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Budding yeast (Saccharomyces cerevisiae) cells coordinate cell growth and cell cycle 

progression essentially during G1, where they must reach a critical cell size to traverse 

Start and enter the cell cycle. The most upstream activator of Start is Cln3, a G1 cyclin 

that together with the cyclin-dependent kinase Cdc28 triggers a transcriptional wave 

that drives cell cycle entry. The Cln3 cyclin is a low abundant and very unstable protein 

whose levels respond very rapidly to nutritional changes by different regulatory 

mechanisms, allowing the cell to adjust proliferation requirements to growth 

capabilities very efficiently in changing environments. However, Cln3 expression is not 

sharply regulated through the cell cycle and it is already present in early G1 cells. 

Notably, most Cln3 is retained bound to the ER in early G1 with the assistance of Whi3, 

an RNA-binding protein that binds the CLN3 mRNA, and it is released in late G1 by Ydj1, 

a J-chaperone that might transmit growth capacity information to the cell cycle 

machinery. However, little is known on the molecular mechanisms that retain the 

Cdc28-Cln3 complex in the cytoplasm and how do these mechanisms transmit 

information of cell size to coordinate cell proliferation with cell growth. As Cdc28 is 

important for proper retention of Cln3 at the ER, we hypothesized that mutations 

weakening interactions to unknown ER retention factors would cause premature release 

of the Cdc28-Cln3 complex and, hence, a smaller cell size.  

This thesis describes the isolation and characterization of a CDC28 quintuple mutant, 

which causes premature entry into the cell cycle and a small cell size and we refer to as 

CDC28wee. Next we used isobaric tags for relative and absolute quantitation (iTRAQ) to 

identify direct interactors with lower affinities for mutant Cdc28wee, aiming at the 

identification of proteins with key regulatory roles in the retention mechanism. Among 

the identified proteins we found Srl3, a protein of unknown function, here renamed as 

Whi7. Here we show that Whi7 acts as an inhibitor of Start, associates to the ER and 

contributes to efficient retention of the Cln3 cyclin, thus preventing its unscheduled 

accumulation in the nucleus. Our results demonstrate that Whi7 acts in a positive 

feedback loop to release the G1 Cdk-cyclin complex and trigger Start once a critical size 

has been reached, thus uncovering a key nonlinear mechanism at the earliest known 

events of cell cycle entry. 

In addition to Whi7 we also identified Whi8, renamed here as Whi8, which is an RNA-

binding protein present in both stress granules (SGs) and P bodies (PBs) with unknown 



Summary 

 
 

4 
 

biological function. We have found that Whi8 interacts with Cdc28 in vivo, binds and 

colocalizes with the CLN3 mRNA, and interacts with Whi3 in an RNA-dependent manner. 

Whi8-deficient cells showed a smaller budding cell size while, on the other hand, 

overexpression of Whi8 increased the budding volume. Cells lacking Whi8 were not 

capable of accumulating the CLN3 mRNA in SGs under stress conditions, and Cln3 

synthesis remained high under glucose and nitrogen starvation, two environmental 

stress conditions that dramatically decrease Cln3 levels in the cell. Whi8 accumulation in 

SGs depended on an intrinsically disordered domain (IDD) identified at C-terminus of 

Whi8 and specific PKA phophosites. Our results suggest that Whi8 acts under stress as a 

safeguard that limits the influx of newly synthesized Cln3 (and likely other proteins) 

into the cell cycle machinery, by trapping the CLN3 mRNA in mRNA granules. Thus, we 

have found a unique target for signaling pathways that directly links stress response and 

cell cycle entry.  
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 “‘The first thing I've got to do,’ said Alice to herself, as she wandered about in the 

wood, ‘is to grow to my right size again…’” – Lewis Carroll, Alice's Adventures in 

Wonderland (1865).  

The word “cell” comes from the Latin word “cella” which means small room (Simpson, 

1977). The size of living eukaryotic cells can range from 10 microns, which is the 

diameter of budding yeast S. cerevisiae (Forsburg & Nurse, 1991), to around 30 microns, 

the diameter of human keratinocytes (Sun & Green, 1976), and up to 1300 microns, the 

diameter of Xenopus laevis frog oocytes (Dumont, 1972). A cell's size is a fundamental 

attribute that contributes to function in the context of multicellular organisms and to 

fitness in the context of unicellular organisms. Size imposes constraints on cellular 

design. For instance, as cells grow larger, passive diffusion may limit intracellular 

transport and the decreased surface area to volume ratio may make nutrient uptake 

limiting for cell growth.  

The first insights into cell size control were made around 100 years ago, when Boveri, 

Hertwig, and their colleagues (Wilson, 1925) observed a fundamental correlation 

between ploidy and cell volume. Here, in this study, we provide new insights about 

spatial regulation of cell size trying to answer how size homeostasis is achieved in 

proliferating cells during the G1 phase of the cell cycle in S. cerevisiae, our working 

model. It is clear that coordination between growth and proliferation is an active 

process in a great variety of unicellular organisms ranging from bacteria to protists. 

Indeed, the highly diverged budding and fission yeasts each possess specific regulatory 

networks dedicated to converting the accrual of sufficient biomass into a stimulus for 

cell cycle progression. Just how cells convert steady increases in size into a switch-like 

decision to enter the cell cycle is a fascinating question in biological engineering. While it 

is clear that cell growth and division must be correlated in metazoans, it remains a 

contentious issue whether such cells actively and cell-autonomously couple growth and 

division. Size control has inspired much research over the past century, yet, relative to 

other aspects of cell biology, this problem has been recalcitrant to conventional genetics 

and biochemistry. In thinking about cell size control, it is important to distinguish cell 

growth, the cell cycle, and the mechanisms that coordinate the two either in direct or 

indirect manners. 
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1. The cell cycle 

Nucleated cells destined to grow and reproduce have to go through a cyclic process that 

includes growth, DNA duplication, nuclear division (mitosis) and cellular division 

(cytokinesis). During interphase cells take their time to grow (G1 and G2), replicate their 

DNA (S phase), repair DNA damage, and make sure that cells are ready to divide in the 

proceeding stage (M phase). M phase is composed of two major events, mitosis and 

cytokinesis. During mitosis sister chromatids are attached to microtubules coming from 

opposite poles of the spindle, and are aligned in the middle of the cell forming the 

metaphase plate. Once all sister chromatids are correctly bi-oriented, sister chromatid 

cohesion is destroyed resulting in their separation and retraction towards opposite ends 

of the cell during anaphase. Mitosis ends with nuclear cleavage (telophase), and is 

followed by cytokinesis, which results in two daughter cells each with identical 

chromosome number to that of the original cell. To ensure the correct order of events, 

the cell contains a complex regulatory network called the cell cycle control system. 

Cyclin dependent kinases (Cdks) are the central components of this system, which 

catalyze the covalent attachment of phosphate groups derived from ATP to protein 

substrates. Cdks are activated by binding to different cyclins, which trigger different cell 

cycle events. The different cyclin/Cdk complexes can be classified into G1-Cdk, G1/S-

Cdk, S-Cdk, and M-Cdk. Each cyclin/Cdk complex promotes the activation of the next in 

sequence, thus ensuring that the cycle progresses in an orderly manner. The cell cycle 

control system drives progression through the cell cycle at regulatory transitions called 

checkpoints. The first checkpoint is called Start or G1/S checkpoint. When conditions 

are ideal for cell proliferation, the levels of G1/S cyclin increase, promotes the formation 

of G1/S-Cdk complex (Figure 1). These complexes activate S-Cdk, resulting in 

phosphorylation of proteins that initiate DNA replication and S-phase entry. 

Eventually, G1/S- and S-Cdk complexes promote the activation of M-Cdk complexes, 

which drive progression through the second major checkpoint at the entry into mitosis 

(G2/M checkpoint). M-Cdk complexes phosphorylate proteins that promote spindle 

assembly, bringing the cell to metaphase. Progression through the last checkpoint 

(spindle assembly checkpoint, SAC) at the metaphase to anaphase transition, occurs 

when M-Cdk stimulates the anaphase promoting complex (APC) which triggers 

anaphase by destruction of a protein called securin. In addition, APC causes the 
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proteolytic destruction of cyclins to close the cell cycle. If conditions are not appropriate 

for cell proliferation, cells arrest cell cycle progression at these checkpoints until they 

are satisfied and the conditions are favorable again to continue. Arrest at the early 

stages of the cell cycle occurs at the Start checkpoint by inhibiting the activation of S-

Cdks. Similarly, failure to complete DNA replication blocks entry into mitosis by 

inhibiting M-Cdk activation. The proteolytic activity of the APC is also inhibited at the 

metaphase to anaphase transition when there is a delay in the spindle assembly, which 

prevents sister chromatid segregation until the spindle is ready (Peters, 2006; 

Woodbury & Morgan, 2007) . 

 

 

Figure 1: Overwiew of the Cell Cycle  
 

Overview of the cell cycle in budding yeast (on the left) and mammalian cells (on the right).  

 

2. The cell cycle control system 

The regulatory network regulating the order and timing of cell cycle is called the cell 

cycle control system. The fundamental G1/S transition regulatory pathways of the cell 

cycle are conserved from yeast to humans. These systems-level properties are 

conserved across eukaryotes despite frequent lack of protein sequence homology, and 

share cyclins, CDKs, transcription factors and other regulators of the cell cycle. A list of 

functional orthologues between yeast and humans of G1/S phase transcriptional 

regulators and cyclin-CDKs are indicated in Table 1. Although the functional orthologues 
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of cyclins and CDKs share significant sequence homology, there is a total lack of 

sequence homology between yeast and the higher eukaryotic G1/S transcriptional 

regulators. 

 

 

 

 

 

 

 

 

 

 

 

 

There are three major regulatory checkpoints of the cell cycle: Start, which describes the 

cell cycle entry in late G1; the G2/M checkpoint, that describes how entry into mitosis is 

controlled; and finally the metaphase-to-anaphase transition, where the final events of 

mitosis and cytokinesis are initiated. The central components of this control system are 

the cyclin-dependent kinases (Cdks). As the cell progresses through the cycle, abrupt 

changes or oscillations in the enzymatic activity of these kinases lead to changes in the 

phosphorylation state, and thus the activation state, of the Cdk protein substrates that 

control cell cycle events. Cdk protein concentrations are constant throughout the cell 

cycle; oscillations in their activity depend primarily on oscillations in the levels of other 

regulatory subunits tightly bound to Cdks called cyclins that stimulate the Cdks catalytic 

activity. Different cyclin-Cdk complexes exist during different cell cycle stages. These 

complexes G1-, G1/S-, S- and M-Cdks control the passage through the three major 

regulatory checkpoints (Figure 2). Each cyclin-Cdk complex activates the next one in a 

series, and this ensures the cell cycle progression in an ordered fashion.  

Table1: Functional orthologues between yeast and humans of G1−S phase transcriptional 
regulators and cyclin-CDKs. 
 

Adapted from Bertoli et al. (2013) 
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Figure 2: A simplified overview of the cell cycle control system 
 

Levels of the three major cyclin types oscillate during the cell cycle (top), providing the basis for  

oscillations in the cyclin-Cdk complexes that drive cell cycle events (bottom). In general, Cdk levels are 

constant and in large excess over cyclin levels; thus, cyclin-Cdk complexes form in parallel with cyclin 

levels. The enzymatic activities of cyclin-Cdk complexes also tend to rise and fall in parallel with cyclin 

levels, although in some cases Cdk inhibitor proteins or phosphorylation introduce a delay between the 

formation and activation of cyclin-Cdk complexes. Formation of active G1/S-Cdk complexes commits the 

cell to a new division cycle at the Start checkpoint in late G1. G1/S-Cdks then activate the S-Cdk complexes 

that initiate DNA replication at the beginning of S phase. M-Cdk activation occurs after the completion of S 

phase, resulting in progression through the G2/M checkpoint and assembly of the mitotic spindle. APC 

activation then triggers sister-chromatid separation at the metaphase-to-anaphase transition. APC activity 

also causes the destruction of S and M cyclins and thus the inactivation of Cdks, which promotes the 

completion of mitosis and cytokinesis. APC activity is maintained in G1 until G1/S-Cdk activity rises again 

and commits the cell to the next cycle. This scheme serves only as a general guide and does not apply to all 

cell types. Adapted from Morgan (2007). 

 

The activity of cyclin-Cdk complexes is governed by multiple regulatory mechanisms 

including cyclin concentrations which are a function of combination of changes in cyclin 

gene expression and rates of cyclin degradation ,the addition or removal of inhibitory 

phosphorylation, and finally by changes in the levels of Cdk inhibitor proteins. The G1/S-

, S- and M-Cdks are inactive in G1 due to lack of expression of those cyclin genes by 

inhibitory gene regulatory proteins, high rates of cyclin degradation through the 

activation of an E3 ubiquiting ligase complex called the anaphase-promoting complex or 

AP, which specifically targets the S and M cyclins (but not the G1/S cyclins) for 

proteolysis and degradation (Figure 2), and finally the presence of high concentrations 

of Cdk inhibitors in G1.  
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Cell cycle entry begins when the cell receives extracellular signals (mitogens, for 

example) and intracellular (systems monitoring cell growth, for example) trigger a 

combination of events that promote G1/S- and S-cyclin gene expression consequently 

activation of G1/S-Cdks. G1/S-Cdk activity peaks immediately because in one hand the 

G1/S cyclins are not targeted by the APC and on the other hand because the Cdk 

inhibitor proteins either do not act on G1/S-Cdks (in yeast and flies) or are removed 

from G1/S-Cdks (in mammals). The G1/S-Cdks directly initiate some early cell cycle 

steps and more importantly activate the S-Cdks by triggering the destruction of Cdk 

inhibitor proteins and the inactivation of the APC, the two major inhibitors of S-Cdk 

activity in G1. S-Cdks then phosphorylate specific proteins that initiate chromosome 

duplication (spindle pole body in yeast), thereby launching S phase. Toward the end of S 

phase, M-cyclin gene expression is switched on and M-cyclin concentration rises, leading 

to the accumulation and activation of M-Cdk complexes during G2. In most cell types, 

these M-Cdk complexes are initially held inactive by inhibitory phosphorylation of the 

Cdk subunit. At the onset of mitosis, the abrupt removal of this inhibitory 

phosphorylation by phosphatases leads to the activation of all M-Cdks and those are 

responsible for deriving the cycle progression through the G2/M checkpoint. The 

consequence of mitotic events begins with spindle assembly and other early mitotic 

events lead to the alignment of duplicated sister chromatids on the mitotic spindle in 

metaphase. In addition to driving the cell to metaphase, M-Cdks finally stimulate 

activation of the APC, which triggers the metaphase to anaphase transition and mitotic 

exit. A major function of the APC at the metaphase to anaphase checkpoint is to 

stimulate the destruction of proteins that hold the sister chromatids together. The APC 

also causes destruction of S and M cyclins, resulting in the inactivation of all major Cdk 

activities in late mitosis. Decreased S- and M-cyclin gene expression and increased 

production of Cdk inhibitor proteins also occurs in late mitosis. The resulting 

inactivation of Cdks allows dephosphorylation of their mitotic targets, spindle 

disassembly and the completion of M phase. Low levels of Cdk activity then maintained 

until late in the following G1 of the next cycle, when rising G1/S-Cdk activities again 

commit the cell to a new cycle. The cell cycle control system is simply summarized in 

(Figure 2).  
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The cyclin-Cdk complexes and other cell cycle regulators are assembled into a highly 

interconnected unidirectional regulatory system whose effectiveness is enhanced by a 

number of important features including. First, feedback loops and other regulatory 

interactions that lead to irreversible, switch-like activation and inactivation of cyclin-

Cdk complexes, and this allow cell cycle to be triggered in an all-or-none fashion, to 

avoid the damage that might result from partial initiation. Second, regulatory 

interactions between the different cyclin-Cdk switches ensure order and coordination 

between each others. Third, the robust activation and inactivation of every cyclin-Cdk 

switch due to control by multiple mechanisms, and this helps the system to operate well 

and display adaptation against a variety of conditions and regulatory inputs from 

various intracellular and extracellular factors (Morgan, 2007). 

Cyclin-dependent kinases 

The cyclin-dependent kinases (Cdks) are a family of serine/threonine protein kinases 

whose small MW (~34-40 kDa). All Cdks require the binding of a regulatory cyclin 

subunit for their enzymatic activation. In most cases, full activation also requires 

phosphorylation of a threonine residue near the kinase active site. In the fission yeast S. 

pombe and the budding yeast S. cerevisiae, all cell cycle events are controlled by a single 

essential Cdk called Cdk1 (Table 2), on the other hand  cell cycle in higher eukaryotes 

are controlled by at least two Cdks, known as Cdk1 and Cdk2, which operate primarily in 

M phase and S phase, respectively. Animal cells also contain two more Cdks (Cdk4 and 

Cdk6) that are important in regulating G1 and cell cycle entry (Table 2).  

 

   Table 2: Table of cyclin –dependent kinases that control the cell cycle in yeast and H. sapiens 
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Figure 3: Cyclin-dependent kinase structure 
 

(A) Amino-acid sequences of major Cdks controlling the cell cycle in humans (H. sapiens (Hs) Cdk1 and 

Cdk2) and yeast (S. pombe (Sp) Cdk1 and S. cerevisiae (Sc) Cdk1). Yellow residues are identical in all four 

kinases. Above the alignment, secondary structure elements in human Cdk2 are shown for comparison 

with the tertiary structure in panel (b). Key landmarks are highlighted, including the PSTAIRE or 1 helix, 

the inhibitory phosphorylation sites Thr 14 and Tyr 15, the activating phosphorylation site (Thr 160 in 

human Cdk2) and the T-loop or activation loop where Thr 160 is found.  

(B) Tertiary structure of human Cdk2, determined by X-ray crystallography. Like other protein kinases, 

Cdk2 is composed of two lobes: a smaller amino-terminal lobe (top) that is composed primarily of beta 

sheet and the PSTAIRE helix, and a large carboxy-terminal lobe (bottom) that is primarily made up of 

alpha helices. The ATP substrate is shown as a ball-and-stick model, located deep within the active-site 

cleft between the two lobes. The phosphates are oriented outward, toward the mouth of the cleft, which is 

blocked in this structure by the T-loop (highlighted in green). Adapted from Morgan (2007). 
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Cdks phosphorylate a large number of protein substrates in the cell during cell cycle. 

These Cdk substrates are phosphorylated at serine or threonine residues in a specific 

sequence context where the target serine (S) or threonine (T) residue is followed by a 

proline (P); it is also highly favorable for the target residue to have a basic amino acid 

two positions after the target residue. The typical phosphorylation amino acid 

consensus sequence for Cdks is [S/T*]PX[K/R], where S/T* indicates the 

phosphorylated serine or threonine, X represents any amino acid and K/R represents 

the basic amino acid lysine (K) or arginine (R) ( Morgan, 2007).  

Like all protein kinases, Cdks have a two-lobed tertiary structure comprising a small N-

terminal lobe and a larger C-terminal lobe. ATP fits snugly in the cleft between the lobes, 

in such a way that the phosphates are oriented toward the mouth of the cleft. The 

protein substrate binds at the entrance of the cleft, interacting mainly with the surface of 

the C-terminal lobe. Nearby residues catalyze the transfer of the terminal γ-phosphate of 

ATP to hydroxyl oxygen in a serine or threonine residues within the protein substrate.  

There are two structural modifications revealed by detailed crystallographic studies of 

the structure of human Cdk2, those two modifications explain why Cdks hold inactive in 

the absence of cyclin. First, a large, flexible loop (the T-loop or activation loop) rises 

from the C-terminal lobe to block the binding of protein substrate at the entrance of the 

active site cleft. Second, in the inactive Cdk several important amino-acid side chains in 

the active site are incorrectly positioned, so that the phosphates of ATP are not ideally 

oriented for the kinase reaction. Therefore activation of Cdk requires extensive 

structural changes in the Cdk active site. Two -helices exert a particularly important 

contribution to the Cdk activity control upon cyclin binding. The highly conserved 

PSTAIRE helix of the upper kinase lobe (also known as the 1 helix) interacts directly 

with cyclin and moves inward, causing the reorientation of residues that interact with 

the phosphates of ATP. The small L12 helix, just before the T-loop in the primary 

sequence, changes structure to become a beta strand, also contributing to 

reconfiguration of the active site and T-loop (Johnson et al., 2002, Morgan, 1997; 

Ubersax et al., 2003) (Figure3A and 3B).  
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Cyclins 

Cyclins are the Cdk partners; they bind and activate Cdks. They are called cyclins because 

of displaying cyclical changes in concentration during the cell cycle, which help to generate 

the oscillations in Cdk activity consequently cell cycle control. The regulation of cyclin 

concentration is driven by changes in cyclin gene expression (transcriptiona) and 

destruction of cyclins (proteolysis). Cyclins can be divided into four classes, based 

primarily on the phase of their expression and their functions during the cell cycle.  

The G1/S cyclins, S cyclins and M cyclins which are directly involved in the control of cell 

cycle events (Table3). The fourth class, the G1 cyclins, contributes to the control of cell 

cycle entry in response to extracellular factors. 

 

             Table 3: Table of major cyclin classes involved in cell cycle control 

The G1/S cyclins oscillate during the cell cycle (peak in late G1 and fall in early S phase). 

The primary function of G1/S cyclin-Cdk complexes is to trigger progression through Start, 

initiate the pre steps of DNA replication, and finally G1/S cyclins also initiate other early 

cell cycle events, such as centrosome duplication in vertebrates (the spindle pole body, in 

yeast). The S cyclins, which form S cyclin-Cdk complexes, their levels remain high 

throughout S phase, G2 and early mitosis; they are directly responsible for stimulating 

DNA replication. Finally, M cyclins appear and their concentration rising as the cell 

approaches mitosis (peak in metaphase and fall in anaphase). M cyclin-Cdk complexes 

derive the mitotic phase events like assembly of the mitotic spindle and the alignment of 

sister-chromatid pairs on the spindle at metaphase. M cyclins destruction in anaphase 

allows the cell to commit mitotic exit and cytokinesis. Beside activation of the associated 

Cdk subunit, cyclins direct their Cdk partner to specific substrates, either directly by 

binding the substrate itself or by taking the Cdk to a subcellular compartment where the 

substrate is found, in fact some cyclins contain sequence information that targets them and 
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their Cdk partners to specific subcellular locations (NLS of Cln3 for example), providing 

another mechanism by which a cyclin can direct its catalytic partner to the right substrates 

all this helps to explain the molecular basis of cyclin specificity (Morgan, 2007).  

 

3. Cdk regulation 

Cyclin binding alone is not enough to fully activate Cdks, complete activation of a Cdk 

also requires phosphorylation of a threonine residue adjacent to the kinase active site 

beside conformational changes in the Cdk structure itself. In the next sections, other 

structure activity requirements of Cdk are going to be discussed in more details. 

Control of Cdk activity by phosphorylation 

Complete activation of a Cdk, also requires phosphorylation of a threonine residue 

adjacent to the kinase active site by enzymes called Cdk-activating kinases (CAKs). CAK 

activity is maintained at a constant high level throughout the cell cycle and is not 

regulated by any known cell cycle control pathway (Espinoza et al., 1996; Kaldis, 1999; 

Kaldis et al., 1998; Lolli & Johnson, 2005; Morgan, 2007; Sutton & Freiman, 1997).  

 

     Figure 4: Two steps in Cdk activation 
 

Cyclin binding alone causes partial activation of Cdks, but complete activation also 

requires activating phosphorylation by CAK. In animal cells, CAK phosphorylates the 

Cdk subunit only after cyclin binding, and so the two steps in Cdk activation are 

usually ordered as shown here, with cyclin binding occurring first. Budding yeast 

contains a different version of CAK that can phosphorylate the Cdk even in the 

absence of cyclin, and so the two activation steps can occur in either order. In all 

cases, CAK tends to be in constant excess in the cell, so that cyclin binding is the rate-

limiting step in Cdk activation. Adapted from Morgan (2007). 
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In addition, in mammalian cells, phosphorylation can occur only after cyclin binding, 

whereas in budding yeast cells phosphorylation occurs before cyclin binding (Ross et al., 

2000). In both cases, however, cyclin binding and not CAK phosphorylation is the highly 

regulated, rate limiting step in Cdk activation (Morgan, 2007). Simply this activating 

phosphorylation of Cdk can therefore be considered as a post-translational modification 

that is required for enzyme activity (Figure 4).  

Control of Cdk activity by inhibitory phosphorylation 

Besides the activating phosphorylation of Cdks by CAK, two other inhibitory 

phosphorylations do have important functions in the regulation of Cdk activity. One is at 

a conserved tyrosine residue (Tyr15 in human Cdks) that is found in all major Cdks. In 

animal cells, additional phosphorylation of an adjacent threonine residue (Thr14) 

further blocks Cdk activity. Thr14 and Tyr15 are located in the roof of the kinase ATP-

binding site and their phosphorylation probably inhibits activity by interfering with the 

orientation of ATP phosphates (Booherl et al., 1993; Lim et al., 1996; Morgan, 1997; 

Morgan, 2007). Changes in the phosphorylation of these sites are particularly important 

in the activation of M-Cdks at the onset of mitosis, and they are also thought to influence 

the timing of G1/S- and S-phase Cdk activation (Nurse, 1990). The phosphorylation state 

of Tyr15 and Thr14 is controlled by the balance of opposing kinase and phosphatase 

activities acting at these sites (Morgan, 2007). One enzyme responsible for Tyr15 

phosphorylation is Wee1, which is present (under various names) in all eukaryotes 

(Table 4). 

 

 

Table 4: Table of Wee1 and Cdc25 family 
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Dephosphorylation of inhibitory sites is carried out by Cdc25 phosphatases (Russell et 

al., 1989), (Table 4). The actions of these enzymes are shown in (Figure 5). Fission yeast 

contains two kinases, that both contribute to Tyr15 phosphorylation, Wee1 and Mik1. A 

second protein kinase, Myt1, related to Wee1, phosphorylates both of Thr14 and Tyr15 

in vertebrates. The counterbalance of Wee1 and Cdc25 activity provides the basis for the 

switch-like character of M-Cdk activation, which allows abrupt and irreversible entry 

into mitosis. Both enzymes are regulated by their mitotic substrate: phosphorylation of 

Wee1 by M-Cdk inhibits Wee1 and on the contrary activates Cdc25. Thus, M-Cdk 

activates its own activator and inhibits its inhibitor, and the resulting feedback loops are 

thought to generate switch-like Cdk activation during early mitosis (Angeli et al., 2004; 

Kim & Ferrell, 2007; King et al., 2013; Watanabe et al., 2004). Wee1 and Cdc25 are also 

important targets for regulation of Cdk activity in response to DNA damage (Rhind & 

Russell, 2001). 

 

Figure 5: Control of Cdk activity by inhibitory phosphorylation 
 

The fully active cyclin-Cdk complex (center) can be inhibited by further phosphorylation at one or two 

sites in the active site of the enzyme. Phosphorylation of Tyr 15 by Wee1, or phosphorylation of both Thr 

14 and Tyr 15 by Myt1 inactivates the cyclin-Cdk complex. Dephosphorylation by the phosphatase Cdc25 

leads to reactivation. Adapted from(Morgan 2007). 

 

The structural basis of Cdk activation 

The structural basis of Cdk activation is understood from X-ray crystallographic studies 

of human Cdk2 in various states of activity (Figure 6). As described earlier, the active 

site of Cdk2 is located in a cleft between the two lobes of the kinase (Figure 6a). ATP, 

with its phosphates oriented outward, binds deep within the cleft. The protein substrate 

would normally interact with the entrance of the active-site cleft, but this region is 

blocked by the T-loop in the inactive Cdk2 monomer (Brown et al., 1999; Russo et al., 

1996; Takaki et al., 2009). Key residues in the ATP-binding site are also misoriented in 

the Cdk2 monomer, suppressing its activity.  
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Figure 6: The structural basis of Cdk activation 
 

These diagrams illustrate the structure of human Cdk2 in various states of activity. In each case, the 

complete structure is represented in the left column (PDB 1hck, 1fin, 1jst, 1gy3), while the right columns 

provide schematic views that emphasize key substructures, including the ATP in the active site, the T-loop 

(green) and the PSTAIRE helix (red).  
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(a) In the inactive Cdk2 monomer, the small L12 helix next to the T-loop pushes out the large PSTAIRE 

helix, which contains glutamate 51 (E51), a residue important in positioning the ATP phosphates. The T-

loop also blocks the active-site cleft.  

(b) When cyclin A binds, the PSTAIRE helix moves inward and the L12 helix changes structure to form a 

small beta strand;as a result, E51 moves inward to interact with lysine 33 (K33), while aspartate 145 

(D145) also shifts position. These changes lead to the correct orientation of the ATP phosphates. The T-

loop is also shifted out of the active-site entrance.  

(c)The phosphorylation of threonine160 (T160) in the T-loop (yellow circle in left column) then causes 

the T-loop to flatten and interact more extensively with cyclin A.  

(d) Phosphorylation allows the T-loop to interact effectively with a protein substrate containing the SPXK 

consensus sequence (pink). The proline at the second position in this sequence interacts with the 

backbone of the T-loop, while the positively charged lysine residue at the fourth position (K+) interacts, in 

part, with the negatively charged phosphate on T160. The hydroxyl oxygen of the serine residue (S) in the 

substrate is now positioned for nucleophilic attack on the -phosphate. Adapted from Morgan (2007). 

 

Cyclin A binding has a major impact on the Cdk2 active site conformation (Figure 6b). 

