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RESUM 
Els flavanols són compostos polifenòlics abundants en fruites i vegetals. 
Aquests compostos de la dieta milloren la salut al afectar processos 
cel·lulars i fisiològics. A més, el seu consum regular ha estat associat amb 
una baixa mortalitat i un baix risc de patir malalties cardiovasculars. No 
obstant, es creu que els efectes beneficiosos dels flavanols són deguts als 
productes del seu metabolisme. En aquest sentit, els flavanols que 
s’absorbeixen al nivell de l'intestí prim són reconeguts com a xenobiòtics, de 
tal manera que són ràpidament conjugats a formes glucuronidades, 
sulfatades i metilades per enzims de fase II tant a l'intestí prim com al fetge. 
Aquelles formes de flavanols que arriben al còlon són també metabolitzats 

per la microbiota a àcids fenòlics de baix pes molecular. Els metabòlits dels 
flavanols són redirigits a la circulació sistèmica per ser distribuïts al llarg del 
cos. Està descrit que diverses condicions afecten al metabolisme dels 
xenobiòtics, i en conseqüència dels flavanols. Per tant, l’objectiu d’aquesta 
tesi és determinar si el metabolisme dels flavanols , la seva biodisponibilitat i 
la seva distribució al llarg dels teixits es veu afectada per diferents factors 
externs i interns, afectant d’aquesta manera a la bioactivitat d’aquests 
compostos. Per això, es van administrar diferents quantitats de flavanols de 
llavor de raïm a rates sota diferents condicions experimentals i es van 
analitzar per HPLC-MS/MS les concentracions de flavanols i els seus 
metabòlits en plasma i teixits. Els resultats van mostrar que factors externs 
com la quantitat i la durada del consum dels flavanols, i factors interns com 
l’edat, el gènere i l’estat de salut de l’hoste afecten al metabolisme, la 
biodisponibilitat i la distribució en teixits dels flavanols de la dieta, afectant 
així a les bioactivitats fisiològiques d’aquests compostos. Paradoxalment, la 
durada del consum de flavanols no contribueix a la seva acumulació en els 
teixits. 
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ABBREVIATIONS 
BMI: Body mass index 

CBG: Cytosolic β-glucosidase  

CE: Capillary electrophoresis 

COMT: Catechol-O-methyltransferase 

CVD: Cardiovascular diseases 

DAD: Diode array detector 

DOCA-salt: Deoxycorticosterone acetate 

EGC: Epigallocatechin 

EGCG: Epigallocatechin gallate 

FLD: Fluorescence detector 

FXR: Farnesoid-X-receptor 

GC: Gas chromatography 

GSPE: Grape seed proanthocyanidin extract 

HPLC: High performance liquid chromatography 

IHD: Index of hydrogen defficency 

LC: Liquid chromatography 

LDL: Low-density lipoprotein 

LLE: Liquid-liquid extractions 

LPH: Lactase phlorizin hydrolase  

LSE: Liquid-solid extractions 

m/z: mass-charge ratio 

MeS: Metabolic Syndrome 

miRNA: micro-RNA 

MS: Mass spectrometry 

MS/MS: Mass spectrometry in tandem mode 

NEP: Non-extractable polyphenols 
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NRM: Nuclear magnetic resonance 

NSAID: Nonsteroidal anti-inflamatory drugs 

PAPS: 3’-phosphoadenosine 5’-phosphosulfate 

PAs: Proanthocyanidins 

PCs: Procyanidins 

Ph: Simple phenols 

PhA: Phenolic acids 

POL: Propan-2-ol 

Q-TOF: Quadrupole hyphenated to a time of flight 

Q-TRAP: Quadrupole coupled to an ion trap  

QqQ: Triple quadrupole 

ROS: Reactive oxygen species 

S/N: Signal-to-noise ratio 

SAR: Structure-activity relationship 

SHR: Spontaneously hypertensive rats 

SPE: Solid phase extractions 

SULT: Sulfotransferase 

TG: Triglycerides 

TOF: Time of flight 

UDPGA: Uridine-5’-diphospho-α-D-glucuronic acid 

UGT: UDP-Glucuronosyltransferase 

UHPLC: Ultra high performance liquid chromatography 

UV: Ultraviolet 

V: Valerolactone 

VA: Valeric acid 
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I. INTRODUCTION 
The Seven Countries Study was the first multi-country epidemiological 
longitudinal study to begin at the end of the 50s. It demonstrated that a diet 
rich in saturated fats increased cardiovascular disease (CVD) mortality risk 1. 
After that, in the early 80s it was observed that French people, having a high 
fat diet, did not present the high cholesterol levels to be expected as in all the 
other countries with similar dietary patterns. This fact was attributed to red 
wine consumption and was named as The French Paradox 2. It is not known 
yet whether the cardioprotective effect of red wine is due to alcohol 3, 
antioxidant compounds, also known as polyphenols, present in this beverage 
4, or the combination of both of them 5. 

1. POLYPHENOLS 

Plant secondary metabolism is not required for the plant to survive, as it is 
not essential for a successful growth and development, but produces 
metabolites that protect against herbivores, microbial infections, and are 
considered UV protectors, etc. Polyphenols, some of the most important 
plant secondary metabolites, are not essential compounds for short-term 
animal well being, but can have long-term benefits on the incidence of 
cancers and chronic diseases, including CVD, type-II diabetes, and the main 
modern-Western related diseases 6.  

1.1. Classification and structure 

The chemistry, biochemistry, of dietary polyphenols have been widely studied 
7,8,6, and their classifications have been established by different criteria such 
as their source of origin, biological function, and chemical structure. The 
classification of polyphenols by their chemical structure 7,8 places them in to 2 
main subgroups: flavonoid forms and non-flavonoid forms 6. 
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1.2. Flavonoids 

Flavonoids are characterized by 2 aromatic rings (A and B) connected by a 
3-carbon bridge (C-ring). This main 15-carbon skeleton can be sub-classified 
in flavones, isoflavones, flavanones, anthocyanins, flavonols, and flavanols 
(also called flavan-3-ols), depending on the hydroxylation pattern, the 
distribution of the C6-C3-C6 structures, their index of hydrogen deficiency 
(IHD), and/or their no-hydroxylated functional groups (Figure 1). 

 
 
Flavones, with a lack of hydroxylation at C-3, and a double bound between 
C-2 and C-3, have several possible substitutions including hydroxylation, 
methylation, O- and C-glycosylation, and alkylation. Flavones are not widely 
distributed, found mainly in celery, parsley, and some herbs. Many of them 
occur as apigenin or luteolin 7-O-glycosilates, although their 8- and 6-O-
glucosides can also be found in the rooibos tea 9. Isoflavones differ to 
flavones because their B-ring is attached at the C-3 instead of the C-2 like 
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flavones and the other flavonoids. They occur mostly in leguminous plants 
such as soybean, being daidzein and genistein 7-O-(malonyl)glucosides 10. 
Isoflavones are also classified as phytoestrogens 6 because of their structural 
similarities to estrogens. Naringenin, and hesperitin, both well-know 
flavonones, are characterized by the absence of the C-2 – C-3 double bound 
and the presence of a chiral centre at the C-2 position. This flavonoid-type 
structure is found mainly in citrus fruits as the S- or (-)-enantiomer with the C-
ring attached to the B-ring at C-2 in the α-configuration 11,6. They can occur 
as hydroxyl, glycosylated, and O-methylated derivatives, being hesperitin-7-
O-rutinoside the most common flavanone glycoside 6. Anthocyanidins form 
conjugates with sugars and organic acids producing several anthocianins 
with different colours ranging from orange to purple, being easily identifiable 

in fruits and flowers. The most common anthocyanins aglycones are 
pelargonidin, cyaniding, delphinine, peonidin, petunidin, and malvidin 12. 
Flavonols, also regarded as 3-hydroxyflavones 13 can be found in almost all 
plant kingdom except in fungi and algae, kaempferol, quercetin, 
isorhamnetin, and miercin being the most common structures. They are 
mainly found as glycosides at the 5, 7, 3’, 4’, and 5’ positions. Finally, 
flavanols, also known as flavan-3-ols, the compounds in which this thesis is 
based on, are the most complex subclass of flavonoids and will be 
extensively descried in the next section (Section 1.2.1). In brief, flavanols can 
be found in grapes, cocoa, apples, pomegranate, and red wine and occur in 
nature in their aglycone forms 14. 

The different flavonoid-type structures, food sources, and the most important 
health effects are summarised in Table 1. 

