not differ in the two 

groups at the fronto-central electrodes (t[29.376] = .267, p = .792). The Group × Gap 

Type ANOVA for normalized amplitudes showed no significant effects (Group main 

effect: F[1, 30] = 1.392, p = .247, η
2

G = .03; Gap Type main effect: F[2, 60] = 3.131, p 

= .051, η
2

G = .034; Group × Gap Type interaction: F[2, 60] = 1.83, p = .169, η
2

G =  .02). 

No significant amplitude differences were found at the mastoids either (between-group 

amplitude differences in the corrected gap only waveforms: t[29.976] = .748, p = .46; 

for the Group × Gap Type ANOVA for normalized amplitudes: Group main effect: F[1, 

30] = 1.863, p = .182, η
2
G = .026; Gap Type main effect: F[2, 60] = 1.136, p = .328, η

2
G 

= .021; Group × Gap Type interaction: F[2, 60] = 1.806, p = .173, η
2

G =  .033). 
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Fig. 7.6. Topographies of the group-mean gap- and the glide-related ERPs in the N1 (top 

and middle rows, measured at mastoid and at fronto-central peaks) and P2 (bottom) intervals in 

the younger and older adult groups. The amplitude scales differ between groups in order to 

adequately represent the shapes of topographies while showing the amplitude differences for each 

gap type within each group. 
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Fig. 7.7. Topographies of the group-mean later gap-related components. N2 is presented in 

top and P3b is presented in bottom row. The amplitude scales are set to reflect the amplitude 

differences within each group. 

Because the gap-related P2 waveform was not readily observable in older adults 

(see Fig.7.6), we analyzed the amplitudes without normalizing the data in Group 

(younger adults / older adults) × Gap Type (150 ms / 250 ms / 650 ms / gap only) 

ANOVA. Not only the main effects of Group (F[1, 30] = 15.922, p < .001, η
2

G = .259) 

and Gap Type  (F[3, 90] = 4.464, p = .006, η
2

G = .048) were significant, but the Group × 

Gap Type interaction as well: F(3, 90) = 4.253, p = .007, η
2

G = . 046. Analyzing the two 

groups separately, while Gap Type did not affect the amplitudes in the P2 time window 

in the older adults (F[3, 45] = .079, p = .97, η
2

G = .002), younger adults exhibited 

significantly lower amplitudes as glide-gap separation interval decreased (F[3, 45] = 

8.66, p < .001, η
2

G = .161). Following-up the main effect in the younger adult group, 
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paired t-tests revealed that the amplitudes of 150 ms gaps were significantly lower than 

650 ms gaps (t[15] = -3.041, p = .008) and gap only trials (t[15] = -3.096, p = .007). The 

amplitudes of 250 ms gaps also differed from 650 ms gaps (t[15] = -3.346, p = .004) 

and from gap only amplitudes (t[15] = -3.539, p = .003).  

Because of the obvious overlap between the N2 and P3b waveforms (Fig. 7.4 

and Fig. 7.7), corrected amplitudes in the N2 time-range were submitted without 

normalization to a Group (younger / older adults) × Gap Type (150 ms / 250 ms / 650 

ms / gap only) ANOVA. The ANOVA revealed neither a significant Group main effect 

(F[1, 30] = 2.326, p = .138, η
2

G = .051), nor a Group × Gap Type interaction (F[3, 90] = 

.838, p = .477, η
2

G = .009). Only a significant Gap Position main effect was found: F(3, 

90) = 9.69, p < .001, η
2

G = .09, showing that glide-gap separation intervals had similar 

effect on N2 amplitudes in both groups.  

The P3b in gap only trials was elicited with significantly higher amplitudes in 

the younger adult group than in the older adult one (t[29.211] = 2.615, p = .013). 

Analyzing the groups separately, the corrected amplitudes did not differ from each other 

in the younger adult group (F[3, 45] = .626, p = .602, η
2

G = .014), whereas in the older 

adults, the Gap Type main effect was significant: F(3, 45) = 6.251, p = .001, η
2

G = .084. 

The amplitude of gap only trials was higher than any other gap types (150 ms gaps: 

t[15] = -3.045, p = .008; 250 ms gaps: t[15] = -2.344, p = .033 ; 650 ms gaps: t[15] = -

4.402, p < .001) and the difference between 150 ms gaps and 650 ms gaps was also 

significant (t[15] = 2.132, p = .05). Glide-related N1 and P2 amplitudes were compared 

between older and younger adult groups by Welch’s t-test on the same fronto-central 

cluster as in case of gap-related ERPs. For the N1 no significant difference was found 

(t[28.536] = 1.302, p = .203), however, P2 amplitude was significantly higher in the 

younger than in the older adult group (t[29.882] = -4.224, p < .001).  

 

7.4 Discussion 

The goal of the present study was to measure how fast younger and older adults 

restored task-optimal attention set after distraction occurred. To characterize the 

duration of the distracted state, N1 amplitudes elicited by gaps were measured in a gap 

detection task in which the temporal separation between distracters (glides) and targets 

(gaps) was manipulated. In younger adults, gaps elicited a series of N1, P2, N2 and P3b 
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waveforms; in older adults, however, P2 was absent. N2 and P3b overlapped partially. 

Gaps elicited smaller N1s in older than in younger adults; the magnitude of N1 

reduction with decreasing glide-gap separation was, however, similar in the two groups. 

The lack of polarity inversion at the mastoids in the time window of the negative fronto-

central N1 peak suggests that the amplitude reduction was not caused by the modulation 

of the auditory N1 subcomponent, rather, that it was caused by the absence of an 

additional negativity, presumably a PN reflecting the matching of the auditory event to 

a task-relevant sensory template. With shorter glide-gap separations accuracy decreased. 

Whereas older adults responded systematically slower as glide-gap separations got 

shorter, glide-gap separation did not significantly influence reaction times in younger 

adults. The distracter glides elicited similar N1s in both groups, but P2 was more 

pronounced in younger adults. 

The lower gap-related N1 amplitudes in the older than in younger adults, are in 

line with previous studies (Alain et al., 2004; Harris et al., 2012); and the modulation of 

N1 amplitudes also fits, and extends the literature. The decreased N1 amplitudes at 150 

and 250 ms glide-gap separation suggest that the distracted state persisted for at least 

250 ms, while the lack of difference between the N1s elicited in the gap only and the 

650 ms glide-gap separation trials suggest that attention was restored by 650 ms after 

distraction occurred. These results are on a par with the results by Schröger (1996), 

Horváth (2014a) and Horváth and Winkler (2010). The topographical distribution of the 

N1-effect (no polarity inversion at the mastoids) and its latency (i.e. peaking later than 

the positive N1 aspect at the mastoids) also support the notion (Horváth, 2014a) that the 

modulation of the N1 waveform might be not a “genuine” modulation of the auditory 

N1 subcomponent, but the modulation of the overlapping processing negativity which is 

characteristically elicited by task-relevant auditory events (Näätänen, 1982).  

In contrast to the N1 which was present in both groups, a readily observable P2 

was elicited only in the younger adults. In the young adults, however, it was 

characterized with similar pattern as the N1 modulatory effect: as glide-gap separation 

decreased, P2 amplitude also became lower. The functional role of P2 waveform is 

poorly understood. Recent studies show that N1 and P2 are rather independent 

components (Crowley & Colrain, 2004) and P2 might index processes related to 

detection threshold mechanisms and stimulus evaluation (Ceponiene, Alku, 

Westernfield, Torki & Townsend, 2005). The P2 attenuation pattern in younger adults 
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indicates that the distracting effect of glides also affected stimulus evaluation processes 

since attention was still captured by glides as demonstrated by Horváth and Winkler 

(2010) as well: in their study, P2 was attenuated to 150 ms glide-gap separation 

compared to the gaps presented alone. In the present study, the absence of P2 in the 

older adults might be explained with the superimposition of earlier negative ERPs, 

especially the PN: PN might overlap the P2 time interval and cancel that component as 

suggested by Crowley and Colrain (2004). Also, because Harris and colleagues (2012) 

found reduced P2 amplitudes to gaps in older adults, the age-related changes in gap 

detection processes also could lead to this effect.  

The pattern of later ERP waveforms supports the interpretation of the N1/PN 

modulation presented above. When glides and gaps were presented with a longer 

separation (650 ms and gap only trials), an N2 was elicited. For 150 ms and 250 ms 

gaps this component was entirely absent in both groups. Since N2 is thought to reflect 

categorization and decision mechanisms (Folstein & Van Petten, 2008; Patel & Azzam, 

2005; Ritter, Simson, Vaughan & Macht, 1982), these results suggest that the disruption 

of the attentional template also affected these later, endogenous processes, 

irrespectively of age. The subsequent P3b waveform indexing target detection (Polich, 

1997) was also modulated by the presence of distracters: both groups demonstrated 

amplitude decrease with decreasing glide-gap intervals. One could interpret this effect 

as disturbance in target identification, however, it is important to note that the N2 at 

least partly overlaps P3b in the frontal areas. This overlap might modulate P3b 

amplitudes which might be not identical in different conditions. Moreover, some studies 

revealed that in tasks requiring sustained attention, a further processing of attended 

stimuli might be present (Näätänen & Michie, 1979), especially in the older adults, also 

leading to P3 modulation (Karayanidis, Andrews, Ward & Michie, 1995).  The present 

study does not allow the separation of these contributions, therefore the results on N2 

and P3b should be interpreted cautiously.  

In order to discuss the effects of attention on gap-related ERPs, it is important to 

take into consideration glide-related ERPs well. Glides elicited an N1 and a P2 in both 

groups but N2 and P3b were not present. The N1 and P2 pattern was similar to those 

observable on gap-related ERPs: while N1 was pronounced in both groups, older adults 

demonstrated only moderate P2. The latter could be explained with age-related P2 
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differences in gap processing (Harris et al., 2012) or the partial superimposition with the 

previous negativity (Crowley & Colrain, 2004).  