Several helices in the cyclin box contact both lobes of Cdk2 in the region adjacent to the 

active site cleft, resulting in extensive conformational changes in Cdk2. The most 

obvious change occurs in the T-loop, in which the L12 helix has been changed into a beta 

strand, so no longer block the binding site for the protein substrate but lies almost flat at 

the entrance of the cleft. Major changes also occur in the ATP-binding site, leading to the 

correct positioning of the ATP phosphates to allow phosphate transfer. Although cyclin 

A structure is unaffected by Cdk2 binding, it provides a rigid framework against which 

the pliable Cdk2 subunit is molded. The T-loop of Cdk2 contains Thr160, the threonine 

residue whose phosphorylation by the Cdk-activating kinase (CAK) further increases the 

activity of the cyclin A-Cdk2 complex. After phosphorylation, the phosphate on Thr160 

is inserted in a cationic pocket and acts as the central node for a network of hydrogen 

bonds spreading outward to stabilize neighboring interactions in both the Cdk and 

cyclin. The T-loop is flattened and moves closer to cyclin A (Figure 6c and 6d), and this 

region serves as a key part of the binding site for protein substrates containing the 

[S/T*] PX [K/R] consensus phosphorylation site. Crystallographic studies of Cdk 

activation on human Cdk2 and its partner cyclin A serves as a good representative for 

the entire Cdk family, but the details of Cdk activation seem to be different in some 

complexes. It is likely that different cyclins do not induce precisely the same 

conformational changes in the associated Cdk subunit, for example, the same Cdk, when 

bound by different cyclins, displays different amounts of kinase activity toward the 

[S/T*] PX [K/R] sequence.  
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Cdk regulation by inhibitory subunits 

During G1, most Cdk activity in dividing cells is suppressed, this creates a transition 

period during which cell growth and other extracellular factors can regulate entry into 

the next cycle, there are three mechanisms that suppress Cdk activity during G1, 

increased cyclin destruction by proteolysis, decreased cyclin gene expression and the 

inhibition of Cdk activity by Cdk inhibitor proteins (CKIs) that bind and inactivate cyclin-

Cdk complexes. Another function of CKIs is promoting the cell cycle arrest in G1 in 

response to unfavorable extracellular conditions or intracellular signals like DNA 

damage. Most, if not all, eukaryotic organisms possess a CKI that contributes to the 

establishment of a stable G1: these include Sic1 in budding yeast, Rum1 in fission yeast 

(Labib & Moreno, 1996; Mendenhall et al., 1995; Moreno et al., 1994; Schwob et al., 

1994). Although these proteins do not show significant sequence homology, they share 

several important functional features. First, all of them are potent inhibitors of the major 

S- and M-Cdk complexes, and all are expressed at high levels in G1 cells to inhibit S- or 

M-Cdk activity in those cells (Mendenhall, 1993; Weinreich et al., 2001). Second, these 

proteins have no effect on G1/S-Cdks; as a result, they have no inhibitory effect on the 

activity these kinases at Start (Mendenhall, 1993; Weinreich et al., 2001). Finally, these 

inhibitors are all targeted for destruction by proteolysis when phosphorylated by Cdks 

(Borg et al., 2007; Nash et al., 2001; Verma et al., 1997). In late G1, G1/S-Cdk activity 

increases therefore leads to destruction of these inhibitors turning on S-Cdk activation 

at the beginning of S phase. Given the clear importance of Sic1 and Rum1 in yeast, it is 

perhaps surprising that a clear functional homolog of these proteins has not been 

identified in mammalian cells. However, animal cells do possess another CKI protein 

called p27 in mammals that helps govern Cdk activity in G1, although by mechanisms 

that are somewhat distinct from those used by yeast Sic1 (Barberis et al., 2005; Brocca 

et al., 2009). Most importantly, p27 inhibits G1/S-Cdks (cyclin E-Cdk2) as well as the S-

Cdk cyclin A-Cdk2, but has relatively little effect on the M-Cdk cyclin B-Cdk1. Thus, in 

mammals the rise of G1/S-Cdks in late G1 requires the removal of p27, which is achieved 

by a combination of mechanisms. First, the G1-Cdks (cyclin D-Cdk4) remove p27 from 

G1/S-Cdks. Second, p27 is destroyed in late G1 as a result of phosphorylation by 

multiple protein kinases, including the G1/S-Cdks themselves (Sherr & Roberts, 1999). 

Other CKIs help promote G1 arrest in response to specific inhibitory signals. Far1 in 

budding yeast (Peter et al., 1993; Peter & Herskowitz, 1994) and the INK4 proteins of 
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mammals inhibit G1-Cdk activity when cells encounter anti-proliferative signals in the 

environment (Hirai et al., 1995). The p21 protein from mammals blocks G1/S- and S-

Cdks, and thus cell cycle entry, in response to DNA damage, giving the cell time to repair 

the damage before starting to replicate its DNA. 

The CKIs of animal cells are grouped into two major families, based on their structures, 

CDK targets and mechanism of Cdk inhibition (Table 5). The first class includes the INK4 

proteins (inhibitors of CDK4), so named for their ability to specifically inhibit the 

catalytic subunits of CDK4 and CDK6. Four such proteins [p16INK4a (Serrano et al., 1993), 

p15INK4b (Hannon & Beach, 1994), p18INK4c (Guan et al., 1994; Hirai et al., 1995), and 

p19INK4d (Chan et al., 1995; Hirai et al., 1995)] are composed of multiple ankyrin repeats 

and bind only to CDK4 and CDK6 but not to other CDKs or to D-type cyclins. The second 

class includes the Cip/Kip family whose actions affect the activities of cyclin D-, E-, and 

A-dependent kinases. The latter class includes p21Cip1 (Dulić et al., 1994; el-Deiry et al., 

1993; Gu et al., 1993; Harper et al., 1993; Noda et al., 1994; Xiong et al., 1993), p27Kip1 

(Polyak et al., 1994a; Polyak et al., 1994b; Toyoshima & Hunter, 1994), and p57Kip2 (Lee 

et al., 1995; Matsuoka et al., 1995), all of which contain characteristic motifs within their 

N-terminal moieties that enable them to bind both to cyclin and CDK subunits (Chen et 

al., 1995; Chen et al., 1996; Lin et al., 1996; Nakanishi et al., 1995; Russo et al., 1996; 

Warbrick et al., 1995). The N-terminal half of the mammalian Cip/Kip proteins p21 and 

p27 is responsible for their Cdk inhibitory function and is composed of two key 

subregions: a short segment containing an RXL motif for cyclin binding, and a longer 

segment for Cdk binding. The structure of the Cdk2-cyclin A-p27 complex reveals the 

Cdk-binding region of p27. These interactions completely disrupt the catalytic function 

of the Cdk enzyme through partial distortion of the structure of the kinase N-terminal 

lobe above the active site, and also through direct blocking of the ATP-binding site, In 

contrast to Cip/Kip proteins, members of the INK4 family are inhibitors of only Cdk4 

and Cdk6, binding preferentially to the Cdk monomer. Crystallographic structural 

studies indicate that these inhibitors bind both N-terminal and C-terminal lobes of the 

Cdk on the side opposite the cyclin-binding site, disrupting the binding and orientation 

of ATP. The INK4 protein also twists the upper lobe of the kinase into an orientation that 

is incompatible with cyclin binding. 
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Table 5: Cdk Inhibitors the cell cycle in yeast and H. sapiens 

Adapted from Morgan (2007) 

 

Switch-like activation of Cdk  

The activation of G1/S-, S- and M-Cdks all display switch-like behavior based on 

ultrasensitive and feedback mechanisms. In budding yeast, a major consequence of the 

initiation of G1/S gene expression is the increased production of both G1/S cyclins and S 

cyclins. The G1/S cyclins Cln1 and Cln2 immediately form active complexes with Cdk1. 

The S cyclins Clb5 and Clb6 also bind Cdk1, but these S-Cdks are held in the inactive 

state by the Cdk inhibitor Sic1, which is abundant in G1 cells and specifically inhibits 

Clb-Cdk1 complexes but not Cln-Cdk1 complexes. 

The major function of the G1/S-Cdks is to trigger the activation of the S-Cdks by 

promoting the destruction of Sic1. Because of the high levels of Sic1 in G1, a stockpile of 

inactive S-Cdk1-Sic1complexes accumulates as the cell approaches S phase (Figure 7). 

Sic1 is then phosphorylated at multiple sites by the rising wave of Cln1,2-Cdk1 activity. 

Phosphorylation of Sic1 triggers its destruction, thereby unleashing the Clb5,6-Cdk1 

complexes and triggering the onset of chromosome duplication. Clb5,6-Cdk1 complexes 

exert a positive feedback loop through Sic1phosphorylation, so Clb5,6-Cdk1 complexes 

promote their own activation through inhibiting their own inhibitor Sic1, the 

destruction of phosphorylated Sic1 depends on its ubiquitination by SCF, a ubiquitin-

protein ligase that collaborates with the ubiquitin-conjugating enzyme Cdc34 to 

promote the destruction of several cell cycle regulatory proteins (Harper, 2002; 

Kõivomägi et al., 2011; Nash et al., 2001; Verma et al., 2001). Phosphorylated Sic1p is 

bound by Cdc4p, which is the substrate recognition subunit of the E3 ligase, SCF-Cdc4 

http://www.yeastgenome.org/locus/S000004069/overview
http://www.yeastgenome.org/locus/S000001885/overview
http://www.yeastgenome.org/go/GO:0004842/overview
http://www.yeastgenome.org/go/GO:0019005/overview
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(Deshaies & Ferrell, 2001; Skowyra et al., 1997). In conjunction with the E2 enzyme 

Cdc34p, SCF-Cdc4 polyubiquitinates Sic1p on N-terminal residues (Feldman et al., 1997; 

Petroski & Deshaies, 2003; Sadowski et al., 2010; Verma et al., 1997).The activation of 

cyclin B-Cdk1, a vertebrate M-Cdk that triggers spindle assembly and other early events 

at the onset of mitosis is the best understood example of a biochemical switch in cell 

cycle control (Figure 8). In eukaryotes, mitosis is driven by the cyclin B1-Cdk1 complex 

(Morgan, 2007).  

The enzymatic activity of cyclin B1-Cdk1 depends upon the phosphorylation state of 

Cdk1: a conserved threonine residue in the activation loop (Thr 161 in human Cdk1) 

must be phosphorylated, and two sites in the ATP binding pocket (Thr14 and Tyr15 in 

human Cdk1) must be dephosphorylated. Kinases of the Wee1/Myt1 family 

phosphorylate Thr14 and Tyr15 (Booher et al., 1997; Fattaey & Booher, 1997; Heald et 

al., 1993; Liu et al., 1997; McGowan & Russell, 1993; Mueller et al., 1995; Parker & 

Piwnica-Worms, 1992). Phosphatases of the Cdc25 family dephosphorylate both of 

these sites (Millar et al., 1991; Strausfeld et al., 1991). Thus Cdc25 phosphatase is an 

activator of Cdk1, and Wee1 and Myt1 are inactivators. Wee1 and Cdc25 not only 

regulate Cdk1, they are also regulated in turn by Cdk1. The same is true of Myt1 protein 

(Booher et al., 1997; Fattaey & Booher, 1997; Liu et al., 1997; Mueller et al., 1995; 

Palmer et al., 1998); Cdk1 phosphorylates and activates Cdc25 (Hoffmann et al., 1993; 

Kumagai & Dunphy, 1992; Solomon et al., 1990), on the contrary Cdk1 phosphorylates 

and inhibits Wee1 (McGowan & Russell, 1995; Mueller et al., 1995). 

The addition of Wee1 and Cdc25 to the system creates a switch-like Cdk1 activation, 

because Cdk1 activity inhibits Wee1 and stimulates Cdc25, resulting in a positive 

feedback, where the Cdk1/Wee1/Cdc25 system can be viewed as two interlocking, 

mirror-image feedback loops (Figure 8). 

 

4. Cell cycle transcriptional regulation 

Oscillations in Cdk activity during the cell cycle are driven not only by mechanisms 

involving protein phosphorylation, subunit binding and regulated proteolysis, but also 

by changes in the transcription of regulatory genes.  

http://www.yeastgenome.org/locus/S000002461/overview
http://www.yeastgenome.org/locus/S000004069/overview
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Figure 7: Multisite phosphorylation of Sic1 results in an ultrasensitive response 
 

(a) Nutrient levels determine the extent of Cln–Cdc28 kinase activity. At sub-threshold level of nutrients, 

Sic1 is poorly phosphorylated on suboptimal Cdc4 phospho-degron (CPD) motifs. In the presence of 

sufficient Cln–Cdc28, Sic1 is phosphorylated on many sites, which supports ubiquitination by increasing 

the probability of a productive interaction between Sic1 and the E3 ubiquitin ligase SCFCdc4. The 

requirement for multiple phosphorylated sites produces an ultrasensitive stimulus–response profile. 

Activation of Clb5–Cdc28 upon Sic1 degradation allows further phosphorylation of Sic1 to further steepen 

the ultrasensitivity profile.       

(b) Theoretical sensitivity plots for Sic1-CPD (Michaelian), Sic1 without positive feedback from Clb5–

Cdc28 [Hill coefficient (nH) ∼6], and a bi-stable system generated by the combination of ultrasensitivity 

and positive feedback. Adapted from Harper (2002). 
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Figure 8: Schematic view of the regulation of cyclin B1-Cdk1 

activity by cyclin B1, Wee1, and Cdc25C  
   

Functions for Wee1 and Cdc25C account for the bistability of the 

mitotic trigger. Adapted from Trunnell et al. (2011). 

 

 

Regulation of gene transcription is particularly important in controlling synthesis of the 

cyclins, in S. cerevisiae, a significant fraction of genes (>10%) are transcribed with cell 

cycle periodicity (Cho et al., 1998;  Spellman et al., 1998). These genes encode critical 

cell cycle regulators as well as proteins with no direct connection to cell cycle functions. 

These genes can be organized into clusters exhibiting similar patterns of periodic 

transcription, which are achieved via both repressive and activating mechanisms, and 

are ruled by CDKs and a network of transcription factors that has an oscillatory property 

by itself (Orlando et al., 2008;  Wittenberg & Reed, 2005). The main transcriptional 

control clusters are the G1, the S-phase, the Clb2 and the M-G1 clusters.  

The G1 gene cluster  

The G1-gene cluster is triggered at Start and the consequence is transcriptional 

activation of greater than 200 genes, many of which associated with cell cycle 

progression (Cho et al., 1998; Spellman et al., 1998). The G1-specific gene cluster are 

targeted by two heterodimeric transcription factors comprised of unique DNA-binding 

components, Swi4 (SBF) or Mbp1 (MBF), and a common component, Swi6, that works as 
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transcription cofactor. The binding site for MBF is called MCB (Mlu Cell cycle Box), due 

to the presence of an MluI restriction site in the consensus sequence, and that for SBF is 

SCB (Swi4 Cell cycle Box).The target genes for SBF and MBF have been traditionally 

defined by the presence of redundant SCB and MCB sequences in their promoters. 

Functionally, SBF and MBF targets, respectively, fall roughly into two classes. MBF 

targets include those involved in the control or execution of DNA replication and repair 

(POL2, CDC2, RNR1, CLB5/6), whereas SBF targets include those involved in cell 

morphogenesis, spindle pole body duplication and other growth-related functions 

(CLN1/2, PCL1/2, GIN4, FKS1/2) (Koch et al., 1993; Nasmyth & Dirick, 1991; Slansky & 

Farnham, 1996). 

Cln3-Cdc28 is the primary activator of G1-specific transcription under physiological 

conditions (Dirick et al., 1995; Stuart & Wittenberg, 1995; Tyers et al., 1993). Later on it 

was shown that any of the three G1 cyclins (Cln1, Cln2, or Cln3) in conjunction with 

Cdc28 were sufficient to initiate Cdk1-dependent activation of G1-specific transcription 

(Cross & Tinkelenberg, 1991; Dirick et al., 1995). In late G1, the activity of the G1-Cdk, 

Cln3-Cdk1, promotes the inhibitory phosphorylation of Whi5, thereby unleashing active 

SBF and MBF (Costanzo et al., 2004; De Bruin et al., 2004) results in the increased 

expression of a large group of G1/S genes, including the genes encoding G1/S and S- 

cyclins. Thus, the activation of SBF and MBF promotes G1/S- and S-phase Cdk activities, 

and Cln1,2-Cdc28 activities further reinforce SBF and MBF activation through a positive 

feedback loop that involves phosphorylation of Whi5 (Cross & Tinkelenberg, 1991; 

Dirick & Nasmyth, 1991; Skotheim et al., 2008) to ensure coherent activation (Figure 9a 

and 9c). 

Analysis of the transcriptional machinery regulating the G1/S gene clusters of yeast and 

mammals reveals strong conservation of the transcriptional machinery regulating the 

G1/S gene clusters (Figure 9b and 9c). Despite the high degree of conservation of the 

topology of these regulatory circuits, the transcription factors exhibit little or no 

relatedness in terms of either amino acid sequence or structure (Bertoli et al., 2013). 

The S-phase gene clusters  

The G1/S transition, characterized by the initiation of DNA replication, is accompanied 

by the activation of two clusters of S phase genes. One cluster represents the genes 
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Figure 9: Conservation of the G1/S transcriptional activation in yeast and mammals 
 

(a) Schematic showing how the G1–S transcriptional program, once initiated, is reinforced by a positive 

feedback loop. 

(b) In mammalian cells, the transcriptional repressors RB, p107 and p130 (collectively known as pocket 

proteins) are bound to E2F transcription factors to repress expression during early G1. Pocket proteins 

either prevent activator E2F proteins (such as E2F1, E2F2 and E2F3) to activate transcription or function 

as co-repressors for repressor E2F proteins (such as E2F4). Phosphorylation of pocket proteins by cyclin 

D– cyclin-dependent kinase 4 (CDK4) and cyclin D–CDK6 probably releases them from the E2F 

transcription factors. This induces the transcription of G1–S target gene; including the gene encoding 

cyclin E. Cyclin E–CDK2 phosphorylates pocket proteins, thereby providing a positive feedback loop. 

(c) Model depicting G1–S transcriptional activation in budding yeast. In early G1, transcription is inhibited 

by Whi5 binding to the SBF (SCB-binding factor) complex at target promoters. Cln3–Cdk relieves 

transcriptional inhibition by phosphorylating Whi5, which induces its nuclear export and thereby G1–S 

transcription. Activation of transcription results in the accumulation of Cln1 and Cln2, which in complex 

with Cdk, further inactivate Whi5 through phosphorylation. This provides positive feedback that results in 

cell cycle commitment. Adapted from Bertoli et al. (2013) 
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encoding the histones, which make up the nucleosomes that package newly replicated 

DNA and the S phase cluster that represents the other genes expressed during S phase. 

Histone genes are regulated by, as yet, poorly understood transcriptional regulatory 

mechanism involving SBF/MBF, Spt10, histone chaperones, and other factors. The S 

phase cluster, the second, much larger cluster, is regulated by Hcm1. Major bursts of cell 

cycle-regulated gene expression, Hcm1 plays a central role in that regulatory circuitry. It 

is one of four members of the forkhead family of transcription factors found in budding 

yeast (Hcm1, Fkh1, Fkh2, and Fhl1 (Forkhead-like) (Murakami et al., 2010). Like the 

other members of that family, which include mammalian Fox transcription factors, 

Hcm1 binds DNA directly via a winged helix DNA-binding motif. Hcm1 found to be 

phosphorylated by Clb/Cdk1 in vitro due to the presence of putative CDK 

phosphorylation sites in Hcm1, this suggests Hcm1 a likely target of the Cdk1 protein 

kinase (Ubersax et al., 2003). 

The Hcm1 transcription factor appears to regulate ∼180 genes based upon the timing of 

their expression and the presence of the Hcm1-binding site in their promoters (Pramila 

et al., 2006). However, only a small fraction of those genes were found to bind Hcm1 by 

genome wide chromatin immunoprecipitation (Horak et al., 2002). 

The Clb2 cluster  

Also called G2/M gene cluster is accompanied by activation of a family of ∼35 genes 

falling into the G2/M cluster (Cho et al., 1998; Spellman et al., 1998), This set of genes 

has been termed the 'Clb2 cluster' based on the CLB2 mitotic cyclin gene, which had 

previously been shown to exhibit these mRNA kinetics (Ghiara et al., 1991; Surana et al., 

1991). Other members of this family include CLB1 (another M cyclin gene), CDC5 (the 

yeast polo-like kinase homolog), CDC20 (a mitotic specificity factor for the APC protein–

ubiquitin ligase), and SWI5 and ACE2 (transcription factors required for late M-early G1-

specific gene expression). Interestingly, it was through analysis of the SWI5 promoter 

that insight into regulation of this gene cluster was first obtained. A protein complex 

known as Swi5 factor (SFF) was shown to be capable of binding to specific elements in 

the SWI5 promoter (Lydall et al., 1991). More recent work on SWI5 and other cluster 

genes, notably CLB2, has revealed that SFF sites are binding sites for members of the 

forkhead transcription factors (Kumar et al., 2000; Pic et al., 2000). The primary 

regulator of this gene cluster is the MADS box transcription factor Mcm1, in conjunction 

http://www.yeastgenome.org/cgi-bin/locus.fpl?dbid=S000000661
http://www.yeastgenome.org/cgi-bin/locus.fpl?dbid=S000000661
http://www.yeastgenome.org/cgi-bin/locus.fpl?dbid=S000000364
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with the forkhead family member Fkh2 and the coactivatorNdd1, both members of the S 

phase gene cluster regulated by Hcm1 (Kumar et al., 2000; Loy et al., 1999). The 

collaboration of Mcm1with Fkh2 in the context of transcriptional regulation of the G2/M 

cluster is, in part, a consequence of the occurrence of adjacent Mcm1- and Fkh2-binding 

sites in G2/M cluster promoters (Boros et al., 2003; Lydall et al., 1991). The association 

of that heterodimer with the adjacent binding sites on those genes opens the way for 

associations of the coactivator Ndd1 to activate gene expression. Whereas other 

forkhead family members possess the capacity to bind to the DNA via their conserved 

winged helix motif, only Fkh2 can also associate directly with Mcm1 and thereby exert 

its effect on gene expression in that context. Interestingly, this binding interface has 

been conserved sufficiently for Fkh2 to bind to the human serum response factor (SRF), 

the homolog of Mcm1 (Boros et al., 2003). Fkh1, which lacks the Mcm1 interaction 

domain of Fkh2, binds to the same DNA motif as Fkh2 at CLB2 cluster promoters, but 

only in the absence of Mcm1 (Hollenhorst et al., 2001; Koranda et al., 2000). 

Phosphorylation of Ndd1by both Clb2/Cdk1 and Cdc5 polo-like kinase appears 

necessary for efficient recruitment to the Fkh2 FHA domain and robust activation of 

Clb2 cluster genes (Darieva et al., 2006, 2012; Pic-Taylor et al., 2004; Reynolds et al., 

2003). The requirement for Ndd1 phosphorylation constitutes a positive feedback loop, 

wherein both Clb2 and Cdc5, when expressed as G2/M cluster genes, activate and loop 

over their own gene expression 

The M to early G1 cluster  

A large number of yeast genes required for G1 functions like MCM proteins involved in 

prereplication complex assembly, transcription factors required for G1 gene expression 

and proteins involved in the yeast mating response, which occurs during G1 are 

expressed from M phase to early G1 (Cho et al., 1998; Spellman et al., 1998). However, 

some other non G1-specific function proteins (e.g., genes of the PHO regulon) also follow 

the same expression pattern (Cho et al., 1998; Spellman et al., 1998). 

The largest group of M-G1 genes periodicity are those driven by the Mcm1 (Nurrish & 

Treisman, 1995; Shore & Sharrocks, 1995). Unlike the Clb2 cluster of genes that also 

require Mcm1 binding, the so-called MCM cluster genes do not contain sites for Fkh1/2 

binding. This explains why deletion of FKH1 and FKH2 has no effect on these genes (Zhu 

et al., 2000). Instead, most of these genes contain a site for binding the homeodomain 

http://www.yeastgenome.org/cgi-bin/locus.fpl?dbid=S000000661
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repressors Yox1 and Yhp1 (Pramila et al., 2002) in close proximity to a palindromic site 

capable of binding an Mcm1 dimer, known as an ECB (early cell cycle box) (McInerny et 

al., 1997). In addition, Yox1 and Yhp1 can bind directly to Mcm1 (Pramila et al., 2002), 

presumably promoting cooperativity. It is the occupancy of these repressive sites that 

blocks Mcm1-mediated transcription through most of the cell cycle, and it is the periodic 

transcription of the genes encoding these presumably unstable repressors that 

determines their functional interval. Yox1 is expressed in mid-G1 through early S phase 

(Horak et al., 2002; Pramila et al., 2002; Spellman et al., 1998), whereas Yhp1 appears to 

be expressed later in the cell cycle (Cho et al., 1998; Spellman et al., 1998), leaving an 

interval from M phase to early G1 without occupation by repressors. So, Mcm1 can 

apparently drive transcription of these genes without DNA binding of additional 

activating proteins during this window. The second class of M-G1 expressed genes is the 

Sic1 cluster (the G1-Cdk inhibitor). Deletion of FKH1 and FKH2 affects periodic 

expression of these genes (Zhu et al., 2000). Yet, Fkh1 and Fkh2 do not bind the 

promoters of these genes. The basis for the indirect requirement for FKH genes is the 

assignment of transcription factors Swi5 and Ace2 to the Clb2 cluster (Nasmyth et al., 

1987; Spellman et al., 1998). Genes of the Sic1 cluster contain related consensus sites 

that bind Ace2 and Swi5 (Zhu et al., 2000). The relationship between Ace2 and Swi5, 

however, is complex. Although both transcription factors recognize the same set of sites 

on target genes, their effect on such genes can vary from activation to repression 

(Dohrmann et al., 1996; McBride et al., 1999). The ability of these factors to bind co-

activators and co-repressors targeted to the Sic1 genes cluster could explain for this 

differential behavior.  

A third group of M-G1 activated genes are those that are normally induced by mating 

pheromone, the MAT cluster (Spellman et al., 1998). It has been shown that the periodic 

expression of these genes depends on a DNA sequence known as PRE (pheromone 

response element) and a PRE-binding transcription factor, Ste12 (Oehlen et al., 1996). 

Upon receptor-mediated activation of the pheromone response pathway, the MAP 

kinase homolog Fus3 activates Ste12 in one hand by direct phosphorylation of Ste12 and 

indirectly by inactivating Dig1 and Dig2 two co-repressors of Ste12 (Bardwell et al., 

1998; Breitkreutz et al., 2003; Kusari et al., 2004; van Drogen et al., 2001).  
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5. Ubiquitination and proteolysis during cell cycle  

Unidirectional and irreversible transitions from one phase to the next during cell cycle 

are achieved in one hand through mechanisms that provide all-or-none, irreversible Cdk 

activation and on the other hand by the proteolytic destruction of regulatory proteins. 

Proteolysis is particularly critical at the metaphase-to-anaphase transition, where sister-

chromatid separation and mitotic exit are triggered by the irreversible destruction of M 

cyclins and proteins that control sister-chromatid cohesion. Destruction of cyclins also 

helps establish the state of low Cdk activity in G1. In addition, at the end of G1, where the 

destruction of Cdk inhibitor proteins helps drive the irreversible activation of S-Cdks. 

Cyclins, Cdk inhibitor proteins and other cell cycle regulators are targeted for 

degradation by the attachment of multiple copies of the small protein ubiquitin, in a 

process known as ubiquitination (Hershko & Ciechanover, 1998).  

Ubiquitinated proteins are recognized and destroyed by giant protease complexes called 

proteasomes. Ubiquitination is carried out in a series of reactions, in the first step, 

ubiquitin activation; ubiquitin is covalently attached through its carboxyl terminus to 

the sulfhydryl group of a cysteine in the active site of the ubiquitin-activating enzyme 

(E1). This reaction is powered by ATP hydrolysis. The E1-ubiquitin conjugate then 

interacts with a ubiquitin-conjugating enzyme (E2) that catalyzes the transfer of the 

ubiquitin to an active-site cysteine in E2. The final step is the transfer of the ubiquitin to 

the target protein. This depends on a third enzyme, the ubiquitin-protein ligase (E3), 

which helps catalyze transfer of ubiquitin from the E2-ubiquitin conjugate, to the amino 

group of a lysine side chain in the target protein. Remarkably, a single ubiquitin-protein 

ligase molecule bound to the target protein can catalyze the successive transfer of 

several ubiquitin molecules, resulting in the ubiquitination of multiple lysines in the 

target. In addition, ubiquitin-protein ligases catalyze the attachment of ubiquitin to 

lysine residues within ubiquitin itself, resulting in the formation of long polyubiquitin 

chains on the target. These are recognized by receptors on the proteasome, which then 

binds the target protein and destroys it by proteolysis (Figure 10).  