1.2.1. Flavanols 
Flavanols, as described above, are the most complex subclass of flavonoids, 
which use to be found in nature in their aglycone forms or esterified with 
Gallic acid 14, contrary to other flavonoids which exist in plants basically in 
glycoside forms (Table 1). Flavanols range from monomers to their 
oligomeric and polymeric forms. Flavanol monomers, which are also known 
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as flavan-3-ols, have 2 chiral centres at C-2 and C-3 (Figure 1) lead to 4 
different non-planar isomers, although the R-structures are the only forms 
present in nature 9. 

Table 1. Main flavonoid families, sources, monomeric components and bioactivity 
examples  

Flavonoid Bioactivity 
Examples Sources Main Monomeric 

Components Ref. 

Flavones 
Antioxidants 
Lipid metabolism 
Cancer 

Lemons 
Olives 
red pepper 
parsley 
celery 

Apigenin 
Rutine 
Luteolin 
Luteolin glucosides 

15–17 

Isoflavones 
Antioxidant 
Breast cancer 
Fertility 

Soya beans 
Legumes 

Genistin 
Genistein 
Daidzin 

15,18,19 

Flavanones 
Antioxidant 
Arterial stiffness 
Lung Cancer 

Citrus fruits 
Peel of citrus fruits 

Naringenine 
Naringine 
Taxifolin 
Hesperidin 

6,15,16 

Anthocyanins 

Antioxidant 
Inflammation 
Cardiovascular disease 
Obesity control 
Diabetes 

Cherries 
Grapes 

Apigenin 
Cyanidin 

20 

Flavonols 
Antioxidant 
Coronary heart disease 
Cancer 
Inflammation 

Onions 
Broccoli 
Apples 
Tea 
Berries 
Grapes 
Red wine 

Kaempferol 
Quercetin 

6,15,21 

Flavanols 

Hypertension 
Diabetes 
Lipid homeostasis 
Inflammation 
Antioxidant 

Green tea 
Black tea 
Grapes 
Grape seeds 
Red wine 

(+)-Catechin 
(-)-Epicatechin 
Epigallocatechin 
gallate 

8 

 
In this sense, flavanol monomers (Figure 2) (+)-catechin, and (-)-epicatechin 
are the most common structures, and (-)-catechin, and (+)-epicatechin have 
a more limited distribution 22,14. Flavan-3-ols can also be found as their 
gallated forms, such as (+)-gallocatechin, (-)-epigallocatechin, and (-)-
epigallocatechin gallate (EGCG), depending on the position of the galloylated 
bond. In contrast, oligomeric and polymeric forms of flavanols, widely known 
as proanthocyanidins (PAs) or condensed tannins, are the most complex and 
studied subclass of flavonoids, and the main constituents of the phenolic 
intake in human diet 8. 
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Different structures of PAs can be classified owing to 23: I) degree of 
polymerization, II) hydroxylation patterns, II) stereochemistry at the 3 chiral 
centres, and IV) locations and types of the inter-flavanic bond. Flavanol PAs 
can also be found as procyanidins (PCs) this name being attributed by their 
hydroxylation standard classification. They are polymeric forms of catechin 
and epicatechin units (with a specific hydroxylation pattern at [3, 5, 7, 3’, 4’] 
positions, and an additional chiral centre at C-4 in both lower and upper units 

6,8. From now, all the flavanol polymers will be named as PAs (from the 
general classification for flavonoid polymeric structures). They can be 
classified as type A or type B PAs, being the last PAs type formed by 
oxidative coupling between the upper monomer C-4 and the C-6 or C-8 of the 
lower unit (Figure 2). The A-type PAs have an additional ether bond between 
the B-ring of one monomer and the C-ring from the other 6.  

Flavanols which represent an important part of the polyphenols in the 
Mediterranean diet 24, have high concentrations in red wine, cocoa, green 
tea, fruits, and vegetables in general 25. Grapes are considered as an 
important source of dietary flavanols due to their high intake, highlighting skin 
and seeds being especially suitable sources of these phytochemicals 26. In 
fact, data released by the Agriculture, Food, and Environment Spanish Office, 

grape consumption reached levels of 99 M kg in April 2015 27. 

Epidemiological and cohort prospective studies support the thesis that 
flavanol-rich diets and high intake may be associated with a reduced 

OH

OH
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OH

OH

OH

OH

HO O

OH

OH

(-)-epicatechin

OH

OH

HO O

OH

OH

Procyanidin dimer B2

Figure 2. Flavanol monomeric and type B dimeric structures. 
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incidence of chronic diseases such as CVD, type-II diabetes, 
neurodegenerative diseases, and cancer among others 28–30. However, it is 
difficult to conclude whether the beneficial effects can be directly attributed to 
a specific flavanol or flavanol rich foods as human studies have been 
performed using flavanol-rich foods that contain other nutrients and 
phytochemicals 31,32. In addition, there is a possible relationship between the 
age of the target population and the CVD-factors protection effectiveness of 
cocoa flavanols 33. Moreover, flavanol antioxidant activity is the most studied 
functionality, and the inhibition of the reactive oxygen species (ROS) 
formation; the ROS scavenging; and the antioxidant defences enhancing, 
being the best-described mechanisms 34–36. In contrast, some roles involving 
cell signalling pathways, and epigenetic factors, such as DNA methylation, 

histone modification and miRNA regulation pathways have been recently 
studied as flavanol health promoting mechanisms 37. In addition, there is also 
the suggestion that healthy effects of flavanols could be caused by an 
indirect health benefit provided by the regulation of gut microbiota 38. 

The health benefits of specific flavanols are well documented in several 
diseases and/or pathologies such as hypertension 39–42. For example, it has 
been reported that flavanol (-)-epicatechin is able to lower blood pressure, 
restore endothelial function through the nitric oxide (NO) mediated 
mechanism 43, whereas administration of EGCG had no effects on subjects 
with metabolic syndrome (MeS) 44. These compounds also have beneficial 
effects on other MeS parameters such as inflammation produced by the diet 
45, lipid homeostasis (i.e. triglycerides (TG), cholesterol and low-density 
lipoprotein (LDL)-cholesterol plasmatic and hepatic levels) 8, and glucose 
homeostasis 46,47. For example, it has been reported that a grape seed PA 
extract (GSPE) reduces TG, apolipoprotein and LDL-cholesterol levels in 
plasma of healthy rats after an acute administration of the extract 48 and 
dyslipidemic rats after chronic administration 49. Furthermore, it has been 
demonstrated that this GSPE hypolipidemic effect is caused by the activation 
of nuclear receptor farnesoid-X-receptor (FXR), improving the fatty acid 
oxidation over TG synthesis 50. Other molecular mechanisms involved in the 
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health promoting effects of flavanols are those related to the modulation of 
mi(cro)RNAs regulators of lipid metabolism 51. Regarding glucose 
homeostasis, flavanols act through different mechanisms such as insulin 
secretion increasing by pancreatic β-cells, lowering hyperglycaemia by the 
repression of glucose production in hepatocytes and/or reducing insulin 
resistance, and enhancing glucose uptake in muscle and adipose tissue 52,53. 
Specifically, PAs are shown to exhibit, on short time scales, the same affect 
as insulin in rats 53. 

 

1.3. Non-Flavonoids 

The most important source of polyphenols is the flavonoids family, but the 
non-flavonoid compounds are also dietary significant. This group of 

compounds can be divided into phenolic acids and non-phenolic acids, Gallic 
acid 6, and resveratrol 54, respectively (Figure 3). They are examples of the 
commonest non-flavonoid structures with an important role in the polyphenol 
research, for their significant presence in foods 6 or their reported health 
effects 55–58. 

For example, resveratrol, also known as 3,5,4'-trihydroxy-trans-stilbene 
(Figure 3) is a stilbenoid produced by injured plants or after exposure to 
pathogens 55. This stilbene is a polyphenol characteristic of red wine 59, 
although it can be found in several fruits like grapes, raspberries, mulberries, 
or blueberries 56 and in unusually high concentrations in the Japanese 
knotweed or Mexican bamboo 6. The health benefits reported for resveratrol 

HO O

OH

OH

HO

OH

HO

OH

Gallic Acid Resveratrol 

Figure 3. General structures of the main non-flavonoid 
compounds. 
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ranges from cardiopreventive 60,61 to anticarcinogenic 56,62. Some authors 
have also reported that resveratrol could have a tentative potential benefit in 
type-II diabetes 63. 