The behavioral results are in line both with the electrophysiological results and 

with the literature. The accuracy scores in younger and older participants were affected 

by different glide-gap separations similarly: both groups detected gaps less accurately 

when glides preceded them in short time intervals, reflecting the presence of a 

distraction effect in general (Berti, Grunwald & Schröger, 2013). Lower target detection 

rates for brief distracter-target separations were also demonstrated in discrete (Horváth 

& Burgyán, 2011; Schröger, 1996) and in continuous stimulation protocols (Horváth, 

2014a; Horváth & Winkler, 2010). Our results regarding the lack of group differences in 

target detection rate with the change of distraction-target separation interval is at odds 

with the results of Slawinski and Goddard (2001), who found that while both age groups 

detected targets following attention capture by 360 ms poorly, the performance of older 

adults was still impaired at 450 ms. An explanation to the difference between the two 

studies might be that while Slawinski and Goddard (2001) utilized discrete sinusoidal 

tone pips in rapid presentation, we presented continuous complex tones which led to 

lower task difficulty and better performance even at cognitively demanding conditions. 

It is also important to note that the exclusion of participants with insufficient numbers 

of responses to gaps could bias gap detection rate results.  

Reaction time data differentiated groups more strongly than gap detection rates. 

Older participants slowed gradually as glides and gaps got closer to each other. In 

contrast, younger adults could keep their response speed steady between the different 

glide-gap separations. That is, as task difficulty increased, older adults needed to invest 

more effort into the task while younger adults could maintain their performance, in 

other words, older adults had to compensate with enhanced attention (Reuter-Lorenz & 

Cappell, 2008; Zanto & Gazzeley, 2014). Albeit for the first sight it seems that older 

adults are more susceptible for distraction, taken accuracy data into consideration, this 

response pattern might suggest differences not only in cognitive abilities but in task 

performance strategies as well. On one hand, a trade-off mechanism might be present in 

older adults favoring high accuracy over speed (Leiva, Andrés & Parmentier, 2015). It 

was demonstrated that older adults tended to be more cautious than younger adults even 

when they were instructed to respond as fast as possible, which is also related to age-

related structural changes in brain connectivity (Forstmann et al., 2011). On the other 
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hand, motivational and detection threshold factors could also lead to reaction time 

differences: while older adults seemed to be motivated to achieve high performance and 

demonstrated enhanced attention during the whole experiment, younger adults might 

have not put much effort in responding quickly while they could keep accuracy high 

(Horváth et al., 2009; Iragui et al., 1993; Leiva, Andrés & Parmentier, 2015).In 

summary, the present study demonstrated that older adults did not need more time to 

recover from the sensory effects of distraction than younger adults. This was reflected 

in the similar modulation of the N1 (presumably mainly the processing negativity) as 

the glide-gap separation interval shortened which was not influenced by age: from gaps 

without preceding glides to 150 ms glide-gap separation both groups showed gradual 

amplitude attenuation. The modulation of N2 and P3b indicated that the disruption of 

attentional trace caused by glides affected later processes as well, like stimulus 

categorization and target detection. The behavioral results showed that while both 

groups kept gap detection accuracy high, older adults slowed down as glide-gap 

separation decreased in contrast to younger adults whose reaction times were not 

affected. Taken together, our results suggest that although the distracted state does not 

last longer in the older than in the younger adults, older subjects were nonetheless more 

affected by distracters in consecutive processing levels as reflected by reaction times. 
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Chapter 8: Age-related processing delay reveals cause of 

apparent sensory excitability following auditory stimulation10
 

 

8.1 Introduction 

When absorbed in a task, task-irrelevant stimuli seem to fade into the 

background. Moments of such immersion still do not provide a complete isolation from 

the stimulus environment: sudden changes in the acoustic background still capture our 

attention, even if they are irrelevant to the ongoing behavior. By “opening up” the 

sensory system, such involuntary re-allocations of attention (distraction) (Escera et al., 

1998) allow the acquisition of information that may initiate the re-evaluation of 

behavioral goal priorities, and thus lead to a change or discontinuation of the ongoing 

behavior. The sound of an approaching vehicle on the street may compel us to look up 

from a smartphone screen and take evasive action. Finding proper balance between the 

ability to focus on one’s immediate behavioral goals, and the ability to be distracted by 

potentially goal-changing sensory information is crucial for successful adaptation. Older 

adults are often characterized as being less able to inhibit the processing of task-

irrelevant information and therefore more susceptible to distraction than younger adults 

(Alain & Woods, 1999; Berti, Grunwald & Schröger, 2013; Getzman, Gajewski & 

Falkenstein, 2013; Healey, Campbell & Hasher, 2008; Woods, 1992). This may be 

interpreted as a shift in the attention-distraction balance. Distraction, however, is not a 

unitary phenomenon (Horváth, Winkler & Bendixen, 2008; Schröger & Wolff, 1998a), 

and impacted performance attributed to higher distractibility may result from changes in 

various functions contributing to the attention-distraction balance. For example, a lower 

sensory threshold (Schröger, 1997) that allows intrusions of stimuli with low potential 

to be behaviorally relevant (a more “open” sensory state) may impact overall 

performance because distraction-reorienting cycles occur too often. Decreased 

performance may, however, also result from increased processing times: in older adults 

more time may be needed for the completion for an involuntary attention switch, 

whereas re-orienting may take longer in children (Horváth et al., 2009). The goal of the 

                                                           
10 Volosin, M., Gaál Zs. A., & Horváth, J. (2017b). Age-related processing delay reveals cause of 

apparent sensory excitability following auditory stimulation. Scientific Reports, 7, 10143. doi: 

10.1038/s41598-017-10696-1  
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present study was to compare the persistence of a more “open” (distracted) sensory state 

induced by background auditory changes in younger and older adults. The duration of 

distracted state was measured by probing the capability to process auditory events (as 

reflected by auditory event-related potentials – ERPs) at several time points after 

distracter onset. 

Rapid changes in auditory stimulation (e.g. sound onsets, pitch changes, or gaps 

in continuous sounds, referred to as auditory events in the following) elicit a sequence 

of characteristic ERP waveforms, which reflect various stages of auditory information 

processing (Hillyard et al., 1973; Näätänen & Winkler, 1999). The late part of the 

auditory ERP, specifically the N1 and P2 waveforms can be utilized to probe the 

processing capability of the auditory system at a given moment. N1 peaks fronto-

centrally at around 100 ms, while P2 exhibits a central peak typically in the 160-200 ms 

range following the auditory event. Although initially these waveforms were regarded 

as a unitary phenomenon (the “vertex potential”; Harris, Mills He & Dubno, 2008; 

Näätänen & Picton, 1987), later studies demonstrated their independence (for a review, 

see Crowley and Colrain, 2004). Both waveforms are generated (at least in part) in the 

auditory areas of the temporal cortex (Liegeois-Chauvel, Musolino, Badier, Marquis & 

Chauvel, 1994; Lütkenhöner & Steinsträter, 1998; Vaughan & Ritter, 1970), and reflect 

the physical parameters of the stimulation. Whereas there is a consensus on that N1 

reflects auditory change detection (Näätänen, 1982; Näätänen & Picton, 1987), the 

functional role of P2 is poorly understood, with suggestions including stimulus 

evaluation mechanisms (Crowley & Colrain, 2004), generators related to conscious 

perception thresholds (Ceponiene et al., 2005) or perceptual learning (Seppänen, 

Hämäläinen, Pesonen & Tervaniemi, 2012; Tremblay, Ross, Inoue, McClannahan & 

Collet, 2014).  

Importantly, N1 (and possibly P2) amplitude also reflects the readiness of the 

auditory system to process incoming stimulation. It is well-known, for example, that 

attentional state influences N1 amplitude: N1 is enhanced when it is elicited by events 

in the focus of attention (De Chiccis, Carpenter, Cranford & Hymel, 2002; Hillyard et 

al., 1973; Kauramäki, Jääskeläinen & Sams, 2007; Lange, 2013; Woldorff & Hillyard, 

1991), whereas it is attenuated when elicited by events presented during a period of 

distraction (Horváth, 2014a; Horváth & Winkler, 2010). In the present study, we 

exploited this to assess the duration of a distracted state by measuring the amplitudes of 
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N1s elicited by probe-events following distracters at several time points. Although a 

number of ERPs may overlap P2, several studies found enhanced P2 amplitudes in case 

when tones were attended actively compared to passive listening conditions (Horváth & 

Winkler, 2010; Woods, Alho & Algazi, 1992, 1993; but see Hillyard et al., 1973). 