The SCF complex 

The SCF (Skp1–Cullin–F-box protein) and SCF-like complexes are the largest family of 

ubiquitin–protein ligases and ubiquitinate a broad range of proteins involved in cell 
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 Figure 10: Schematic diagram of the ubiquitination system 

 

Two large, multisubunit ubiquitin-protein ligases are crucial for the G1/S and 

metaphase-to-anaphase transitions. For the ubiquitination and proteolysis of targets 

such as Cdk inhibitors at the G1/S transition, the key ubiquitin-protein ligase is an 

enzyme called SCF. The anaphase-promoting complex (APC) or cyclosome that promotes 

metaphase-to-anaphase transition, APC is turned off on S phase and switched on during 

anaphase to exit from mitosis (DeSalle & Pagano, 2001; Zachariae & Nasmyth, 1999). 

cycle progression, signal transduction and transcription (Deshaies, 1999; Koepp et al., 

1999). In budding yeast SCF complex contains three core subunits: F-box binding 

protein Skp1, a scaffold protein Cullin or Cdc53 and interchangeable F-box protein. SCF 

complexes are composed of several shared subunits including Skp1, an adaptor protein 

that binds and recruits a variety of F-box containing proteins (Bai et al., 1996; Skowyra 

et al., 1997); Cdc53, a cullin family member that recruits the ubiquitin conjugating 

enzyme Cdc34 to Skp1/F-box proteins (Mathias et al., 1996; Patton et al., 1998; Willems 

et al., 1996); Hrt1, a RING-H2 domain protein that stimulates ubiquitin ligase activity 

(Ohta et al., 1999; Seol et al., 1999); and Cdc34, a ubiquitin-conjugating enzyme that 

catalyzes the transfer of activated ubiquitin to the target protein (Goebl et al., 1988; Seol 

et al., 1999; Skowyra et al., 1997). In addition, to these shared subunits, SCF complexes 

also contain one of several unique F-box motif containing proteins, including Cdc4, Grr1, 

Met30, Dia2, or Saf1, that function as substrate specific adaptors or specificity 

determinants recruiting multiply phosphorylated substrates to the SCF core complex 

(Craig & Tyers, 1999; Patton et al., 1998; Willems et al., 1999). SCF promotes the G1/S 

transition and G2/M phase transitions of the mitotic cell cycle, SCF ubiquitinates and 

degrades G1 cyclins Cln1 & Cln2 (Barral et al., 1995; Willems et al., 1996), S -phase 

cyclins Clb6 (Jackson et al., 2006), CDK inhibitors Sic1& Far1 (Blondel et al., 2000; 

http://www.yeastgenome.org/locus/S000002736/overview
http://www.yeastgenome.org/locus/S000002290/overview
http://www.yeastgenome.org/locus/S000002461/overview
http://www.yeastgenome.org/locus/S000005493/overview
http://www.yeastgenome.org/locus/S000001885/overview
http://www.yeastgenome.org/locus/S000003850/overview
http://www.yeastgenome.org/locus/S000001308/overview
http://www.yeastgenome.org/locus/S000005606/overview
http://www.yeastgenome.org/locus/S000000484/overview
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Feldman et al., 1997; Henchoz et al., 1997; Skowyra et al., 1997), Swe1(Wee1 homolog in 

budding yeast) (Kaiser et al., 1998) and proteins involved in DNA replication like Cdc6 

(Drury et al., 1997; Sánchez et al., 1999). 

SCF is active throughout the cell cycle and the degradation of its substrates is controlled 

at the level of phosphorylation, which in many cases is mediated by Cdk activity (Nash et 

al., 2001). 

The APC complex 

The anaphase-promoting complex (APC): an E3 ubiquitin ligase in the ubiquitin-

mediated proteolysis pathway (Zachariae & Nasmyth, 1999). The APC regulates the 

metaphase/anaphase transition and exit from mitosis/G1 entry through ubiquitination 

of various substrates including M phase cyclins, the sister chromatid separation 

inhibitor Pds1(Securin), the Kip1 and Cin8 motor proteins, Cdc5p, and the spindle 

disassembly factor, Ase1 (Cohen-Fix et al., 1996; Gordon & Roof, 2001; Juang et al., 1997; 

Shirayama et al., 1998). Ubiquitination by the APC is controlled by activator subunits 

that bind the APC core at different stages of the cell cycle. Two conserved activators, 

Cdc20 and Cdh1, are particularly important regulates the activity and substrate 

specificity of the APC. 

Cdc20 activates the APC at the metaphase-to-anaphase transition to allow sister-

chromatid segregation and to initiate the exit from mitosis (Visintin et al., 1997). The 

levels of Cdc20 are cell cycle regulated accumulating in S phase, peak in mitosis due to 

transcriptional upregulations by Clb-Cdk and finally drop in G1 due to degradation by 

APCCdh1 (Pesin & Orr-Weaver, 2008; Prinz et al., 1998). 

At metaphase, APC is activated through phosphorylation of APC core subunits by M-Cdks 

and also Cdc5 polo like kinase (Rudner & Murray, 2000), which enhances Cdc20 binding. 

APCCdc20 then targets Pds1 and the M cyclins for destruction, thereby inactivating M-

Cdks. Thus, M-Cdks initiate the chain of events that lead to their eventual destruction, 

resulting in a negative feedback loop. APC activation and cyclin destruction follow M-

Cdk activation only after a delay, so that premature destruction of cyclins does not occur 

early in mitosis. Because APC activation by Cdc20 depends on phosphorylation of the 

enzyme by, M-Cdk inactivation leads to decreased phosphorylation of the APC, 

dissociation of Cdc20 and the consequent inactivation of the APC. Thus APCCdc20, like M-

Cdk, promotes its own inactivation. By the end of mitosis, APCCdc20 is no longer active.  

http://www.yeastgenome.org/go/GO:0005680/overview
http://www.yeastgenome.org/go/GO:0007091/overview
http://www.yeastgenome.org/go/GO:0007096/overview
http://www.yeastgenome.org/locus/S000002520/overview
http://www.yeastgenome.org/locus/S000000159/overview
http://www.yeastgenome.org/locus/S000000787/overview
http://www.yeastgenome.org/locus/S000004603/overview
http://www.yeastgenome.org/locus/S000005584/overview
http://www.yeastgenome.org/locus/S000002520/overview
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Cdh1, another APC activator, is a homolog of CDC20 then activates the APC in late 

mitosis and early G1 to maintain cyclin destruction until entry into the next cell cycle 

(Visintin et al., 1997; Zachariae & Nasmyth, 1999). Unlike Cdc20, does not require the 

APC to be phosphorylated in order to bind, Cdh1 is expressed throughout cell cycle and 

is held inactive by Clb-Cdc28-dependent phosphorylation from S phase to metaphase. 

The active APCCdh1 complex therefore forms only when Cdks are inactivated by APCCdc20 

at the metaphase-to-anaphase transition, allowing Cdh1 to be dephosphorylated by 

Cdc14, upon activation of the Mitotic Exit Network (MEN) (Jaspersen et al., 1999; 

Zachariae & Nasmyth, 1999). APCCdh1 activity remains high throughout G1, ensuring that 

S and M cyclin destruction and therefore S- and M-Cdk inactivity continues until the cell 

is committed to another cell cycle. G1/S cyclins, however, are not recognized by APCCdh1. 

Thus the activity of G1/S-Cdks rises unopposed in late G1 and they phosphorylate Cdh1, 

thereby inactivating the APC until the next metaphase (Figure 11).  

 

Figure 11:  Control of late mitotic events by the APC   
 

M-Cdk activity promotes early mitotic events, resulting in the metaphase alignment of sister chromatids 

on the spindle. M-Cdk activity also promotes the activation of APCCdc20, which triggers anaphase and 

mitotic exit by stimulating the destruction of regulatory proteins, such as securin and cyclins that govern 

these events. By promoting cyclin destruction and thus Cdk inactivation, APCCdc20 also triggers activation 

of APCCdh1, thereby ensuring continued APC activity in G1. Adapted from Morgan (2007) 

 

6. Start execution in S. cerevisiae 

Cell size can be considered as the outcome of complex parallel and interconnected 

processes that convey different sorts of intrinsic and extrinsic information. Of all these 

processes, cell growth and cell cycle are particularly relevant as they likely apply to all 

organisms, and their efficient and precise coordination is a fundamental biological 

http://www.yeastgenome.org/locus/S000003084/overview
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problem (Baserga, 2007; Cook & Tyers, 2007; Cooper, 2004; Donachie & Blakely, 2003; 

Grebien et al., 2005; Mitchison, 2003; Zaritsky et al., 2007). As a unicellular eukaryote, S. 

cerevisiae has been widely used to study the mechanisms that determine cell size, 

mainly because this budding yeast displays two of the most universal properties 

regarding cell size control, a constant mass/ploidy ratio (Mortimer, 1958) and a critical 

size threshold for cell cycle progression ( Hartwell & Unger, 1977; Johnston et al., 1977), 

which is mainly exerted at Start, a key event in late G1. Two heteromeric transcription 

factors (Nasmyth, 1996), SBF (Swi6–Swi4) and MBF (Mbp1–Swi6), drive a 

transcriptional wave of ~200 genes (Futcher, 2002) at Start to initiate budding and 

trigger S-phase entry. The most upstream activator of Start is a complex formed by Cln3 

(Cross, 1988; Dirick et al., 1995; Nash et al., 1988; Sudbery et al., 1980), a G1 cyclin, and 

Cdc28 (Mendenhall & Hodge, 1998), the cyclin-dependent kinase that controls the cell 

cycle in budding yeast. The Cdc28–Cln3 complex phosphorylates Whi5 (and presumably 

Swi6) at multiple residues to activate SBF- and MBF-dependent transcription (De Bruin 

et al., 2004). Two other G1 cyclins, Cln1 and Cln2, are upregulated by SBF and have a key 

role with Cdc28 in a positive feedback loop essential for coherent and irreversible 

execution of Start (Dirick & Nasmyth, 1991; Skotheim et al., 2008). The Cln3 cyclin is 

present at constant levels throughout G1 (Tyers et al., 1993) and it is regulated by a 

retention/release mechanism that prevents its unscheduled accumulation in the nucleus 

(Aldea, 2007).  Whi3, first identified as a negative regulator of Cln3 activity (Nash et al., 

2001), binds the CLN3 mRNA and recruits Cdc28 to help retain newly formed Cdc28–

Cln3 complexes at the endoplasmic reticulum (ER) during early and mid G1 (Wang et al., 

2004). In late G1, the Ydj1 chaperone has an essential role in releasing Cln3 or the 

Cdc28–Cln3 complex from the ER (Vergés et al., 2007), which allows its accumulation in 

the nucleus to phosphorylate Whi5 and trigger Start (Figure 12). On the other hand, and 

in addition to its role at Start, Ydj1 is heavily involved in protein translocation across the 

ER membrane (Caplan et al., 1992), a key process for cell growth. 

These lines of evidence suggest that the critical size could be set by mechanisms 

intimately linked to cell growth (Aldea, 2007). Although it is generally accepted that 

budding yeast cells must grow to reach a critical size before cell cycle entry (Hartwell & 

Unger, 1977; Johnston et al., 1977; Jorgensen & Tyers, 2004), cell volume at Start 

displays a very large variability under constant conditions (Lord & Wheals, 1981), which 

strongly argues against the existence of a deterministic mode of cell size control. This 
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key question has been analysed recently at a single-cell level, and it was proposed that 

cell size variability at Start is mainly due to molecular noise intrinsic to the mechanisms 

that activate the G1/S regulon (Di Talia et al., 2007), or due to variability at the volume 

growth rate in G1 (Ferrezuelo et al., 2012), but still the molecular mechanisms behind 

size control a hot topic for discussion and research and here we try to characterize new 

regulators of cell size during early stages of cell cycle in S. cerevisiae . 

 

 

 

Figure 12: Cln3 retention at the ER is modulated during G1 by the Ji domain and the Ydj1 

chaperone 
 

G1 cyclin Cln3 retention at the ER is modulated during G1 by the Ji domain and the Ydj1 chaperone. By 

inhibiting the Hsp70 conformational cycle, the Ji domain would lock Ssa1,2 chaperones into a tightly 

associated ER complex with Cdc28 in early G1, thus preventing unscheduled nuclear import of Cln3. In 

late G1, once a relative surplus of Ydj1 (and most likely other folding activities) is achieved, ATPase 

activation by Ydj1 would unlock the Ssa1,2 complex and trigger ER release and nuclear accumulation of 

Cln3 to initiate cell cycle entry. Adapted from Vergés et al. (2007). 

 

7. Wee and whi mutants 

Working with the fission yeast S. pombe in the 1970s, Paul Nurse and colleagues 

identified mutants that divided at an abnormally small size and called them “wee” after 

the Scottish word for small. Analysis of these mutants was instrumental in elucidating 

regulation of the cell cycle in fission yeast by the cyclin-dependent kinase (Cdk) encoded 

by the cdc2 gene (Nurse, 1990). Later, small-size mutants were discovered in S. 

cerevisiae, and were promptly given the moniker whi, pronounced “wee”. 
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Mutations that accelerate cell division relative to cell growth result in a small cell size, 

referred to as a Wee or Whi phenotype in fission yeast and budding yeast, respectively. 

Such mutants have provided key insights into cell cycle control (Cross, 1988; Garí et al., 

2001; Nash et al., 1988; Nurse, 1975; Sudbery et al., 1980). WHI1-1is a hypermorphic 

allele of CLN3, which encodes the cyclin that activates the cyclin-dependent kinase 

Cdc28 to cue events at Start (Cross, 1988; Nash et al., 1988; Sudbery et al., 1980; Tyers 

et al., 1993), whereas Whi3 is an RNA binding protein that sequesters the CLN3 mRNA 

transcript into an inactive state (Garí et al., 2001; Nash et al., 2001) and Whi5 is the G1 

transcriptional repressor that binds to the SCB binding factor (SBF) at SCB target 

promoters in early G1 and then phosphorylated in late G1 by Cln3-Cdc28 complex to 

relieve repression and activate Start (Costanzo et al., 2004; De Bruin et al., 2004). A list 

of identified Whi mutants of  budding yeast are indicated in (Table 6), that includes 

WHI7 (SRL3) characterized in this thesis and published online (Yahya et al., 2014) and 

Whi8 (YGR250c), another Whi mutant characterized in this study and still unpublished. 

Screens for small cell size mutants have not only identified key proteins of the Start 

network, such as Cln3, Whi3 and Whi5, but also central regulators of ribosome 

biogenesis (Jorgensen et al., 2002), namely Sfp1 and Sch9, indicating a close functional 

interaction between the machineries that control growth and proliferation (Jorgensen & 

Tyers, 2004). 

 

 

 

 

 

 

 

 

 

 

Table 6: List of Whi mutants identified and characterized in S. cerevisiae. 
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This thesis describes the isolation and characterization of a CDC28 quintuple mutant, 

which we refer to as CDC28wee, that causes premature entry into the cell cycle and a 

small cell size. Next we used isobaric tags for relative and absolute quantitation (iTRAQ) 

to identify direct interactors with lower affinities for mutant Cdc28wee, aiming at the 

identification of proteins with key regulatory roles in the retention mechanism. Among 

the identified proteins we found Srl3, a protein of unknown function, here renamed as 

Whi7. Here we show that Whi7 acts as an inhibitor of Start, associates to the ER and 

contributes to efficient retention of the Cln3 cyclin, thus preventing its unscheduled 

accumulation in the nucleus. Our results demonstrate that Whi7 acts in a positive 

feedback loop to release the G1 Cdk-cyclin complex and trigger Start once a critical size 

has been reached (Figure 13), thus uncovering a key nonlinear mechanism at the 

earliest known events of cell cycle entry. 

 

 

Figure 13: Proposed model for Whi7 role at Start 

 

In addition to Whi7 we also identified Whi8, an RNA-binding protein present in both 

stress granules (SGs) and P bodies (PBs) with unknown biological function. We have 

found that Whi8 interacts with Cdc28 in vivo, binds and colocalizes with the CLN3 

ER

local

translation

CLN3

mRNA

Whi3

nucleus

Cdc28

Cln3 SBF

Whi5

Whi7

P

Ydj1

P

P

Cdc28

Cln3

Robust control

of cell size 

at START



Introduction 

 
 

41 
 

mRNA, and interacts with Whi3 in an RNA-dependent manner. Whi8-deficient cells 

showed a smaller budding cell size while, on the other hand, overexpression of Whi8 

increased the budding volume. Cells lacking Whi8 were not capable of accumulating the 

CLN3 mRNA in SGs under stress conditions, and Cln3 synthesis remained high under 

glucose and nitrogen starvation, two environmental stress conditions that dramatically 

decrease Cln3 levels in the cell. Whi8 accumulation in SGs depended on an intrinsically 

disordered domain (IDD) identified at C-terminus of Whi8 and specific PKA phophosites. 

Our results suggest that Whi8 acts under stress as a safeguard that limits the influx of 

newly synthesized Cln3 (and likely other proteins) into the cell cycle machinery, by 

trapping the CLN3 mRNA in mRNA granules. Thus, we have found a unique target for 

signaling pathways that directly links stress response and cell cycle entry.  
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This thesis aimed at reaching the following objectives: 

 

 Genetic screen, isolation and characterization of CDC28 wee mutants able to 

subvert ER sequestration of the Cdc28-Cln3 complex 

 Subproteomic analysis of interactors of wild type and wee mutant Cdc28 proteins 

using iTRAQ to pinpoint G1 regulators 

 Functional analysis of the identified candidates as regulators of cell size and cell 

cycle entry 

 Characterization of their role in the  molecular mechanism of retention of the G1 

Cdk-cyclin complex 
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1. Construction of yeast strains 

Epitope tagging of genes and deletions was performed as described (Janke et al., 2004). 

Lists of the strains, plasmids, and primers used in this study are provided in 

Supplementary Table 2, Supplementary Table 3, and Supplementary Table 4.  

All PCRs were done using MyCyclerTM PCR system from Bio-Rad. The polymerase 

“iProof™ High-Fidelity DNA Polymerase” from Bio-Rad was used for epitope tagging and 

deletions of genes. To check gene integrations in yeast we used; colony PCR using 

SupraThermTM Taq DNA polymerase (Gene Craft). Amplification of yeast genes or 

Epitope-tags was usually done in a 50-100μl PCR reaction using 0.5μM primer1, 0.5μM 

primer2, 0.2mM of dNTPs, 1x iProof HF buffer, 0.5mM MgCl2, 0.5μl genomic DNA or 1μl 

1:20 diluted plasmid Mini prep and 1μl iProof™ polymerase (2U/μl) in case of amplicons 

that have high GC content we use 1x iProof GC buffer and add DMSO up to 3% to the PCR 

mix. In general, the following amplification protocol was used: 30s 98°C, [20s 98°C, 30s 

at the respective °C, 1min / 1000bp 72°C], 35cycles, 10min 72°C.  

In case of Random mutagenesis to prepare mutant library of CDC28 gene we used an 

error prone protocol for the PCR where MgCl2 increased to 7mM, dCTPs and dTTPs to 

1mM and MnCl2 0.5mM is added immediately before The Taq DNA polymerase 

SupraThermTM Taq DNA polymerase (Gene Craft) using this amplification protocol 5min 

94°C, [1min 94°C, 1min at the respective °C, 1min / 1000bp 72°C], 35 cycles, 7min 72°C.  

Yeast cells transformation 

50ml of yeast were grown to an optical density of 0.5 to 0.8OD600 and harvested by 

centrifugation for 3min at 3600rpm using a ROTINA 380R centrifuge (Hettich). After 

washing with 10ml H2O, the pellet was resuspended in 500μl of solution I (10mM Tris-

HCl, pH 7.5, 1mM EDTA & 100mM Li-acetate). After centrifugation, the pellet was 

resuspended in a mix of 40μl DNA of interest in 1xTE (10mM Tris-HCl, pH 8.0, 1mM 

EDTA, pH 8.0), 5μl of ssDNA (DNA of salmon or herring testis,2 mg/ml), and 5μl of 1M 

Li-acetate finally,300μl of solution II (10mM Tris-HCl, pH 7.5,1mM EDTA, 100mM Li-

acetate & 40% PEG-4000) was added and the mixture was incubated for 30min at 30°C 

in a dry bath incubator of Elite major science  . Transformations were then heat-shocked 

for 15min at 42°C in a dry bath incubator of Elite major science, followed by 3min 

incubation on ice. 1ml of H2O was added and centrifuged. The pellet was resuspended in 

50μl H2O and plated on selective plates. For genomic integrations of a galactose 
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promoter, epitope tagging or a disruption cassette that require expression of drug 

resistance genes, the pellets were resuspended in 4ml YPD or YPG and incubated for 4h 

at room temperature prior to plating.  

Colony PCR from yeast 

A yeast colony was resuspended in 15μl of Milli-Q (Millipore) water and patched in 

appropriate selection plate. Next, a small spoon of glass beads (SIGMA) was added, and 

cells were boiled at 95°C for 2minutes. Then, cells were broken for 30seconds at power 

5.5 using the FastPrep (FP120, Bio101 Thermosavant). Finally, after spinning at 10krpm 

for 1minute, 2μl of supernatant were taken for the PCR reaction. The following 

amplification protocol was used: 30s 94°C, [20s 94°C, 30s at the respective °C, 1min / 

1000 bp 72°C], 35cycles, 10min 72°C. 

Genomic DNA preparation of yeast cells 

4ml of an overnight culture with an OD600> 1 were centrifuged (3min, 3600rpm) and 

washed with 10ml H2O. The cells were resuspended in 500μl H2Oand 200μl lysis buffer 

(2% Triton X-100, 1% SDS, 100mM NaCl, 10mM Tris-HCl, pH8.0,1mM-EDTA).300μl glass 

beads and 300μl phenol:chloroform:isoamylalcohol (25:24:1) were added and the 

mixture was vortexed for 3min. After a centrifugation for 10min at 16,000g the upper 

phase was removed and extracted with an equal volume of chloroform. Genomic DNA 

was precipitated using 1.2ml 100% ethanol and incubation of the solution for 10min at - 

20°C. After a centrifugation for 30min at 4°C and 16,000g, the pellet was dried and 

resuspended in 400μl TE (10 mM Tris-HCl, pH 8.0, 1 mM EDTA, pH 8.0). To destroy RNA, 

20μl RNaseA (10 mg/ml) were added and incubated for 40min at 37°C. Genomic DNA 

was precipitated by addition of 40μl 3M Na-acetate, pH 5.2 and 800μl 100% ethanol and 

incubation of the mixture for 10min at – 20°C. After centrifugation (16,000g, 4°C, 30min) 

the pellet was washed with 80% ethanol, dried and resuspended in 30μl TE. 

 

2. Gene cloning and plasmid construction 

PCR purification was done using QIAquick PCR purification kit from Qiagen. 

Dephosphorylation and ligation were done using the Rapid DNA Dephos & Ligation Kit 

from Roche. Site-directed mutagenesis was performed using the Quickchange 
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mutagenesis kit from Agilent Technologies. Plasmid extraction was done using GenElute 

Plasmid Miniprep Kit (SIGMA) according to manufacture guide. Newly constructed 

plasmids were checked by either plasmid jet preps and restriction digestion, or E.coli 

colony PCR. Detection of DNA was done by loading on 0.8 to 1.5% SeaKem® LE Agarose 

(LONZA) gel prepared with the running buffer 1xTAE (from 50x; Tris-HCL, EDTA-Na2 

pH 8.5). DNA was then stained by incubating the agarose gel for 15 minutes in ethidium 

bromide bath with a final concentration of 0.5μg/ml. Detection was done by exposing 

the gel to UV light source (Alpha Inno Tech), image capture by Olympus camera, and 

analysis with AlphaDigiDoc software. 

E. coli DH5 competent cells transformation  

For plasmid transformation, 50μl of Subcloning Efficiency™ DH5α™ Competent Cells 

from Invitrogen were thawed on ice and 1-5μl of DNA was added with gentle mixing. 

Next, they were incubated on ice for 30minutes, at 42°C for 20seconds (heat shock) and 

on ice again for 2minutes. 1ml of prewarmed LB was added to the transformation tube, 

and cells were then incubated at 37°C for one hour to allow expression of the antibiotic 

(ampicillin for example) resistance gene. After incubation, cells were pelleted at 

6000rpm for 5minutes, and 950μl of the supernatant was removed, while the pellet was 

resuspended with the 50μl left and plated on LBAntibiotic plate. 

Colony PCR from E. coli  

Colonies were picked with toothpicks and swirled into 25μl of Milli-Q water. The same 

toothpick was used to make a patch on LB-Ampicillin plate. The suspended colonies 

were then boiled for 2minutes, and centrifuged at 13000rpm for 2minutes. 20μl of the 

supernatant were transferred to a new tube, from which 1μl was used as template for 

the PCR. This procedure allows rapid screening for the presence of the insert in its 

correct orientation. 

Jet preps 

Colonies that were previously picked on LB-Ampicillin plate were resuspended in 500μl 

of LB-Ampicillin liquid medium and then pelleted by centrifugation for 30 seconds at 

13000rpm. Next, 50μl of BT (2%Triton X-100/NaOH pH 12.4) were added to the pellet 

without resuspension. Then, 50μl of phenol/chloroform were added and the tubes 

where shaken vigorously for 30seconds. After centrifugation for 5minutes at 13000rpm, 
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5μl were combined with loading buffer (5x FLB, 100 μg/ml RNase). To analyze with 

restriction digestion, 40μl of the supernatant were taken and chromatin was 

precipitated by adding 4μl of 2% acetic acid 4μl of 3M NaOAc pH 8, and 100μl of ethanol, 

and centrifugation at 13000 rpm for 5minutes. The pellet was then washed with 1ml 

70% ethanol, and resuspended with10 μl Milli-Q water. 5μl of the resuspended 

chromatin was used in 10μl digestion reaction. The digested plasmids were combined 

with loading buffer (5x FLB, 100 μg/ml RNase) and loaded into an agarose gel along 

with the undigested ones.  

 

3. Growth media, serial dilution and generation time 

measurements 

Yeast cells were grown in YP (Yeast extract, peptone) supplemented with different 

sugars (2%), glucose, galactose and raffinose. A final concentration of 200μg/ml of 

genetecin (DUCHEFA), 300μg/ml of hygromycin B (Sigma), and 200μg/ml of 

nourseothricin (Werner BioAgents) antibiotics, was used to select for gene tagging and 

deletions that confer antibiotic resistance. SC medium (YNB, drop-out) was used to 

select for plasmid auxotrophies, which include; tryptophan (40μg/ml), leucine 

(120μg/ml), histidine (20μg/ml) and uracil (20μg/ml). In case of glucose starvation cells 

were grown exponentially for 14-16hours until OD600  0.3-0.4 in SDC or YPD media then 

collected by filtration and after a quick wash, resuspended at the same cellular 

concentration in pre-wormed SC or YP media. In case of nitrogen starvation, Yeast 

nitrogen base without ammonium sulfate was used as recommended by the 

manufacturer (Difco) to prepare SD media without the nitrogen source, and the required 

amino acids were added to the following final concentrations: 15μg/ml leucine, 5μg/ml 

histidine and 10μg/ml tryptophan according to (Gallego et al., 1997). Nitrogen 

deprivation experiments were done with cells growing exponentially for 14–16hours 

until OD600 = 0.3−0.4, which were then collected by filtration and, after a quick wash, 

resuspended at the same cellular concentration in pre‐warmed medium lacking the 

nitrogen source.. LB was used to grow bacterial E.coli DH5α and BL21. A final 

concentration of 50μg/ml of Ampicillin (ROCHE) was added to select for cloned 

plasmids. 
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For serial dilution and replica plating of yeast cells, around one colony was resuspended 

in 400μl of the appropriate growth medium. Then, the OD600 was measured and cells 

were diluted in 200μl to OD600 0.3 inside 96well plate. Four 10X serial dilutions or five 5x 

serial dilutions were made by carrying 20μl from the first dilution to the next. Replica 

plating on different media was done by 48pin stamp. 

For generation time measurements cells were grown overnight in YP plus raffinose. The 

next day, cultures were diluted to the same OD600 and split in to two; in one of the two 

the sugar raffinose was substituted with galactose to allow the expression of the fusions 

under the GAL promoter. The OD600 was measured every hour for 8hours. The ln of the 

OD600 was calculated in an excel table and plotted on a graph as a function of time. The 

slope was used to calculate the generation time by dividing the natural logarithm of 2 

(ln2) over the slope. GAL1p-driven gene expression was induced by addition of 2% 

galactose to cultures grown in 2% raffinose at OD600 = 0.5. When stated, 10μM β-

estradiol was used to induce the GAL1 promoter in strains expressing the Gal4-hER-

VP16 (GEV) transactivator (Louvion et al., 1993). 

 

4. Protein techniques 

Post-alkaline extraction 

Post-alkaline extraction was mainly used to check correct tagging of transformation 

colonies. Yeast cells, obtained from colony patches on plates, were resuspended in 200μl 

0.1M NaOH, and incubated for 5minutes at room temperature. After incubation, the 

alkaline supernatant was removed by spinning at 13.000rpm for 15seconds, and the 

pellets were resuspended with 1xSSR and boiled at 95°C for protein elution. Next, 

samples were loaded on SDS-PAGE gels and analyzed by western blot. 4xSS (20% 

sucrose, 0.05% bromophenol blue, 0.1% NaAZ) and 4xSR (8%SDS in 0.5 M Tris-HCl pH 

6.8) are used at equal volumes, along with 2% β-mercaptoethanol, to prepare the 

loading buffer 2xSSR. 

Urea extraction 

Urea extraction was mainly used to quantitatively check the levels of expression of 

proteins. 10ODs of exponentially growing cultures were collected and processed by 

adding 30μl of 5M urea and boiling at 95°C for 2minutes. Next, two small spatulefull of 
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glass beads were added, and cells were broken using the FastPrep for 30seconds power 

6. Then, 100μl of 1xSR were added and cell extracts were boiled at 95°C for 2minutes.  

Finally, the protein extracts in the supernatant were obtained after centrifugation at 

high speed for 5minutes. Protein concentration was checked using BIO-RAD Micro DC 

protein assay. Equal concentrations of proteins were loaded on SDS-PAGE gels after 

boiling at 95°C with loading buffer (1xSS and 2%β-mercaptoethanol) for 2minutes. 