Gallic acid, also known as 3,4,5-trihydroxybenzoic acid (Figure 3), is a C6-C1 
phenolic acid that can be present in plants as its free form in some fruits 64,65, 
vegetables and white wine 66, or as a conjugate of flavanols such as 
epigallocatechin (EGC), epicallocatechin galate (EGCG), or PC dimer B2 
gallate 41. The health benefits attributed to Gallic acid have been reported for 
in vitro 67,68,57 and in vivo 69–71 studies, specially as anticarcinogen 72, 
cardioprotectant 58, lipid homeostasis modulator, and insulin secretor 73.
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2. POLYPHENOLS ABSORTION AND METABOLISM 

The digestion and fate of polyphenols and their related compounds after 
ingestion has been a topic of increasing research in recent years (Figure 4). 
It is widely know that after ingestion they are recognized as xenobiotics 
undergoing the characteristic detoxification metabolism, starting from the 
mouth. In this first step, polyphenols cause astringency, and their 
modification by salivary proteins is significantly restricted 74. In the stomach, 
they can resist the acidic conditions and may be transported bound to other 
ingested plant polysaccharides. 

 

The first organ strongly involved in their metabolic modification and digestion 
is the small intestine. Glycosilated polyphenols can become aglycones by the 
action of different hydrolysing enzymes, such as the intestinal lactase 

phlorizin hydrolase (LPH), and cytosolic β-glucosidase (CBG) 25. Polyphenols 

Figure 4. Physiological fate of dietary polyphenols after their ingestion. Extracted from Zanotti et al. 
2015 74. 

!
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of a very low degree of polymerization (i.e. flavanol monomers) can be 
absorbed in the small intestine by both passive and facilitated diffusion 75. In 
addition, it has been reported that polyphenol glycosides enter into the 
enterocytes by the active sodium-dependent glucose transporters (SGLT-1) 
76. Once absorbed, aglycones can undergo phase-II metabolism in situ or in 
the liver, producing their glucuronidated, sulfated, and/or methylated 
conjugates 6,77 (Figure 5). It has been estimated that only a small part of the 
ingested polyphenols are absorbed through intestinal cells (5-10%), 
independent of glycosilation. The remaining unmodified polyphenols (90-
95%), especially those with a high degree of polymerization (higher than 2), 
and the conjugated metabolites excreted through the enterohepatic 
circulation, reach the colon where they are subjected to the microbial 

metabolism. In this manner small phenolic structures are able to cross the 
enterocytes and reach the liver where they can undergo phase-II metabolism 
78,79. After that, metabolites are transported through the systemic circulation 
to be distributed to different tissues and finally reach the kidneys to be 
excreted through the urine. Non-absorbed polyphenols and catabolites, with 
protein-bound polyphenols are excreted through the faeces 74,77.  

2.1. Phase-II metabolism 

Phase-II is defined, together with the phase-I metabolism, as the responsible 
processes for the biotransformation of xenobiotics and hence polyphenols 
(Figure 5). Phase-I enzymes (mainly cytochromes P450, CYPs) are those 
involved in the transformation of a parent compound to a more polar 
metabolite by unmasking/making de novo functional groups (i.e. -OH, -NH2, -
SH). They are also involved in biosynthetic processes 80. 

Phase-II enzymes are those responsible for making more easily extractable 
forms of xenobiotics. They have an important role for the inactivation of 
pharmacologically active substances. The main purpose of phase-II 
biotransformation is to perform reactions such as glucuronidation, sulfation, 
methylation, acetylation and glutathione conjugations. Their respective 
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conjugates are more hydrophilic than the parent compound. The main phase-
II enzymes involved in polyphenol detoxification are: 

- UDP-glucuronosyltransferase (UGT) 
- Sulfotransferase (SULT) 
- Catechol-O-methyltransferase (COMT) 

2.1.1 UGT (E.C. 2.4.1.17) 
UGTs are a superfamily of membrane-bond enzymes generally linked to the 
endoplasmic reticulum having the substrate binding sites exposed to the 
lumen. They are key enzymes in the detoxification process responsible for 
glucuronidated metabolites production in all vertebrates (40-70% of all clinical 
drugs are subjected to UGT-glucuronidation in humans) 81  and some UGTs 
also have a biosynthetic role 82. UGTs are not only responsible for the 

metabolism of xenobiotics (drugs, polyphenols) but also endobiotics 
(bilirubin, steroid-hormones, bile acids, and fat soluble vitamins) 83,84. They 
catalyse the chemical bond between a nucleophilic atom (-O, -N, -S, or -C) 
with uridine-5’-diphospho-α-D-glucuronic acid (UDPGA), leading to the 
formation of D-glucuronides 85. The glucuronic acid is in the α-configuration at 
the C-1 position when bound to the coenzyme (UDP). Specifically, when the 
transfer occurs, this configuration is inverted in order to form O-linked 

Figure 5. Representation of both phase-II and microbial metabolism of polyphenols.!
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glucuronides through the conjugation of glucuronic acid with the flavanol 
hydroxyls at the C-7, C-5, and C-3 positions 86,87. Analysis of the crystal 
structure of human UGT predicted that human UGTs catalytic site uses the 
His35 to deprotonate the lipophilic substrate (such as flavanols), which is 
bound in the active site by ring-stacking interactions with Phe90. Then, the 
deprotonated flavanol plays as a nucleophile acceptor facilitating the 
nucleophilic attack at the of the glucuronic acid C-1 position. The resulting 
protonated histidine residue is stabilized by Asp151 88 (Figure 6).  

 
Some studies have reported interspecies differences in UGT enzymes 
between human, monkey, pig, dog and rats 89. It has been reported that 

mutations in UGT1A1 are the main cause of Crigler syndrome 
(hyperbilirubinemia in new-born children, giving them an orange 
characteristic colour) 90. 
Mammalian UGTs are mainly located in the intestine, the liver (first pass 
metabolism of dietary supplements and drugs), kidneys, brain, pancreas, 
placenta, and nasal epithelium 86. In addition, most of them exhibit an overlap 

O–
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HO OH
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90
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151His
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OH
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O OH

OH

Figure 6. UDP-Glucuronyltransferase (UGT) catalytic site 
representation. Adapted from Radominska et al. 2010 88 
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in substrate specificities, being UGT1A9, UGT1A3 91, and UGT1A10 
polymorphisms specific for the flavonoid glucuronidation process 84. 

2.1.2 SULT (E.C. 2.8.2.1) 
SULTs belong to a superfamily of enzymes that catalyse the conjugation of 
3’-phosphoadenosine 5’-phosphosulfate (PAPS) with an -O, -N, -S acceptor 
group. PAPS, synthesized by almost all tissues in mammals, is a universal 
sulfate donor required for all sulfation reactions. The most important sulfation 
reaction is done in –O acceptor substrates (e.g. polyphenols). The hydroxyl 
group is located within the hydrogen bonding distance of the donor sulfonate 
group of PAPS and of the catalytic residue His108, in addition residues 
Phe84 and Phe76 form stacking interactions with the ligand. However, the 
side chain of Phe81, the gate residue at the active site, forms an 

unfavourable interaction with the ligand 92 (Figure 7).  

SULT enzymes are wide distributed in tissues such as intestine, jejunum, 
colon, and liver. In addition, these enzymes can also be found in blood 
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Figure 7. Sulfotransferase (SULT) catalytic site illustration. 
Adapted from Gamage et al. 2006 92 
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platelets, and tissues of the brain, adrenal gland, breast, lung, endometrium, 
placenta, prostate, ovary, testis, and kidney 86. 

Two different types of the SULT enzyme have been identified:  

- Cytosolic SULT: catalyse the sulfation of xenobiotics and small 
endobiotic molecules (i.e. steroids, bile acids, and neurotransmitters) 

- Membrane-bond SULT: placed in the Golgi apparatus, they are 
involved in the sulfation of peptides, proteins, lipids, and 
glycosaminoglycans. 

There are different substrate preferences for SULTs, even though there is 
evidence of substrate overlap at the level of families and subfamilies, 
SULT1A1, and SULT1A3 being recognized as phenol SULT enzymes 93,94. 

Interestingly, several flavonoids such as curcumin, quercetin, and catechins 

have been described as a specific subfamily SULT inhibitors 95–97.  

There is not much information about SULT interspecies differences, that said, 
some investigations have reported differences between human and rat SULT 
enzymes 98. 