The most efficient auditory distracters are rare, unpredictably occurring, or 

salient events (Berti, 2013; Cherry, 1953; Näätänen, 1990; Schröger, 1997). Such sound 

events typically elicit enhanced N1s, mismatch negativity (MMN), and P3a. Whereas 

the negativities reflect auditory change detection processes (Näätänen, 1982; Näätänen 

& Winkler, 1999), P3a is generally interpreted as a reflection of attentional orienting 

towards the stimulus (Polich, 2007). To investigate the duration of a distracted state, we 

adapted the passive version of the continuous stimulation paradigm introduced by 

Horváth and Winkler (2010). In their paradigm, a continuous tone was presented, which 

alternated between two pitch levels by occasional, randomly timed, quick glissandos 

(glides). Short silent periods (gaps) were also randomly inserted into the tone. Whereas 

gaps occurred frequently (on average once every 2.6 s), glides were rare (on average 

once every 9.75 s). In the active version of the paradigm, participants’ task was to 

respond to gaps by pressing a button. Due to their infrequency and unpredictability, the 

glides functioned as distracters in these paradigms: Horváth (2014a), Volosin, Grimm, 

and Horváth (2016) found that rare glides elicited a higher N1 than frequent glides (and 

possibly an MMN), but no P3a. Importantly, gaps following rare glides in 150 ms 

elicited lower-amplitude N1s in comparison to gaps following glides by 650 ms (see 

also Schröger, 1996), or in comparison to gaps without closely preceding glides 

(Horváth & Winkler, 2010). This impacted auditory processing suggests that 150 ms 

after the distracter onset the task-optimal attention set for gap-detection was not yet 

reinstated. Although evidence on duration of allocation of attention in auditory modality 

is scarce, this is in line with studies suggesting that attention switch occurs between the 

time range of N1 and P3, starting at about 130 ms and lasting until about 300 ms 

(Gamble & Luck, 2011; Gamble & Woldorff, 2015). 

When the same stimulation was administered to participants who watched a self-

selected movie and ignored the tone (passive version), gap-related N1 amplitudes 

showed the opposite pattern: gaps following glides in 150 ms elicited enhanced N1s in 

comparison to gaps not closely preceded by other events, that is, 150 ms after a glide, 

auditory processing was enhanced. Horváth and Winkler (2010) suggested that the 
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enhancement reflected attention capture by the rare glide, which diverted attention from 

the movie to the auditory stimulation. Whether the enhancement was caused by 

attentional orienting, or by other mechanisms, is unclear. Similar N1 differences were 

also reported when identical tones followed each other in short (< 400 ms) time 

compared to those at longer separations (Budd & Michie, 1994; Loveless, Hari, 

Häämäläinen & Tiihonen, 1989; McEvoy, Levänen & Loveless, 1997; Todd, Michie, 

Budd, Rock & Jablensky 2000; Sable, Low, Maclin, Fabiani & Gratton, 2004; Wang, 

Mouraux, Liang & Iannetti, 2008): tones following in shorter (than 400 ms) intervals 

elicited higher N1s than those following with larger separations. These results can be 

interpreted by assuming a short-term facilitatory effect following tone onset (Budd & 

Michie, 1994), or a more complex interaction of facilitation and inhibition. According 

to the latent inhibition model (McEvoy, Levänen & Loveless, 1997; Sable et al., 2004), 

tone onsets cause a general facilitation in the auditory cortex, which also spreads to 

neural structures inhibiting N1-generation. Due to their temporally different unfolding, 

facilitation dominates till about 400 ms, after which inhibition becomes dominant. 

Aging is associated with higher susceptibility to distraction, manifested as a 

decreased ability to filter sensory input (Fabiani et al., 2006; Lustig, Hasher & Zacks, 

2007) and to inhibit the processing of task-irrelevant pieces of information (Andrés, 

Guerrini, Phillips & Perfect, 2008; Healey, Campbell & Hasher, 2008; Stothart & 

Kazanina, 2016; Zanto & Gazzaley, 2014). Age-related sensory ERP enhancements are 

also often attributed to decreased inhibition of incoming stimulation (e.g. Chao and 

Knight, 1997) which result for example in enhanced slowing in reaction times to 

distracters (Berti, Grunwald & Schröger, 2013; Woods, 1992). In the present context, 

we hypothesized that an increased distractibility, or a decreased ability to inhibit the 

processing of task-irrelevant, background auditory events would be manifested in a 

longer-lasting enhanced responsiveness to probe events following a distracter. 

Accordingly, the enhancement of N1 (and possibly P2) would be observable for longer 

glide-gap separations in older than in younger adults.  

To test this hypothesis, in the present study, glide-gap separation was varied in 

the continuous stimulation paradigm: rare glides could precede gaps in 150, 250 or 650 

ms, but gaps without closely preceding glides (“gap only” events), and glides without 

closely following gaps (“glide only” events) also occurred. By subtracting the “glide 

only” ERPs from “glide-and-gap” ERPs, the gap-related ERP could be assessed 
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separately from the preceding glide-related waveform. “Gap only” ERPs served as a 

baseline for assessing ERP enhancements. In contrast with previous studies which used 

a procedure relying on the assumption that the range of the between-stimulus jitter was 

sufficiently large to allow the estimation and subtraction of the ERPs related to the 

preceding tone (Woldorff, 1993), the present paradigm allowed a simple subtraction of 

ERPs related to the preceding rare glide. In assessing ERP enhancements, one has to 

take into account that ERPs may be different between groups per se. Indeed, numerous 

studies show that in older adults, late auditory ERPs elicited by sound onsets tend to be 

larger (Amenedo & Díaz, 1998; Anderer, Semlitsch & Saletu, 1996; Ford & 

Pfefferbaum, 1991) than in younger adults, while gap-related ERPs were found to be 

smaller in older adults (Alain et al., 2004; Harris et al, 2012). Because of this, ERP 

enhancements were expressed as amplitude proportions of the respective gap-only ERPs 

separately in the two age groups.  

 

8.2 Methods 

8.2.1 Participants 

50 healthy adult women participated in the study, 25 persons in the younger and 

25 in the older adult group. Younger adults were recruited by a student part-time job 

agency; older adults were recruited from the department’s participant database. All of 

them were compensated by modest amounts of money. Due to excessive amounts of 

movement artifacts, only the data from 46 participants was used for further analyses. 

The final sample consisted of 23 younger (3 left-handed) and 23 older (all right handed) 

adults. The average age was 22.13 years (SD = 2.01; from 18 to 26 years) in the 

younger and 68 years (SD = 3.71; from 62 to 76 years) in the older adult group. 

Participants gave written informed consent. The experiment was conducted in 

accordance with the Declaration of Helsinki and the protocol was approved by the 

United Ethical Review Committee for Research in Psychology (Hungary). 

All participants reported correct or corrected-to-normal vision and normal 

hearing. Older adults had higher hearing thresholds than younger adults in the 250-2000 

Hz frequency range (as assessed by an SA-6 audiometer, MEDIROLL, Debrecen, 

Hungary, see Table 1). The threshold difference between the two ears was not higher 

than 25 dB at any of the frequencies. In order to compensate for potential hearing 
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differences between participants, the intensity of the sounds presented in the experiment 

was individually adjusted to 50 dB above the 75% hearing threshold measured by the 

Single Interval Adjustment Matrix procedure (Kaernbach, 1990); see also Shepherd et 

al. (2011). 

The Hungarian version of Wechsler Intelligence Scale (WAIS-IV; Wechsler, 

2008) was administered in a separate session to exclude dementia-related differences 

between the two age-groups. The mean IQ scores were 119.78 (SD = 18.07; from 85 to 

156) in the older, and 106.13 (SD = 18.05; from 81 to 150) in the younger adult group, 

showing a significant difference (t[44] = 2.564, p = .014). Moreover, while the IQ 

scores of younger adults was average (t[22] = 1.629, p = .118), older adults were 

characterized with significantly higher IQ than the population average (t[22] = 5.252, p 

< .001).   

Group 250 Hz 500 Hz 1000 Hz 2000 Hz 

Younger 13.37 (±4.6) 10.11 (±6.45) 3.04 (±5.22) 4.45 (±6.69) 

Older 19.89 (±7.99) 17.93 (±7.57) 12.5 (±8.34) 20.97 (±12.96) 

 t = 4.80, p < .001 t = 5.34, p < .001 t = 6.51, p < .001 t = 7.78, p < .001 

Table 8.1. Group mean hearing thresholds (dB SPL) and the corresponding standard deviations in 

the two groups in the 250-2000 Hz range.  

 

8.2.2 Stimuli and procedure 

During the experiment, participants were sitting in an armchair in an electrically 

shielded and acoustically isolated room, and watched a self-selected movie with 

subtitles (but without sound) while continuous, 331 s long tones were presented through 

Sennheiser (HD-600, Sennheiser, Wedemark, Germany) headphones. Participants were 

instructed to watch the movie and ignore auditory stimuli. The tones were generated 

using Csound (version 5.17.11, www.csounds.com), with a sampling rate of 44.1 kHz 

and consisted of three harmonics: the fundamental, second and third harmonics (the first 

one was missing). Each harmonic was presented with the same amplitude. The tone was 

alternating between two pitches (characterized by 220 Hz and 277 Hz base frequencies) 

by quick, 10 ms long glides (glissandos). Such glides could occur at fixed timepoints 

separated by 1300 ms. Glides could occur at these timepoints with a 1/7 probability, 

with the constraint that consecutive glides had to be separated by at least 3900 ms. 
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Thus, on average, 36 glides occurred in each continuous tone (i.e. in each recording 

block). The tones also contained short gaps with a 10 ms silent period and 10-10 ms 

linear fall and rise times. Such gaps were randomly inserted with a probability of 50% 

after timepoints at which glides could occur. When a gap was inserted, it followed the 

potential glide timepoint by 150, 250 or 650 ms (with equal probability). In the 

following, we refer to gaps following an actual glide in 150, 250, or 650 ms as “150 ms 

gap”, “250 ms gap”, and “650 ms gap” events (the design is shown in Figure 8.5). Gaps 

not following a glide within 650 ms (i.e. gaps for which no glide occurred at the 

preceding timepoint) are referred to as “gap only” events. Glides which were not 

followed by any gaps in 650 ms, referred as “glide only” events. 14 tones (i.e. blocks) 

were presented during the experiment, which were separated by short breaks as needed. 

After the 7
th

 block, a longer break could be taken depending on the participants’ 

preference.  