Western Blot 

The running gel was prepared at different percentages from 30% acrylamide/Bis-

acrylamide with 0.375M Tris-HCl pH 8.8, 0.1% SDS, 0.08% Ammonium persulfate, and 

0.1% TEMED. 5% stacking gel was prepared from 30% acrylamide/ Bis-acrylamide, 

with 0.125MTris-HCl pH 6.8, 0.1% SDS, 0.066% Ammonium persulfate, and 0.1% 

TEMED. After loading, proteins were allowed to migrate at 20mA/gel for around 

90minutes. The Mini-PROTEAN® Tetra cell for hand cast gels and PowerPac™ HC power 

supply along with casting stands, casting frames, and glass plates from BIO-RAD.  

PVDF membrane (Millipore) was prepared by wetting with methanol then rehydrating 

with water and then transfer buffer. 20% methanol transfer buffer was used for transfer 

small proteins while 10% was used for larger ones. The gel and the membrane were 

assembled with transfer paper (GE Health care) as directed in the Semi-Dry transfer 

machine Trans-Blot® (BIO-RAD), and proteins were transferred at 60mA/gel for one 

hour.  

Blocking was done with 5% milk PBST (8g of NaCl, 0.2g of KCl, 1.44g of Na2HPO4, 0.24g 

of KH2PO4&0.1% Tween-20) for one hour at room temperature. The primary antibody 

was added and left for 2hours at room temperature or overnight at 4°C. The antibodies 

used for western blot analysis are shown in (Supplementary Table 1).  

The membrane was washed three times with PBST for 5minutes each, and once with 

0.025% milk PBST or 10minutes then incubated with the secondary antibody in 0.025% 

milk,0.02%SDS- PBST  for one hour at room temperature. After washing three times 

with PBST, the membrane was incubated with Clarity™ Western ECL Substrate from 

BIO-RAD for 5minutes. The signal was detected using Amersham Pharmacia Biotech 

Hyperprocessor imaging system from Amersham. 
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ER spin 

Collect 50OD600 by filtration using 0.45µm Nitrocellulose MF™  membrane filters 

(Millipore) in a filter cassette from NALGENE®, resuspend in 1ml cold water, spin 1 

minute at 5krpm and shock freeze pellet with liquid nitrogen (keep at -70C if needed). 

Thaw the pellet at 37C for 10seconds (exactly), and resuspend in cold 200µl STE10. 

Transfer to a new precooled tube with 0.5ml glass beads. Break cells for 30seconds at 

power 5 with the Fast Prep in the cold room. 

Add 500µl STE10, vortex for 5seconds, and keep 50µl extract in 50µl 2xSSR (T). 

Roll the remaining extract for 15minutes at 4C. Spin at 1.8krpm for 2minutes at 4C in 

Microcentrifuge 5417R (Eppendorf), take 0.5ml supernatant to a clean tube, and keep 

50µl in  50µl 2xSSR (S).  

Spin at 13.2krpm for 30minutes at 4C. Keep 100µl supernatant in 100µl 2xSSR (S13). 

Carefully remove all the supernatant and resuspend the pellet in 200µl 1xSSR (P13). 

 

STE10 (for 8 samples) 
60% sucrose   1.0ml 
Q water 4.7ml 
2M Tris-HCl pH 7.5 30µl 
0.5M MgCl2    24µl 
0.1M DTT 60µl 
25x PPI    60µl 
100x PIA      60µl 
200x PIB     30µl 
200mM PMSF 30µl 

 

Gradient fractionation of yeast cell extracts 

Collect 50OD600 by filtration, resuspend in 1ml cold water, spin 1minute at 5krpm and 

shock freeze pellet with liquid nitrogen (keep at -70C if needed) 

Thaw the pellet at 37C for 10seconds (exactly), and resuspend in cold 200µl STE10. 

Transfer to a new precooled tube with 0.5 ml glass beads. Break cells for 30seconds at 

power 5 with the Fast Prep in the cold room. 

Add 500µl STE10, vortex for 5seconds. Roll the remaining extract for 5minutes at 4C. 

Spin at 1.8krpm for 2minutes, take 0.5ml supernatant to a clean tube, and keep 50µl in 

50µl 2xSSR as soluble extract (S). 
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Load 0.4ml onto a 20-60% sucrose gradient prepared in Polyallomer centrifuge tubes 

(13X51mm) from Beckman Coulter® the night before and spin at 40krpm for 6hours at 

4C in Optima™L-90K µltracentrifuge (Beckman) using SW55 TI rotor (Beckman). 

Take 12 x 0.45ml fractions from the top with a 1ml Gilson and add to 0.65ml cold 0.02% 

DOC (Sigma). Mix and add 0.1ml 72% (saturated) TCA (Sigma) .Mix and let on ice for one 

hour. 

Spin at 12krpm for 10minutes, drain, add 1ml cold acetone (VWR). You may leave tubes 

overnight at -20C. Spin at 12krpm for 2minutes. 

Speed-vacuum for 10minutes in Concentrator 5301 (Eppendorf) and add 50µl 1xSR 

sample buffer and 5µl 1M Tris base (Sigma) to the pellets. Vortex for 5seconds and 

incubates at 65C for 10minutes. Repeat this step twice before samples are boiled and 

loaded onto SDS-PAGE gels. 

 
2 gradients     STE60                 STE20                  STE10 
60% sucrose   5.0ml 1.67ml 0.33ml 
Q water -   ml 3.33ml 1.67ml 
2M Tris-HCl pH 7.5 25µl 25µl 10µl 
0.5M MgCl2    20µl 20µl 8µl 
0.1M DTT 50µl 50µl   20µl 
25x PPI    25µl 25µl 10µl 
100x PIA      50µl 50µl 40µl 
200x PIB     25µl 25µl 20µl 
200mM PMSF 25µl 25µl 10µl 
 

Gradient steps 60%   50%   40%   30%   20%   
STE60 2.0ml 1.5ml 1.0ml 0.5ml -   ml 
STE20 -   ml 0.5ml 1.0ml 1.5ml 2.0ml 
Vol. in 5ml Beckman tube 0.95ml 0.95ml 0.95ml 0.95ml 0.95ml 

 

Purification of GST-Whi8 fusion protein 

Transform BL21 E.coli background with the required GST-fusion construct Prepare a 

preculture of 10ml shaking overnight at 250–300rpm at 37C in LB supplemented with 

100μg/ml ampicillin till Saturation. Dilute 1/50 in 50ml LB Amp keep shaking at 37C 

wait 2hours (OD600=0.25). Induce with IPTG to a final concentration of 1.5mM final 

concentration and incubate at 30C shaking at 250–300rpm for 5-6hours. Harvest cells 

by centrifugation at 3000rpm for 15min at 4°C in 50ml centrifuge tube. Decant the 

supernatant, Cell pellet may be frozen for up to several months at −80°C. 
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Resuspend the pelleted E. coli cells in 1ml cold lysis buffer (cells might be freshly 

prepared or thawed frozen cell pellets), rotate for 30minutes at 4°C. Lyse cells by 

sonication on ice (~4times for 30sec at force 6 each with 1min rest between bursts to 

minimize sample heating). Spin at 16000g for 15minutes at 4°C, carefully transfer the 

supernatant to a clean 1ml tube and keep aside 20µl as your input to verify the level of 

expression of your fusion protein by SDS-PAGE 

On the other hand prepare the GST beads (GST-Sepharose beads) wash 100µl GST beads 

4 to 5times with 1 ml cold buffer B to remove the storage solution  

Mix the supernatant we got before with the washed GST beads and rotate for 1 hour at 

4°C. Collect the GST beads by centrifugation at 3000rpm for 10seconds and carefully 

remove the supernatant without losing beads  

Wash the beads 4times with cold buffer B by rotation at 4°C for 5minutes  

Finally resuspend the GST beads in the suitable kinase buffer to be ready for the kinase 

assay and keep 10µl of the GST beads to verify the binding and purification efficiency. 

 

Buffer B                        Stock       
1xPBS  10x 
1mM DTT 1M 
0.1% TRITON-X100 10% 
2x PIA 100x 
200x PIB     200x 

200mM PMSF 200x 

1mg/ml lysozyme 10mg/ml to prepare lysis buffer 

 
 

In Vitro protein kinase assay 

GST-Whi8 protein was affinity-purified using GST-Sepharose 4B beads (Amersham 

Biosciences) and finally resuspended in a suitable kinase buffer according to the 

manufacturer's instructions. The GST-fused Whi8 on the beads were mixed in 50μl of 

kinase buffer containing 0.5μCi of [γ-32P] ATP, 100μm ATP, and 10mm MgCl2 with 

Protein Kinase A Catalytic Subunit from bovine heart (Sigma) and incubated at 30°C for 

30min. After the beads had been washed with the kinase buffer, the proteins were 

eluted by boiling the beads in SDS sample buffer for 5min. The eluted proteins were 

resolved by SDS-PAGE and detected by autoradiography. 
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Protein immunoprecipitation (IP) 

Collect 50O.D600 of cells (500ml OD600 =1) by centrifugation at 5000rpm at 4°C for 

3minutes. Wash the pellet by cold water 3 times by centrifugation (5000rpm at 4°C for 

3minutes).You can freeze the pellet in liquid nitrogen and keep at -80°C.  

Add 150µl of buffer AI and resuspend the pellet then add glass beads up to 1mm from 

the meniscus. Break the cell using the fast prep machine power 4 for 40seconds. Test the 

breaking efficiency under the microscope if less than 50% repeat breaking using the 

same settings. Add 150µl of buffer AI then add 60µl of KCl 2M and 60µl of TRITON 10% 

and mix by inversion 3-5times. Spin the extract you get at 12000rpm for 1minute at 4°C 

then transfer the supernatant to a new clean 1ml tube. Spin again for 5minutes at 

12000rpm at 4°C and carefully transfer the supernatant to a new dry clean 1ml tube 

without taking the upper fatty layer neither the pellet  

Mix 20µl of the cell extract of the supernatant with 20µl of 2xSSR and keep aside this will 

be the WCE 

On the other hand prepare 50µl of αFLAG M2 affinity gel beads from Sigma (100µl 

slurry) for IP by washing 3times with cold buffer A (500µl each wash) finally resuspend 

in 50µl buffer AI and the add the supernatant and rotate at 4ᵒC for 2hours then collect 

the beads by spinning at 1000rpm for 30seconds and remove the supernatant with 29G 

MYJECTOR® 1ml insulin syringe.  

Wash 3times by buffer IPP150 (500µl each wash) and collect the beads by spinning at 

1000rpm for 30seconds and remove the supernatant with insulin syringe. Elute with 

50µl of 1xSR and incubate at 37ᵒC for 5minutes. Collect the eluate by centrifugation at 

1000rpm for 60 seconds and collect the eluate carefully with the tip of the pipette 

without collecting any beads mix with loading buffer (1xSS and 2% β-mercaptoethanol)  

and boil at 95°C for 2minutes. 

The immunoprecipitated proteins were loaded together with the input in SDS-PAGE, and 

detected using western blot analysis. The antibodies used for western blot analysis were 

α-FLAG and α-HA (Supplementary Table 1). 

Buffer A                                    Stock 
10 mM HEPES-Na pH7.5  10x 
0.5mM DTT  1M 
1.5mM MgCl2  1M 
10mM KCl    2M 
Q-H2O    to 10ml 
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25X Protease inhibitors cocktail EDTA free from Roche and 10XPPI (25mM Sodium 

Fluoride, 25mM β-glycerophosphate, 25mM EGTA, 125mM sodium pyrophosphate) add 

to Buffer A to prepare Buffer AI 

 
Buffer IPP150                 Stock 
10mM Tris-HCl pH8.0  2M 
150mM NaCl  5M 
0.1% TRITON    10% 
Q-H2O    to 10 ml 
 

For large scale immunoprecipitations of Cdc28-3FLAG for iTRAQ analysis 3-l YPD 

cultures of cells with either wild-type or wee CDC28-3FLAG strains were grown at 30ᵒC 

to OD600 = 5–6 to enrich for G1 cells, then cells pellets were collected by centrifugation in 

250ml NALGENE® centrifuge bottles using Avanti™J-25 centrifuge (Beckman) and JA-10 

rotor (Beckman) at 5Krpm for 5min at 4ᵒC, pellets then washed twice with cold water 

and finally resuspended in 50ml lysis buffer and disrupted using Constant Cell 

Disruption System at 4ᵒC after preparation of cell extracts the supernatant is obtained 

the same way then rotated with 1ml αFLAG M2 affinity gel beads from Sigma at 4ᵒC for 

2hours then loaded on Poly-Prep®   Chromatography columns (BIO-RAD) to collect and 

wash the beads by draining at 4ᵒC finally elute the beads using 500µl of 1% SDS and 

keep samples for western blot and ruby staining. The iTRAQ analysis was done at the 

BIDMC Proteomics Core Center (Harvard University), essentially as described by  

(Afkarian et al., 2010). A set of four pairs of immunoprecipitates from either wild-type 

or wee CDC28 cells were digested with trypsin, labeled with eight isobaric tags, pooled, 

and separated by two dimensional liquid chromatography into 15fractions. 

Each fraction was analyzed in an 8-plex run using an AB/Sciex 4800 MALDI-TOF/TOF 

mass spectrometer. 

 

5. RNA techniques 

RNA immunoprecipitation (RIP) 

50ml  OD600 = 1 of exponentially growing cells expressing protein of interest fused to 

6FLAG epitope were collected and then lysed as described under protein 

immunoprecipitation section with the exception of adding to the lysis buffer 40units/μl 

RNaseOUT TM (Invitrogen) beside phosphatase and protease inhibitors mixture (Roche 
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Applied Science). Extracts then rotated with 50µl αFLAG M2 affinity gel beads from 

Sigma for 2hours at 4°C. The beads were then washed four times with wash buffer 

(IPP150) RNAs were extracted according to standard protocols of (E.Z.N.A. total RNA Kit 

I; Omega Bio-Tek).  

RT-qPCR 

After RNA extraction, First-Strand cDNA Synthesis Using SuperScript™ II RT (Invitrogen) 

was performed according to standard protocol (Invitrogen life technologies) Reactions 

were carried out according to the manufacturer’s instructions in a total volume of 20μl 

using MyCyclerTM PCR system from Bio-Rad. Obtained cDNA levels were determined by 

quantitative real-time PCR using TaqMan probes against mRNAs of interest from Sigma. 

PCRs were run and analyzed with an iCycler iQ real-time detection system (Bio-Rad). 

The probes and primers used for RT-qPCR are shown in (Supplementary Table 5) 

 

6. Cell biology methods 

Cln3-3HA immunofluorescence 

Take 5ml of cells (YPD with uracil and/or adenine if needed, OD600=0.5-1), add 0.6 ml 

37% Formaldehyde (10% methanol), and rotate for 50min.  

Spin cells at 2krpm for 3min, wash once with 1ml PB (0.1M KH2PO4 pH 7.4), and 

resuspend in 1ml PB.  

Take 0.2ml of cells, add 1µl β-mercaptoethanol and 2µl Zymolyase Z100T (Seikagaku 

Biobusiness Corporation), and incubate 20min at 30°C (cells get dull gray).Place cells on 

ice for 5min, spin at 3krpm for 2min, and resuspend in 0.1ml PBS. Samples can be kept 

overnight on ice at this stage, but not longer. 

Treat slides (Delta lab) with 20µl/well 0.1% Poly-L-Lysine (Sigma) for 10min, and wash 

twice with 50µl/well Q-water. Place cells (20µl/well), let stand for 10min at RT, and 

remove most of the liquid by gentle aspiration. 

Place in ice-cold methanol for 6min (carefully plunge slide into a 50ml tube placed on ice 

1h ahead).Wash in PBS (50ml tube) for 1min at RT. 

Add 50µl/well BS and block for 30min at RT. Add 20µl/well primary Ab mix and 

incubate for 1-2hours at RT. Wash three times with PBS. 
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Add 20µl/well secondary Ab mix and incubate for 30min at RT in the dark. Wash three 

times with PBS. Add 20µl/well second secondary Ab mix and incubate for 30min at RT 

in the dark. Wash three times with PBS. 

Let dry for 10min and mount with 50% glycerol-PB (keep at 4°C in the dark in a humid 

chamber). 

Clear all solutions at 12krpm for 2min before addition to wells.  

PBS – same as in  (Sambrook, Fritsch, & Maniatis, 1989) (prepare as a 20x stock) 

BS - 3% BSA in PBS 

BS/10 – 0.3% BSA in PBS 

Z100T – 10mg/ml Zymolyase 100T in 50% glycerol-PB. Roll it for 15min at 4°C. Keep 

aliquots at -70°C. 

50% glycerol-PB – 50% glycerol 10 mM KH2PO4 pH 7.4  

Slides (black print) – Leave in hot 0.5% Mistol (90-95°C) for 15min, rub the printed slide 

with foam, rinse three times with tap water, three times with deionized water, twice 

with Q-water and once with ethanol. Dry and keep  

Primary antibody mix (200µl): 1µl of 0.1µg/µl rat 3F10 α-HA in 200µl BS/10. 

Secondary antibody mix (200µl): 0.2µl 2µg/µl Alexa488 goat α-rat in 200µl BS/10. 

Second Secondary antibody mix (200µl): 0.2µl 2µg/µl Alexa488 rabbit α-goat in 200µl 

BS/10 (Supplementary Table1). 

Bright field, DAPI images of the nuclei and immunofluorescence images of Cln3-3HA 

were captured using Upright Microscope Nikon E600. 

For colocalization of Whi7 and Whi8 to the ER marker Ole1-GFP by immunofluorescence 

methanol permeabilization was omitted, in order not to disturb the ER structure and 

GFP signal was intensified with a rabbit α-GFP Alexa 488-labeled antibody (Molecular 

Probes). Z-stack images were captured using Spectral Confocal Microscope Zeiss 

LSM780. 

Semiautomated quantification of Cln3-3HA levels 

Briefly, we have developed N2CJ as a plugin for ImageJ that uses bright-field and DAPI-

staining images to determine in a semiautomated manner both cellular (yellow) and 

nuclear (magenta) limits and quantify levels in both compartments (Figure 14). 
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Figure 14: Semiautomated Quantification of Cln3-3HA Levels in both Nuclear and Cytoplasmic 

Compartments by Immunofluorescence 
 

 (A) A sample stack of late G1-arrested cells by α-factor treatment. Briefly, we have developed N2CJ as a 

plugin for ImageJ that uses bright-field and DAPI-staining images to determine in a semiautomated 

manner both cellular (yellow) and nuclear (magenta) limits and quantify immunofluorescence levels in 

both compartments. 

 (B) Quantification of nuclear (blue bars) and cytoplasmic (yellow bars) levels of Cln3-3HA from indicated 

cells in (A). 

 

Stress granules imaging in live cells 

Cells (BY4741 background) were grown to an OD600 of 0.3-0.35 in the appropriate 

medium. For observation, cells were washed twice and resuspended in SC plus amino 

acids supplemented with glucose. For glucose depletion, cells were washed in SC 

supplemented with appropriate amino acids without glucose and resuspended in the 

same medium prewarmed to 42°C and incubated at 42°C for 15min before imaging. To 

prepare cells for microscopy, concentrated cell culture was mounted onto Concanavalin 

A from Sigma (0.2mg/ml) treated slides and pictures were taken immediately after the 

glucose starvation or the heat shock treatment. Z-stack images were captured using 

Spectral Confocal Microscope Zeiss LSM780. To visualize RNA localization, cells 

cotransformed with a plasmid containing NLS-MS2-GFP or NLS-MS2-mCherry which 

binds specifically to MS2 binding sites in RNA and another plasmid that carries 6 copies 

of the MS2 binding sites integrated between the ORF and the 3′UTR of the mRNA by the 

method developed by  (Haim, Zipor, Aronov, & Gerst, 2007) (Figure 15).   
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                                                       Figure 15: RNA visualization by MS2 system 

 

7. Screen for Cdk wee mutants 

We adapt the main procedures from  (Nash et al., 2001). Yeast strain CML128 with 

endogenous CDC28 gene under the control of the regulatable GAL1p promoter, and 

transformed with a plasmid library containing randomly mutagenized CDC28 copies. 

Transformants were spread on 5SDC-leu plates at ∼1000cells per plate. Plates were 

incubated at 30°C for 5days. Colonies were pooled with 1 ml YPD. A sample from the 

pooled cells was used to inoculate 100ml culture in YPD at OD600 0.005, a glucose 

medium in which wt CDC28 allele expression was repressed shaking at 30°C overnight.  
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Early exponential cells OD600 0.5 were harvested, sonicated, and ∼109 cells were layered 

onto a 30ml 2.0–10% (w/v) sorbitol gradient prepared in sterile polypropylene 50ml 

Falcon centrifuge tube (Fisher brand®) in a “stay-put,” which separates cells according 

to size. Larger cells fall through the gradient faster than smaller ones. After 6hr of 

sedimentation, fractions (0.5ml per fraction up to 15 fractions) were collected from the 

top. Cell size was analyzed using a Coulter (Hialeah, FL) channelyzer. Fractions 

containing the smallest 5% of cells were pooled and used to reinoculate YPD culture. 

The size enrichment procedure was repeated two more times (Figure 16). After the 

third size enrichment, the smallest 5% of cells (almost the 7 top fractions) were spread 

on YEPD plates. Individual colonies were chosen and inoculated in 96well plate and left 

to grow at 30°C overnight without shaking then diluted 5 times in 0.5ml YPD in 24 well 

plates and grown at 30°C for 8 hours shaking at 180 rpm. Cell volume distributions were 

obtained with a Coulter channelyzer.  

 

 

 

Figure 16: Screen of for small-cell-size mutants of Cdc28 
 

Diagram of small cell size CDC28 mutant screen. A plasmid-borne CDC28 mutant library was transformed 

into a GAL1p-CDC28 strain, and pooled transformants were subject to three rounds of enrichment in small 

cells by differential sedimentation 
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1. A Whi7- anchored loop controls the G1 Cdk-cyclin complex 

at start 

Cells commit to a new cell cycle at Start by activation of the G1 Cdk-cyclin complex 

which, in turn, triggers a genome-wide transcriptional wave that drives the G1/S 

transition. In budding yeast, the Cdc28-Cln3 complex is regulated by an ER-retention 

mechanism that is important for proper cell size control. We have isolated wee Cdc28 

mutants showing impaired retention at the ER and premature accumulation of the Cln3 

cyclin in the nucleus. The differential interactome of a quintuple Cdc28wee mutant 

pinpointed Whi7, a Whi5 paralog that is a target of Cdc28 and associates to the ER in a 

phosphorylation-dependent manner. Our results demonstrate that the Cln3 cyclin and 

Whi7 act in a feedforward loop to release the G1 Cdk-cyclin complex and trigger Start 

once a critical size has been reached, thus uncovering a key non-linear mechanism at the 

earliest known events of cell cycle entry. 

Critical size variability: growth-independent sources and the Start 

network 

We have recently shown that budding yeast cells set the critical size at a single-cell level 

as a function of the growth rate during G1 (Ferrezuelo et al., 2012), which explains the 

principal component of variation observed in the critical size (Di Talia et al., 2007; L H 

Hartwell & Unger, 1977; Johnston et al., 1977). Once the growth-rate component is 

excluded, wild-type cells only display a small residual cell-to-cell variation (Ferrezuelo 

et al., 2012), indicating the existence of a precise and robust size control in budding 

yeast. Thus, we asked whether the robustness of this mechanism would depend on the 

different components of the Start network, and to what extent it does so (Figure 17A). 

As expected, cells lacking the two G1/S cyclins (Cln1 and Cln2) or any of the 

transcription factors (Swi4 or Swi6) involved in the transcriptional feedback loop 

showed an increased residual noise in cell volume at Start compared to wild-type cells 

(Figure 17B). Cln3, the upstream G1 cyclin that triggers the feedback loop, is assumed 

not to be important once CLN1 and CLN2 transcription has been activated and, 

consequently, would not play a significant role in providing Start with coherence and 

robustness.  

http://www.sciencedirect.com/science/article/pii/S1097276513008654#fig1
http://www.sciencedirect.com/science/article/pii/S1097276513008654#fig1
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Figure 17: Residual noise in the critical size and the Start network  
 

 (A) Scheme of the Start network. Briefly, the G1 Cdk-cyclin complex formed by Cln3 and Cdc28 

phosphorylates Whi5 and activates SBF (Swi6-Swi4) and MBF (Swi6-Mbp1) transcription factors to 

induce the G1/S regulon. Whi3 binds the CLN3 mRNA and recruits Cdc28 to help retain newly formed 

Cdc28-Cln3 complexes at the ER in early G1. In late G1 the Ydj1 chaperone releases Cln3 from the ER and 

allows its accumulation in the nucleus to trigger Start. Cln1 and Cln2 cyclins generate a positive feedback 

loop for coherent and irreversible SBF and MBF activation. 

 (B) Percentage differences of volume at Start to that predicted by growth rate in G1 are plotted for 100 

cells of the referred genotypes. Brackets indicate SD. 

 (C) Percentage differences of budding time (Start to budding) to population average are plotted for 100 

cells of the referred genotypes. Brackets indicate SD. 
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However, we observed a clear increase of residual noise in the critical size of cells 

lacking Cln3. Notably, overexpression of Cln3 also increased the level of residual noise in 

cell size at Start.  

Ydj1 is a chaperone that drives ER release and nuclear accumulation of Cln3 in late G1  

(Vergés et al., 2007) and is also important in keeping a low cell-to-cell variation of cell 

size at Start ( Figure 17B). In contrast, loss of Mbp1 did not modify residual noise levels 

in the critical size, a result consistent with the fact that this G1/S transcription factor is 

not involved in the G1/S-cyclin feedback loop. Cells lacking Sfp1, a master activator of 

ribosome biogenesis that has a profound effect on cell size control  (Jorgensen et al., 

2004), showed wild-type levels of residual noise in cell size at Start, which is in 

accordance with the idea that Sfp1 acts upstream of the Start network to set growth rate 

and, as a consequence, the critical size (Ferrezuelo et al., 2012). Finally, Cln3 and Ydj1 

did not seem to play an important role in the robustness of the G1/S transition as 

deduced from noise levels in the time period from Start to budding (Figure 17C). All 

these data point to the notion that Cln3 and Ydj1 are important in triggering Start in a 

robust manner as a function of growth rate and suggest the existence of nonlinear 

processes driving chaperone-dependent release of the Cdc28-Cln3 complex from the ER. 

A screen for Cdk wee mutants     

Binding to Cdc28 is important for proper retention of the Cln3 cyclin at the ER until late 

G1  (Vergés et al., 2007), which suggests that this Cdk is acting as a bridge to unknown 

ER-associated proteins. Thus, mutations in Cdc28 that would weaken these interactions 

might cause premature release of the Cdc28-Cln3 complex and, hence, a smaller cell size. 

To perform this mutant screen we first placed the endogenous CDC28 gene under the 

control of the regulatable GAL1p promoter, and transformed the resulting strain with a 

plasmid library containing randomly mutagenized CDC28 copies. These transformants 

where then subject to three rounds of enrichment for small cell size mutants and more 

than 900 isolated clones where analyzed by their cell size distribution and Cln3 nuclear 

accumulation to end up with 6 independent CDC28 mutants that have relatively small 

size and more nuclear accumulation of Cln3 compared to wild type CDC28 carrying 

background (Figure 18A and 18B). 

http://www.sciencedirect.com/science/article/pii/S1097276513008654#fig1
http://www.sciencedirect.com/science/article/pii/S1097276513008654#fig1
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Figure 18: Cell volume and nuclear accumulation of Cln3-3HA in small cell size CDC28 mutants 
 

 (A) Daughter cell volume deduced from Coulter-counter distributions as described by (Jorgensen et al., 

2002) for wild-type (wt), Whi3-deficient (whi3) and the following mutant strains: CDC28-w4 (K24R, D80N, 

R97G, S213G), CDC28-w6 (S2G, S46G, K96T, K187N, K274R), CDC28-w7 (S46C, K96I, Q251L), CDC28-w8 

(K223N, R288G), CDC28-w34 (Y23H, L61I, H130Y) and CDC28-w38 (I56L, K209E). Relative mean values 

from triplicate distributions and confidence limits (α=0.05) for the mean are plotted. 

 (B) Nuclear Cln3-3HA levels for wild-type (wt), Whi3-deficient (whi3) and the indicated CDC28 mutant 

strains were measured as in Figure 3A. Relative mean values and confidence limits (α=0.05) for the mean 

(N>200) are plotted. 

 

Cdc28 wee mutations are found in two clusters    

By sequencing, the identified mutants contained a total of 11 amino acid substitutions 

distributed in two regions of the Cdc28 molecule (Figure 19A). A group of 5 mutations 

were found in or in the vicinity of the cyclin-binding domain, suggesting that these 

variants could display a stronger interaction to Cln3 or be more susceptible to activation 

by Cln3. One of them affected S46, a CK2 target previously involved in cell size control by 

others (Russo et al., 2001). Notably, the remaining substitutions were found at five 

positions clustered at an opposite region in the C-terminal lobe of Cdc28, and mostly 

affected basic amino acids with likely exposed side chains (Figure 19B). As we were 

particularly interested in Cdc28 domains different from the cyclin-binding region, we 

decided to characterize these mutations further and to build a quintuple mutant that we 

will refer to as CDC28wee. 
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Figure 19: Cdc28 wee mutations found in two clusters 
 

 (A) Scheme of the Cdc28 polypeptide indicating the two sets of amino acid substitutions found in small-

cell-size mutants, one of them including four positions (green) lying at the N lobe and the other set with 

five positions (red) at the C lobe. The regulatory T-loop (orange) and the PSTAIRE helix (blue) that 

interacts with cyclins are also indicated. 