2.1.3 COMT (E.C. 2.1.1.6) 
COMT is probably the most studied phase-II enzyme as it is a key enzyme in 
the degradation of catecholamine neurotransmitters 99, and plays an 
important role in the modulation of catechol-dependent functions, such as 

cognition, cardiovascular function, and pain processing 86. This enzyme 
introduces a methyl group (-CH3) from S-Adenosyl methionine (SAM) to one 
of the catechol-structure hydroxyl groups of several substrates including, 
apart from catecholamines, drugs and xenobiotics. This -CH3 transference, 
always in the presence of Mg2+, is more common in 3’-hydroxyl positions than 
in the 4’-hydroxyl positions because it acts through a direct nucleophilic 
attack, by one of the hydroxyl groups of the catechol substrate, on the methyl 
carbon of SAM 100. Lysine residue (Lys144), is present close to one of the 
substrate hydroxyl groups, acting as a general catalytic base, and 
responsible of the proton acceptance. Subsequently, the methyl group from 
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SAM is transferred to the hydroxyl group. Mg2+ has an octahedral 
coordination to Asp141, Asp169, Asn170, both catechol hydroxyls, and a 
water molecule. Therefore, Mg2+ ions are in charge of the orientation of the 
catechol moiety. In addition, Trp38, Trp143, and Pro174 (the gate keepers) 
define the selectivity of COMT, keeping the planar catechol ring in the correct 
position (Figure 8). High activities of COMT have been found in intestine, 
liver, brain and kindney101.  

As described in SULT enzymes, two different COMT proteins have been 
reported for 1 gene 86: 

- Soluble COMT: Suspended in the cytoplasmic side of the intracellular 
membranes. 

- Membrane-bound COMT: Located in the cytosolic side of the rough 

endoplasmic reticulum.! 

 

More recently, research has focused on the description of COMT inhibitors 
as drugs in the treatment of neurodegenerative diseases like Parkinson 102. 

<!!!!!!!!!!!!!!!!!!!!
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COMT inhibitors have also been found in green tea (i.e. quercetin, and 
catechins) 103–105. 

COMT contributes to individual cognitive differences between animals and 
humans, as it is directly related to the dopamine concentration in the 
prefrontal cortex 86. It has also been hypothesized that COMT activity has 
been decreased throughout intra-species evolution 101. 

2.2. Microbial metabolism 

As described above, polyphenols that have not been absorbed at the level of 
the small intestine, those with a degree of polymerization higher than 2, and 
the metabolites circulating through the enterohepatic circulation via the bile, 
reach the colon to be subjected to microbial metabolism. This creates small 
phenolic structures that can then reach the liver through the portal circulation, 

undergoing there the phase-II metabolism. These metabolites can also be 
excreted through the urine or transported to organs and tissues through the 
systemic circulation 77,6 (Figures 4 and 5). 

The specific microbial metabolism of flavanols has been reported for in vitro 
studies, and is based on the ring fission of the main flavonoid structure 
(Figure 1), or the cleavage of the resulting aliphatic bound 106,107. The main 
metabolites related to flavanol catabolism can be divided into three different 
families named as valerolactones (V), phenolic acids (PhA), and simple 
phenols (Ph) (Figure 9). 
 !
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The V family results from the flavanol C-ring fission at the 1-2 and 4-10 
positions, by an intermediate of C-ring open catabolites named as propan-2-
ols (POLS) 107,108. By acidic hydrolysis, V can be converted into valeric acids 
(VA), which by the α- and β- microbial oxidations can be transformed into 
phenylpropionic and phenylacetic acids, respectively 107,106. It has been 
hypothesized that another catalytic route where the PA dimer B2 is converted 
into V or VA by another VA intermediate (with a double bound in its aliphatic 
chain) produced by the C-ring opened structure 107. All of these microbial 
catabolites, reach the liver where they can also undergo phase-II conjugation 
being also glucuronidated, sulfated, and/or methylated 77,78 Figure 10 shows 
the proposed catabolic pathways for the formation of small molecular weight 
phenolic and phenyl carboxylic acid derivatives from the anaerobic incubation 

(37ºC) of (–)-epicatechin and PA B2 with human faecal microbiota (5% w/v) 
in vitro 108. 
On the other hand, it has also been described that gallated flavanols undergo 
microbial catabolism by the cleavage of their galloylated bond, giving by 
these way the respective flavanol form (monomers or even dimers), and the 
respective Gallic acid residue 106. Gallic acid, even being a small phenolic 
acid, can also undergo microbial metabolism by the microbial cleavage of the 
carboxylic acid bound, giving simple phenolic forms such as pyrogallol or 
catechol 25,109,110. 

There is some evidence of the bidirectional effects regarding to the 
relationship between gut bacteria and polyphenols, as it has been shown that 
polyphenols are widely metabolized by the microbiota 25,78,111,106, but several 
studies have also reported that changes in gut microbiota can be made by 
polyphenols, resulting in other collateral health benefits 112. 

Individual microbiota differences are widely observed within the same spices 
113–116, and between different species 117. For example, it has been suggested 
that in humans, Lactobacillus, Chlostridium, Eubacterium, and Bacteroides 
could have involved in the catabolism of flavonoids 118,119. Recently, both 
Eggerthella lenta and Fusobacterium plautii have been reported as 
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responsible for the conversion of epicatechin to specific forms of V 120. Rat 
microbial cleavage of EGC has also been attributed to F. plautii 121, 
Adlercreutzia equolifaciens, Asaccharobacter celatus, and Slackia 

equolifacens 122. 

Figure 10. Proposed catabolic pathway for the formation of small phenolic derivatives from  
(-)-epicatechin and PA B2. Extracted from Stoupi et al. 2010 108!
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3. METHODOLOGIES  

A methodology that is able to identify and quantify the largest number of 
compounds present in the biological samples (fluids and tissues) is crucial to 
determine how polyphenols, and specially flavanols, are specifically 
metabolized and distributed though the body, which at the same time is 
essential to understand their physiological activity.  

It is important to have different strategies for the determination of polyphenols 
in biological samples (Figure 11). They are divided into 2 main steps named 
as: sample pre-treatment, including the preparation of the sample and the 
flavanol metabolites extraction, sample quantification, including the 
separation and detection of each analyte. 

The strategic procedure has to be taken into account (Figure 11) because 
even though polyphenols, and their metabolites, share a common phenolic 
feature there is significant structural diversity, especially in their metabolites, 
with different hydroxylation patterns, different kinds of conjugates, and their 
position in the parent structure. Although there have been recent advances in 
identification and analysis of polyphenols and their metabolites, there are still 
some key points to take in account for the quantification of these compounds 
in biological samples. 

Figure 11. Methodological strategies for polyphenol determination in 
biological samples. Adapted from Stalikas et al. 2007 123 
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I. Different products of metabolism. Products of metabolism of a 
specific polyphenol, for example flavanols, can differ considerably 
depending on, for example, the degree of polymerization, leading to 
phase-II and microbial metabolites. This structural diversity is 
translated into compounds with different molecular weights, 
structures and polarities and leading to different behaviours during 
the analysis. Sometimes all possible metabolites are not 
commercially available, and their identification and quantification can 
be hampered. 

II. Complexity of each biological matrix. The nature of each biological 
sample and its composition (i.e. water and fat content) differs 
significantly between matrices, resulting in differences when 

performing the sample extraction. 
III. Low concentration in the sample. Flavanols and their metabolites are 

present at very low concentrations in biological samples as these are 
poorly absorbed. Thus it is essential to increase their concentration 
to ensure quantities adequate to preform subsequent analysis. 

3.1. Sample pre-treatment 

Before flavanols and their metabolites are extracted from the biological 
matrices, these samples need to be collected, reserved and prepared for 
extraction. To avoid degradation of the polyphenols, biological samples are 
always frozen before extraction and quantification 123. In addition, for the 
analysis of the tissues, these samples are always lyophilized for two reasons: 
1) to avoid the degradation of the analytes during the extraction 124, and 2) to 
avoid the error produced by the water content in these kind of samples 
(normalizing all the results by the weight of dried tissue). Temperature, light 
and oxygen exposure can also affect the polyphenol content 125. In many 
cases, an antioxidant agent like ascorbic acid is added to the samples to 
avoid this oxidation process 123. When liquid samples such as plasma or 
serum extraction is required, a pre-centrifugation process may also be 
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required to avoid interferences produced by collagen aggregates during 
extraction. 

There are several methods available for the extraction of polyphenols from 
biological samples 126–130. When the study is carried out on biological tissues, 
the most important challenge to overcome is obtaining all the analytes 
included in the study from the solid matrix, hence it is necessary to break 
down the collagen structure and free the analytes. The most common method 
of extraction includes a homogenization step in a saline solution 131,132 or in 
strong acids 133,134, followed by an organic solvent extraction. However, 
because of new methodologies and equipment with increased sensitivity, 
these kinds of extractions are not compatible, or more complex than 
necessary in order to eliminate the salts present in the solution. 