 

Fig. 8.5 The schematic design of the study. Thick lines represent continuous tones, with 

vertical displacements indicating glides. Glide- and gap-related (150 ms, 250 ms, 650 ms and 

“gap only”) epochs and the corresponding control epochs are indicated below the tones by 

intervals markings. 
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Before the experiment, 2-3 minutes long EEG-recording was also taken to 

capture eye-movement-related EEG-activity (with instructions as described by Schlögl 

et al., 2007). 

8.2.3 EEG recording 

The continuous EEG was recorded at a sampling rate of 500 Hz using a 

Neuroscan Synamp 2 (Compumedics Inc., Victoria, Australia) amplifier from 61 

Ag/AgCl electrodes were mounted on an EasyCap (EASYCAP GmbH, Herrsching, 

Germany) arranged by the 10% system (Nuwer et al., 1998). Two additional electrodes 

were placed at mastoids. The reference and the ground electrodes were placed at the tip 

of the nose and to the forehead, respectively. Horizontal electro-oculogram was 

measured by electrodes attached near the outer canthi of the eyes while the vertical 

electro-oculogram was calculated offline as the difference of Fp1 electrode and an 

electrode placed under the left eye.  

Continuous EEG data was filtered offline using first a 1 Hz highpass filter 

(Kaiser-windowed sinc finite impulse response filter, beta of 4.53, 2929 coefficients; 

0.5 Hz transition bandwidth, stopband attenuation at least 50 dB). After that, an eye 

movement correction procedure was applied as described by Schlögl and colleagues 

(2007). Finally, the corrected EEG data was filtered again, using a 30 Hz lowpass filter 

(Kaiser-windowed sinc finite impulse response filter, beta of 4.53, 2929 coefficients; 

0.5 Hz transition bandwidth, stopband attenuation at least 50 dB). 

The EEG was segmented into 800 ms long epochs corresponding to the 150 ms 

gap, 250 ms gap, 650 ms gap, and gap only events, including a 150 ms long pre- and a 

650 ms post-stimulus interval. To eliminate non-gap-related ERP-contributions, further 

EEG segments were extracted in which gaps could potentially occur (i. e. 150 ms, 250 

ms and 650 ms after the onset of potential glide timepoints and after the onset of glides 

which were not followed by any gaps in 650 ms). These segments are referred to control 

epochs in the following. After discarding epochs with a signal range exceeding 100 µV 

on any channel, the control ERPs were subtracted from the corresponding ERPs of the 

150 ms, 250 ms and 650 ms gaps and “gap only” events (see Figure 8.5). The results of 

these subtractions are referred to as corrected waveforms. Glide-related ERPs were also 

investigated for “glide only” events. The datasets generated during and/or analysed 
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during the current study are available from the corresponding author on reasonable 

request. 

8.2.4 Statistical analysis 

The analysis of gap-related ERPs consisted of a hypothesis-driven, and an 

explorative part. In the hypothesis-driven part, gap-related N1 waveforms were 

identified for 150 ms, 250 ms, 650 ms gap, and “gap only” events in the group-averaged 

corrected waveforms, separately in the two groups. Individual ERP amplitudes were 

calculated in 20 ms long windows centered at the N1 peak latency measured in the 

group-averaged corrected waveforms for “gap only” events. In order to improve signal-

to-noise ratio, statistical analyses were conducted at a fronto-central cluster of 

electrodes including FCz, Cz, Fz, FC1 and FC2 (referred to as FCz-cluster in the 

following). The mastoid signals were also averaged, this average signal is labeled M. To 

assess whether gap-related N1 amplitudes per se differed between groups, gap only N1 

amplitudes measured in the two groups were compared by Welch’s t-tests. Then N1 

amplitudes elicited in the two groups by different Gap Types were submitted separately 

to repeated measures ANOVAs. To compare the modulation of the N1 amplitude by 

glide-gap separation between groups, the 150 ms, 250 ms and 650 ms gap amplitudes 

were normalized by the “gap only” N1 amplitudes separately in the two age groups. 

These normalized amplitudes were submitted to a Group (older / younger) × Gap Type 

(150 ms / 250 ms / 650 ms) mixed ANOVA. These analyses were also performed for 

the positive aspect of the N1 measured in the averaged mastoid signal, as well as for the 

P2 amplitudes measured at the FCz-cluster. 

The visual inspection of the ERP waveforms suggested that the amplitude 

differences found in the hypothesis-driven part of the analysis were not caused by pure 

modulations of the N1 or P2 waveforms, but by the emergence of a fronto-centrally 

negative deflection overlapping both of these waveforms. Similarly to N1, its amplitude 

also seemed to be modulated by the glide-gap separation and its polarity was inverted at 

the mastoids. Because of these attributes, in the following the deflection is referred to as 

delayed auditory response. Therefore, in the explorative part of the analyses, three 

difference waveforms were calculated by subtracting the ERP to the corrected gap only 

events from the ERP to the 150, 250 and 650 ms gap events to characterize this 

deflection. Since the 150 ms – minus – gap only difference waveform showed the 

highest (negative) amplitude, we normalized the amplitudes of the 250 ms – minus – 
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“gap only” and 650 ms – minus – “gap only” waveforms separately in each group in a 

20 ms window centered at this peak.  The mean amplitudes were calculated at FCz 

cluster, and were submitted to a Group (older / younger) × Gap Type (250 ms / 650 ms) 

ANOVA.  

From the visual inspection of the group-average difference waveforms, it was 

also apparent that the delayed auditory response emerged later in the older than in the 

younger adult group. To verify this post-hoc observation, the latencies for the 150 ms 

gap – minus – “gap only” waveforms in the two groups were compared by Welch’s t-

tests following the jackknife procedure combined with a fractional area technique based 

on Kiesel, Miller, Jolicoeur & Brisson’s (2007) description. The latencies were 

determined separately for the two groups, using a boundary of -0.5 µV at the FCz-

cluster. Since it seemed to be inverted at the mastoid sited, we also measured its positive 

aspect in the average mastoid signal with a 0.2 µV boundary. Latencies were defined as 

the halving points of the area between 50 and 300 ms in the younger adults and between 

50 and 400 ms in the older adults. To further compare the temporal and topographical 

characteristics of this effect, a Group (younger adults / older adults) × Site (FCz cluster / 

M cluster) ANOVA was applied.  

Finally, N1 and P2 amplitudes elicited by “glide only” events were also 

compared between the older and the younger adult group. The individual ERPs were 

averaged in a 20 ms time window centered at the group-mean negative peak, separately 

for the two age groups. The N1 and P2 amplitudes measured at the FCz-cluster were 

analyzed in Welch’s t-tests. All statistical tests were calculated in R (version 3.1.0, R 

Core Team, 2014). Generalized eta squared effect sizes (Bakeman, 2005; Olejnik & 

Algina, 2003) are also reported. 

 

8.3 Results 

8.3.1 Gap-related ERPs – Hypothesis-driven analysis 

Following the exclusion of the artifact-contaminated epochs, individual ERPs 

were averaged separately for the two groups for each gap position. The mean epoch 

numbers (and their standard deviations) in the younger adult group for the 150 ms and 

650 ms gaps were 81 (SD = 3.21 and 3.47, respectively), for the 250 ms gaps 82 (SD = 



123 
 

2.28) and for gap only events 1427 (SD = 46.31). “Glide only” events included 244 (SD 

= 7.03) epochs on average. In the older adult group the mean epoch numbers for 150 

ms, 250 ms and 650 ms gaps were 81 (SD = 4.24; 3.66 and 4.99, respectively). “Gap 

only” events were averaged from 1408 (SD = 69.5), “glide only” events from 241 (SD = 

12.37) epochs. 

The group-averaged corrected waveforms are presented in Fig. 8.1a and their 

topographic distributions are depicted in Fig. 8.2. All corrected gap-related ERP 

waveforms showed a negative peak, followed by a positive deflection, which were 

identified as the frontal aspect of N1 and P2 respectively. For “gap only” events, in the 

younger adult group, N1 reached its maximum (negative) peak at Cz at 126 ms. P2 

peaked at FCz at 194 ms. In older adults, both N1 and P2 peaked at FCz, with 120 and 

242 ms latency, respectively. The positive aspect of the N1 peaked at the mastoids 

slightly earlier than the frontally negative aspect (110 ms in younger and at 106 ms in 

older adults). The “gap only” N1 amplitudes measured fronto-centrally did not 

significantly differ between the two groups. The positive aspect of the N1 (i.e. the 

amplitude measured in the average mastoid signal) was, however, significantly higher 

(more positive) in the younger adult group (t[43.965] = 3.939, p < .001). 
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Fig. 8.1 Group-mean gap-related ERPs. Group-mean corrected gap-related ERP 

waveforms (a) and the difference of 150 ms, 250 ms and 650 ms gaps and “gap only” events (b) 

measured at the electrode cluster centered on FCz and in the average mastoid signal in the 

younger and older adult groups. The grey bands indicate the time windows in which the 

amplitude-related statistical analyses were conducted. 