 (B) Cdk4-based structural representation of Cdc28 showing the position of the two sets of amino acid 

substitutions indicated in (A). 

 

Phenotype of CDC28 wee mutant  

In agreement with the phenotypes of the single mutations, the quintuple CDC28wee 

mutant displayed a strong shift in the overall distribution towards small cell sizes that 

was strictly dependent on the presence of Cln3 since a cln3 deletion masked the size 

effect of the CDC28wee compared to the wild type allele (Figure 20A). In contrast, effects 

of CDC28wee on budding size (Figure 20B) were additive to the whi3 deletion, suggesting 
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that both alterations affect related but independent components of the mechanisms that 

control cell size in budding yeast. CDC28wee cells showed a higher mean level of nuclear 

Cln3 (Figure 20C) and, more important, a strong increase in the proportion of cells 

displaying a nuclear signal of Cln3 above a certain threshold (Figure 20C). 

 

 

Figure 20: Phenotype of CDC28wee mutant 
 

 (A) Coulter counter cell volume distributions for the indicated strains are shown. 

 (B) Cell volumes at budding of individual cells (n > 500) with indicated genotypes are plotted. Mean 

values (thick vertical lines) and confidence limits (α = 0.05, thin vertical lines) for the mean are also 

shown.  

 (C) Nuclear accumulation of Cln3-3HA in asynchronous individual cells (n > 450) with indicated 

genotypes as measured by semiautomated quantification of immunofluorescence levels in both nuclear 

and cytoplasmic compartments. Values were made relative to the average obtained from wild-type (WT) 

cells. Mean values (thick horizontal lines) and confidence limits (α = 0.05, thin horizontal lines) for the 

mean are shown. 

 (D) Total extracts and ER-bound fractions from WT cells expressing an additional CDC28-3FLAG or 

CDC28wee-3FLAG construct were analyzed by western to detect endogenous and 3FLAG-tagged Cdc28 

proteins. Dpm1 is shown as ER marker. 

 (E) Chemiluminescent quantification of Cdc28-3FLAG and Cdc28wee-3FLAG protein levels analyzed in (D) 

are plotted relative to the endogenous chromosome-borne Cdc28 protein levels. Mean values from 

triplicate samples and confidence limits (α = 0.05) for the mean are shown. 
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The effects caused by CDC28wee were comparable to the whi3 deletion and, similarly to 

effects on cell size, both alterations behaved in an additive manner with regard to 

nuclear accumulation of Cln3 (Figure 20C). Finally, Cdc28wee levels in ER-enriched 

fractions were lower compared to the wild-type Cdc28 protein (Figures 20D and 20E), 

which suggested that the mutated residues at the C-terminal lobe of the yeast Cdk could 

have a prominent role in retaining the G1 Cdk-cyclin complex at the ER. The low 

abundance of Cdc28wee in ER-enriched fractions was also a key finding to go further into 

a proteomic analysis to uncover the components of the retention device behind ER-

sequestration of Cdc28. 

Identification of differentially weakened interactions of Cdc28wee 

Once its effects on cell size control, Cln3 localization and low abundance in ER-enriched 

fractions had been clearly established, we decided to use the quintuple Cdc28wee mutant 

to identify interactors of Cdc28 that could have a direct role in the retention of the G1 

Cdk-cyclin complex at the ER during G1 phase. To detect changes in the Cdc28 

interactome we used iTRAQ to analyze four independent pairs of FLAG-tagged wild-type 

and wee Cdc28 immunoprecipitates from G1 cells (Figures 21A and 21B). 

 

Figure 21: iTRAQ analysis of differential interactors of Cdc28wee 

 

 (A) Schematic of the iTRAQ comparative analysis of Cdc28
wee

 and Cdc28 interactors. 

 (B) Western analysis (left) and ruby-stained gel (right), showing total cell extracts, and αFLAG or control 

immunoprecipitates of WT and mutant (wee) 3FLAG-tagged Cdc28 proteins, used in the iTRAQ analysis. The 

positions of Cdc28-3FLAG proteins and IgG light chains are indicated. 
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Qualitative assessment of iTRAQ data  

After filtering the data to consider only those proteins identified at a 95% confidence 

level (Figure 22A), our data  were consistent with previous high-throughput studies of 

Cdc28 interactors using affinity capture-MS approaches  (Breitkreutz et al., 2010; Collins 

et al., 2007; Gavin et al., 2002, 2006; Ho et al., 2002) (Figure 22B).  

 

 

Figure 22: Qualitative assessment of Cdc28 interactors obtained from iTRAQ 
 

 (A) A table indicating the unused score of Cdc28 interactors identified in the iTRAQ analysis (Unused 

ProtScore reflects the amount of total, unique peptide evidence related to a given protein ProtScore = -log ( 1 - 

(PercentConfidence/100))  

 (B) Cdc28 Interactors Identified by High-Throughput Affinity Capture-MS Approaches The diagram 

shows the Cdc28 interactors identified in our iTRAQ analysis at 95%confidence (1: our iTRAQ data) that 

have been also identified by other affinity capture-MS approaches (2: Breitkreutz et al., 2010; 3: Collins et 

al., 2007; 4: Gavin et al., 2006; 5: Ho et al., 2002; 6: Gavin et al., 2002). The absence of cyclins at sufficient 

levels for univocal identification in our iTRAQ analysis is likely due to the fact that we used cultures highly 

enriched in G1 cells. 

 (C) GO term frequencies and −log (p) scores of identified Cdc28 interactors by iTRAQ analysis. 

 

The absence of cyclins at sufficient levels for unambiguous identification in our iTRAQ 

analysis is likely due to the fact that we used cultures highly enriched in G1 cells. On the 
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other hand, the most frequent functional categories among the 816 proteins above a low 

cutoff value were related to cell cycle control (Figure 22C). 

Discrimination of candidates with lower affinity for Cdc28  

The variability in the levels of a total of 219 proteins in immunoprecipitates was 

analyzed as a Q score for Cdc28wee interactors and an S score for Cdc28wt interactors. 

From every interactor we obtained 4 pairs of Q scores and 4 pairs of S scores, which 

were used to analyze the existence of unexpected biases in the two immunoprecipitates.  

 

Figure 23: Quantitative analysis of iTRAQ data 
 

 (A) Scatter plot displaying paired score (Q and S) against the coverage% of the proteins identified 

(calculated as the percentage of the residues in each protein sequence that have been identified). R2 

represents the coefficient of determination that describes fit consistency. 

 (B) Scatter plot displaying Q paired scores against S paired scores of the iTRAQ identified proteins.  

 (C) Frequency distribution (blue bars) of Cdc28 interactors by a wee/wt score that indicates their relative 

presence in mutant Cdc28wee and WT Cdc28 immunoprecipitates. A normal fit distribution (gray area) is 

also shown, and the positions of Cdc28, Sic1, Cks1, and Whi7 proteins are indicated. 
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Both of Q and S scores show an internal variability that is independent of the the peptide 

coverage percentage of the proteins identified (Figure 23A). In addition, the internal 

variability within Q scores shows no correlation with the internal variability within S 

scores (Figure 23B). Thus, no unexpected biases for protein enrichments in the two 

immunoprecipitates were found. Finally, an average Q/S score was obtained as log2 

(wee/wt) to compare the relative immunoprecipitation efficiencies of each candidate 

interactor to wee and wild-type Cdc28 proteins (Supplementary Table 6). Figure 23C 

shows the distribution of these candidate interactors by their Q/S score. As a proof-of-

principle Cdc28 offered a score not significantly different from 0, and the same lack of 

depletion in wee versus wild-type Cdc28 immunoprecipitates was observed for Sic1, 

which suggests that the interaction of these two proteins does not involve the residues 

mutated in Cdc28wee. 

Whi7 interacts with Cdc28 

Of particular importance to our present purpose, the candidate interactor with the 

lowest Q/S score was Srl3 (YKR091W), a protein of unknown function that had been 

isolated as a suppressor of Rad53-lethality (Desany et al., 1998), and identified as a 

phosphorylation target of Cdc28  (Ubersax et al., 2003). Here we show that this protein 

is an inhibitor of cell cycle entry that plays a key role in regulating the correct 

localization of the Cln3 cyclin during G1 phase.  

 

 

Figure 24: Whi7 interaction with Cdc28 
 

 (A) In vivo Cdc28-Whi7 interaction assay. Western analysis of cell extracts (total) and αFLAG 

immunoprecipitates (αFLAG IP) of 3HA-WHI7 cells expressing WT or mutant (wee) Cdc28-3FLAG proteins. 

 (B) In vitro Cdc28-Whi7 interaction assay. Purified 6His-2HA-Whi7 was added to αFLAG 

immunoprecipitates (αFLAG IP) of cells expressing WT or mutant (wee) Cdc28-3FLAG proteins, and the 

bound fraction was analyzed by western. The position of IgG light chains is indicated. 
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We therefore propose renaming it as Whi7. Confirming the weakened interaction of 

Whi7 to Cdc28wee observed by iTRAQ analysis, we found lower levels of a 3HA-tagged 

Whi7 protein in Cdc28wee immunoprecipitates from yeast cells compared to wild-type 

Cdc28 (Figure 24A). Furthermore, bacterially expressed Whi7 bound Cdc28wee with a 

lower efficiency compared to wild-type Cdc28 in vitro (Figure 24B).  

Whi7 is strikingly similar to Whi5, the nuclear Cdc28 target   

Whi7 was described as a Whi5 paralog  (Byrne & Wolfe, 2005). Whi7 and Whi5 share 

significant similarities at the sequence level (Figure 25A), particularly at domains where 

phosphorylation of Whi5 by Cdc28 takes place (Wagner et al., 2009).  

 

Figure 25: Whi7, a Whi5-related protein, is phosphorylated upon cell cycle entry 
 

 (A) Whi7 (amino acids 55–225) and Whi5 (amino acids 109–275) display 31% identity and 46% 

similarity (p = 3.4 × 10−11). Nuclear localization sequences NLS1 and bipartite NLS2  (Taberner et al., 

2009) are underlined, and experimentally demonstrated (Wagner et al., 2009) and putative Cdk 

phosphorylation sites are indicated by filled and open symbols, respectively. 

 (B) Cells expressing 3HA-tagged wild-type (WHI7) or nonphosphorylatable (WHI7NP) Whi7 proteins were 

arrested in late G1 (G1) with α factor and released into S phase (S) to prepare cell extracts for western 

analysis. An αHA crossreacting band is indicated (∗).  

 (C) GAL1p-CLN3 cln1 cln2 cells expressing 3HA-tagged wild-type (WHI7) or nonphosphorylatable 

(WHI7NP) Whi7 were arrested in G1 by growth in 2% raffinose for 4 hr. Two percent galactose was added 

to induce expression of GAL1p-CLN3, and samples were collected at the indicated times for western 

analysis. HA-untagged cell extracts were used as control (right lane). An αHA crossreacting band is 

indicated (∗). 

 

Whi7 is also phosphorylated when cells execute the G1/S transition (Figure 25B) or 

after induction of Cln3 expression (Figure 25C), which suggests that Whi7, in a similar 

manner to Whi5, could be regulated by Cdc28-dependent hyperphosphorylation during 
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cell cycle entry. However, Whi7 lacks the Whi5 sequences responsible for its regulated 

nuclear localization during the cell cycle  (Costanzo et al., 2004; Taberner et al., 2009; 

Wagner et al., 2009). 

Whi7 interacts with Cks1   

Whi7 has been shown to interact with Cks1  (Gavin et al., 2002), an important subunit of 

Cdc28  (Harper, 2001), but levels of Cks1 were only slightly reduced in Cdc28wee 

immunoprecipitates (Figure 26A), suggesting that the interaction between Whi7 and 

Cdc28 is not mediated by Cks1 alone. 

 

 

Figure 26: Cks1 interactions with Cdc28 and Whi7 
 

 (A) Cdc28-Cks1 interaction assay. Extracts (total) of cells expressing wild-type (wt) or mutant (wee) 

Cdc28-3FLAG proteins were used in pull-down assays with control (ctrl) or S. pombe Suc1 (Cks1) beads 

and samples were analyzed by western. Relative levels of Cdc28-3FLAG proteins in Cks1 pull-down 

samples are plotted at the bottom. 

 (B) Cdc28-Whi7-Cks1 interaction assay. Extracts (total) of cells expressing Whi7-3HA and wild-type (wt) 

or mutant (wee) Cdc28-3FLAG proteins were used in pull-down assays with control (ctrl) or S. pombe 

Suc1 (Cks1) beads and samples were analyzed by western. Slow-migrating forms of phosphorylated Whi7 

are indicated (arrowhead). An αHA crossreacting band is also indicated (*). 
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Notably, we found that phosphorylated forms of Whi7 display an increased affinity for 

Cks1 (Figure 26B), suggesting that basic-charge driven Cks1 interaction could play a key 

role in Whi8 multiphosphorylation.   

Whi7 localizes to the ER 

Available immunofluorescence data suggest that Whi7 localizes to cytoplasmic patches  

(Kumar et al., 2002). Preliminary confocal microscopy images showed a pattern 

reminiscent of proteins belonging to ER-associated compartments, and coexpression 

with Ole1-GFP as ER marker confirmed that Whi7-3HA staining produces a punctate 

pattern closely associated to the ER network (Figure 27A and 27B). Confirming this 

association, we found that a fraction of Whi7 cosediments with Dpm1, another ER 

marker, in sucrose gradients (Figure 27C) Furthermore, while the Whi7NP mutant 

protein was present at higher levels than the wild-type protein in the dense, ER-

containing fractions of sucrose gradients, phosphorylated Whi7 was enriched more than 

4-fold in the soluble fractions (Figure 27C). Notably, this behavior is similar to that of 

Cdc28, a fraction of which is found in dense ER-containing fractions  (Vergés et al., 

2007). Similarly to cyclin Cln3  (Vergés et al., 2007), association of Whi7 to the ER was 

sensitive to alkaline pH (Figure 27D). However, the Whi7NP mutant protein was more 

resistant to alkaline dissociation, indicating that the nonphosphorylatable Whi7 mutant 

is more tightly bound to the ER. 

Whi7 is a negative regulator of Start 

Next we decided to test whether Whi7 is an inhibitor of cell cycle entry and plays a key 

role in regulating the correct localization of the Cln3 cyclin during G1 phase. The whi7 

disruption caused a clear reduction in cell volume at budding (Figure 28A), suggesting a 

role in the pathways that control the critical size in budding yeast. Cell size at Start is a 

growth rate-dependent parameter (Jorgensen & Tyers, 2004), and each single cell sets 

the critical size in a very robust manner as a function of its individual growth rate during 

G1 (Ferrezuelo et al., 2012). As whi7 cells showed no population differences in growth 

rate compared to wild-type cells, we concluded that Whi7 is a negative regulator of Start 

that acts independently of the growth rate-sensing mechanism, most likely as a Cdc28 

interactor that contributes to retaining the G1 Cdk-cyclin complex at the ER.  
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Figure 27: Whi7 is found associated to the ER in a phosphorylation-dependent manner 
 

 (A) Confocal images of WT cells expressing Whi7-3HA at endogenous levels and Ole1-GFP as ER marker. 

Nuclei were detected by DAPI staining, and HA-untagged cells were analyzed as control (left panels). An 

overlaid stack of 20 0.34μm deconvolved sections is shown for each image. Bar indicates 2μm. The 

Pearson’s coefficient of colocalization of Whi7-3HA and Ole1-GFP signals and the corresponding p value 

obtained by Costes’ randomization are shown at the bottom of each image set. 
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 (B) 3D projection of the merged stack corresponding to cell in right panel (D). 

 (C) Western analysis of the distribution of Whi7-3HA and nonphosphorylatable Whi7NP-3HA in sucrose 

gradients. Dpm1 is shown as ER marker. Relative levels of slow-migrating forms of phosphorylated Whi7 

(arrowhead) in soluble (#2) and ER-containing (#12) fractions are plotted at the bottom. 

 (D) Whi7 and Whi7NP Associate to the ER with Different Efficiencies .Total extracts from cells expressing 

Whi7-3HA or non-phosphorylatable Whi7NP-3HA proteins were either untreated (pH 7.5) or subject to 

0.1 M Na2CO3 (pH 11.0) before separation of ER-bound proteins for western analysis. An αHA 

crossreacting band is indicated (*). Whi7-3HA and Whi7NP-3HA relative protein levels in the ER-bound 

fraction are plotted at the bottom. Mean values from triplicate samples and confidence limits (α=0.05) for 

the mean are shown. 

 

Contrary to the whi7 deletion, the presence of the nonphosphorylatable mutant of Whi7 

(Whi7NP) caused an increase in cell volume at budding (Figure 28A), suggesting that 

phosphorylation at Cdk-consensus sites would counteract its activity as a negative 

regulator of Start. In addition, overexpression of WHI7 from a regulatable promoter 

(Figure 28B) that mimics induction levels caused by and ER-stress agent delayed cell 

budding and caused a rapid and marked increase in cell size at budding (Figure 28C-

28E). 

Whi7 overexpression strongly affects Cln3 nuclear accumulation  

The Cln3 cyclin accumulates in the nucleus at Start  (Wang et al., 2004), and alteration of 

the mechanisms that help retain the G1 Cdk-cyclin complex at the ER cause unscheduled 

accumulation of Cln3 in the nucleus  (Vergés et al., 2007). Therefore we decided to test 

whether Whi7 acts as a regulator of Cln3 localization. Whi7-deficient cells showed an 

increase in the average level of nuclear Cln3 and, more important, an increase in the 

proportion of cells displaying a high level of Cln3 in the nucleus (Figure 29A) in both 

asynchronous cultures and late G1 arrested cells. Moreover, WHI7 overexpression 

caused a rapid reduction in the average level of nuclear Cln3, the decrease being even 

faster when the nonphosphorylatable Whi7NP was overproduced (Figure 29A). 

Notably, WHI7 overexpression reduced to undetectable levels the presence of Cln3 in 

the lighter fractions of sucrose gradients (Figure 29B), which contain soluble protein 

complexes and are enriched in Cln3 cyclin when its nuclear accumulation is maximal  

(Vergés et al., 2007). Taken together, these data support the notion that Whi7 is a 

component of the mechanism that retains the Cln3 cyclin at the ER and prevents its 

unscheduled accumulation in the nucleus. 
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Figure 28: Whi7 is a negative regulator of cell cycle entry 
 

 (A) Individual cell volumes at budding of WT, whi7, or WHI7NP cells (n > 350) with indicated genotypes 

are plotted. Mean values (thick vertical lines) and confidence limits (α = 0.05, thin vertical lines) for the 

mean are also shown. 

 (B) Western analysis of total cell extracts of WT and nonphosphorylatable (NP) WHI7-3HA cells left 

untreated or subject to 5mM DTT for 3hr. β-estradiol was used to induce for the indicated times 

expression of WT and nonphosphorylatable mutant (NP) GAL1p-WHI7-3HA cells. HA-untagged cell 

extracts were analyzed as control (right lane). An αHA crossreacting band is indicated (∗). 

 (C) Bright-field images of asynchronous WT and WHI7 overexpressing (oWHI7). Bar indicates 5μm. 

 (D) Early G1 WT cells overexpressing either wild-type (oWHI7) or nonphosphorylatable (oWHI7NP) WHI7 

were used to determine budding index as an indicator of cell cycle entry. 

 (E) Early G1 cells, as in (D), were induced with β-estradiol, and individual cell volumes at budding were 

determined thereafter (first cycle, n> 400) or after overnight growth (O/N, n > 250). Mean values (thick 

vertical lines) and confidence limits (α = 0.05, thin vertical lines) for the mean are also shown. 
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Figure 29: Whi7 plays an important role in retention of Cln3 at the ER 
 

 (A) Nuclear accumulation of Cln3-3HA in asynchronous and late G1-arrested cells (n > 600) of WT and 

Whi7-deficient (whi7) CLN3-3HA strains. Cells overexpressing either wild-type (oWHI7) or 

nonphosphorylatable (oWHI7NP) WHI7 were induced with β-estradiol, and samples were taken at 

indicated times. Mean values (thick horizontal lines) and confidence limits (α = 0.05, thin horizontal lines) 

for the mean are shown.  

 (B) Extracts (total) from CLN3-3HA WT or overexpressing WHI7 (oWHI7) cells were used to analyze, by 

western, the distribution of Cln3-3HA in sucrose gradients. Dpm1 is shown as ER marker. 

 

Whi7 and chaperones play a related role in the Cln3 retention 

mechanism  

As mentioned in the introduction, the Ydj1 chaperone plays a key role in releasing the 

Cln3 cyclin from the ER to allow its nuclear accumulation in late G1 (Vergés et al., 2007) 

We found that moderate chaperone overexpression also increased nuclear levels of Cln3 
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even in the presence of Whi7NP (Figure 30A and 30B), indicating that Whi7 and 

chaperones play related roles in the retention-release mechanism that regulates Cln3 

localization. 

 

Figure 30: Ydj1 and Ssa1 chaperones are able to counteract the inhibitory effects of Whi7NP 

on Cln3 nuclear accumulation 
 

 

 (A) Wild-type (WHI7) and non-phosphorylatable Whi7 (WHI7NP) CLN3-3HA GAL1p-YDJ1 GAL10p-SSA1 

cells were induced with β-estradiol and samples were taken at the indicated times for western analysis of 

Ydj1 levels, which are plotted at the top as relative values. Mean values from triplicate samples and 

confidence limits (α=0.05) for the mean are shown. 

 (B) Nuclear levels of Cln3-3HA in cells (N>500) as in (A). Mean values (thick horizontal lines) and 

confidence limits (α=0.05, thin horizontal lines) for the mean are shown. 

 

Whi7 acts in a positive feedback loop to release the G1 Cdk1-Cyclin 

complex 

Whi7 acts as an inhibitor of Start and, at the same time, is also a target of the Cdk under 

its regulation, which suggests that Whi7 could be a central component of a positive 

feedback loop in releasing the G1 Cdk-cyclin complex in late G1. Whi7 is important for 

proper retention of Cdc28-Cln3 complexes, and, once partly released by chaperone 

activity, these complexes could phosphorylate Whi7 and decrease its retention functions 

to facilitate further release of the Cdc28-Cln3 complex in a positive feedback loop. 
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Figure 31: Whi7, Cdc28, and Cln3 participate in a positive feedback loop to release the Cdc28-Cln3 

complex in late G1 
 

 (A) Individual cell volumes at budding of WT, Cln3-deficient (cln3), or expressing nonphosphorylatable 

Whi7 (WHI7NP) cells (n > 400) with an additional copy of CLN3 or cln3ΔNLS alleles are plotted. Mean 

values (thick vertical lines) and confidence limits (α = 0.05, thin vertical lines) for the mean are shown. 

 (B) Nuclear accumulation of Cln3-3HA in WT or nonphosphorylatable WHI7 (WHI7NP) CLN3-3HA cells (n 

> 600). Expression of additional wild-type (+CLN3) or cytoplasmic (+cln3ΔNLS) CLN3 alleles was induced 

with β-estradiol, and samples were taken at indicated times. Mean values (thick horizontal lines) and 

confidence limits (α = 0.05, thin horizontal lines) for the mean are shown. 

 (C) Cells expressing Whi7-3HA or nonphosphorylatable Whi7NP-3HA proteins were arrested in late G1 

with α factor (G1) and released into S phase (S) to prepare total extracts and ER-bound fractions for 

western analysis. Dpm1 is shown as ER marker. Whi7-3HA and Whi7NP-3HA relative protein levels in the 

ER-bound fraction are plotted. Mean values from triplicate samples and confidence limits (α = 0.05) for 

the mean are shown.  

 (D) GAL1p-CLN3 cln1 cln2 cells expressing Whi7-3HA were arrested in G1 by growth in 2% raffinose for 

4hr. Two percent galactose was added to induce expression of GAL1p-CLN3 for 20min, and samples were 

taken to separate ER-bound proteins from soluble proteins by centrifugation for 30min at either 13,000 × 

g or 5,000 × g. A western analysis of Whi7-3HA is shown, and slow-migrating forms of phosphorylated 

Whi7 are indicated (arrowhead). 
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This hypothesis predicts that the Cdc28-Cln3 complex ought to have a cytoplasmic 

function or, in other words, that a cln3ΔNLS construct that cannot complement Cln3-

deficient cells (Edgington & Futcher, 2001; Miller & Cross, 2001); and Figure 31A) 

should advance Start when added in trans to wild-type cells. Indeed, an additional copy 

of the cln3ΔNLS allele produced a decrease in budding cell size as noteworthy as that 

produced by a second wild-type CLN3 allele (Figure 31A). Furthermore, expression of 

cln3ΔNLS caused a rapid increase in the nuclear accumulation of a chromosome-borne 

Cln3-3HA protein (Figure 31B), this effect being even more pronounced than that 

produced by a second wild-type CLN3 gene. Notably, these hyperactivity effects of 

cln3ΔNLS were completely suppressed by the presence of the nonphosphorylatable 

Whi7NP protein (Figures 31A and 31B), suggesting that the cytoplasmic function of the 

Cdc28-Cln3 complex is to modulate Whi7 association to the ER by phosphorylation. To 

test this idea, we analyzed the distribution of Whi7 in ER-bound and soluble fractions 

after induction of Cln3 expression and found that phosphorylated Whi7 forms were 

clearly enriched in the soluble fraction (Figure 31C). Finally, while ER-associated Whi7 

levels decreased in S phase compared to G1-arrested cells, Whi7NP levels remained 

unaffected (Figure 31D). These results reinforce the notion that phosphorylation of 

Whi7 modulates its association to the ER. Although most Whi7 is found in soluble 

fractions, we estimate that Whi7 levels are 100-times higher compared to Cln3, which 

suggests that only a small fraction of Whi7 would be involved in controlling the G1 Cdk-

cyclin complex. 

 

The kinase activity of Cdc28 is required for the positive feedback loop  

To test whether the cytoplasmic role of Cln3 requires the kinase activity of Cdc28, we 

designed a Cdc28-Cln3 chimera (Coudreuse & Nurse, 2010) that would allow us to 

combine the cln3ΔNLS allele and a kinase-dead cdc28KD mutation. The CDC28-CLN3 

fusion under the CLN3 promoter produced similar protein levels compared to the wild-

type CLN3 gene and associated to the ER as wild-type Cln3 (Figure 32C). The CDC28-

CLN3 chimera was able to complement a cln3 deletion (Figure 32A), causing a reduction 

in the budding cell size in wild-type cells (Figures 32A and 32D). Accordingly, the Cdc28-

Cln3 chimera accumulated in the nucleus at higher levels compared to Cln3 (Figure 

32F). 
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Figure 32: A CDC28-CLN3 Chimera is fully functional and recapitulates chaperone-dependent Cln3 

nuclear accumulation 
 

 (A) Individual cell volumes at budding of WT and Cln3-deficient (cln3) cells (n > 400) with an additional 

copy of CDC28-CLN3, CDC28-cln3ΔNLS, or cdc28KD-cln3ΔNLS chimeras are plotted. Mean values (thick 

vertical lines) and confidence limits (α = 0.05, thin vertical lines) for the mean are also shown.  
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 (B) Nuclear accumulation of Cln3-3HA in WT or nonphosphorylatable WHI7 (WHI7NP) CLN3-3HA cells (n 

> 250). Expression of either WT or kinase-dead (KD) CDC28-cln3ΔNLS chimeras was induced with β-

estradiol, and samples were taken at indicated times. Mean values (thick horizontal lines) and confidence 

limits (α = 0.05, thin horizontal lines) for the mean are shown. 

 (C) Total extracts and ER-bound fractions from wild-type cells expressing CLN3-3HA or the CDC28-CLN3-

3HA chimera were analyzed by western. Untagged cells were used as control. Dpm1 is shown as ER 

marker. 

 (D) Individual cell volumes at budding of wild-type cells (N=200) expressing CLN3-3HA, CDC28-CLN3-3HA 

or CDC28KD-CLN3-3HA are plotted. Mean values (thick vertical lines) and confidence limits (α=0.05, thin 

vertical lines) for the mean are also shown. 

 (E) Thermosensitive cdc28-13 cells expressing either CDC28, CDC28-CLN3-3HA, CDC28KD-CLN3-3HA or 

CLN3-3HA were shifted at the restrictive temperature (37ºC) at time 0, and the percentage of budding was 

determined thereafter. 

 (F) Nuclear accumulation of Cln3-3HA and Cdc28-Cln3-3HA in wild-type (wt) or Ydj1- deficient (ydj1) 

cells (N>250) as in Figure 2F. Mean values (thick horizontal lines) and confidence limits (α=0.05, thin 

horizontal lines) for the mean are shown. 