In general, liquid-liquid extractions (LLE) or liquid-solid extractions (LSE) 
have been set as a starting point for these kinds of procedures. The use of 
organic solvents (methanol, ethanol, acetone, etc.), in this method, allows the 
liberation and removal of metabolites from the other components of the 
matrix, and especially during protein denaturalization. Samples can then be 
analysed directly and quantified, purified and concentrated using solid phase 
extractions (SPE) with conventional cartridges 135,136 containing a sorbent 
weight from 60 mg to 6 g 126. The last procedure is the most frequent method 
used to remove as much as possible the non-polyphenolic remaining 
compounds that may interfere in the analysis of the biological sample. The 
most important disadvantage of traditional SPE is the sample volume, as this 
kind of technique requires volumes that sometimes are difficult to obtain, 
especially when the study is done in plasma samples, and more specifically 
in plasma from small animals like rodents. The latter, is the most important 
reason why in recent years, the introduction of μ-SPE methodologies have 
lead to a significant breakthrough in the study of the metabolism and 
bioavailability of polyphenols, and their use has been rapidly expanded 
127,126,137–139. The μ-SPE methodology allows not only the removal of 
interferences but also the concentration of the analytes under study, which 
leads to a decrease in the limits of detection, and the analytes isolation using 
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ultra-low elution volume, in this way eliminating the post-extraction 
evaporation and reconstitution steps, that may be time sensitive 126. 

3.2. Sample quantification 

The analytical technique used to perform the analysis, detection and 
quantification of polyphenols (in any sample) needs to be sensible, and 
selective enough to obtain a reliable quantification of the compounds that are 
found at low concentrations in the sample 140. There are several techniques 
that can give the polyphenol content in biological samples, and the literature 
highlights the strong relationship between the technological evolution of the 
equipment and the enhanced knowledge of the fate of the polyphenols after 
ingestion and absorption 124. The identification and quantification of 
polyphenols and their metabolites in biological samples are key in 

understand their metabolism and their possible health promoting effects. 

3.2.1. Traditional methods of quantification 
Initially, derived metabolites were studied using traditional methods for the 
identification and quantification of polyphenols such as capillary 
electrophoresis (CE), nuclear magnetic resonance (NMR) 141 and 
chromatographic techniques (gas and liquid, GC and LC respectively) 140. 
However, some were not extensively used because of the equipment 
limitations, as is the case for CE where the detection of trace metabolites 

was hampered. In the case of NMR, limitations appeared because of the 
complexity of the samples and the difficulties during compound isolation. 
Nevertheless this technique had a major advantage, as it allowed structural 
information to be obtained which helped in the elucidation of the structure of 
multiple compounds generated after the polyphenols ingestion 142. 

The main method used for the analysis of polyphenols and their metabolites 
was chromatography, preferably LC over GC for two main reasons: 1) the 
introduction of new and better ionization interfaces in the LC 143, 2) LC avoids 
the sample derivatization step crucial for GC 123. The chromatographic 
equipment, where the real work of the separating all the analytes present in 
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the injected sample occurs, can be coupled to several detectors, such as 
ultra violet (UV) diode array (DAD), fluorescence (FLD), and/or mass 
spectrometry (MS) 144,145. The major drawbacks of UV, DAD, and FLD are 
their poor specificity, and accuracy. They also are strongly dependent on the 
separation of the compounds in the LC to avoid interferences for a good and 
reliable quantification, for this reason significantly extending the time of 
analysis 146. This last issue was relieved, in part, improving the 
chromatographic separations with the appearance of the high performance 
LC (HPLC) and the ultra high performance LC (UHPLC), which with the 
introduction of smaller chromatographic columns and adapting the equipment 
to high pressures, significantly reduced the time of each analysis (critical 
when the study requires the injection of a large number of samples) 139. 

Chromatographic separation is often disregarded when it is in reality 
essential for a successful analysis 123.  

3.2.2. New methodologies 

HPLC and UHPLC represent the modern culmination of the development of 
LC, as they appeared as a result of the improvement in the packaging 
materials used as stationary phases in the chromatographic columns. Based 
on the van Deemter equation, which shows that, as particle sizes decrease, 
there is a significant gain in the efficiency which is not being reduced 

increasing the flow rates 147,146. HPLC differs from the traditional LC in its 
internal pressures (50-350 bar), and the working columns used that are made 
with smaller sorbent particles (2-50 μm and 1-2 μm for HPLC and UHPLC 
respectively) giving higher resolutions 148,149. The emergence of UHPLC led 
to an enhanced signal-to-noise ration (S/N), shorter times of analysis, and 
peak resolutions improvement 139,149.  

Most of the studies in the 1990s measured total aglycones (total polyphenol 
content) in plasma and urine after the chemical or enzymatic deconjugation 
of polyphenol metabolites 150, because the requirement of authentic reference 
standards which are not still commercial. However, several studies are now 
able to report the polyphenol conjugate composition in biological samples 
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after the ingestion of pure polyphenols, polyphenol-rich foods or extracts 
130,151,152,138. This has been made possible because of advances in MS 
knowledge and technology in combination with high-resolution LC systems 
150. MS detection of bioactive compounds is based on the mass-to-charge 
ratio (m/z) and abundance measurements of a selected and ionized 
molecule, leading to the exclusion of other m/s and a higher specificity. 
Particularly, when the LC is hyphenated with a time-of-flight (TOF) MS the 
method is permitted to perform untargeted analysis, leading to detect any 
compound capable to be ionized. This method is usually suitable when new 
studies have to be carried out, in order to identify any compound in the 
injected solution when a method of quantification needs to set-up 143. 

The use of MS in the tandem mode (MS/MS) has had great impact. This 

detection technique provides a hard ionization to the studied molecule giving 
a high degree of fragmentation, which can provide important structural 
information facilitating the identification of unknown compounds if they are 
compared to mass spectra libraries always obtained under identical operating 
conditions 143,153. The detection and quantification limits are reduced using 
MS/MS, and the quantification of metabolites at very low concentrations are 
allowed. All these considerations have led to the scientific community to use 
different detectors such as triple quadrupole (QqQ), quadrupole coupled to 
ion trap (Q-TRAP), and quadrupole hyphenated to time of flight (Q-TOF) in 
the study of these compounds 154, giving the opportunity to perform targeted 
and/or untargeted metabolomics. Table 2 describes the different applications, 
advantages, and disadvantages of all available methodologies for the 
quantification of polyphenols and their metabolites in biological samples. 
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4. BIOAVAILABILITY AND DISTRIBUTION OF 
POLYPHENOLS 

Several studies support the affirmation that polyphenols, and specifically 
flavanols, exert a positive modulation in health 155–158. In addition, the 
bioactivity of polyphenols has been directly linked with their products of 
metabolism, the investigation of flavanols metabolism and bioavailability, a 
key point in understanding the mechanisms involved on their attributed 
antioxidant and other beneficial properties, it has been strengthened in recent 
years 151,159–164. 

Metabolism, distribution, and bioavailability of polyphenols have been made, 

using different food sources 165–167, extracts 168–171, amounts (usually very 
high concentrations) 137,138,169,172, and experimental models (human, animal, 
or in vitro) 151,167,173,174. In addition, some controversies have been discussed 
regarding the experimental conditions as in most cases in vitro and in vivo 
studies cannot be compared as they are both made with pure compounds or 
extracts, not paying attention to the products of the metabolism that reach the 
target tissues 150,175. 

In this sense, some flavonoid metabolites (i.e. quercetin, and (-)-epicatechin 
conjugates) have been reported to be able to retain antioxidant properties 
and inhibitory oxidase effects in vitro and in vivo 87,176–178. All of these facts 
force the scientific community to reconsider the experimental design when 
the bioactivity of polyphenols wants to be demonstrated in in vitro studies 150.  

It has been extensively stated that polyphenol metabolism, plasma and tissue 
bioavailability are depending on several factors, thus their potential health 
effects could be consequently different depending on each situation. The 
metabolism of polyphenols is strongly dependent on two general factors 179:  

- I) External Factors: They can be subdivided into different 
subcategories such as the polyphenol structure, source, food 
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processing, quantity of ingested polyphenols, and the length of 
treatment.  

- II) Internal Factors: Characterized by the polyphenol consumer 
particular biological situation, these factors can be subdivided into 
different specific situations such as the age, gender, and pathological 
state. 

Unfortunately, until now, there are no specific and comparable studies that 
allow the comparison all of these factors for a complete study of polyphenol 
(and specifically for flavanols) metabolism, bioavailability, distribution, and 
bioactivity. 