The one-way Gap Type ANOVAs (150, 250, and 650 ms gap trial) of the fronto-

centrally measured N1 amplitudes conducted separately in the two groups showed no 

significant effect in the older adult group; in younger adults, however a significant Gap 

Type effect was found: F[3, 66] = 9.531, p < .001, η
2

G = .159. Follow-up paired 

Student’s t-tests revealed that the amplitudes were higher (more negative) for the 150 

ms than for the 650 ms gaps (t[22]) = 4.349, p < .001) or for the “gap only” events 

(t[22] = 4.762, p < .001); amplitudes for the 250 ms gap were also higher (more 

negative) than for “gap only” events (t[22] = 2.419, p = .024). Similarly, the one-way 

Gap Type ANOVAs of the mastoid signals showed no significant effect in the older 
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adult group, but a significant Gap Type effect was present (F[3,66] = 17.999, p < .001, 

η
2

G = .26) in the younger adult group. The amplitudes for 150, 250, and 650 ms gaps 

were significantly higher (more positive) than for gap only events (t-scores > 2.559, p-

values < .019). Significant differences were also present between 150 ms and 650 ms 

gaps (t[22] = 3.615, p = .002), as well as between 250 ms and 650 ms gaps (t[22] = 

3.955, p < .001). For the normalized N1 amplitudes measured fronto-centrally (Figure 

8.3a), the Group × Gap Type (150 ms / 250 ms / 650 ms) ANOVA showed significant 

Gap Type main effect: F[2, 88] = 5.54, p = .005, η
2

G = .05; and Group × Gap Type 

interaction: F[2, 88] = 4.24, p = .017, η
2

G = .039. Follow-up t-tests between Gap Types 

showed no significant differences in the older adult group, but in the younger adult 

group amplitudes were significantly higher for 150 ms than for 650 ms glide-gap 

separations (t[22] = 4.345, p < .001).  
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Fig. 8.2 Topographic distributions of the group-mean ERP effects. Topographies of 

group-mean, corrected gap-related ERPs in the N1 (a) and P2 (b) time windows and the delayed 

auditory response overlapping them (c). The amplitude scales differ between rows to allow 

between-group topographical shape comparisons, while allowing the observation of Gap Type 

amplitude differences for the two groups. 

The Group × Gap Type ANOVA of the normalized amplitudes for the positive 

aspect of the N1 (measured in the average mastoid signal) (Figure 8.3b) showed a 
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significant Group main effect: F[1, 44] = 29.255, p < .001, η
2

G = .29; a significant Gap 

Type main effect (F[2, 88] = 7.6, p < .001, η
2

G = .06; and a significant Group × Gap 

Type interaction: F[2, 88] = 8.47, p < .001, η
2

G = .07). Follow-up t-tests revealed that in 

younger adults both 150 ms and 250 ms gaps elicited higher amplitudes than 650 ms 

gaps (t[22] = 3.615, p = .002 and t[22] = 3.955, p < .001, respectively). In the older 

adults, however, only one comparison showed a significant difference, and it was in the 

opposite direction: 150 ms gaps elicited lower amplitudes than 250 ms gaps (t[22] = 2.2, 

p = .04).  

For the “gap only” events P2 was significantly larger (more positive) in younger, 

than in older adults (Welch’s t[43.841] = 2.973, p = .005). The one-way Gap Type 

ANOVA showed significant effects both in the younger (F[3, 66] = 6.553, p < .001, η
2

G 

= .098) and in the older adult group (F[3, 66] = 13.672, p < .001, η
2

G = .174). In the 

younger adult group, P2 amplitudes to 150 ms gaps were lower than those to 650 ms 

gaps (t[22] = 2.61, p = .016) or “gap only” events (t[22] = 4.472, p < .001). 

Furthermore, 250 ms gaps also resulted in lower amplitudes than “gap only” events 

(t[22] = 2.373, p = .027). In older adults, amplitudes differed between all gap types (t-

values > 2.536, p values < .017), except for the 150 and 250 ms gaps.  

The Group × Gap Type ANOVA of the normalized P2 amplitudes (Figure 8.3c) 

showed a significant Gap Type main effect (F[2, 88] = 8.21, p < .001, η
2

G = .06) only. 

Follow-up t-tests showed (with pooled groups) that the modulation of P2 amplitude was 

significantly larger at 150 ms (t[45] = 4.302, p < .001) and 250 ms (t[45] = 2.058, p = 

.045) glide-gap separations in comparison to 650 ms gaps. 
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Fig. 8.3 Normalized gap-related ERP amplitudes. Group-mean normalized gap-related 

ERP amplitudes of measured in the N1 interval at the electrode cluster centered on FCz (a) and 

in the average mastoid signal (b), and also in the P2 interval at the electrode cluster centered at 

FCz (c). Whiskers indicate standard errors of means. The basis of the normalization (100% on 

the vertical axes) refers to the group-mean amplitude in the corresponding corrected “gap only” 

waveforms. 

In summary, the hypothesis-driven analysis revealed that with shorter glide-gap 

separation, a stronger N1-enhancement was present (i.e. amplitudes were shifted in the 

negative direction at fronto-central and in the positive direction at mastoid sites) in the 

younger, but not in the older adult group. Interestingly, P2 (measured fronto-centrally) 

was reduced (i.e. amplitudes were shifted in the negative direction) as glide-gap 

separation decreased in both groups.  

8.3.2 Gap-related ERPs – Exploratory results 

The pattern of results presented above opens up the possibility that the observed 

effects are not due to the modulation of the N1 or P2 components, but rather, they may 

reflect an overlapping ERP. Indeed, the visual inspection of the waveforms (Figure 

8.1b) suggests that in the younger adult group the fronto-central N1 enhancement and 

the P2 reduction are caused by a fronto-centrally negative ERP overlapping both 

components. Similarly, the visual inspection of the group-average older adult ERP 

suggests that the P2 reduction, that is, the amplitude shift in the negative direction at 

fronto-central cites, is paralleled by an amplitude shift in the negative direction at the 

mastoid sites. To better visualize the glide-gap separation effects, the ERP differences 

between the ERPs to the 150, 250, and 650 ms gaps and the “gap only” ERP were 
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calculated (Figure 8.1b). The waveforms in these differences, referred to as delayed 

auditory responses in the following, were most prominently observable at 150 and 250 

ms glide-gap separations, between 90-260 ms in younger adults and between 110-330 

ms in the older adults, peaking at 170 ms at Cz in the younger, and at 200 ms at FC4 in 

the older adult group at 150 ms glide-gap separation.  

To confirm the visual impression that the amplitude of the delayed auditory 

response was modulated by glide-gap separation, the average amplitudes in a 20 ms 

time-window centered at the local minima of the “150 ms gap” – minus – “gap only” 

difference at the FCz cluster were measured separately for both groups. Similarly, 

because the polarity of the negativity seemed to be inverted at the mastoids, amplitudes 

were measured in a 20 ms time-window around the positive peak of “150 ms gap” – 

minus – “gap only” events waveform, separately for the two age groups. Similarly to 

the hypothesis-driven analysis, the “250 ms gap” – minus “gap only” and 650 ms gaps – 

minus – “gap only” amplitudes were normalized by the “150 ms gap” – minus – “gap 

only” amplitudes, then submitted to Group × Gap Type (250 ms / 650 ms) ANOVAs.  

At the FCz cluster, the Group × Gap Type (250 ms / 650 ms) ANOVA for the 

normalized amplitudes showed only a significant Gap Type main effect: F[1, 44] = 

6.11, p = .017, η
2

G = .04. , The same type of analysis of the mastoid signals showed a 

significant Gap Type main effect only: F[1, 44] = 18.28, p < .001, η
2

G = .17. In both 

cases the amplitudes were higher (more negative for the FCz, cluster, and more positive 

at the mastoids) for the 250 than for the 650 ms gaps.   

To confirm the visual impression that there was a latency difference between 

groups, the latencies of the “150 ms gap” – minus – “gap only” waveforms, as measured 

with a fractional area technique in combination with a jackknife procedure (Kiesel et al., 

2007) were submitted to a Welch t-test. This procedure was also used to compare the 

latencies of the delayed auditory responses at FCz and its positive aspect at the mastoids 

as well. When defining the latencies at the averaged mastoids, in case of three 

participants the boundary defined two areas in the younger adults group. In their case, 

the larger area was selected, which corresponded to the earlier one. Note that in the 

following the jackknife-adjusted F-, t- and p-values are reported. The degrees of 

freedom remained unadjusted.  
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In the “150 ms gap” – minus – “gap only” ERP difference, a significant group-

difference was present both at the FCz-cluster (t[42.405] = 6.823, p < .001), and at 

mastoids (t[24.947] = 4.251, p < .001). In both cases, the waveform peaked earlier in the 

younger adult group. The Group (younger adult / older adult) × Site (FCz cluster / M 

cluster) ANOVA revealed significant Group (F[1, 44] = 44.909, p < .001, η
2

G = .996) 

and Site (F[1, 44] = 18.071, p < .001, η
2

G = .988) main effects. The Group × Site 

interaction was not significant.  

8.3.3 Glide-related ERPs 

Glides elicited a clear N1 and P2 in both groups (Figure 8.4). In the younger 

adult group, N1 peaked at 106 ms and P2 peaked 194 ms, both at FCz, in the group-

average waveform. In the older adult group, N1 and P2 reached their maximum peaks at 

FCz as well; at 106 ms and at 218 ms, respectively. Glide-related amplitudes for N1 and 

P2 were also compared between the two groups by Welch t-tests at the FCz cluster. 

There was no significant difference in N1 amplitudes, but P2 was elicited with 

significantly lower amplitudes in the older than in the younger adult group (t[38.428] = 

2.887, p = .006). 

 

Fig. 8.4 Group-mean glide-related ERPs and the corresponding topographies in the N1 

and P2 time ranges in the younger and older adult groups. The grey bands indicate the time 

windows where the amplitude measurements were performed and for which the topographic 
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distributions are presented. The amplitude scales differ in order to support the comparison of 

distribution shape information between groups. 

8.4 Discussion 

The goal of the present study was to compare the duration of a distracted state 

induced by randomly occurring rare, background auditory events between younger and 

older adults. While participants watched a silent movie with subtitles, continuous tones 

containing rare glides (distracters) and frequent gaps (probes) were presented. Based on 

previous studies, we hypothesized that gap-related N1 and P2 ERPs would be enhanced 

when gaps closely followed glides, reflecting an increased readiness of the auditory 

system to process incoming stimuli. Based on the hypothesis that older adults showed a 

higher distractibility, and decreased ability to inhibit the processing of task-irrelevant 

pieces of information, we hypothesized that such ERP enhancements would be present 

for longer glide-gap separations in older than in younger adults.  