 

More importantly, the Cdc28-Cln3 chimera recapitulated the Ydj1-dependence for 

nuclear accumulation of wild-type Cln3 (Figure 32F). Confirming the hyperactivity 

observed in trans with cln3ΔNLS, a CDC28-cln3ΔNLS construct caused a reduction in the 

budding cell size only if a wild-type copy of CLN3 was present (Figure 32A) and 

increased accumulation in the nucleus of a chromosome-borne Cln3-3HA protein 

(Figure 32B). However, a kinase-dead cdc28KD-cln3ΔNLS chimera (Figures 32D and 32E) 

did not affect either budding size or nuclear levels of the chromosome-borne Cln3-3HA 

protein (Figures 32A and 32B), indicating that the cytoplasmic contribution of Cln3 to its 

own release requires the kinase activity of Cdc28. 
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2. Whi8 as a new regulator of the G1-Cdk in budding yeast  

The differential interactome of a quintuple Cdc28wee mutant pinpointed Whi8 as one of 

the proteins that were more abundant in the wild type Cdc28 proteome compared to the 

mutant wee one. Whi8, renamed in this work as Whi8, had no known biological function, 

but it contains RNA-binding domains and has been observed in both SGs and PBs. We 

have found that Whi8 interacts with Cdc28 in vivo, binds and colocalizes with the CLN3 

mRNA, and interacts with Whi3, an RNA-binding protein that binds specifically to CLN3 

mRNA. Most important, Whi8 deficient cells display show much higher levels of Cln3 

under glucose and nitrogen starvation, which are two acute stress conditions, and we 

found by life microscopy that whi8 cells were unable to accumulate the CLN3 mRNA in 

stress granules. Finally, Whi8 accumulation in SGs depends on PKA and the presence of 

specific phophosites within Whi8. Thus, we have found a unique target of stress 

signaling that creates a direct link between stress response and G1 progression.  

Whi8 interacts with Cdc28   

Whi8 one of the candidates that were more abundant in the wild type Cdc28 proteome 

compared to Cdc28wee (lower log2 wee/wt) according to our iTRAQ data. Table 7 shows 

the candidate interactors with P-value p ≤ 0.05 (threshold p-value) by their wee/wt 

score.  

As mentioned in Table 7 Whi8 has unknown biological function, it is an RNA-binding 

protein and exists in both SGs and PBs  (Buchan et al., 2008).  Confirming the weakened 

interaction of Whi8 to Cdc28wee observed by iTRAQ analysis, we found lower levels of a 

3HA-tagged Whi8 protein in Cdc28wee immunoprecipitates from yeast cells compared to 

wild-type Cdc28 (Figure 33). 

Phenotype of whi8 and overexpression of WHI8  

The whi8 deletion caused a clear reduction in cell volume at budding (Figure 34A), 

suggesting a role in the pathways that control the critical size in budding yeast. As whi8 

cells showed no population differences in growth rate compared to wild-type cells, we 

concluded that Whi8 is a negative regulator of Start that acts independently of the 

growth rate-sensing mechanism, most likely as a Cdc28 interactor that contributes to 

retaining the G1 Cdk-cyclin complex at the ER.  
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                    Table 7: A list of the top candidates (p ≤ 0.05) according to the best Q/S score 
 

The best Q/S score is the mean calculated after excluding the outlier of the 4 scores in wee or wt 

(log2 wee/wt). Proteins with p value >0.05 are shown ranked in ascending order. Whi7 and 

Whi8 (YGR250c) appear in the top 10 of the list (green arrowheads).  

 

 

 

 

Name wee/wt score   p value

(log2)

Srl3 / Whi7 Potential Cdc28p substrate, interacts with Cks1 -3.288 3.0E-23

Hsp60 Heat shock protein 60, mitochondrial -3.288 3.1E-23

YCR087C-A Nucleolar protein of unknown function -1.830 5.6E-08

Krs1 Lysyl-tRNA synthetase, cytoplasmic -1.499 9.7E-06

Efb1 Elongation factor 1B -1.340 8.0E-05

Rpa34 DNA-directed RNA polymerase I subunit -1.329 9.1E-05

YGR250C RNA-binding protein, localizes to stress granules -1.304 1.2E-04

Yef3 Elongation factor 3A -1.224 3.2E-04

Leo1 RNA polymerase-associated protein -1.147 7.6E-04

Ssa2 Hsp70-type major chaperone -1.093 1.3E-03

Cks1 Cyclin-dependent kinase regulatory subunit -1.070 1.7E-03

Fpr4 Peptidyl-prolyl cis-trans isomerase -0.981 4.0E-03

Stm1 Protein involved in TOR signaling -0.966 4.6E-03

Sic1 Cyclin-dependent kinase inhibitor -0.925 6.6E-03

Nsr1 Nuclear localization sequence-binding protein -0.887 9.1E-03

Ste20 S/T-protein kinase, potential Cdc28p substrate -0.873 1.0E-02

Bfr1 Nuclear segregation protein -0.864 1.1E-02

Cne1 Calnexin homolog, ER chaperone  -0.845 1.3E-02

Whi8-3HA
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Figure 33: Whi8 interaction with Cdc28  
 

In vivo Cdc28-Whi8 interaction assay. Western analysis of cell extracts (total) and 

αFLAG immunoprecipitates (αFLAG IP) of WHI8-3HA cells expressing WT or mutant 

(wee) Cdc28-3FLAG proteins. 
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The whi8 deletion effect on budding size was strictly dependent on the presence of Cln3 

since cln3 deletion mask the size effect of the whi8 deletion compared to the wild type 

(Figure 34A). In contrast, effects of whi8 deletion on budding size were additive to the 

whi3 deletion (Figure 34A), suggesting that both alterations affect related but 

independent components of the mechanisms that control cell size in budding yeast. 

Whi8-deficient cells showed a higher mean level of nuclear Cln3 and, more important, a 

strong increase in the proportion of cells displaying a nuclear signal of Cln3 above a 

certain threshold (Figure 34B). In addition, overexpression of WHI8 from a regulatable 

promoter caused a rapid and marked increase in cell size at budding (Figure 34C), and a 

time-dependent reduction of the nuclear signal of Cln3 (Figure 34D). 

Whi8 interacts with Whi3 in an RNA-dependent manner  

WHI3 was isolated as a gene involved in cell size regulation that exerts a negative role on 

Cln3 (R. S. Nash et al., 2001). Whi3 contains an RNA-binding domain that binds the CLN3 

mRNA and confines its translation to a distinct molecular environment (Garí et al., 2001) 

and also recruits the Cdc28 kinase preventing unscheduled nuclear accumulation of 

Cdc28-Cln3 complexes (Wang et al., 2004) by an unknown mechanism. Whi3 interacts 

with Cdc28 in vivo, suggesting that the interaction between Whi3 and Cdc28 is part of a 

cytoplasmic retention mechanism with an important role in regulating G1 events (Wang 

et al., 2004). Thus, Whi3 was proposed to be an anchor for Cdc28-Cln3 complexes. 

However Whi3 and Cdc28 do not interact in vitro, suggesting that other proteins would 

mediate their association in vivo  (Wang et al., 2004). Indeed, Whi8 interacts in vivo with 

Whi3 and, more interestingly, this interaction was mostly lost upon treatment with 

RNase, strongly suggesting this interaction is mediated by common target mRNAs 

(Figure 35). 

Whi8 localizes to the ER 

Preliminary confocal microscopy images showed a pattern reminiscent of proteins 

belonging to ER-associated compartments, and coexpression with Ole1-GFP as ER 

marker confirmed that Whi8-3HA staining produces a punctate pattern closely 

associated or adjacent to the ER network (Figure 36A and 36B). Confirming this 

association, we found that a fraction of Whi8 cosediments with Dpm1, another ER 

marker, in sucrose gradients (Figure 36C). This behavior is similar to that of Whi7 and 
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Cdc28, a fraction of which is found in dense ER-containing fractions  (Vergés et al., 

2007).  

 

  

 

 
 

 

Figure 34: Phenotype of whi8 and oWHI8 cells 
 

 (A) Cell volumes at budding of individual cells (n > 500) with indicated genotypes are plotted. Mean 

values (vertical lines) and confidence limits (α = 0.05, thin vertical lines) for the mean are also shown.  

0 25 50 75 100 125 150 175 200

wt

whi3

cln3

whi8

whi8 cln3

whi8 whi3

Budding volume (fl)

A

0

2

4

6

8

10

12

14

16

18

w
h

i8

W
H

I8

N
u

cl
ea

r 
C

ln
3

-3
H

A
 s

ig
n

al
 (

r.
u

.)

B

0 25 50 75 100 125 150 175 200

Budding volume (fl)

wt

oWHI8

0

2

4

6

8

10

12

14

0

N
u

cl
ea

r 
C

ln
3

-3
H

A
 s

ig
n

al
 (

r.
u

.)

0 10 30 60 Time (min)

oWHI8

D

C



Results 
 
 

93 
 

 (B) Nuclear accumulation of Cln3-3HA in asynchronous individual cells (n > 450) of  wild-type (wt) or 

Whi8- deficient (whi8) as measured by semiautomated quantification of immunofluorescence levels in 

both nuclear and cytoplasmic compartments. Values were made relative to the average obtained from 

wild-type (wt) cells. Mean values and confidence limits (α = 0.05) for the mean are shown. 

 (C) Individual cell volumes at budding were determined thereafter (first cycle, n> 400) of cells 

overexpressing an empty vector or overexpressing WHI8 (O/N, n > 250). Mean values (thick vertical lines) 

and confidence limits (α = 0.05, thin vertical lines) for the mean are also shown. 

 (D) Nuclear accumulation of Cln3-3HA in asynchronous cells (n > 600) overexpressing WHI8. Cells 

overexpressing WHI8 were induced with β-estradiol, and samples were taken at indicated times. Mean 

values (thick horizontal lines) and confidence limits (α = 0.05, thin horizontal lines) for the  

mean are shown.  

 

 

Figure 35: Whi8 interaction with Whi3 
 

Western analysis of cell extracts (total) and αFLAG immunoprecipitates (αFLAG IP) of cells expressing 

Whi8-6FLAG and/or Whi3-3HA proteins with or without RNase treatment. 
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Figure 36: Whi8 is associated to the ER 
 

 (A) Confocal images of WT cells expressing Whi8-3HA at endogenous levels and Ole1-GFP as ER marker. 

Nuclei were detected by DAPI staining, and HA-untagged cells were analyzed as control (left panels). An 

overlaid stack of 20 0.34μm deconvolved sections is shown for each image. Bar indicates 2μm.  

 (B) 3D projection of the merged stack corresponding to a cell in right panel (A). 

 (C) Western analysis of the distribution of Whi8-GFP in sucrose gradients. GAPDH is shown as 

cytoplasmic marker and Dpm1 as ER marker.  
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Whi8 interacts with mRNAs involved in cell cycle regulation  

Both Whi3 and Whi8 are RNA-binding proteins and we have shown that the interaction 

between Whi3 and Whi8 requires RNA. In addition to the CLN3 mRNA  (Garí et al., 

2001), Whi3 binds a large number of mRNAs encoding for membrane and exocytic 

proteins involved in processes such as transport and cell wall biogenesis (Colomina et 

al., 2008). 

 

 

Figure 37: Whi8 associates with CLN3, WHI3 and WHI8 mRNAs  
 

 (A) Western analysis of cell extracts (total) and αFLAG immunoprecipitates (αFLAG IP) using anti-FLAG 

M2 agarose beads (Sigma) of cells expressing Whi8-6FLAG or Whi3-6FLAG or no epitope (negative IP); 

total RNAs were extracted from the immunoprecipitates and analyzed by by real-time RT-PCR. 

 (B) Relative levels of mRNAs found in αFLAG IPs shown in panel A. IPs with αFLAG shown in panel A 

were used to quantify the relative levels of the indicated mRNAs by real-time RT-PCR. Gene symbols are as 

follows: HXK1 (housekeeping mRNA), CLN3, WHI3, WHI7 (SRL3), CDC28, CKS1 and WHI8 mRNA. The mean 

values from three independent immunoprecipitation experiments and respective confidence limits (α = 

0.05) were plotted. 
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Here we focused upon specific mRNAs that are functionally related to cell cycle 

regulation. We performed an IP for Whi3 or Whi8 fused to 6FLAG (Figure 37A) and we 

extracted the RNA. We found that both Whi3 and Whi8 bind mRNAs functionally related 

to the cytoplasmic retention device as CLN3, WHI3, WHI7 and WHI8 mRNAs with 

different affinities and, similar to the behavior of Whi3, Whi8 binds its own mRNA, 

perhaps to locally direct its own translation to specific ER-associated sites (Figure 37B). 

 

Whi8 colocalizes with the CLN3 mRNA in vivo under stress 

Whi3 and CLN3 mRNA localize to stress granules in response to glucose deprivation or 

heat shock (Cai & Futcher, 2013; Holmes et al., 2013). However, the colocalization of 

CLN3 mRNA and stress granules was preserved in whi3 and whi3 whi4 double mutants, 

suggesting the existence of other proteins with essential roles in mRNA sequestration in 

stress granules. As Whi8 had been observed in both SGs and PBs  (Buchan et al., 2008), 

we decided to test the colocalization of CLN3 mRNA and Whi8 granules formed under 

stress conditions. To test this hypothesis, we examined the in vivo localization of CLN3 

mRNA using the MS2 system (Gu et al., 2004; Haim et al., 2007). We constructed a strain 

carrying the CLN3 ORF with no ATG fused to 6 copies of MS2 binding sites (MS2bs) 

under GAL1p promoter and an ectopically expressed NLS-MS2-mCherry fusion, which 

binds specifically to the MS2 loops. The NLS in MS2-mCherry sequesters the unbound 

MS2-mCherry in the nucleus so that the GFP background signal becomes very low in the 

cytoplasm. In cells carrying CLN3-MS2bs, but not in control cells with CLN3 lacking 

MS2bs, one or two bright mCherry foci (and sometimes additional less bright foci) were 

observed in the cytoplasm. The much larger, brighter red spots are nuclei, which contain 

unbound NLS-MS2-GFP. Then we coexpressed a GFP-Whi8 fusion and observed that, 

when cells are grown in glucose, Whi8-GFP is somewhat unevenly spread throughout 

the cytoplasm. Although its distribution is not completely homogeneous, it does not 

appear lumpy, or to be in distinct foci with one or two bright mCherry foci of CLN3. 

Notably, under glucose starvation the mCherry foci containing CLN3 mRNA colocalized 

with Whi8-GFP foci as cytoplasmic aggregates, suggesting that the CLN3 mRNA was 

localized to Whi8 granules (Figure 38). 
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Figure 38: Under stress, CLN3 mRNA colocalizes with Whi8 granules. 
 

Cells with WHI8-GFP (BY4741) were cotransformed with CLN3-MS2bs and NLS-MS2-mCherry for co-

localization of Whi8-GFP and CLN3 mRNA. Cells were starved of glucose and shaked at 42C for 15min 

before analyzed under the microscope. Whi8 is shown in green and MS2-mCherry is shown in red. 

Excess NLS-MS2-mCherry appears as large red lumps in the nucleus. Small red foci indicate CLN3 

mRNA and green foci represent Whi8 granules (white arrow head). Images are shown as a projection 

of z-stacks. At higher contrast and brightness, additional CLN3 foci can be seen in some cells. Control 

cells grown at 30C without starvation show no cytoplasmic GFP foci of Whi8. 
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CLN3 mRNA localization to stress granules requires Whi8 

Since Whi3 is not required for CLN3 mRNA localization to stress granules (Cai & Futcher, 

2013; Holmes et al., 2013), we wanted to know whether Whi8 would have an essential 

role. To test the in vivo localization of CLN3 mRNA with stress granules in whi8 or whi3 

whi8 double deletion background, we co-expressed a Pub1-mCherry fusion together 

with NLS-MS2-GFP and CLN3-MS2bs.  

 

 

 

 

 

 

 

 

 

 

 

 
Figure 39: whi8 or whi8 whi3 deletions reduce 
CLN3 mRNA colocalization to stress granules 

 

(A) Wild type (WHI8 WHI3) or whi8 whi3 cells with Pub1-

mCherry were cotransformed with CLN3-MS2bs and NLS-

MS2-GFP for co-localization of Pub1-mCherry and CLN3 

mRNA. Cells were starved of glucose at 42C for 15 min 

before being observed under the microscope. Pub1 is 

shown in red and NLS-MS2-GFP is shown in green. Excess 

NLS-MS2-GFP in the nucleus appears as large green 

lumps. Small green foci indicate CLN3 mRNA and red foci 

represent Pub1 granules (white arrow head).  

(B) Quantification of Pub1-mCherry fluorescence level  

within CLN3 mRNA foci in stressed cells of panel (A). 

Pub1-mCherry fluorescence level within individual CLN3 

mRNA foci (n > 100) of wild-type (wt), whi8 or whi8 whi3 

double mutant cells (whi8 whi3) as measured by 

semiautomated quantification of fluorescence levels in 

foci relative to surrounding cytoplasmic areas.  
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As already found by others (Cai & Futcher, 2013) we observed that, under glucose 

starvation, the GFP foci containing CLN3 mRNA co-localized with Pub1-mCherry foci in 

otherwise wild type or Whi3-deficient cells. However, colocalization of CLN3 mRNA and 

the stress granule marker Pub1 dramatically decreased in whi8 or whi3 whi8 double 

deletion background. Moreover the Pub1-mCherry fluorescence level in the CLN3 mRNA 

foci was strongly reduced in whi8 or whi3 whi8 mutant cells (Figure 39A and 39B). 

 

Figure 40: Whi8 interaction with components of the stress granules  
 

 (A) Western analysis of cell extracts (total) and αFLAG immunoprecipitates (αFLAG IP) of cells 

expressing Whi8-6FLAG and Pub1-3HA proteins, for negative IP we use a background expressing one or 

none of the two epitopes. For RNase treatment, the immunoprecipitate from a background expressing the 

two epitopes was incubated in lysis buffer with 10mg/ml RNase at 4C for 15 minutes prior to washing.  

 (B) Western analysis of cell extracts (total) and αFLAG immunoprecipitates (αFLAG IP) of cells 

expressing Pub1-6FLAG in wild-type (wt), whi8 or whi8 whi3 double deletion mutant.  

 (C) Relative levels of CLN3 mRNA found in Pub1 αFLAG IPs shown in panel B.  Total RNAs were extracted 

from αFLAG IPs shown in panel B then analyzed by qualitative real-time RT-PCR. The relative levels of 

mRNAs in every IP for HXK1 (housekeeping mRNA) and CLN3 mRNA. The mean values from three 

independent immunoprecipitation experiments and respective confidence limits (α = 0.05) were plotted. 
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To further test the interaction between Whi8 and Pub1 we performed an IP of Whi8-

6FLAG and we measured Pub1-3HA levels by western blot. We found that Whi8 and 

Pub1 clearly interact and, more interestingly, the interaction between Whi8 and Pub1 

did not require RNA as it was the case between Whi8 and Whi3 (Figure 40A). Then we 

analyzed the ability of Pub1 to bind the CLN3 mRNA under stress in wt, whi8 or whi3 

whi8 double mutant cells. We performed RNA-IP (RIP) of Pub1-6FLAG from the different 

strain backgrounds under stress and extracted the RNA to analyze CLN3 mRNA levels by 

RT-qPCR. We found a clear decrease in the level of detectable CLN3 mRNA in IPs of 

Pub1-6FLAG from whi8 or whi3 whi8 double mutant cells (Figure 40B and 40C). 

CLN3 mRNA translation is inhibited by Whi8 upon stress  

CLN3 mRNA levels are induced by glucose, and CLN3 mRNA translation is also positively 

regulated by nitrogen sources (Parviz & Heideman, 1998; Gallego et al., 1997). Thus, 

Cln3 protein levels are highest in glucose and lower in poorer carbon sources (Hall et al., 

1998), and translation of the CLN3 mRNA is repressed approximately 8-fold under 

nitrogen deprivation by unknown mechanisms  (Gallego et al., 1997). On the other hand, 

the functional significance of the assembly of mRNPs into SGs remains unclear. Although 

several factors that are involved in SG formation are translational repressors, there is a 

lack of clear evidence that the assembly of mRNPs into SGs in itself is important for 

translational repression  (Buchan et al., 2008; Fujimura et al., 2008; Kwon et al., 2007; 

Loschi et al., 2009; Mokas et al., 2009; Ohn et al., 2008). An alternative idea that has been 

put forth is that mRNPs that are assembled into SGs remain poised to re-enter 

translation as soon as stress is relieved  (Buchan & Parker, 2009). Consistent with this, 

several studies have presented evidence that the ability to form SGs is correlated with 

the survival of cells exposed to stress (Buchan & Parker, 2009). We reasoned that 

recruiting CLN3 mRNA by Whi8 into stress granules under glucose starvation may be 

important for translational repression in order to arrest cell cycle in G1 under stress. 

Thus, we decided to compare the level of Cln3 protein in wild type and Whi8-deficient 

cells during a time course experiment under starvation. As already described, we 

observed a rapid drop in Cln3 protein level within 10 min under glucose starvation. 

Interestingly, Cln3 protein levels remained much higher in the whi8 mutant cells in both 

starvation regimes (Figure 41). 
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Figure 41: Whi8 is important to decrease Cln3 levels upon starvation 

(A) Western analysis of cell extracts (total) of WHI8 or whi8 cells carrying Cln3-3HA‐tagged proteins. Cells 

were deprived of glucose up to 60minutes and samples were taken at the indicated time points for 

western blot analysis with the α‐HA 12CA5 monoclonal antibody. Coomassie Blue stained membrane 

shown as a loading control and the relative Cln3-3HA protein levels obtained by Western blot analysis 

(insert) were quantified as values relative to time 0.  

 (B) Western analysis of cell extracts (total) of WHI8 or whi8 cells carrying Cln3-3HA‐tagged proteins. 

Cells were deprived of nitrogen up to 180minutes and samples were taken at the indicated time points for 

western blot analysis with the α‐HA 12CA5 monoclonal antibody. Coomassie Blue stained membrane 

shown as a loading control and the relative Cln3-3HA protein levels obtained by Western blot analysis 

(insert) were quantified as values relative to time 0.  
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The IDD of Whi8 is essential for self-aggregation   

Whi8 contains sequences sharing many features with intrinsically disordered domains 

(IDD) which, in turn, have been shown to mediate the assembly of proteins into stress 

granules  (Gilks et al., 2004). Thus, we decided to test whether the Whi8 IDD is 

important for recruitment into stress granules. A truncation mutant of Whi8 lacking the 

IDD (Whi8-1) dramatically lost the spontaneous aggregation assembly and strongly 

impaired its ability to form granules under stress (Figure 42A). The truncation of Whi8 

had no effect on its overall protein levels but decreased its proportion bound to the 

endoplasmic reticulum under stress compared to wild type Whi8 (Figure 42B and 42C). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 42: Intrinsically disordered domain at C-terminus of Whi8 promote spontaneous 

aggregation under stress  
 

 (A) Whi8-GFP and Whi8-1-GFP (IDD lacking mutant) cells grown to mid-log phase and then transferred 

to a medium lacking glucose for 15min at 42C. Representative fluorescence microscopy images of Whi8-

GFP foci are shown. 

 (B) Western analysis of total extracts, ER-bound and supernatant fractions from cells expressing Whi8-

GFP and Whi8-1-GFP. Dpm1 is shown as ER marker. 

 (C) Chemiluminescent quantification of Whi8-GFP and Whi8-1-GFP protein levels analyzed in (B) are 

plotted relative to the endogenous Dpm1 protein levels. Mean values from triplicate samples and 

confidence limits (α = 0.05) for the mean are shown. 
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Whi8 is phosphorylated by PKA in vitro 

The Ras/cAMP-dependent protein kinase (PKA) pathway in yeast has been implicated in 

numerous cellular processes, including carbon storage, stress response, growth, 

differentiation, and life span (Hall et al., 1998; Santangelo et al., 2006; Tamaki et al., 

2007; Thevelein & De Winde, 1999). Over, PKA has been implicated in cell size control 

by nutritional conditions, and decreased PKA signaling results in decreased cell size, 

whereas hyperactive PKA signaling leads to increased cell size (Baroni et al., 1989; 

Tokiwa et al., 1994) indicating that PKA is a positive regulator of cell size control. 

 

 

Figure 43: Whi8 phosphorylation by PKA 
 

 (A) Schematic representation of full-length Whi8. The location of the PKA consensus phosphorylation site 

at Ser-44 according to  (Ptacek et al., 2005) we mutate also the two threonines after and before Ser-44 and 

we name this non-phosphorylatable mutant WHI8AAA . 

 (B) Recombinant GST (control), GST-Whi8 (1-100) or GST-Whi8AAA (1-100) were purified from E. coli and 

incubated with Protein Kinase A Catalytic Subunit from bovine heart (Sigma) in the presence of [γ-32P] 

ATP (γ-32P). Phosphorylated Whi8 was separated by SDS-PAGE and detected by autoradiography. 

 (C) Cell volumes at budding with indicated genotypes are plotted. Mean values and confidence limits (α = 

0.05, error bars) for the mean are also shown.  

 (D) Nuclear accumulation of Cln3-3HA in asynchronous individual cells (n > 450) of untagged, WHI8- 

CLN3-3HA (wt) or WHI8AAA-CLN3-3HA as measured by semiautomated quantification of 

immunofluorescence levels in both nuclear and cytoplasmic compartments. Mean values and confidence 

limits (α = 0.05, error bars) for the mean are shown. 
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Whi3 is phosphorylated by the Ras/cAMP-dependent protein kinase (PKA) and 

phosphorylation of Ser568 in Whi3 by PKA plays an inhibitory role in Whi3 function  

(Mizunuma et al., 2013). According to previously identified substrates of PKA 

(Kreegipuu et al., 1999; Ptacek et al., 2005; Zhu et al., 2000) Whi8 contains a typical 

consensus site at position 44 (Figure 43A), with a serine surrounded by threonines. In 

order to build a non-phosphorylatable mutant of Whi8 we mutated the TST sequence to 

three alanines. Next we purified recombinant Whi8 and Whi8AAA fused to GST and we 

performed a kinase assay using bovine heart PKA. We found that PKA efficiently 

phosphorylated Whi8 but not the Whi8AAA mutant (Figure 43B). Notably, Whi8AAA cells 

displayed a larger cell volume and lower Cln3 nuclear level compared to wild type cells 

(Figure 43C and 43D). 

 

Phosphorylation by PKA modulates RNA binding and aggregation of 

Whi8 

Phosphorylation of Whi3 by PKA decreases its interaction with the CLN3 mRNA and it is 

important for the promotion of G1/S progression (Mizunuma et al., 2013). The 

phenotypes of the Whi8AAA cells (see above) suggested that PKA phosphorylation could 

have an inhibitory effect on Whi8 (Mizunuma et al., 2013). Thus, we performed a RIP 

assay followed by RT-qPCR analysis to test the PKA phosphorylation effects on the RNA 

binding affinity of Whi8, and found that Whi8AAA binds its target mRNAs more avidly 

than wild type Whi8 (Figure 44A and 44B). 

The PKA pathway has a general role in the regulation of P body foci formation as 

mutants with constitutive PKA signaling are defective in P body assembly 

(Ramachandran et al., 2011; Shah et al., 2013). To further characterize the role of PKA 

phosphorylation in stress granule assembly and test the participation of Whi8, we 

decided to test the aggregation assembly of GFP-tagged Whi8 or Whi8AAA when starved 

of glucose under constitutive PKA signaling, which was attained by doing the analysis in 

cells lacking Bcy1, an inhibitory subunit of PKA (Cannon & Tatchell, 1987; Toda et al., 

1987). We found that, while high PKA activity dramatically suppressed aggregation of 

Whi8-GFP but not that of Whi8AAA. These data suggest that the inhibition of Whi8 foci 

formation by PKA is due, at least in part, to the direct phosphorylation of Whi8 (Figure 

44C). 
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Figure 44: PKA phosphorylation modulates Whi8 RNA binding and aggregation. 
 

 (A) Western analysis of cell extracts (total) and αFLAG immunoprecipitates (αFLAG IP) from cells 

expressing Whi8-6FLAG , Whi8AAA-6FLAG or no epitope (negative IP). 

 (B) Relative levels of mRNAs found in αFLAG IPs shown in panel A. Relative levels of the indicated mRNAs 

were quantified by RT-qPCR. Gene symbols are as follows: CLN3, WHI8, WHI3, RPL19S, CDC28, CKS1, WHI7 

(SRL3) and HXK1 (housekeeping mRNA). Mean values from three independent immunoprecipitation 

experiments and respective confidence limits (α = 0.05) are plotted. 

 (C) Wild-type and bcy1 cells expressing the indicated GFP-tagged Whi8 proteins were grown to mid-log 

phase and then transferred to a medium lacking glucose for 90 min. Representative fluorescence 

microscopy images are shown. 
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Cln3, the most upstream activator of Start, is present already in early G1 but only 

accumulates in the nucleus in late G1. In early G1 cells most Cln3 is retained bound to 

the ER, being specifically released in late G1 to trigger the Start transition (Aldea et al., 

2007). Association to the ER depends on the counteracting activities of a J-like domain in 

Cln3 itself and the J-chaperone Ydj1, which plays a key role in ER release and nuclear 

accumulation of Cln3 in late G1 cells. Moreover, Ydj1 is limiting for release of Cln3 from 

the ER and cell cycle entry, and it was proposed that chaperone availability may 

transmit growth capacity information to the cell cycle machinery (Vergés et al., 2007). 

However, little is known on the molecular mechanisms that retain the Cdc28-Cln3 

complex in the cytoplasm and how do these mechanisms transmit information of cell 

size to coordinate cell proliferation with cell growth. In mouse cells, the Hsc70 

chaperone associates to newly synthesized cyclin D1 polypeptides in extremely high 

molecular weight complexes (Diehl et al., 2003), suggesting that protein hijacking 

mechanisms  (Traven et al., 2004) may also regulate cell cycle entry in metazoans as 

well. 

Whi3 had been identified as a putative RNA‐binding protein involved in cell size regulation 

(Nash et al., 2001). In addition, Whi3 binds the CLN3 mRNA and plays an important 

negative role in all functional aspects of Cln3 activity, that is regulation of G1 length, and 

modulation of cell fate options such as mating, meiosis and filamentous growth (Garí et 

al., 2001). Whi3 recruits Cdc28 and contributes to keep Cln3–Cdc28 complexes in the 

cytoplasm during G1. Whi3 was detected in complexes with Cln3, showing that these 

multimeric complexes do exist, although perhaps only transiently (Wang et al., 2004).  