In addition, the study of the content of polyphenols and their metabolites in 
the target tissues is a key point in understanding the potential bioactivities 

that they can exert in situ. Many in vivo studies have revealed the distribution 
of polyphenols in different tissues under different conditions and using 
different polyphenol sources 128,134,138,180 and pure compounds 181,182, 
revealing that the plasma composition differs significantly with the distribution 
of polyphenols and their metabolites through the body. As stated in Section 
2.1, phase-II enzymes can be located in tissues other than the main 
metabolic ones (the liver and the intestine) 86. Moreover, it has been reported 
that there could be a putative deconjugating enzyme in the endothelial cells 
which is the responsible to deglucuronidate the epicatechin-glucuronide 
conjugate to form free epicatechin, which could be responsible for lowering 
blood pressure an known effect of flavanol-rich fruits 183. These facts have to 
be taken into account, as conjugation or deconjugation of metabolites in the 
target tissues is on of the most important key points for the elucidation of real 
mechanisms involved into the flavanol health benefits.  

Some studies reported techniques for the direct delivery of polyphenols to the 
target tissues in order to avoid the detoxification metabolism. For example, 
by the direct injection into the blood stream, infusion in the target organ, by 
subcutaneous injection, or by three different systems (nanoparticle, liposome, 
and microemulsion) to the intracellular organelles, the desired polyphenol is 
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delivered, unchanged, to its target tissue. 184. However, this may not be the 
best strategy to study dietary polyphenols, if they are wanted to be used as 
dietary supplements for their health promoting effects, and their preventive 
activities. 

4.1. External Factors affecting the metabolism and 
bioavaiablity of polyphenols 

There are several external factors that may interfere with the polyphenols 
metabolism, including environmental factors that can have an important role 
in the polyphenol content of foods. Polyphenol content may undergo an 
important quantitative and qualitative variation depending on the harvest 
season or the environmental conditions under which the fruits and vegetables 
are subjected during the cultivation 139. Herein, the external factors that may 

affect the polyphenols metabolism have been divided into main 5 different 
categories: structure, source, food processing, quantity of ingested 
polyphenols, and length of treatment. 

4.1.1. Structure  
As described above, polyphenols, and especially flavonoids are 
characterized by their main structural skeleton, and classified depending on 
their degree of hydroxylation, the presence of the conjugated C-ring by a 

double bound between C-2 – C-3, and their ketonic functional group in the C-
4 position 6,7. Phase-II metabolism is the responsible of the conjugation of 
polyphenols in order to enhance their excretion through the urine by the 
conjugation of specific sites (C-3, C-5, or C-7 for glucuronidation and 
sulfation); and C-3’, or C-4’ for methylation) (Figure 1). In addition, the degree 
of polymerization will govern the involvement of the microbial metabolism 
77,78.  

Several structure-activity relationship (SAR) studies have revealed the 
important role of the position and the number of substituents in the 
polyphenol basic structure and their close connection to their antiproliferative, 
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cytotoxic, antioxidant, and inhibiting/activating activities 67,104,185–188. In 
addition, it is widely known that plasma metabolites composition differs 
significantly from the compounds present in foods 6,25,34,150. For this reason, a 
through study is required, in order to elucidate polyphenols, especially 
flavanols, and their metabolism, bioavailability, and bioactivity. 

4.1.2. Source 
Dietary flavonoids are the main polyphenolic source in vegetables and fruits 
and their distribution is highly variable depending on food type (Table 1). 
Food matrix effect studies are increasing in the recent years, as there is an 
important interaction between polyphenols and some food components such 
as protein, carbohydrates, fat, water, fiber, and alcohol that may affect to 
their absorption and metabolism 189. In addition, non-extractable polyphenols 
(NEP), which are made up of macromolecules, and single phenolic 
compounds associated with macromolecules, cannot be detected in foods by 
the usual analytical procedures as there is no solvent that would be suitable 
for the extraction of all the antioxidants present in foods, especially those 
associated with complex carbohydrates and proteins as monomers and 
complex polymers 190. Monomeric and polymeric forms of polyphenols cannot 
be quantified using the same chromatographic separation, being the first 
ones quantified by reversed phase LC, and the last ones by normal phase LC 
191. Therefore, this last group (the polymeric forms) represent a significant 
fraction of polyphenols that are metabolized by gut microflora and are also 
reported to increase antioxidant and antiproliferative capacities, reduce the 
intestinal tumorgenesis, and modify the intestinal gene expression 192.  

It has also been reported that lactic matrices 193, sugar 194, fat 195 and 
carbohydrate content 196 in foods may affect the phenol-metabolic profile, 
even it has been reported that the absorption of quercetin, catechin, and 
resveratrol seems to be equivalent in humans using different food sources 
197. More specifically, milk, has been described to exert negative effects on 
the bioavailability of PAs as they can be linked with lactic proteins, in this way 
becoming exempt to the gastric breakdown in these kind of matrices 198, or 
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might hamper the PAs absorption increasing the gastric pH 199. The 
absorption of epicatechin has been studied in one crossover study, which 
concluded that this was inhibited by the interaction between milk proteins and 
PAs from cocoa 161. In contrast other studies, demonstrated, that epicatechin 
concentrations in plasma did not differ between lactic and water-based cocoa 
beverages under the same nutritional conditions 193,161, and that flavanol rich 
cocoa milk consumption did not show differences on the absorption of 
flavanol monomers.  In addition, there are descriptions of higher flavanol 
bioavailability by increased levels of their metabolites in urine and plasma 
after the ingestion of PAs-rich cocoa powder dissolved in milk 168 . 

The high quantity of different polyphenol-rich foods, requires a strategy to 
study the metabolism and distribution of these compounds and their related 

bioactivity and how they might be used as extracts and/or pure polyphenols, 
in order to decrease the interaction of the different components from the food 
matrix, and to have a more realistic view of the ingested-bioactive amounts of 
compounds. 

4.1.3. Food processing related factors 
Several factors affect the content of polyphenols in foods during processing, 
and consequently their metabolism and bioavailability are both affected 179. 
For example, the polyphenol content is significantly influenced by thermal 

treatments 200,201,168 and other food processing factors such as freeze drying, 
air-drying and storage 202. Recently, the effect of cocking on the polyphenol 
content has also been evaluated in vegetables 203. Technical processes, 
such as homogenization 204, and vaporization 205, may also increase the 
bioavailability of polyphenols. 

The high quantity of information about the food processing and the 
polyphenol content, has allowed the updating of a database on the effects of 
food processing on polyphenol content which facilitates a more accurately 
estimation of polyphenol exposure from dietary surveys 206. 
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4.1.4. Quantity of ingested polyphenols 
The hormesis concept is defined as the dose response phenomenon of a 
toxic or xenobiotic compound, characterized by low dose stimulation and a 
high dose inhibition 207. Vitamins and oligoelements are not only beneficial at 
low quantities, but are also essential for the health 208.  Most drugs are 
described as hormetic compounds, leading to beneficial health effects at low 
doses, or giving the opposite desired effect when administered at high doses 
209. 

Once ingested, polyphenols are recognized as xenobiotics, along with most 
drugs. Therefore, their metabolism could be comparable in order to provide 
the most reliable, and realistic amount of ingested polyphenols needed to 
achieve the maximum bioactivity 210. The absorption, metabolism and 

bioavailability of polyphenols depending on their consumption, have been 
widely studied in recent years 211,172,212,213. Interestingly, it has been reported 
that after digestion, the metabolized compounds can lose their original 
properties or even acquire new activities 214. In fact, the uptake and 
metabolism of polyphenols is usually associated with their methylation, 
sulfation, or glucuronidation by phase-II enzymes 77,109,215. Moreover, 
considerable quantities of ingested flavanols are degraded by colonic 
microbiota upon reaching the large intestine, where they yield other smaller 
molecules that are also absorbed into the body 6. Specifically, some studies 
have demonstrated that after conjugation, flavanols are distributed 
throughout the body and are found at considerable concentrations in most 
tissues after an acute intake of a PAs extract 138,169,170. In addition, it has 
been shown that, the intake of large amounts of polyphenol-rich products is 
not directly linked to the concentration of these compounds and their 
metabolites in blood and tissues 15. 

In fact, it has been reported that dietary polyphenols may act hormetically, 
giving cytoprotective effects at low ingested amounts and the over generation 
of reactive and damaging intermediates with pathological consequences at 
high ingested amounts (acting as pro-oxidants) 216. Interestingly, grape seed 
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derived PAs have also been reported to exert dose-response activities 
reducing postprandial lipemia 217, or blood pressure 41 in vivo, with 
insulinomimetic activities insulin-sensitive cell lines 218  in vitro.  However, 
bioavailability studies made with grape seed flavanols have been realized 
mainly using 1000 mg/Kg 129,138,169. 