Gaps elicited N1 and P2 with higher amplitudes in the younger than in the older 

adult group (fitting previous results: Alain et al., 2004; Harris et al., 2012; Volosin, Gaál 

& Horváth, 2017a). Although the results showing an ERP enhancement with decreasing 

glide-gap separations in the N1 time range in the younger adult group are on a par with 

previous studies (Budd & Michie, 1994; Horváth & Winkler, 2010; Loveless et al., 

1989; McEvoy, Levänen & Loveless, 1997; Todd et al., 2000; Sable et al., 2004; Wang 

et al., 2008), the attenuated amplitudes in the P2 interval, and the comparison with the 

older adult group suggests a more economical explanation. Instead of a modulation of 

the N1 and P2 peaks, the hypothesis-driven analyses of the ERP amplitudes in the N1 

and P2 time-intervals revealed a pattern which could be best described as an overlap by 

a fronto-centrally negative waveform with a polarity reversal at the mastoids. This – 

presumably – auditory response was delayed in comparison to the N1, which resulted in 

a virtual enhancement of the N1 and attenuation of the P2 in the younger adult group. 

Because the overlapping waveform was even more delayed in the older adult group, its 

presence was manifested only in a marked (but virtual) P2 attenuation. The delayed 

auditory response showed decreasing amplitudes with increasing glide-gap separations.  

This result contradicts our hypothesis that rare glides temporarily raised the 

responsiveness of the auditory system to process closely following events, and thus 

invalidates the premise of our initial hypothesis regarding an age-related increase in the 
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persistence of such ERP enhancements. In addition, neither the distraction-based 

hypothesis (that a brief, involuntary allocation of attention to the tone lead to enhanced 

processing), nor the latent inhibition hypothesis (suggesting that a basic excitatory 

effect preceding the onset of inhibition enhances N1-elcitation) can explain the 

emergence of an additional gap-related ERP.  

The idea that the higher N1 (and lower P2) amplitude for a tone closely 

preceded by another tone was not a genuine N1- or P2-modulation, but the result of an 

overlapping negative ERP component has been suggested by Wang and colleagues 

(2008). They speculated that the overlapping ERP may have been an MMN, which was 

elicited because of the relatively short (i.e 100, 200 ms) separations from the preceding 

tone in comparison to the typical inter-stimulus intervals (sampled from an equiprobable 

100-1000 ms distribution, with a mean of 500 ms) used in their study (see e.g. Sable et 

al., 2004). The idea that MMN may contribute to the N1 enhancement was also hinted 

at by Todd and colleagues (2000) who found that the N1 facilitation to very short (50 

ms) inter-tone intervals and the amplitude of the MMN to rare duration deviants (100 

ms tones presented among 50 ms tones) were strongly correlated in healthy adults. The 

present results showing that the delayed auditory response had a polarity inversion at 

the mastoids also fits the MMN explanation, because – being of supratemporal origin – 

MMN also often shows a similar inversion (Alho et al., 1993; Maess, Jacobsen, 

Schröger & Friederici, 2007; Scherg, Vajsar & Picton, 1989). 

A further possibility is that the closely following gap is processed together with 

the preceding glide by the auditory system. Indeed, numerous studies suggested that 

processes underlying MMN generation integrate information over longer intervals (150-

300 ms, see e.g. Tervaniemi, Saarinen, Paavilainen, Danilova & Näätänen, 1994; Yabe, 

Tervaniemi & Reinikainen, 1997; Grimm, Roeber, Trujillo-Barreto & Schröger, 2006). 

The temporal window of integration seems to be of similar duration between younger 

and older adults (Horváth et al., 2009). Although the glide probably elicited an 

enhanced N1 and possibly an MMN (Horváth, 2014a) in itself, the closely following 

gap may be integrated with the glide, and treated as a single unit of stimulation. Because 

the glide-and-gap event-combination was as rare as the glide-only event in the present 

paradigm, an MMN time-locked to the gap may additionally be elicited.  
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Studies investigating age-related MMN latency differences in conditions of 

inattention for tones deviating in pitch, duration, or novelty from the frequently 

presented tones found either no differences (Amenedo & Diaz, 1998; Bertoli, 

Smurzynski & Probst, 2005; Horváth, Czigler, Winkler & Teder-Sälejärvi, 2007) or 

age-related delays (Cooper, Todd, McGill & Michie, 2006; Schroeder, Ritter & 

Vaughan, 1995; a tendency: Gaeta et al., 1998). MMNs elicited by unattended, rare 

tones with gaps showed age-related delays (Alain et al., 2004; Bertoli, Smurzynski & 

Probst, 2002). The fact that the delayed auditory response was elicited later in older 

than in younger adults is therefore also compatible with the notion that the ERP is a 

gap-related MMN. Although the gap-duration was longer than that used in the studies 

by Alain and colleagues (2004) and Bertoli, Smurzynski & Probst (2002), and it 

allowed close-to-perfect gap-detection rates in an active version of the administered 

paradigm for both younger and older adults (Volosin, Gaál & Horváth, 2017a), the age-

related latency-difference may still be the consequence of an age-related deterioration of 

fine temporal resolution (Humes, Kewley-Port, Fogerty & Kinney, 2010). 

In summary, the present results confirmed previous ERP findings showing 

enhanced ERP responses to auditory events shortly following another auditory event. In 

contrast to previous studies, by comparing younger and older adults, the present study 

provided evidence that the enhanced auditory ERP response was not due to the 

enhancement of the N1, but to an overlapping ERP originating from the auditory cortex, 

presumably an MMN. The delayed elicitation of this waveform suggests that central 

auditory processes related to the detection of gaps in continuous tones are slowed in 

older adults. 
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Chapter 9: GENERAL DISCUSSION 

The aim of the present dissertation was to shed light on the mechanisms 

contributing to the attention–distraction balance. While Study I and Study II focused on 

preparatory processes which could play role in preventing distraction and in the 

establishment of an efficient selective attention set, Study III and Study IV focused on 

the time course of distraction and its age-related changes.  

 We demonstrated in Study I and Study II that regularities of the acoustic 

environment are utilized strongly by the cognitive system in order to prepare for 

forthcoming relevant events and to suppress the distracting effect of task-irrelevant 

tones. In Study I (Volosin & Horváth, 2014), the constantly available information on the 

occurrence of a distracting stimulus lead to decreased P3a amplitudes compared to the 

condition when participants could not prepare for such events. This result fits to and 

extends the previous literature in which information on the forthcoming deviant was 

delivered by cues presented preceding each stimulus. In these experiments (Horváth & 

Bendixen, 2012; Horváth, Sussman, Winkler & Schröger, 2011; Sussman, Winkler & 

Schröger, 2003; Wetzel, Widmann & Schröger, 2007), one could speculate only that the 

decreased distraction-related ERPs like P3a a RON genuinely reflect that participants 

could shield against distraction and the amplitude modulation was not a mere byproduct 

of cue processing.  

 Study I strengthened the assumption that prediction and preparation effects lead 

to reduced distraction which was also supported in a subsequent experiment of Max, 

Widmann, Schröger and Sussman (2015). They investigated whether implicit 

predictability was enough to decrease distraction or explicitly generated top-down 

processes are necessary. They utilized a duration discrimination oddball task in which 

every 5
th

 tone was a pitch deviant and conditions differed from each other in the 

instruction and the amount of information provided to participants. In the informative 

conditions, participants were informed about the regularity of the sequence structure 

while in the uninformative condition they did not get any information. P3a amplitudes 

were significantly reduced in the informative condition, suggesting that beside of 

predictability provided implicitly by the presentation regularities, explicit knowledge-

related top-down processes are essential in generation of P3a and in 

electrophysiological signs of distraction. However, distraction was present in all 
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conditions, suggesting that in behavioral terms, the implicit knowledge was as effective 

as the explicit, and that predictions have a differential effect on electrophysiological and 

behavioral indices (Max et al., 2015), similarly as shown by our study (Study I).  

 In Study I, beside of the visual counter presented along with the tones, the 

constant time interval between stimuli (1.3 sec) also allowed to prepare for the 

presentation of subsequent tone. This preparation effect is observable at the baseline of 

ERPs (Fig. 5.1) which exhibit a negative, CNV-like (Walter et al., 1964) going trend 

before the onset of each tone. Although we did not analyze this baseline part of ERPs, 

its presence was demonstrated in numerous studies (Berti & Schröger, 2001; Horváth, 

2014a; 2016; Horváth, Gaál & Volosin, 2017; Schröger & Wolff, 1998b) utilizing 

constant SOAs in different oddball tasks. Beside of the regular pace of presentation, a 

second informative foreperiod also characterized the stimuli in the Study I. Because 

sounds started to move to the left or right always 200 ms following the onset, 

participants could prepare not only to the presentation of the tones in general, but the 

tone onset predicted the beginning of the movement as well. In these terms, although 

tone onsets were not informative regarding the correct response (left or right), they 

could be regarded as temporal cues. This second foreperiod effect can further explain 

the lack of behavioral difference between predictable and random conditions: although 

participants could not prepare for the pitch deviance which captured their attention, this 

attention capture and the additional arousal enhancement (e. g. Parmentier et al., 2010), 

speeded-up response times, leading to null-effect.   