Binding to Cdc28 is important for proper retention of the Cln3 cyclin at the ER until late 

G1 (Vergés et al., 2007). Remarkably, a fraction of the cyclin-dependent kinase Cdc28 

also behaved as being associated to the ER and, more interestingly, the association of 

Cdc28 to the ER is independent of Cln3 binding  (Vergés et al., 2007; Wittenberg et al., 

1987). These previous data suggested that interaction to Cdc28 could be an important 

element in the association of Cln3 to the ER. In other words, Cdc28 would work like a 

bridge or an adaptor in the association of Cln3 to unknown ER-associated proteins.  
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As the Cdk-cyclin interaction was essential for retention at the ER, we reasoned that 

Cdc28 could act as a link to unknown ER-associated proteins and, hence, Cdc28 mutants 

with a weakened interaction with the ER should produce a small-cell-size phenotype 

(wee phenotype). To understand the molecular basis of the sequestration mechanism 

better, we decided to perform a genetic screen to isolate CDC28 mutants able to subvert 

the sequestration of the Cdc28/Cln3 complex. Although the screen was initially intended 

for dominant mutations, it was performed in a strain where expression of the 

endogenous CDC28 ORF is driven by a GAL1p regulatable promoter. From this genetic 

screen we isolated 6 independent CDC28wee mutants that showed a consistent reduction 

in cell size compared to wild type and a clear increase in the nuclear levels of Cln3-3HA. 

A cln3 deletion was epistatic to these CDC28wee mutations, while a whi3 deletion 

displayed additive effects on cell size, suggesting the existence of Cdc28 interactors that 

could regulate the activity of the Cdc28-Cln3 complex at Start. 

 

1. Cdc28wee as a tool to identify ER-associated interactors 

The identified mutants contained a total of 11amino acid substitutions distributed in 

two regions of the Cdc28 molecule. A group of 5 mutations were found in or in the 

vicinity of the cyclin-binding domain, suggesting that these variants could display a 

stronger interaction to Cln3 or be more susceptible to activation by Cln3. One of them 

affected S46, a CK2 target previously involved in cell size control by others  ( Russo et al., 

1996). Notably, the remaining substitutions were found at five positions clustered at an 

opposite region in the C-terminal lobe of Cdc28 in a region adjacent to the interface to 

the Cks1 subunit  (Bourne et al., 1996), and mostly affected basic amino acids with likely 

exposed side chains. As we were particularly interested in Cdc28 domains different from 

the cyclin-binding region, we decided to characterize these mutations further and to 

build a quintuple mutant that we refer to as CDC28wee. 

CDC28wee cells showed up to a 35% reduction in the daughter cell volume compared to 

wild type, an increased nuclear accumulation of Cln3, and lower Cdc28 levels in the ER-

dense fraction. These data propelled us to perform a differential proteomic analysis of 

Cdc28 and Cdc28wee interactors, aiming at the identification of yet uncovered proteins 

having key roles in cell cycle entry, specifically at holding the Cdc28-Cln3 complex at the 

ER and preventing premature execution of Start. 
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2. Whi7, an inhibitor of Start that contributes to ER retention 

of the G1 Cdk 

Our iTRAQ analysis of the Cdc28wee differential interactome identified a protein of 

unknown function that had been initially isolated as a suppressor of Rad53-lethality 

(Srl3; (Desany et al., 1998), here renamed as Whi7. We have found that Whi7 interacts 

directly with Cdc28 and plays an inhibitory role at Start. Notably, Whi7 has been defined 

as a paralog of Whi5 (Byrne & Wolfe, 2005), one of the key nuclear targets of the G1 Cdk-

cyclin complex (Costanzo et al., 2004; De Bruin et al., 2004). Sequence similarity 

between Whi7 and Whi5 is particularly high at the Cdk-phosphorylated regions  

(Wagner et al., 2009). However, Whi7 lacks the sequences that direct nuclear import in 

Whi5 (Taberner et al., 2009; Wagner et al., 2009), and our immunofluorescence and 

biochemical data indicate that a fraction of Whi7 is associated to the ER. We have found 

that Whi7 is an inhibitor of Start that contributes to efficient association of the Cln3 

cyclin to the ER and prevents its unscheduled accumulation in the nucleus. Cks1  (Gavin 

et al., 2002) and the Cln2 cyclin (Archambault et al., 2004) have been shown to interact 

with Whi7, pointing to the existence of quaternary complexes involving Whi7, Cks1, 

Cdc28, and a G1 cyclin. Whi7 is phosphorylated by Cdc28  (Ubersax et al., 2003), and we 

have found that phosphorylated forms of Whi7 display an increased affinity for Cks1. 

Cks1 contributes to full activation of Cdc28-Cln3 in vitro (Reynard et al., 2000) and 

directs processive hyperphosphorylation of target proteins thanks to an exposed 

cationic pocket (Bourne et al., 1996; Kõivomägi et al., 2011, 2013). Whi7 is upregulated 

in a number of stress situations  (Berry & Gasch, 2008; Gasch et al., 2000), underscoring 

its role as an inhibitor of Start. We have found that increasing Whi7 expression to levels 

similar to those caused by ER stress is sufficient to prevent nuclear accumulation of Cln3 

and delay cell cycle entry. Furthermore, Whi7 is upregulated by α factor  (Roberts et al., 

2000), and here we show that Whi7 is also important in restraining nuclear 

accumulation of Cln3 in α factor-arrested cells. Finally, inhibition of the TOR pathway by 

rapamycin causes a strong upregulation of Whi7  (Huang et al., 2004), suggesting that 

nutrients may withhold Whi7 to promote cell cycle entry. Thus, Whi7 may play an 

important role by connecting different environmental signals to the cell cycle 

machinery. 
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3. Whi7 establishes a positive feedback loop at the earliest 

known steps of Start 

Irreversible transitions are often executed by mechanisms operating as bistable systems 

to stabilize the new situation. Different mechanisms have been identified that create 

bistable devices and, among them, the positive feedback loop is perhaps the best 

characterized one (Ferrell et al., 2002; Novak et al., 2010). While Cln3 determines G1 

length and triggers Start when a critical size has been reached, Cln1 and Cln2 cyclins act 

in a nuclear feedback loop to ensure coherent and irreversible activation of the G1/S 

regulon  (Charvin et al., 2010; Cross & Tinkelenberg , 1991; Dirick & Nasmyth, 1991; 

Skotheim et al., 2008). We have recently shown that budding yeast cells set the critical 

size at a single-cell level as a function of the individual growth rate  (Ferrezuelo et al., 

2012). Once the growth-rate component is excluded, wild-type cells only display a small 

residual cell-to-cell variation, indicating the existence of a precise and robust size 

control in budding yeast. Here we show that Cln3 and Ydj1 are as important as the two 

G1/S cyclins (Cln1 and Cln2) or transcription factors (Swi4 and Swi6) involved in the 

nuclear feedback loop in attaining a robust cell size control at Start, suggesting the 

existence of nonlinear activating mechanisms to trigger Start prior to transcriptional 

upregulation of CLN1 and CLN2. We have identified an unexpected cytoplasmic function 

of cyclin Cln3 acting in a positive feedback loop on its own release from the ER. This 

function requires the kinase activity of Cdc28, and it is completely abolished in the 

presence of the nonphosphorylatable Whi7NP mutant, indicating that the positive loop 

also involves Cdc28 and Whi7. Since Whi7 is important for correct retention of cyclin 

Cln3, we propose that, once primed by the Ydj1 chaperone, initial low levels of free 

Cdc28-Cln3 complexes would phosphorylate Whi7 to inhibit its retention role and 

accelerate release of further G1 Cdk-cyclin complexes (Figure 45). Whereas Whi7NP is 

more tightly associated to the ER compared to wild-type, phosphorylation of Whi7 

decreases its association to the ER. These observations suggest that phosphorylation of 

Whi7 would play a key role in releasing the G1 Cdk-cyclin complex from the ER at Start. 

Release of Cln3 by a positive feedback loop would be expected to act as a switch-like 

mechanism. Although we did not observe bimodal distributions of nuclear levels of Cln3, 

they displayed a high level of positive skewness, which could suggest the existence of 

two subpopulations overlapped by experimental and inherent sources of variation. 
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In this regard, variability in Cln3 nuclear import and export rates in the cell population 

would also contribute to the observed continuous distributions of nuclear levels of Cln3. 

Concerted Ydj1 and Ssa1 overexpression is able to suppress the inhibitory effects of the 

nonphosphorylatable Whi7NP mutant, thus arguing against chaperones acting only 

downstream from Whi7 and suggesting that Ydj1 and Ssa1 would also belong to the 

positive feedback loop. The increased affinity of Cks1 for phosphorylated proteins could 

strengthen the interaction of the Cdc28-Cln3 complex to soluble phosphorylated Whi7, 

thus contributing to the positive feedback loop. In summary, while the transcriptional 

loop driven by Cln1 and Cln2 would make Start a coherent and irreversible process, the 

upstream Cln3-driven loop would be the key decision-making mechanism to enter the 

cell cycle and provide cells with a robust size control (Figure 45). 

 

 
 

 

Figure 45: Whi7 establishes a Cln3-driven loop at the earliest steps of Start 
 

Cln3 acts in a positive feedback loop on its own release from the ER. While being dependent on the kinase 

activity of Cdc28, this function is completely abolished by a nonphosphorylatable Whi7NP protein, which 

indicates that the positive loop also involves Cdc28 and Whi7. Whi7 is also required for proper retention 

of cyclin Cln3, and we propose that initially released levels of Cdc28-Cln3 complexes by the Ydj1 

chaperone would phosphorylate Whi7, inhibiting its retention role and accelerating release of further G1 

Cdk-cyclin complexes. Thus, while a Cln1,2-driven loop in the nucleus inactivates Whi5 to attain coherent 

and irreversible activation of the G1/S regulon, an earlier Cln3-directed loop in the cytoplasm would 

inactivate Whi7, triggering Start in a switch-like manner for robust cell-size control. 
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5. Whi8, a novel Cdc28 interactor that binds the CLN3 mRNA  

Our iTRAQ analysis also identified YGR250c as another interesting whi candidate, which 

we have renamed as Whi8. Whi8 is a protein of unknown biological function that 

contains RNA-binding domains and has been observed in both SGs and PBs (Buchan et 

al., 2008). We have found that Whi8 interacts with Cdc28 in vivo confirming our iTRAQ 

data. Importantly, Whi8 interacts with Whi3 in an RNA-dependent manner and 

colocalizes with the CLN3 mRNA and other mRNAs encoding cell cycle regulators. Cells 

lacking Whi8 show a clear small size while, on the other hand, overexpression of WHI8 

dramatically increases cell size. The effect of whi8 deletion or WHI8 overexpression on 

cell size was found to be epistatic to CLN3 and affected Cln3 accumulation in the nucleus. 

Accordingly to a role in the retention device, Whi8 was found associated to the ER in a 

similar pattern to Whi7 and Cdc28 itself. We propose that Whi8 is the missing piece 

between Whi3 and Cdc28 (Wang et al., 2004), having a key role in linking cell cycle 

progression to stress conditions. 

6. Whi8 halts CLN3 mRNA translation under stress 

CLN3 mRNA and Whi3 localize to stress granules in response to glucose deprivation or 

heat shock  (Cai & Futcher, 2013; Holmes et al., 2013). However, Whi3 is totally 

dispensable for recruiting the CLN3 mRNA to SGs, suggesting the participation of 

additional factors with key roles in the assembly of specific mRNAs into SGs. We found 

that CLN3 mRNA colocalizes with Whi8 in SGs. While localization of the CLN3 mRNA in 

SGs was preserved in whi3 and whi3 whi4 double mutants, it sharply decreased in both 

whi8 and whi8 whi3 mutants. These data establish a predominant role for Whi8 in 

targeting the CLN3 mRNA to SGs. Regarding the functional consequences of the 

aggregation of Whi8 and the CLN3 mRNA into SGs, we have found that Cln3 levels 

remained much higher under glucose and nitrogen starvation in Whi8-deficient cells. 

Thus, cells would regulate G1 progression under stress by halting CLN3 mRNA 

translation in SGs, thereby limiting the influx of newly synthesized Cln3 into the cell 

cycle machinery. We propose Whi8 as a unique target of stress signaling pathways that 

sequesters the CLN3 mRNA (and likely other mRNAs) in SGs to repress its translation 

under stress. Moreover, once stress is relieved SG disassembly would rapidly unleash 

the stored pool of CLN3 mRNA to resume G1 progression as fast as possible (Figure 46). 
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Figure 46: Whi8 works as a safeguard that limits the influx of newly synthesized Cln3 under stress 
 

According to our observations, CLN3 mRNA would be recruited by Whi8 and Whi3 into stress granules 

under nutrient starvation to shut down translation and limit the influx of newly synthesized Cln3 into the 

cell cycle machinery. 

 

7. PKA phosphorylation modulates Whi8 aggregation and 

RNA binding capacity  

We have found that Whi8 aggregation and RNA-binding capacity are both negatively 

regulated by PKA, and we have identified a specific phosphosite responsible for this 

regulatory behavior. Importantly, we have also demonstrated that PKA phosphorylation 

is essential and sufficient to prevent Whi8 assembly into SGs.  

Besides modulating the aggregation of Whi8, PKA phosphorylation seems to influence 

the RNA-binding capacity of Whi8. This is based on the observation that Whi8AAA shows 

increased binding affinity for the same sets of mRNAs compared to Whi8. Indeed, this 

phosphorylation would indirectly influence the association between Whi3 and Whi8. 

Accordingly, Whi8AAA cells show larger cell size and reduced nuclear signal of Cln3. In 

summary, these results suggest that PKA appears to act as a negative regulator of Whi8 

and that phosphorylation by PKA also contributes to down-regulation of Whi8 function, 

thus linking nutrient availability to G1 progression and Start execution (Figure 47).  
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Figure 47: PKA inhibitory effect of Whi3 and Whi8 
 

PKA phosphorylation of Whi8 (and Whi3) unleashes the CLN3 mRNA and allows chaperones to release the 

Cdc28-Cln3 complex from the ER to trigger Start. 

 

8. The C-terminal IDD of Whi8 is a structural determinant of 

Whi8 aggregation  

Another effector of Whi8 aggregation is a structural determinant of Whi8 itself, an 

intrinsically disordered domain (IDD) at its C-terminus that we have found essential to 

modulate its subcellular localization into SGs. Previously it had been shown that prion 

like aggregation of TIA-1 drives its assembly into SGs  (Gilks et al., 2004). In the same 

context, RNA binding domains are also essential for SG assembly. The RNA recognition 

motifs (RRMs) are required to recruit RNA into SGs, whereas IDDs favor their 

aggregation into macromolecular assemblies (Gilks et al., 2004). In case of Whi3, 

deletion of the prion related domain (the glutamine rich domains) did not affect co-

localization of Whi3 with P-bodies or stress granules. On the other hand, deletion of the 

RRM largely but not entirely disrupted Whi3 accumulation in granules. Deletion of both 

the RRM and the glutamine rich domain was required to prevent completely formation 
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of Whi3 foci (Cai & Futcher, 2013). Deletion of the C- terminal IDD of Whi8 caused a 

strong reduction in Whi8 foci formation, which suggests that the two proteins use 

different molecular interactions for their recruitment into SGs. 

9. Anatomy of the ER retention device 

After adding the new factors identified in this study, in particular Whi7 and Whi8, we 

can recast the ER-retention device of the G1 Cyclin/Cdk Complex in budding yeast 

during G1 to accommodate the new findings and fill the gaps in the first proposed model 

of the retention device published more than ten years ago  (Wang et al., 2004). 

First, Whi3 and Whi8 would retain the CLN3 mRNA at specific ER sites to confine newly 

synthesized Cln3 polypeptides in the same environment where a fraction of Cdc28 exists 

due to direct interaction with Whi8 and Whi7. Newly formed Cdc28-Cln3 complexes 

would be retained until a fraction of this complex is released by chaperone activity, 

which would multiphosphorylate Whi7 to create a positive feedback loop and trigger 

Start (Figure 48). 

 

 

Figure 48: The ER-retention device including Whi7 and Whi8 
 

A final proposed model of the ER-retention device including Whi7 and Whi8 identified in our study 
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This thesis has reached the following main conclusions: 

 

 A genetic screen of randomly mutagenized CDC28 clones give rise to a quintuple 

mutant  referred as CDC28 wee   that shows a consistent reduction in the budding 

cell volume, increased nuclear accumulation of Cln3 and a low proportion of the 

encoded Cdc28wee protein within the ER-dense fraction compared to wild type 

Cdc28.  

 The Cdc28wee differential interactome identified Whi7 and Whi8 as new Cdc28 

interactors with a negative function at Start.  

 Whi7 is associated to the ER and it is strikingly similar to Whi5, interacts with 

Cks1, Cln2 and Cdc28 and is phosphorylated by Cln3-Cdc28 complex in late G1.  

 Whi7 is important for retention of the Cln3-Cdc28 complex and establishes a 

positive feedback loop in late G1 to ensure coherent release and robust cell size 

control.  

 Whi8 interacts in vivo with Cdc28, binds Whi3 in an RNA dependent manner and 

associates mRNAs encoding for of cell cycle regulators as CLN3, WHI3, and WHI8 

itself.  

 Whi8 is important to recruit the CLN3 mRNA in stress granules and inhibit its 

translation upon stress.  

 Whi8 spontaneous aggregation in granules depends on an intrinsically 

disordered domain at its C-terminus.  

 Whi8 is phosphorylated in vitro by PKA and this phosphorylation event 

decreases both its RNA binding affinity and its aggregation capacity, linking a 

nutrient sensing pathway to cell cycle entry under stress conditions.  
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Antibodies used in western blot analysis and immunofluorescence 

Primary 

antibody 

Source Conditions Secondary 

antibody 

Source Conditions 

12CA5Mouse 

Monoclonal (HA) 

Roche 2hours at room 

temp.1: 500 

,0.25%TBST Milk 

ECL α-Mouse IgG 

(from sheep) 

horse reddish 

peroxidase linked  

   GE healthcare     

 

1hour at room 

temperature, 1:10,000, 

,0.25%PBST- Milk  

0.02% SDS 

3F10Rat Monoclonal 

(HA) 

Roche 1hours at room 

temp.1: 500 

,0.5%BSA in 

1xPBS 

Goat α -rat IgG 

Alexa Fluor® 568 

labeled antibodies 

Invitrogen 30minutes at room 

temp.1: 500 ,0.3%BSA 

in 1xPBS 

F3165M Mouse 

Monoclonal (FLAG) 

SIGMA 2hours at room 

temp.1: 500 

,0.25%PBST Milk 

ECL α-Mouse IgG 

(from sheep) 

horse reddish 

peroxidase linked  

   GE healthcare     1hour at room 

temperature, 1:10,000, 

,0.25%PBST- Milk  

0.02% SDS 

5C5A7Mouse 

Monoclonal (Dpm1) 

Molecular 

Probes 

2hours at room 

temp.1: 500 

,0.25%PBST Milk 

ECL α-Mouse IgG 

(from sheep) 

horse reddish 

peroxidase linked  

   GE healthcare     1hour at room 

temperature, 1:10,000, 

,0.25%PBST- Milk  

0.02% SDS 

Rabbit polyclonal 

(Cdc28) 

a gift from C. 

Mann 

2hours at room 

temp.1: 500 

,0.25%PBST Milk 

ECL α-Rabbit IgG 

(from donkey) 

horse reddish 

peroxidase linked  

GE healthcare     1hour at room 

temperature, 1:10,000, 

,0.25%PBST- Milk  

0.02% SDS 

Mouse Monoclonal 

(GFP) 

Roche 2hours at room 

temp.1: 500 

,0.25%PBST Milk 

ECL α-Mouse IgG 

(from sheep) 

horse reddish 

peroxidase linked  

   GE healthcare     

 

1hour at room 

temperature, 1:10,000, 

,0.25%PBST- Milk  

0.02% SDS 

1G10.H8 Mouse 

Monoclonal (YDJ1) 

Abnova 2hours at room 

temp. 1: 1000 

,0.25%PBST Milk 

ECL α-Mouse IgG 

(from sheep) 

horse reddish 

peroxidase linked  

   GE healthcare     

 

1hour at room 

temperature, 1:10,000, 

,0.25%PBST- Milk  

0.02% SDS 

Rabbit α -goat IgG 

Alexa Fluor® 568 

labeled antibodies 

Invitrogen 30minutes at 

room temp.1: 500 

,0.3%BSA in 

1xPBS 

   

Rabbit α -GFP IgG 

polyclonal Alexa 

Fluor® 488 labeled 

antibodies 

Molecular 

Probes 

30minutes at 

room temp.1: 500 

,0.3%BSA in 

1xPBS 

   

α -FLAG®M2 Affinity 

Gel agrose beads 

Sigma  As described for IP of FLAG fusion 

proteins 

  

 

GST-p13suc1 agrose 

beads              

Sigma As described for IP of Cks1 protein   

Glutathione 

Sepharose beads 

       GE 

healthcare 

As described for purification of GST 

fusion proteins 
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Yeast strains used in this work 

Strain Construction details Relevant Marker 
CML128 Spore coming from CML123. Same ascus that CML125, 126 

and 127. Originally called T2d 

MATa, leu2-3,112, ura3-52, trp1, his4, canI.r 

BY4741 A gift  from Gemma Reverter Mata his3-delta1, leu2-delta0, met15-delta0, 

ura3-delta0 

CYC428 The Kan cassette in CML203 was replaced with the URA3 

cassette with CMO91 & CMO92 primers and pCYC39.  

CLN3-3HA::URA3 

CYC430 

 

WHI5-sGFP-KAN cassette amplified by PCR from pCYC86 

using CYO612 and CYO1404 was inserted in CYC428 in WHI5 

locus to obtain sGFP fusion.  

CLN3-3HA::URA3 & WHI5-sGFP::KAN 

 

CYC432 

 

NAT-GAL1p-CDC28 cassette amplified by PCR from PYM-N23 

using CYO1479 & CYO1480 was inserted in CYC430 in CDC28 

locus to be under control of GAL1p-promoter.  

CLN3-3HA::URA, WHI5-GFP::KAN& GAL1p-

CDC28::NAT 

CYC434 PCR-random mutagenesis of the CDC28 gene on a YCplac111 

vector in CYC432 

CLN3-3HA::URA, WHI5-GFP::KAN, GAL1p-

CDC28::NAT & CDC28 mutant pool::LEU2 

CYC474 

 

NAT-GAL1p-CDC28 cassette amplified by PCR from PYM-N23 

using CYO1479 & CYO1480 was inserted in CYC421 in CDC28 

locus under GAL1p-promoter. Checked by colony PCR using 

primers CYO1483&CYO1485 to obtain 270bp fragment 

∆cln3::LEU,WHI5-GFP & GAL1p-CDC28::NAT 

 

CYC484 

 

NAT-GAL1p-CDC28 cassette amplified by PCR from PYM-N23 

using CYO1479 & CYO1480 was inserted in CML128 in CDC28 

locus to be under control of GAL1p-promoter.  

GAL1p-CDC28::NAT 

 

CYC484 NAT-GAL1p-CDC28 cassette amplified by PCR from PYM-N23 

using CYO1479 & CYO1480 was inserted in CYC9 in CDC28 

locus to be under control of GAL1p-promoter.  

CLN3-3HA::KAN, ∆whi3::URA3MX & GAL1p-

CDC28 

713-Y PCR fragment obtained from pFA6-KANmx4 using 261 and 

262 was transformed into CML128 and checked by colony PCR 

∆srl3::KAN 

246-Y 1.3Kb fragment obtained by PCR using O-260&O-261 using 

pYM22as a template transformed into CML128 and checked by 

colony PCR using O-263 &CYC1481 and western blot 

SRL3-3HA::TRP 

227-Y 1.3Kb fragment obtained by PCR using O-293 & O-294 using 

pYM22as a template transformed into CML128 and checked by 

colony PCR using O-298 & CYC1481 and western blot 

YGR250c-3HA::TRP 

244-Y 

 

1.7Kb fragment obtained by PCR using O-261 & O-262 using 

PAG60 as a template was transformed into CML203 and 

checked by colony PCR using O-307 & CYC1481 

CLN3-3HA::KAN &  ∆srl3::URA 

245-Y 

 

1.7Kb fragment obtained by PCR using O-294&O-295 using 

PAG60 as a template was transformed into CML203 and 

checked by colony PCR using O-308&CYC1481 

CLN3-3HA::KAN& ∆ygr250c::URA 

253-Y 

 

NAT-GAL1p-CDC28 cassette amplified by PCR from PYM-N23 

using CYO1479 & CYO1480 was inserted in 227-Y in CDC28 

locus to be under control of GAL1p-promoter 

YGR250c-3HA::TRP& GAL1p-CDC28::NAT 

 

254-Y 

 

NAT-GAL1p-CDC28 cassette amplified by PCR from PYM-N23 

using CYO1479 & CYO1480 was inserted in 247-Y in CDC28 

locus to be under control of GAL1p-promoter 

SRL3-3HA::TRP& GAL1p-CDC28::NAT 

 

279-Y Adh-Galactose-hER-Vp16 has been digested with NdeI to be 

integrated in URA gene of CML203  

CLN3-3HA::KAN & Adh-Galactose-hER-

Vp16::URA 

282-Y Adh-Galactose-hER-Vp16 has been digested with NdeI to be 

integrated in URA gene of 246Y 

SRL3-3HA::TRP & Adh-Galactose-hER-

Vp16::URA 

284-Y 261 &262-O were used to amplify 1,3kb fragment by PCR 

using pAG25 as a template the PCR fragment was transformed 

to BY4171 WHI5GFP background to delete SRL3 and checked 

by colony PCR using 307-O & CYO1481  

BY4171 WHI5-GFP& ∆srl3::NAT 

286-Y 2Kb fragment obtained by PCR using 293 & 294-O using 

pCYC67as a template transformed into CML128 and checked 

by colony PCR using 298-O & CYC1481 and western blot 

YGR250C-6FLAG::KAN 
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429-Y 261 &262-O were used to amplify 1,3kb fragment by PCR 

using pAG25 as a template the PCR fragment was transformed 

to 279-Y background to delete SRL3 and checked by colony 

PCR using 307-O & CYO1481  

CLN3-3HA::KAN , Adh-Galactose-hER-

Vp16::URA & ∆srl3::NAT 

462-Y A 2.6 Kb fragment was amplified with 294 & 295-O from 

pCYC86 corresponding to the sGFP-kanMX4 cassette, and was 

integrated in CML128 to tag the YGR250c protein at the C 

terminus. Checked by fluorescence microscopy 

YGR250c-GFP::KAN 

463-Y 1.9Kb fragment obtained by PCR using 294 & 295-O using 

pCM376 as a template was transformed into CYC9 and 

checked by colony PCR using O-308 & CYC1481 

∆whi3::URA,ygr250c::LEU & CLN3-

3HA::KAN 

464-Y 1.7Kb fragment obtained by PCR using 294 & 295-O using 

PAG60 as a template was transformed into CML211 and 

checked by colony PCR using 308-O & CYC1481 

∆cln3::LEU & ∆ygr250c::URA 

465-Y 1.3Kb fragment obtained by PCR using 293 & 294-O using 

pYM22as a template transformed into CYC243 and checked by 

colony PCR using 298-O & CYC1481 and western blot 

OLE1-GFP::KAN & YGR250c-3HA::TRP 

533-Y A 2.6 Kb fragment was amplified with 294 & 293-O from 

pCYC86 corresponding to the sGFP-kanMX4 cassette, and was 

integrated in BY4741 to tag the YGR250c protein at the C 

terminus. Checked by fluorescence microscopy 

YGR250c-GFP::KAN in BY4741 

534-Y 1.6Kb fragment obtained by PCR using 294 & 295-O using 

pFA6a-kanMX4 as a template was transformed into BY4741 

and checked by colony PCR using 308-O&CYC1481 

∆ygr250c::KAN 

655-Y PCR fragment obtained from pFA6-natNT2 using 294 & 295-O 

was transformed into BY4741 and checked by colony PCR 

∆ygr250c::NAT 

656-Y PCR fragment obtained from pFA6-natNT2 using 294 & 295-O 

was transformed into 280-Y and checked by colony PCR 

CLN3-3HA::KAN &  ∆ygr250c::NAT 

657-Y PCR fragment obtained from pFA6-natNT2 using 294 & 295-O 

was transformed into CYC9 and checked by colony PCR 

∆ygr250c::NAT & ∆whi3::URA 

717-Y PCR fragment using 856 & 857-O from PBS34 transformed to 

BY4741 and checked by fluorescent microscopy 

BY4741 PUB1-mCHerry::KAN 

720-Y PCR fragment obtained from pFA6-NATmx4 using 873 & 874-

O was transformed into BY4741 and checked by colony PCR 

BY4741∆ bcy1::NAT 

754-Y PCR fragment obtained from pCYC67 using 928 & 929-O was 

transformed into BY4741 and checked by colony PCR & 

western blot 

BY4741 PUB1-6FLAG::KAN 

755-Y PCR fragment obtained from pCYC67 using 928 & 929-O was 

transformed into 655-Y and checked by colony PCR & western 

blot 

BY4741 PUB1-6FLAG::KAN  & 

∆ygr250c::NAT 

756-Y PCR fragment obtained fromPFA6hphMX4 by CMO160 & 

CMO161 old oligos was transformed to 755-Y to disrupt WHI3 

locus and checked by colony PCR 

BY4741 PUB1-6FLAG::KAN, ∆ygr250c::NAT  

& ∆whi3::HYG 

841-Y PCR fragment from pCYC86 using 1006 & 294-O was 

transformed to BY4741 and positive transformant checked by 

western blot and fluorescent microscopy 

BY4741 WHI8-1-GFP::KAN 

842-Y PCR fragment from pCYC59 using 928 & 929-O transformed to 

BY4741 and positive transformant checked by western blot 

BY4741 PUB1-3HA::KAN 
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Plasmids used in this work 