Therefore, realistic bioavailability studies should be made in order to 
elucidate whether the flavanol metabolism and bioavailability differs between 
high and the real administrated or bioactive amounts. 

4.1.5. Consumption length  
There are several pharmacokinetic studies about polyphenol metabolism and 
distribution in humans 109,196 and animal models 137,152,219. Most of them reveal 
that the highest concentrations of polyphenols and their phase-II metabolites 
in plasma and most tissues are reached between 1 and 4 h after the 
ingestion of the polyphenol source 137,152. Acute in vivo studies, for example, 
reported that the most effective effect of flavanols is reached at short times 
49,220,221 being reversed on longer time scales 41,196 after their ingestion. 
Bioavailability studies made after an acute intake of a flavanol extract, 
reported that these compounds are conjugated to their phase-II metabolites, 
which are then distributed throughout the body and are found at considerable 
concentrations in tissues on short time scales 152. 

Alternatively, it has been reported that regular consumption of flavonoids in 
the human diet has a direct association with beneficial health effects for 
people suffering from several diseases 42,222,223. However, few studies have 
evaluated the tissue distribution of flavanols after long-term ingestion 170 or 
reported the accumulation of polyphenols in tissues after the acute 
administration of flavonoids, although this accumulation was evidenced on 
short time scales after ingestion 224,225. Some compounds, however, such as 
fat-soluble vitamins or some toxins, accumulate in some organs or tissues 
after chronic ingestion 226,227. 

Therefore, studies assessing the distribution, and accumulation of flavanols 
after a long-term ingestion need to be done in order to elucidate if flavanols 
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are accumulated in the tissues over longer time scales, or if the distribution of 
these compounds differ between acute and chronic studies. 

4.2. Internal factors affecting the metabolism and 
bioavailability of polyphenols 

Internal factors, also known as host-related factors, that may affect the 
polyphenol bioavailability have been divided into intestinal and systemic 
factors 179. However, there are bidirectional interactions between these 
factors, as intestinal factors (enzymatic activity, intestinal transit, and 
microbiota) are strongly dependent on the systemic conditions and vice 
versa. For this reason, in this thesis both factors are unified in the common 
one. Therefore, the host-related factors affecting the metabolism, 
bioavailability, distribution, and bioactivity of polyphenols have been divided 

into 3 different categories: age, gender, and health conditions. 

4.2.1. Age  
There is an increased inter-individual variability directly linked with the age, 
that may be partially explained by reduced homeostatic ability causing a 
disruption of some regulatory processes related to the functional integration 
between cells and organs. Consequently, failures in the maintenance of 
homeostasis under physiological stress appear 228. Several of these changes 

have pharmacokinetic implications 229. Glomerular filtration rate 230, liver 
volume and apparent liver blood flow 231 decrease in ageing. There is also a 
progressive reduction in total body water and lean body mass, resulting in a 
relative increase in body fat along time 232, and changes in pharmacokinetics 
and pharmacodynamics with advancing age, including a reduction in renal 
and hepatic clearance and an increased prolongation of elimination of fat-
soluble drugs. In addition the increased sensitivity of specific kinds of drugs 
such as anticoagulants, cardiovascular and psychotropic drugs are also 
relevant characteristics in elderly subjects 228. Lee et al. (2008) not only 
reported that liver expression of xenobiotic metabolizing enzymes depended 
on the age, but also that several of these enzymatic activities varied also 233. 
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Although few gastrointestinal functions decline to a significant extent in 
healthy ageing 234, it leads to physiological changes that affect oral and 
oesophageal function, gastric pH and emptiness rate and intestinal transit 
times 235. In addition, major changes in bacterial population that include 
metabolically active groups occur 236,237. This could lead to important changes 
in the biochemical capacity of the gut. In addition, it should be highlighted 
that faecal studies demonstrated great variability in bacterial populations in 
the elderly 238. 

Polyphenols have been reported to exert beneficial effects against the most 
common age-related diseases such as type-II diabetes 47, cardiovascular 
diseases 42, Alzheimer 239,240, and Parkinson 30,241, among others. 

In regards to flavanol metabolism and distribution and their relationship with 

the age, until now only one human study has been found, where no age-
related differences were found in plasma or urine after the ingestion of cocoa 
flavanols 242. 

4.2.2. Gender  
Males and females are differenced by several factors such as the fat and the 
water content as an example of general physiologic features 243, and 
hormonal activity as the main metabolic feature 244. Several numerous sex-
related differences in both humans and other mammals have been shown in 

processes such as lipid and glucose metabolism 245, psychiatric disorders 246, 
coronary artery disease 247, susceptibility to inflammatory 245 and infectious 
diseases 248. There are also sex-related differences in the level of protective 
health effects imparted by the moderate consumption of alcohol 249. 
Furthermore, it has been observed that responses to xenobiotics are different 
between genders. For example, male rats have been observed to metabolize 
xenobiotics faster, and to have higher phase-II detoxification enzyme 
activities compared to female rats 250. Additionally, female rats are known to 
have less cytochrome P450 (CYP), which facilitates the detoxification and 
excretion of xenobiotics (phase-I metabolism), than male rats 243. 
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Interestingly, phase-II enzymes, specially COMT, has been linked directly to 
the metabolism of catechol-estrogens 251, demonstrating that the are 
significant differences in the COMT activity between males and females in 
different tissues such as liver or brain, the female-COMT being more active 
than the male one 243,246. Sex-related differences have also been reported 
regarding to the UGT 252,253, and for SULT enzymatic activities 253,254. In 
addition, some studies revealed sex-related factors in the metabolism of 
quercetin showing greater metabolites in males urine, than in females, with 
the exception of quercetin sulfate, and quercetin glucuronide sulfate, which 
were found at higher concentrations in females 24 h urine 255. Another gender 
related study demonstrated that females are more efficient at metabolizing 
resveratrol and pterostilbene than males, showing altered enzymatic 

specificity of UGT, when male and female human liver microsomes were 
incubated with these polyphenols for 1 h 256. 

Therefore, a complete in vivo study is required in order to assess in an 
holistic way the differences in metabolism, bioavailability, and distribution of 
polyphenols, specifically flavanols, between males and females. 

4.2.3. Health conditions  
Physiological conditions such as the body mass index (BMI), the fat and lean 
body content may affect not only the metabolism of all the ingested foods or 

drugs 257,258, but also the metabolism of polyphenols. Obesity is one of the 
most important metabolic disorders that may cause chronic diseases such as 
type-II diabetes, hypertension, or atherosclerosis, and is also one of the 
required conditions for the diagnosis of MeS 258–260. In addition, it has been 
reported that the phase-II metabolism may also be altered by different 
metabolic diseases as activities of phase-II enzymes in the intestine, liver, or 
kidneys have also been shown to be disrupted 86,261. 

Gut metabotype, defined as individual bacterial distribution or phenotypic 
metabolism 262,263, has been studied in the recent years as the study of 
complex metabolite profiles in biological samples, may provide an approach 
to understand the global metabolic regulation of the organism in relation to 
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this peculiar pathology 264, and also for the increased importance of 
personalized nutrition and the development of functional foods 262,265. 
Metabolic profiling has revealed gut microbiome differences depending on 
the diet 266, the lifestyle 267, even on the pathology of such diseases as type-II 
diabetes 268, atherosclerosis 269, and hypertension 267. In addition, gut 
microbiota profile has also been directly linked to the immune system 270, or 
colorectal cancer 271, among others.  

Polyphenols have been reported as microflora-modulators 272–274. Their 
microbial metabolites have also shown health promoting effects as 
antioxidants 275,276. As well as polyphenol metabolism is significantly altered 
depending on the microbiotic profile, and their beneficial health effects might 
also be disturbed.  

Finally, peripheral tissues related pathologies, and specifically non-metabolic 
related pathologies, are mostly characterized by a mutation on a specific 
gene 277, or specific polymorphisms 278. Therefore, it could be possible that 
the polyphenol metabolism was not altered between healthy and diseased 
subjects, but the distribution of the products of their metabolism was different 
in the target and injured tissues because for example an abnormal state of 
transporters, located inflammation, or disrupted localized deconjugating or 
conjugating enzymes. 



INTRODUCTION 

 41 

 
5. REFERENCES 

1. A. Keys, A. Menotti, C. Aravanis, H. Blackburn, B. S. Djordevič, R. Buzina, A. 
S. Dontas, F. Fidanza, M. J. Karvonen, N. Kimura, I. Mohaček, S. 
Nedeljkovič, V. Puddu, S. Punsar, H. L. Taylor, S. Conti, D. Kromhout, and H. 
Toshima, Prev. Med. (Baltim)., 1984, 13, 141–154. 