  While in Study I both the sequence structure and the tone onsets provided 

predictability, in Study II we changed the stimulation from discrete to continuous, in 

order to control cue value of the regularities of trial-to trial presentation. Study II 

(Volosin, Grimm & Horváth, 2016) demonstrated that in case when distracter events 

predicted the timing of the task-relevant ones (but not their type), attention-related ERPs 

were observable to the distracters. One of these attention-related components was 

identified as N2b which often overlaps MMN and reflects the detection of task-relevant 

events. The elicitation of N2b is in line with previous findings with rare but task-

relevant events (Sams et al., 1983; Ritter et al., 1992), implying that in our case, 

originally task-irrelevant events were incorporated into goal-oriented behavior. 

Moreover, in the informative condition a significant CNV elicitation was also 

observable which is one of the first discovered cognitive ERP components (Walter et 
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al., 1964) reflecting preparation processes. That is, when the constant time interval 

between distracter and target events was available to be mapped, distracters did not only 

get enhanced attention but also resulted in preparatory effects, similarly to the negative 

going baseline amplitudes in Study I. This preparation affected behavioral results as 

well: decision on gap duration was significantly faster compared to the uninformative 

condition, however, the accuracy of performance was not impacted, probably because 

glides were not informative regarding the duration of the forthcoming gaps. Comparable 

results were found a subsequent study by Herbst and Obleser (2017) in which predictive 

foreperiods speeded up response times when acoustic events (pitch) were embedded in 

noise. Unfortunately, the design of Study II did not allow to investigate the ERP 

correlates of the preparation effects in case of targets. A fair comparison would be to 

select glide-gap pairs with the same temporal separation than in the informative 

condition (400 ms) but because the time intervals between distracter and target events 

varied highly in the uninformative condition, the number of such events would have 

been extremely low.  

 In general, Study I and Study II pointed out that human cognitive and auditory 

system takes advantage on the regularities in the acoustic environment, both in cases 

when participants are aware of the temporal structure of stimulation and when they are 

not. Results fit well in the framework of predictive coding as well: the brain constantly 

creates and updates hypotheses about the forthcoming events based on previous 

experience and current context, and the system is able in principle to control its learning 

in a continuous manner (Denham & Winkler, 2017). This process is reflected in our 

studies both in P3a reduction to predictable deviants in Study I, and the presence of 

task-relevance (N2b) in Study II and preparation-related (CNV) negativities in both 

cases. Moreover, Study I solved some questions arose from cuing paradigms: in such 

studies visual cues are constantly presented in 340-900 ms before targets, cue-related 

attentional effects might easily overlap with ERPs to the target, leading to the 

misinterpretation of modulation of different components. That is, the common target-

related P3a attenuation in cuing tasks (Horváth & Bendixen, 2012; Horváth, Sussman, 

Winkler & Schröger, 2011; Sussman, Winkler & Schröger, 2003; Wetzel, Widmann & 

Schröger, 2007) cannot be regarded as a byproduct of cue processing, and it is more 

likely that preparation effects shielding against distraction led to this effect as it was 



137 
 

suggested – but not entirely proved in previous studies. Study II also contributed to 

clarify issues from studies using distracters presented shortly before target events.  

 The age-related differences in the deviance processing and its effects on 

detection of subsequent acoustic events were investigated in Study III and Study IV. 

Both studies applied a continuous stimulation paradigm in which the temporal 

separation between rare glides and frequent gaps was systematically manipulated. In 

contrast to Study I and Study II, no temporal relationship was present between glides 

and gaps, that is, glides served only as distracters. Both Study III and Study IV were 

based on the assumption that N1 peaks with the largest amplitude the eliciting event is 

in the focus of attention (Hansen & Hillyard, 1980; Hillyard et al, 1973; Lange, 2013; 

Okamoto et al, 2007), while attentional disruptions attenuate its amplitude (Horváth & 

Winkler, 2010; Horváth, 2014a, 2014b). The modulation of N1 amplitude was expected 

to exhibit an opposite pattern during active and passive registration of the same sound. 

That is, in the active condition when participants voluntary listen to the continuous 

tones, rare glides should disrupt the attention set which is optimal for the detection of 

the gaps, which results in diminished N1 to closely (150 ms) presented gaps. In contrast, 

in the passive condition, participants’ attention was expected to be engaged in the visual 

modality (watching the movie), and glides were supposed to orient the attention to the 

task-irrelevant modality (tones), that is, attention would be allocated to the tone, thus 

enhancing N1 elicited by closely following gaps. In both experiments, we expected that 

recovery from the distracted state will take longer in older adults as reflected by the 

modulation pattern of gap-related N1 amplitudes.  

 However, only a part of the hypotheses was supported by the results. Fitting 

previous studies (Alain et al., 2004; Harris et al., 2012), gaps consistently elicited lower 

N1 amplitudes in older than in younger adults in both studies. Older adults did not differ 

from the younger group neither in their gap detection performance, nor in the time 

course of the modulation of N1 amplitude: the attention set of both groups was restored 

by 650 ms following glides, suggesting that older adults do not need more time to re-

orient their attention to the relevant task (Study III). Although at the first sight, it seems 

like that the N1 amplitudes were changed, it is more possible that not a pure N1 

modulation was present: as shown by topographic distributions in the upper two panels 

in Fig. 7.6 (N1 first time window vs N1 second time window), there is a dissociation 

between maximum peaks at the mastoid and fronto-central electrodes, suggesting the 
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presence of an overlapping negativity, probably a PN, reflecting that the gaps matched 

the task-relevant sensory template (Alho et al, 1986; Alho, 1992; Näätänen, 1982). This 

matching process occurred probably at very similar times with the elicitation of genuine 

N1 in the younger adults resulting in one visible peak while the timing of the two 

components isolated more strongly in time in the older adults. Although no age 

differences were present in the modulation pattern either of N1 or PN, older adults were 

nevertheless impacted more by glides, indicated by the enhanced reaction times 

compared to gap only events in the 150 ms condition while no such speed difference 

was present in the younger adult group (Study III). Moreover, in the Study III, the 

active attention to the ongoing tone and task made possible to compensate performance 

by more focused attention and with the contribution of extra cognitive resources which 

was more pronounced in the older adults (Getzman, Gajewski & Falkenstein, 2013; 

Lustig, Hasher and Zacks, 2007; Reuter-Lorenz & Cappell, 2008; Zanto & Gazzaley, 

2014). This compensation was reflected both in reaction time pattern (significant 

slowing in case of 150 ms glide-gap separation) and the negative sustained CNV-like 

potential which typically elicits in the older population with larger amplitudes and 

suggests the further processing of a stimulus (Näätänen & Michie, 1979).  

A further study of our research group (Horváth, Gaál & Volosin, 2017) 

demonstrated additional evidence to enhanced cognitive control in the older adults. 

Participants completed a tone duration discrimination task in discrete tones and every 

sound was presented with the same pitch (that is, no distracting oddball tones were 

embedded). We investigated both onset- and offset-related ERP responses and found 

enhanced N1 amplitudes at tone onsets and no age differences at the offsets at temporal 

electrodes (T-complex: Wolpaw & Penry, 1975), fitting to the previous literature (onset: 

Amenedo & Díaz, 1998; Anderer, Semlitsch & Saletu, 1996; Chao & Knight, 1997; 

offset: Ross et al., 2009). More importantly, older adults exhibited a significant 

centrally distributed negative deflection, probably an N2 at tone offsets which was 

absent in the younger adults group, suggesting the presence of additional cognitive 

control processes (Folstein & Van Petten, 2008).   

 The results of the passive arrangement in the Study IV also strengthened the 

assumptions of Study III. When participants had no chance to compensate their 

performance by more focused attention as in the Study IV, the background processing 

of gaps preceded by glides shortly was characterized with an overlapping negative 
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deflection, probably a mismatch negativity. In the older adults, MMN peaked with a 

significant delay compared to younger adults which is in consonance with previous 

studies utilizing either discrete tones (Cooper, Todd, McGill & Michie, 2006; 

Schroeder, Ritter & Vaughan, 1995) or more importantly, gaps embedded into rare 

tones presented in the background (Alain et al., 2004; Bertoli, Smurzynski & Probst, 

2002). A possible explanation for the absence of hypothesized gap-related N1 

modulation pattern in the Study IV could be that the MMN which can be characterized 

with a relatively slow time-course overlapped N1. Besides, the temporal interval in 

which MMN elicited (between 90-260 ms in younger adults and between 110-330 ms in 

the older adults) also overlapped with the time-course of P2, explaining why the pattern 

of P2 modulated in the opposite way compared to N1, that is, its amplitude lineally 

increased with the glide-gap separation. It is also important to emphasize that the 

overlapping MMN effects was observable only in case of 150 ms glide-gap separation, 

and this interval corresponds to the window of temporal integration. That is, a further 

possibility that in such cases gaps were presented during the temporal integration period 

of the glide and these two events were represented together (Yabe, Tervaniemi, 

Sinkkonen, Huotilainen, Ilmoniemi & Näätänen, 1998) and served as a unique type of 

rare event, leading to MMN elicitation.  

However, since the overlapping MMN in Study IV was revealed as an 

explorative result, its interpretation should be cautious. For further studies, an important 

step would be to clarify whether it is a real MMN originating from the regularity 

violations of rare events and not a byproduct of gap processing. This question can be 

answered easily by switching the role of gaps and glides, that is, to introduce a control 

condition in which glides are the frequent and gaps are the rare events and compare 

whether both conditions will elicit similar MMN effects. When both combinations of 

the events were leading to similar neural responses, it would support the presence of 

MMN. 