Plasmid Construction details Relevant Marker 
pCYC1103 

 

First the whole CDC28 gene amplified from genomic DNA by PCR using 

CYO1495&CYO1496 then used as template for another PCR using CYO1497&CYO1498 

the 1.8 fragment together with YCplac111 digested with Pst1 & Sal1 are transformed 

to yeast to religate the new plasmid which then amplified in E coli CDC28-wt 

Amp &LEU2 

CDC28wt  in YCplac111 

pCYC1104 

 

First the whole CDC28 gene amplified from genomic DNA by PCR using 

CYO1495&CYO1496 then used as template for another Mutagenic PCR using 

CYO1497&CYO1498. Mutant CDC28 allele with these sets of mutations A71G(K24R), 

G238A(D80N), A289G(R97G), A637G(S213G), A783G, A891G CDC28-w4 

Amp &LEU2 

CDC28w4  in YCplac111 

pCYC1105 

 

First the whole CDC28 gene amplified from genomic DNA by PCR using 

CYO1495&CYO1496 then used as template for another Mutagenic PCR using 

CYO1497&CYO1498  Mutant CDC28 allele with these sets of mutations A4G(S2G), 

A114T, A136G(S46G), A287C(K96T), A375T, A561C(K187N), A821G(K274R)  

CDC28-w6 

Amp &LEU2 

CDC28w6  in YCplac111 

pCYC1106 

 

First the whole CDC28 gene amplified from genomic DNA by PCR using 

CYO1495&CYO1496 then used as template for another Mutagenic PCR using 

CYO1497&CYO1498  Mutant CDC28 allele with these sets of mutations A136T(S46C), 

A287T(K96I), A752T(Q251L) CDC28-w7 

Amp &LEU2 

CDC28w7  in YCplac111 

pCYC1107 

 

First the whole CDC28 gene amplified from genomic DNA by PCR using 

CYO1495&CYO1496 then used as template for another Mutagenic PCR using 

CYO1497&CYO1498  Mutant CDC28 allele with these sets of mutations C642T, G669T 

(K223N), A862G(R288G) CDC28-w8 

Amp &LEU2 

CDC28w8  in YCplac111 

pCYC1108 

 

First the whole CDC28 gene amplified from genomic DNA by PCR using 

CYO1495&CYO1496 then used as template for another Mutagenic PCR using 

CYO1497&CYO1498 Mutant CDC28 allele with these sets of mutations A30G, 

T67C(Y23H), T181A(L61I), A375C, C388T(H130Y)  CDC28-w34 

Amp &LEU2 

CDC28w34  in YCplac111 

pCYC1109 

 

First the whole CDC28 gene amplified from genomic DNA by PCR using 

CYO1495&CYO1496 then used as template for another Mutagenic PCR using 

CYO1497&CYO1498  Mutant CDC28 allele with these sets of mutations A166C(I56L), 

T522C, A558T, A625G(K209E), C825A  CDC28-w38 

Amp &LEU2 

CDC28w38  in YCplac111 

pCYC1110 

 

pCYC1103 amplified by PCR using CYO1716 andCYO1717 and together with 550bp 

fragment of CDC28 carrying the 5 mutations  Mutant CDC28 allele with these sets of 

mutations A289G(R97G), A637G(S213G), A287C(K96T),G669T (K223N) & 

A625G(K209E) transformed to yeast to religate the new vector which is then 

amplified in E coli CDC28-wq 

Amp &LEU2 

CDC28weet  in YCplac111 

140P 

 

A fragment of 12 amino acids and 3FLAG epitope and flanked with homology 

sequence of CDC28 was amplified by PCR using 40 & 41-O and pCYC1103 was opened 

by ExSite PCR using 42 & 43–O transformed to yeast to religate the new vector 

Amp &LEU2 

CDC28wt -3FLAG in 

YCplac111 

141P 

 

A fragment of 12 amino acids and 3FLAG epitope and flanked with homology 

sequence of CDC28 was amplified by PCR using 40 & 41-O  and pCYC1110 was opened 

by ExSite PCR using 42 & 43-O transformed to yeast to religate the new vector 

Amp &LEU2 

CDC28weet -3FLAG in 

YCplac111 

142P 

 

pCM194 was opened by ExSite PCR using 32&33-O  and also CDC28 ORF amplified by 

PCR using 34&35-O and the 2 PCR fragments treated with DpnI then transformed to 

CML211 to religate the CDC28-CLN3- 3HA CHIMERA . 

Amp &URA 

CDC28-CLN3-3HA 

CHIMERA in YCplac33 

174-P 

 

YCpGAL digested with XbaI and HindIII and dephosphorylated then ligated with SRL3 

PCR fragment digested with the same enzymes checked by EcoRI digestion and look 

for 1.4 fragment and 5kb fragmen 

Amp & TRP 

SRL3 in YCpGAL 

219-P 

 

Adh-Galactose-hER-Vp16 allow expression of gal responsive genes upon addition of 

B-estradiol integrate in Ura by NdeI 

Amp & URA 

Adh-Galactose-hER-Vp16 

232-P 

 

YGR250c was amplified by PCR using 296&297-O from genomic DNA then the 

fragment is digested with BamHI& SalI and cloned in YCpGAL digested with the same 

enzyme mixtures 

Amp & TRP 

YGR250c in YCpGAL 

266-P 

 

396 &397-O were used to amplify the whole sequence of pCM194and deleting the 

3HA tag by ExSite PCR and adding KpnI resstriction site then digested and ligated 

Amp & URA 

CLN3 in YCplac33 

267-P 

 

396 &398-O were used to amplify the whole sequence of pCM194and deleting the 

NLS& 3HA tag by ExSite PCR and adding KpnI resstriction site then digested and 

ligated 

Amp & URA 

cln3NLS in YCplac33 
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276-P 439 &438-O were used to amplify CLN3 from 266-O by PCR then digested with XbaI & 

PstI and ligated with YCpGAL digested with the same restriction enzymes 

Amp & Trp 

CLN3 in YCpGAL 

277-P 439 &438-O were used to amplify CLN3-NLS from 267-O by PCR then digested with 

XbaI & PstI and ligated with YCpGAL digested with the same restriction enzymes 

Amp & Trp 

cln3NLS in YCpGAL 

278-P 

 

433 &434-O were used to amplify SRL3 from genomic DNA by PCR the the PCR 

fragment digested with XbaI & HindIII and ligated with YCplac22 digested with the 

same enzyme mix 

Amp & Trp 

SRL3 in YCplac22 

288-P 

 

SRL3NP fragment obtained by digestion with SacI and KpnI from DNA obtained from 

Gene art recombined to YCplac22-SRL3 PCR fragmet obtained by ExSite pcr using 

446&447-O  then transformed to Ecoli 

Amp & Trp 

SRL3NP in YCplac22 

290-P 

 

SRL3NP fragment obtained by PCR from 228-P using 259&448 –O and digested with 

XbaI and HindIII was ligated to YCpGAL digested with the same enzyme mix 

Amp & Trp 

SRL3NP in YCpGAL 

332-P 

 

474 &475-O used for ExSite PCR of 278-P on the other hand 476 &477-O used to 

amplify 3HA-ADHt from pCM194 and the vector religated by recombination in yeast 

then transformed to E coli checked by WB and restriction by HindIII & PstI 

Amp & Trp 

SRL3-3HA in YCplac22 

333-P 474 &475-O used for ExSite pcr of 287-P on the other hand 476 &477-O used to 

amplify 3HA-ADHt from pCM194 and the vector religated by recombination in yeast 

then transformed to E coli checked by wb and restriction by HindIII & PstI 

Amp & Trp 

SRL3NP-3HA in YCplac22 

334-P 474 &475-O used for ExSite pcr of 175-P on the other hand 476 &477-O used to 

amplify 3HA-ADHt from pCM194 and the vector religated by recombination in yeast 

then transformed to E coli checked by wb and restriction by HindIII & PstI 

Amp & Trp 

SRL3-3HA in YCpGAL 

335-P 474 &475-O used for ExSite PCR of 289-P on the other hand 476 &477-O used to 

amplify 3HA-ADHt from pCM194 and the vector religated by recombination in yeast 

then transformed to E coli checked by wb and restriction by HindIII & PstI 

Amp & Trp 

SRL3NP-3HA in YCpGAL 

384-P 266-P was opened using 32&33-O (ExSite PCR). CDC28 was obtained from pCYC181 

using 34&35-O. Then all PCR products were transformed in CML128 in order to 

recombine all of them. 

Amp & URA 

CDC28-CLN3 CHIMERA in 

YCplac33 

385-P 266-P was opened using 32 &33-O (ExSite PCR). Cdc28 was obtained from pCYC184 

using 0034-O and 0035-O. Then all PCR products were transformed in CML128 in 

order to recombine all of them. 

Amp & URA 

CDC28KD -CLN3 CHIMERA 

in YCplac33 

386-P 267-P was opened using 32& 33-O (ExSite PCR). CDC28 was obtained from pCYC181 

using 34 & 35-O. Then all PCR products were transformed in CML128 in order to 

recombine all of them. 

Amp & URA 

CDC28- cln3NLS CHIMERA 

in YCplac33 

387-P 267-P was opened using 32& 33-O (ExSite PCR). CDC28 was obtained from pCYC184 

using 34& 35-O. These primers anneal with the beginning and the end of Cdc28. Then 

all PCR products were transformed in CML128 in order to recombine all of them. 

Amp & URA 

CDC28KD - cln3NLS 

CHIMERA in YCplac33 

470-P GAL-YDJ1&GAL-SSA1 in YCplac111. 4PCR fragments of YDJ1,SSA1,GAL1 & opened 

YCplac111 fragments  carrying flanking ends were recombined in CML128  to 

construct GAL-YDJ1&GAL-SSA1 

Amp & LEU 

GAL1p-YDJ1&GAL10p-SSA1 

545-P 

 

YGR250c was amplified by PCR using 671&672-O from genomic DNA of BY4741 then 

the fragment is digested with SacI& SalI and cloned in YCplac111 digested with the 

same enzyme mixtures 

Amp & LEU 

YGR250c in YCplac111 

572-P 715&716-O were used to open 545-P by PCR and then digested with NotI then ligated 

to create YGR250c AAA 

Amp & LEU 

YGR250c AAA in YCplac111 

660-P YCplac111-YGR250c was opened using 646&685-O by ExSite PCR and GFP fragment 

carrying homologous sequence of C-terminus of YGR250c was amplified by PCR using 

644&685-O and the 2PCR fragments were recombined in vivo in CML128 

Amp & LEU 

YGR250c-GFP in YCplac111 

661-P 715&716-O were used to open 660-P by PCR and then digested with NotI then ligated 

to create  YCplac111-YGR250cAAA-GFP 

Amp & LEU 

YGR250cAAA-GFP in 

YCplac111 

752-P 

 

pG14-MS2-GFP vector was opend by 4 sets of primers 935&937-O and 936&938-O 

and mCHerry fragment with homology sequence to pG14-MS2 was amplified by 

939&940-O and all the 3fragments recombined in BY4741 background checked by 

fluorescence 

Amp & LEU 

pG14-MS2-mCHerry 
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Primers used in this work. 

Primer Sequence Description 
CYO1479 

 

CATCAGCTACAGTGGAAAATAGCCCAGATCAAATAGAACT

ATCCTTCGAACCGTACGCTGCAGGTCGAC 

Forward primer to obtain a GAL1p-CDC28 fusion with pYM-N23 

CYO1480 

 

ACCTTCACCGACTTTCTCAAGTCTTTTGTAATTTGCTAAT

TCACCGCTCATCGATGAATTCTCTGTCG 

Reverse primer to obtain a GAL1p-CDC28 fusion with pYM-N23 

CYO1481 GTCGACCTGCAGCGTACG 

 

Universal diagnostic primer rS1/S3 to check for cassette 

insertions (Janke et al. 2004) (r1 for our tags) 

CYO1495 

 

TAAGAAGCGTTGGCAGACGCTG 

 

Fw primer to amplify CDC28 (-551 from CDC28 ATG) with 

flanking sequences 

CYO1496 ATACGGTCAGCGCTCCTTTGAG Rv primer for CYO1495 (1466 from CDC28 ATG) 

CYO1497 

 

ACACAGGAAACAGCTATGACCATGATTACGCCAAGCTTGC

ATGCCTGCAGGTCGACGAATTATCGTTCTCGAGATAG 

Fw primer to amplify CDC28 (-349 from CDC28 ATG) with 

flanking sequences and homologous tails to YCplac111 

polylinker 

CYO1498 

 

GTAAAACGACGGCCAGTGAATTCGAGCTCGGTACCCGGGG

ATCCTCTAGAGTCGACGGTGACAAGTGAAACTCTTC  

Rv primer for CYO1495 (1372 from CDC28 ATG)  

 

CYO1501 
 

CAAGCTTGCATGCCTGCAGG  

 

Primers  for  CDC28  sequencing (-370 from  CDC28  ATG) 

anneals in YCplac111 

CYO1502 CAAGCTTGCATGCCTGCAGG  Primers  for  CDC28  sequencing (-136  from  CDC28  ATG) 

CYO1503 AGTGAAGACGAGGGTGTTCC    

 

Primers  for  CDC28  sequencing (136 from  CDC28 ATG ) 

CYO1504 CCACTCACACCGTATTCTGC  

 

Primers  for  CDC28  sequencing (381 from CDC28  ATG ) 

CYO1505 CAGTGGCGATAGTGAGATCG    Primers  for  CDC28  sequencing (636 from  CDC28  ATG ) 

CYO1506 CATCCACCCCTACTTCCAAG     Primers  for  CDC28  sequencing (870 from  CDC28 ATG ) 

CYO1507 TCAGGGGTTAAAAGCTGGGC    Primers  for  CDC28  sequencing (1081 from  CDC28 ATG) 

CYO1716 

 

TTCAGAGTATTGGGAACGCC 

 

Fw primer to prepare a recombination recipient molecule from a 

YCplac111-CDC28 plasmid for CDC28 synthetic sequences 201-

750 

CYO1717 GGTCCAAATCGAGGAACTCA Rv primer for CYO1716 

CMO91 

 

GTGGATTGTGATTTTAATGATAGTAGCAACCTCAAGAAAA

CTCGCCGTACGCTGCAGGTCGAC 

Fw primer to obtain CLN3-3HA. 

 

CMO92 

 

AAATTTTAATTTATTTGTTGTTAAATGCATTTTTTTTTTG

TCGTTCATCGATGAATTCGAGCTCG 

Rv primer for CMO91.  

32-O 

 

ATTAACCGGATTAGCGCCAGAAGAGCAGCCATCCACCCCT

ACTTCCAAGAATCAATGGCCATATTGAAGGATACCA 

Fw primer to create CDC28 -CLN3 CHIMERA using pCM194 

vector containing CLN3-3HA fusion 

33-O 

 

TGTACCTTCACCGACTTTCTCAAGTCTTTTGTAATTTGCTA

ATTCACCGCTCATCGTACAGAAAGCGTATCAAATC  

Reverse primer for 32-O 

40-O 

 

TAGCGCCAGAAGAGCAGCCATCCACCCCTACTTCCAAGAA

TCAAAGCTCAGCGAGAAAGCTCTCGAATCGGCAACGCTCA

AGCTTATGGGATCACC AGGT 

Fw primer to amplify a fragment of 12 amino acids alpha helix 

and 3FLAG epitope flanked with CDC28 homology sequence 

using pCDNA FLAG as a template 

41-O 

 

ATGACAGTGCAGTAGCATTTGTAATATAATAGCGAAATAG

ATTATAATGCCGTTACTAGATGGATCCTT TGTC 

Rv primer to 40-O flanked with homology sequence of YCplac111 

42-O 

 

GCATTATAATCTATTTCGCTAT Fw primer to amplify the whole pCYC1103 or pCYC1110 (wt 

CDC28 and wee CDC28 vectors) by ExSite PCR 

43-O TGATTCTTGGAAGTAGGGGT Rv primer for 42-O 

258-O 

 

GCGTCTAGAGACGAATATAATGTTTCTTAAGA Fw primer for cloning SRL3 in YCpGAL containing XbaI site 

259-O 

 

CGCAAGCTTAACCTGGTATATAGGTAATCG Rv primer for cloning SRL3 in YCpGAL containing HindIII site 

260-O 

 

TAC AAGAAGTTGT TGCTATCGAT ACATTATTGA 

AGATGTCCTCATCGGAC CGTACGCTGCAGGTCGAC 

Fw primer to tag SRL3 with 3HA epitope 

 

261-O 

 

ACCTAAAAGTAGCCAAAGCCATGTATATATGCGAAACCCG

AATCATTAGTCATCGATGAATTCGAGCTCG 

Rv primer for tagging SRL3 with 3HA or deleting SRL3 

 

262-O 

 

AAGGAAAGGCTAAGCAATGAAATGTTTCGTTATTTTATTG

TATTTTCAAG CGTACGCTGCAGGTCGAC 

Fw primer to delete SRL3 

 

263-O CAACGTTAACGTTTCGCC Fw primer to check SRL3-3HA fusion 

307-O ACAGGAGCCTAAGAATAGAGA Fw primer to check deletion of SRL3 

293-O 

 

GTAGTAATGAAGAGGAAGAATTTTCTAGTGGTGATTATTC

TATGGACTAC CGTACGCTGCAGGTCGAC 

Fw primer to tag YGR250c with 3HA epitope 

 

294-O 

 

AGTAATAAGAAAAGTTACCATAGGCTAGTTGAATGTCCAA

GATCGTAAAG CATCGATGAATTCGAGCTCG 

Rv primer to tag YGR250c with 3HA epitope or  to delete 
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295-O 

 

ATTACAAGGCACCCTGATTAAAAATCCAAAAATAAACCAT

AAGTTTTATT CGTACGCTGCAGGTCGAC 

Fw primer to delete YGR250c 

 

296-O 

 

GCGGGATCCGAAGTTTCGAGGATGAATATT Fw primer for cloning YGR250c in YCpGAL with BamHI 

297-O CGCGTCGACTCATGTGAATTGTTTATCTATC Rv primer for cloning YGR250c in YCpGAL with SalI 

298-O GCAGAATCCTGCAGCAAA Fw primer to check tagging YGR250c 

308-O TTAGTTCGTTCAACGGTCTCA Fw primer to check deletion of YGR250c 

433-O GCGAAGCTTTAGCACACATGTTTC ATAAC Fw primer to clone SRL3 gene with HindIII site 

434-O GCGTCTAGATTCCAAGATTAAAAGAATAGG Rv primer to clone SRL3 gene with XbaI site 

438-O GCG TCTAGA GCTTTCTGTA CGATGGCCAT Fw primer to clone CLN3 or cln3nls with XbaI site in YCpGAL 

439-O 

 

GCG CTGCAG TCTTGCCGGT AGAGGTGTG Rv primer to clone CLN3 or cln3nls with PstI site in YCpGAL 

448-O 

 

GCGTCTAGAGACGAATATAATGTTTCTTAAGG Fw primer to clone SRL3NPgene in YCpGAL with XbaI site 

446-O CGGGTTTCG CATATATACA T Fw primer to amplify YCpLac22-SRL3 by ExSite pcr 

447-O ATATTCGTCTATTATTTATCCG Rv primer of 446-O 

474-O 

 

TCGGGTTTCGCATATATACAT 

 

Fw primer to amplify SRL3 containing vector by ExSite to delete 

the stop codon of SRL3 to allow in frame tagging with 3HA 

475-O GTCCGATGAGGACATCTTC Rv primer to 474-O 

476-O 

 

TG TTGCTATCGA TACATTATTGA AGATGTCCT 

CATCGGAC CGTA CGCTGCAGGT CGAC 

Fw primer to amplify 3HA-ADHt fragment with flanking 

sequence of C-terminus of SRL3 

477-O 

 

CCTAAAAGTAGCCAAAGCCATGTATATATGCGAAACCCGA

TCTTGCCGGTAGAGGTGTG 

Rv primer to 476-O 

 

644-O GAGGAAGAATTTTCTAGTGGTGATTATTCTATGGACTAC 

GGTTCTGGT ATGTCTAAAGGTGAAGAATTATTC 

Fw primer to amplify GFP with homologous flanking sequence of 

YGR250c C-terminus 

645-O ATGACCATGATTACGCCAAGCTTGCATGCCTGCAGGTCGA

CGTTGTGTGGAATTGTGAGCG 

Rv primer to 644-O 

646-O GTAGTCCATAGAATAATCACCA Fw primer to open vectors containing YGR250c 

671-O GCG GTCGAC GTGCCT TTTGTTCGAA GGA Fw primer to clone the whole YGR250c gene with its own 

promotor from genomic DNA with SalI site 

672-O GCGGAGCTCTCATGTGAATTGTTTATCTATC Rv primer to clone the whole YGR250c gene with its own 

terminator from genomic DNA with SacI site 

673-O GGTCT TCAACTGGAA CAATTG Fw primer to ExSite the whole YGR250c gene in YCplac111 by 

PCR 

674-O TTCCTTTCAATTTTTATTGATTGG Rv primer to ExSite the whole YGR250c gene in YCplac111 by 

PCR 

685-O GAGCTCGAATTCACTGGCC Forward primer to add GFP at C-terminus of YGR250c in 

YCPlac22 or YCPlac111 by ExSite PCR 

686-O GTCACGACGTTGTAAAACGACGGCCAGTGAATTCGAGCTC

GTTGTGTGGAATTGTGAGCG 

Reverse primer to amplify GFP including CYC1 terminator with 

flanking sequence of YCplac22 or YCplac111 

715-O GTATGCGGCCGCTGGTCTTCAACTGGAA CAATTG Fw primer to mutate STS of YGR250c to AAA with NotI site 

716-O GTATGCGGCCGCTTTCCTTTCAATTTTTATTGATTGG Rv primer to 715-O 

856-O 

 

CCGGTTATGTCTGAGCAACAACAGCAACAGCAGCAACAGC

AGCAACAACAAGGTGGATCTGGTTCCGGCTCTATGGTGAG

CAAGGGCGAGG 

Fw primer to tag PUB1 with mcherry at C-terminus 

 

857-O 

 

TTTGTAGGTTGCCTCTCTTTATTCTTTCTTTTTGTTTCATT

CCACTTTTCTTCATAATATTCATCGATGAATTCGAGCTCG 

Rv primer to 856-O 

 

858-O GAAACTTGAG AACCGGTTGG Diagnostic primer to test correct tagging 

873-O TACAACAAGCAGATTATTTTCAAAAGACAACAGTAAGAAT

AAACG CGTACGCTGCAGGTCGAC 

Forward primer to delete BCY1 

874-O GAGAAAGGAAATTCATGTGGATTTAAGATCGCTTCCCCTT

TTTACCATCGATGAATTCGAGCTCG 

Reverse primer to delete BCY1 

875-O CTCGACTAAG TCAAGCGATC Diagnostic primer for BCY1 deletion 

928-O CCGGTTATGTCTGAGCAACAACAGCAACAGCAGCAACAGC

AGCAACAACAA CGTACGCTGCAGGTCGAC 

Fw primer to tag PUB1 with 6FLAG 

929-O TTTGTAGGTTGCCTCTCTTTATTCTTTCTTTTTGTTTCATT

CCACTTTTCTTCATAATATCATCGATGAATTCGAGCTCG 

Rv primer to tag PUB1 with 6FLAG 

997-O 

 

CGCGGATCCAATATTGCAGAAGAACCATCAG Fw primer to clone YGR250c from Amino acid no.2 to Amino acid 

no.100 in pGEX-KG with BamHI 

998-O CGCGTCGACTTCTGTATCAGAGTTGTTAACG Rv primer to clone YGR250c from Amino acid no.2 to Amino acid 

no.100 in pGEX-KG with SalI 

1009-O GACGGGTATCAAGTGAGCAAAGATCAAGTGTTATCTGTTT

CTTTCGCT CGTACGCTGCAGGTCGAC 

Fw primer to delete the C-terminus of YGR250c  from AA no.637 
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RT-qPCR primers and probes used in this work. 

Gene Sense primer Anti-Sense primer Dual labeled probe FAM-BHQ 

CLN3 AACCCTAATCTCGTTAAAAG GACAGTACATGATGAAGTC ACATCACTCAGCGATCAGCGA 

CDC28 GCAACTTTGTAAGGGTATTG CCATCTTTGTTAATCAATAAGTTC ACTGCCACTCACACCGTATTCT 

CKS1 CTGACCAAGAAAGAGCAC CTCTCCATTCGTCTTCTG TTCAAGATTCCATTCACTATTCTCCGC 

WHI3 GGAACATGAGCAAGTAGC GGATGAATCTTCCAGAGAAC TTGATTCCTCCACCTCCGACG 

 

WHI7 

 

CGATCCATTTTCCAATGA 

 

CCTTGAGAAGATAACGGTA 

 

TAAGCCAACAGCAATCTCAACAGC 

 

WHI8 

 

CCAACAAAGTATAATAAGAAA 

 

GTTGGTATTAGGGTACTG 

 

CTCAGAACCAATCGCAACAGCAA 

 

HXK1 ACCACTCAATCCAAGTATA 

 

GACCATAAAGTCCTTCAAA 

 

AGAACCACTAAGCACCAAGAGGAG 

 

RPL19s GAACGATAATAACTAACATGAC 

 

GAGGTTTCATTTGGATCTAA TTCTCTTACCGACACCGACGAC 

 

 

 
 
 

Top 20 candidates detected in the iTRAQ. 

Accession Q/S P value 
sp|P36167|SRL3_YEAST -2.416 3.8E-19 

sp|P19882|HSP60_YEAST -2.018 4.7E-14 

sp|P15180|SYKC_YEAST -0.967 1.0E-04 

sp|P07281|RS19B_YEAST -0.851 4.9E-04 

sp|P37263|YC16_YEAST -0.806 8.6E-04 

sp|P53316|YG5B_YEAST -0.737 1.9E-03 

sp|P47006|RPA34_YEAST -0.672 3.9E-03 

sp|P16521|EF3A_YEAST -0.656 4.6E-03 

sp|P39015|STM1_YEAST -0.631 6.0E-03 

sp|P27825|CALX_YEAST -0.617 6.9E-03 

sp|P34167|IF4B_YEAST -0.538 1.5E-02 

sp|Q12344|GYP5_YEAST -0.498 2.1E-02 

sp|P20486|CKS1_YEAST -0.494 2.1E-02 

sp|P46655|SYEC_YEAST -0.450 3.1E-02 

sp|Q01855|RS15_YEAST -0.432 3.6E-02 

sp|P38934|BFR1_YEAST -0.429 3.6E-02 

sp|P05747|RL29_YEAST -0.408 4.3E-02 

sp|P30771|NAM7_YEAST -0.402 4.5E-02 

sp|P38754|RL14B_YEAST -0.401 4.5E-02 

sp|P0CX28|RL44B_YEAST -0.400 4.6E-02 
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Abbreviations 

AMP Ampicillin PBS Phosphate-buffered saline 

APC Anaphase promoting complex PBST Phosphate -buffered saline 

containing 0.05% tween-20 

ATP  Adenosine tri-phosphate  PCR Polymerase chain reaction 

BSA Bovine serum albumin PEG Polyethylene glycol 

CDK Cyclin dependent kinase  PKA Protein kinase A 

CAK Cdk-activating kinase PMSF Phenylmethylsulfonyl 

fluoride 

cAMP Cyclic adenosine monophosphate PRD Prion related domain 

DAPI 4',6-Diamidino-2-Phenylindole PVDF Polyvinylidene difluoride 

DEPC Diethylpyrocarbonate RAS Rat sarcoma 

DNA Deoxyribonucleic acid  RIP RNA immunoprecipitation  

DMSO Dimethyl sulfoxide RNA  Ribonucleic acid 

DOC Deoxycholate RT Room temperature  

DTT Dithiothreitol RRM RNA Recognition motif 

EDTA Ethylene diamine tetra acetic acid SDC Synthetic dextrose complete 

ER Endoplasmic reticulum SDS Sodium dodecyl sulfate 

GFP Green fluorescent protein SDS-PAGE Sodium dodecyl sulfate 

polyacrylamide gel 

electrophoresis 

GST Glutathione S-transferase SGs Stress granules 

KAN Kanamycin ssDNA Single stranded DNA 

I.P Immunoprecipitation  TAE Tris-acetate-EDTA buffer 

IPTG Isopropyl β-D-1-

thiogalactopyranoside 

TCA Trichloro acetic acid 

ITRAQ Isobaric tags for relative and 

absolute quantitation 

TE Tris- EDTA buffer 

IDD Intrinsically disordered domain TEMED Tetramethylethylenediamine 

KD Kinase dead UV Ultra violet 

LB Luria Bertani WT Wild type 

MEN Mitotic exit network YNB Yeast nitrogen base 

mRNA Messenger ribonucleic acid YPD Yeast peptone dextrose 

MW. Molecular weight YPG Yeast peptone galactose 

NAT Nourseothricin YPRAF Yeast peptone raffinose 

NLS Nuclear localization signal   

OD Optical density   

PBs Processing bodies   
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