 The declined processing of fine temporal resolution with aging is also in line 

with the results from speech processing in background noise. This is a frequently 

reported symptom in the older population leading to significant frustration, and since 

the perception of pure tones is usually intact, they remained untreated, decreasing the 

well-being more strongly (Pichora-Fuller, 2003a, 2003b). The difficulty of following 

conversations in noisy background despite normal cognitive functioning is a typical 
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case of a decline in the central auditory system in the synapses between hair cells and 

cochlear nerve terminals, also known as “hidden hearing loss” (Liberman, Epstein, 

Cleveland, Wang & Maison, 2016). Although we measured pure tone audiometry only 

and adjusted the loudness individually, individual differences in the central auditory 

processing could still be present. A feasible way to screen such differences – note that 

hidden hearing loss can also affect younger adults – more complex control tests should 

have been utilized, for example speech-in-noise tests (Le Prell & Clavier, 2017) which 

was unfortunately not available in our experiments. Later studies should pay more 

attention to individual differences regarding the central auditory processing.  

 When observing the results from Study III and Study IV, one might speculate 

whether the processing of glides could be modulated with aging in general leading to 

differences in the default processing of the stimuli presented in the experiments, for 

example regarding the sensitivity to attention capture. There are studies showing that 

older adults detected frequency modulation less accurately when it was applied to 

discrete tones with a lower frequency (500 Hz) compared to higher one (4000 Hz), and 

similarly when they had to decide whether the two presented tones were the same or 

different one and also when they had to decide which of the three subsequent tones 

differed in pitch from the remaining two (He, Dubno & Mills, 1998; He, Mills & 

Dubno, 2007). However, when frequency modulation was present within the tones (i. e. 

to glides) presented in the background, older adults were found to be less sensitive to 

them at 500 Hz compared to 3000 Hz; that is, larger frequency change needed to elicit 

electrophysiological response (P1-N1-P2 waveform) and delayed latencies were 

observable as well (Harris, Mills, He & Dubno, 2008). This effect might be explained 

by the different processing of high and low frequencies: while the discrimination of 

lower frequencies is based mainly on temporal information and phase-locking cues 

might contribute, at higher frequencies, temporal information is less useful (Harris et 

al., 2008; He, Dubno & Mills, 1998). It is important to note that these studies used 

relatively small frequency differences (from 0 to 8%) and slower glides (150 ms in the 

study of Harris et al., 2008), and we utilized quicker (10 ms) and more salient frequency 

changes (cca 25%). The age-related differences to glide-elicited N1 amplitudes were not 

significant either in active (Study III) or in passive/background presentation (Study IV), 

suggesting that both older and younger adults were similarly affected by distracting 

glides or at least they had no difficulties to detect them.  
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 The utilization of glides in Studies II, III and IV arise an additional interesting 

question on the possible processing differences between the two directions of pitch 

changes (that is, different perceived saliency of ascending or descending glides). For 

example, Kalaiah and Shastri (2016) demonstrated that when the pitch of discrete tones 

changed between two frequencies by 30 ms glides, ascending glides led to the 

elicitation of N1-P2 with larger amplitudes and shorter latencies compared to the 

descending glides. This effect might be explained with the evolutionary significance of 

rising tones: gradual pitch changes are similar to the Doppler frequency shifts to 

approaching and receding sounds in natural environments serving as important warning 

cues about the moving direction of a sound – and its source. Because looming objects 

are more salient and require a more immediate response regarding the planning of goal-

oriented behavior, they capture attention in a larger extent (Neuhoff, 1998; Rosenblum, 

Wuestfeld & Anderson, 1996). In our studies, the rate of ascending and descending 

glides was 50-50% therefore the two effects might have been averaged, nevertheless it 

would be informative to compare glides with different directions, especially when they 

convey information on the forthcoming events like in Study II (Volosin, Grimm & 

Horváth, 2016).  

 The perception of the moving sounds should be mentioned in context of the 

potential alerting effect of higher pitch tones in Study I (Volosin & Horváth, 2014) as 

well. Based on the Doppler-effect described above, one could speculate that high pitch 

deviants were more alerting compared to the lower ones and this could lead to null 

effect in reaction times. We tested this possibility by comparing results of participants 

who listened to blocks with high deviants and low standards and those who listened to 

low deviants and high standards. There was no difference between their performance 

which suggest that perceived pitch and velocity played no or insignificant role in 

results. That is, although sound movements either in dimension of direction or pitch 

could lead to general processing differences of stimuli in our experiments, it is not 

possible that the results would be caused by such asymmetries. First, because we 

balanced the amount of these factors, and second, the results were based on modulation 

patterns of different components, in which significant effects were always the results of 

interaction. Nevertheless, further studies need to handle these factors more carefully and 

to compare them directly would also result in valuable information on the perception of 

the dynamical acoustic changes.   
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When discussing the role and possible effects of glides and moving sounds, one 

cannot disregard the critical evaluation of the continuous stimulation paradigm either, 

especially in context whether it was an adequate method to indicate and to investigate 

distraction. First of all, as mentioned above, its significant advantage is against oddball 

tasks utilizing discrete tones that in continuous tones no tone onsets are present which 

could be used as cues during the task. Note that in case of discrete tones, the first task-

relevant event is always the onset of the tones and the second one when decision can be 

made, that is, the offset of short tones. In the gap detection tasks (Study III and IV) gaps 

serve as offsets of short tones but in the absence of tone onsets – except of preceding 

glides – no events can predict their presentation therefore its temporal structure makes 

the rare events more surprising and sudden (Horváth & Winkler, 2010). Second, 

because it contains less acoustic events compared to classical oddball tasks, gap 

detection might be an easier task for older adults than duration discrimination. 

Moreover, the everyday acoustic contexts can be characterized more often with events 

which are continuously present than with repeating discrete tone patterns. On the other 

hand, the concept of long tones containing only two kinds of acoustic events can be 

regarded as a disadvantage as well since the acoustic environment around us is much 

more complex and contains more variability. Although the main function of 

experiments created in laboratory settings is to model the regularities and characteristics 

of the environment (Winkler & Schröger, 2015), the highly strict control of the 

variables and stimuli can easily lead to low ecological validity. Taken together, despite 

the potential weaknesses of the continuous stimulation paradigm, it appeared to be an 

appropriate method to investigate distraction, especially because the elimination of tone 

onets as temporal cues led to a higher level of uncertainty during the stimulation.  

Altogether, the results of the studies presented above contributed not only to the 

scientific literature but also might be adequate starting points of future studies. 

Although they can be regarded as basic research in principle, Study III and Study IV 

can be strongly connected to applied science as well. As we demonstrated that although 

healthy aging is accompanied with declined temporal processing, highly functioning 

older adults can compensate with the recruitment of additional cognitive sources which 

was observable both in electrophysiological and in behavioral results. It would be 

interesting to compare whether older adults can experience these copensational 

strategies in the everyday life; and if yes, how can it be related to the results from the 
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laboratory. For example, Tomaszewski Farias and colleagues (2018) compared 

cognitively healthy older adults and those with mild cognitive impairment (MCI) and 

dementia in their compensation and cognitive abilities. They found that the higher and 

more effective functioning in daily life was strongly correlated with more frequent use 

of compensational strategies (for example using reminders, shopping lists, keeping 

important objects in well-visible places etc): demented participants used significantly 

lower amount of such strategies than healthy or MCI persons (Tomaszewski Farias et 

al., 2018). In context of the present doctoral dissertation, it would be interesting and 

suitable to include older adults with various levels of cognitive impairments in the 

studied sample and to follow-up how sensory and higher level cognitive processing 

interact in their case, especially when compensatory mechanisms are required. 

Once it is known which functions decline with aging and which strategies can be 

utilized to compensate them, the development of cognitive trainings strengthening those 

abilities are crucial (Tomaszewski Farias et al., 2018; Harada, Love & Triebel, 2013). 

Several studies aimed to find cognitive trainings with reliable transfer effects, during 

which the improvement by practice in one test can be generalized to other cognitive 

domains as well. However, results on the long-term benefits in the cognitive 

performance is mixed: while practicing particular tasks per se did not lead to stable 

effects (for example Souders, Boot, Blocker, Vitale, Roque & Charness, 2017), the 

acquisition of different cognitive strategies in general (for reviews: Harada, Love & 

Trieberl, 2013; Schubert, Strobach & Karbach, 2014; Zelinski, 2009) is nevertheless a 

promising area of psychology and neuroscience which requires further investigations.  
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Chapter 10: CONCLUSIONS 

 The aim of the present dissertation was to investigate the mechanisms 

contributing to the balance of attention and distraction and its changes with healthy 

aging. The present results support and extend previous results in the literature. Our 

studies demonstrated that explicitly and continuously provided information on the 

forthcoming stimulus reduces distraction as reflected in the electrophysiological 

components. Moreover, we pointed out that the cognitive system is able detect whether 

otherwise task-irrelevant distracters can predict the occurrence time of a task-relevant 

event. This process led to enhanced attention and preparation effects to these distracters, 

suggesting that these events are incorporated into the goal-oriented behavior.  

 The third and fourth studies of the thesis aimed to shed light on the duration of 

the distracted state and its differences with healthy aging. In these studies, the lack of 

temporal relationship between distracter and target events led to the disruption of the 

attention set and varying the temporal separation of these two types of events allowed to 

measure the time required to recover from distraction. Both studies demonstrated that 

older adults needed similar amount or more time to re-orient their attention to the 

original task. In the same time, however, older adults were characterized with 

deteriorated processing of the fine temporal resolution, which was possible to be 

compensated with enhanced attention and involvement of additional cognitive sources.  

 In summary, our studies contribute to the current knowledge on how the 

cognitive system extracts regularities from the acoustic environment and made a step 

toward understanding how our brain utilizes this information to perceive the world and 

control our behavior in an optimal way. We also got closer to explore the duration of the 

distracted state and its changes with aging. In addition, we found evidence for the 

declined temporal processing in older age, which can be a major cause of poor speech 

understanding in noise and which often remains hidden by the common method of 

audiometry. This condition therefore deserves further attention both when investigating 

and diagnosing age-related changes in hearing abilities.  
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