2. S. Renaud and M. de Lorgeril, Lancet, 1992, 339, 1523–1526. 

3. J. Belleville, Nutrition, 2002, 18, 173–177. 

4. D. K. Das, M. Sato, P. S. Ray, G. Maulik, R. M. Engelman, A. A. Bertelli, and 
A. Bertelli, Drugs Exp. Clin. Res., 1999, 25, 115–20. 

5. M. Sato, N. Maulik, and D. K. . Das, Ann. N. Y. Acad. Sci., 2002, 957, 122–
135. 

6. D. Del Rio, A. Rodriguez-Mateos, J. P. E. Spencer, M. Tognolini, G. Borges, 
and A. Crozier, Antioxid. Redox Signal., 2013, 18, 1818–1892. 

7. R. Tsao, Nutrients, 2010, 2, 1231–46. 

8. C. Bladé, L. Arola, and M. J. Salvadó, Mol. Nutr. Food Res., 2010, 54, 37–59. 

9. P. C. . Hollman and I. C. . Arts, J. Sci. Food Agric., 2000, 80, 1081–1093. 

10. K. Setchell, Am J Clin Nutr, 1998, 68, 1333S–1346. 

11. P. C. Hollman and M. B. Katan, Food Chem. Toxicol., 1999, 37, 937–942. 

12. P. Bridle and C. F. Timberlake, Food Chem., 1997, 58, 103–109. 

13. K. Herrmann, Int. J. Food Sci. Technol., 1976, 11, 433–448. 

14. A. Crozier, I. B. Jaganath, and M. N. Clifford, Nat. Prod. Rep., 2009, 26, 
1001–1043. 

15. C. Manach, A. Scalbert, C. Morand, C. Rémésy, and L. Jiménez, Am. J. Clin. 
Nutr., 2004, 79, 727–747. 

16. V. Habauzit, M.-A. Verny, D. Milenkovic, N. Barber-Chamoux, A. Mazur, C. 
Dubray, and C. Morand, Am. J. Clin. Nutr., 2015. 

17. Y.-C. Hsiao, W.-H. Kuo, P.-N. Chen, H.-R. Chang, T.-H. Lin, W.-E. Yang, Y.-
S. Hsieh, and S.-C. Chu, Chem. Biol. Interact., 2007, 167, 193–206. 

18. D. P. Beavers, K. M. Beavers, M. Miller, J. Stamey, and M. J. Messina, Nutr. 
Metab. Cardiovasc. Dis., 2012, 22, 182–191. 

19. C. Hui, X. Qi, Z. Qianyong, P. Xiaoli, Z. Jundong, and M. Mantian, PLoS One, 
2013, 8, e54318. 

20. J. He and M. M. Giusti, Annu. Rev. Food Sci. Technol., 2010, 1, 163–87. 

21. X. Zhao, Z. Gu, A. S. Attele, and C. S. Yuan, J. Ethnopharmacol., 1999, 67, 
279–85. 

22. P. M. Aron and J. A. Kennedy, Mol. Nutr. Food Res., 2008, 52, 79–104. 

23. D. Ferreira and D. Slade, Nat. Prod. Rep., 2002, 19, 517–541. 



INTRODUCTION 

 42 

24. K. S. Shivashankara and S. N. Acharya, Open Nutraceuticals J., 2010, 3, 
227–241. 

25. A. Scalbert and G. Williamson, J. Nutr., 2000, 130, 2073S–20785S. 

26. Y. Yilmaz and R. T. Toledo, J. Agric. Food Chem., 2004, 52, 255–60. 

27. Ministerio de Agricultura Alimentación y Medio Ambiente, 
www.magrama.gob.es. 

28. R. de la Iglesia, F. I. Milagro, J. Campión, N. Boqué, and J. A. Martínez, 
Biofactors, 2010, 36, 159–68. 

29. K. A. Cooper, J. L. Donovan, A. L. Waterhouse, and G. Williamson, Br. J. 
Nutr., 2008, 99, 1–11. 

30. S. Mandel and M. B. H. Youdim, Free Radic. Biol. Med., 2004, 37, 304–317. 

31. N. D. L. Fisher, M. Hughes, M. Gerhard-Herman, and N. K. Hollenberg, J. 
Hypertens., 2003, 21, 2281–6. 

32. C. S. Yang and J. M. Landau, J. Nutr., 2000, 130, 2409–2412. 

33. B. Buijsse, E. J. M. Feskens, F. J. Kok, and D. Kromhout, Arch. Intern. Med., 
2006, 166, 411–7. 

34. D. Vauzour, A. Rodriguez-Mateos, G. Corona, M. J. Oruna-Concha, and J. P. 
E. Spencer, Nutrients, 2010, 2, 1106–1131. 

35. C. G. Fraga, M. Galleano, S. V Verstraeten, and P. I. Oteiza, Mol. Aspects 
Med., 2010, 31, 435–445. 

36. D. Huang, B. Ou, and R. L. Prior, J. Agric. Food Chem., 2005, 53, 1841–
1856. 

37. C. Bladé, L. Baselga-Escudero, M. J. Salvadó, and A. Arola-Arnal, Mol. Nutr. 
Food Res., 2013, 57, 58–70. 

38. M.-F. Lu, Z.-T. Xiao, and H.-Y. Zhang, Biochem. Biophys. Res. Commun., 
2013, 434, 701–704. 

39. M. Galleano, O. Pechanova, and C. G. Fraga, Curr. Pharm. Biotechnol., 
2010, 11, 837–848. 

40. W.-Y. Huang, S. T. Davidge, and J. Wu, Crit. Rev. Food Sci. Nutr., 2013, 53, 
615–630. 

41. M. Quiñones, L. Guerrero, M. Suarez, Z. Pons, A. Aleixandre, L. Arola, and B. 
Muguerza, Food Res. Int., 2013, 51, 587–595. 

42. M. Quiñones, D. Sánchez, B. Muguerza, L. Moulay, S. Laghi, M. Miguel, and 
A. Aleixandre, Food Chem., 2010, 122, 1013–1019. 

43. M. Galleano, I. Bernatova, A. Puzserova, P. Balis, N. Sestakova, O. 
Pechanova, and C. G. Fraga, IUBMB Life, 2013, 65, 710–5. 

44. M. Galleano, V. Calabro, P. D. Prince, M. C. Litterio, B. Piotrkowski, M. A. 
Vazquez-Prieto, R. M. Miatello, P. I. Oteiza, and C. G. Fraga, Ann. N. Y. 
Acad. Sci., 2012, 1259, 87–94. 

45. N. Martinez-Micaelo, N. González-Abuín, M. Mulero, M. Pinent, A. Ardévol, 
and M. Blay, J. Funct. Foods, 2015, 15, 61–71. 



INTRODUCTION 

 43 

46. N. M. Wedick, A. Pan, A. Cassidy, E. B. Rimm, L. Sampson, B. Rosner, W. 
Willett, F. B. Hu, Q. Sun, and R. M. van Dam, Am. J. Clin. Nutr., 2012, 95, 
925–933. 

47. M. Pinent, A. Castell, I. Baiges, G. Montagut, L. Arola, and A. Ardévol, Compr. 
Rev. Food Sci. Food Saf., 2008, 7, 299–308. 

48. J. M. Del Bas, J. Fernández-Larrea, M. Blay, A. Ardèvol, M. J. Salvadó, L. 
Arola, and C. Bladé, FASEB J., 2005, 19, 479–481. 

49. H. Quesada, J. M. del Bas, D. Pajuelo, S. Díaz, J. Fernandez-Larrea, M. 
Pinent, L. Arola, M. J. Salvadó, and C. Bladé, Int. J. Obes. (Lond)., 2009, 33, 
1007–1012. 

50. J. M. Del Bas, M.-L. Ricketts, M. Vaqué, E. Sala, H. Quesada, A. Ardevol, M. 
J. Salvadó, M. Blay, L. Arola, D. D. Moore, G. Pujadas, J. Fernandez-Larrea, 
and C. Bladé, Mol. Nutr. Food Res., 2009, 53, 805–814. 

51. L. Baselga-Escudero, C. Blade, A. Ribas-Latre, E. Casanova, M. Suárez, J. L. 
Torres, M. J. Salvadó, L. Arola, and A. Arola-Arnal, Nucleic Acids Res., 2014, 
42, 882–892. 

52. A. Castell, L. Cedo, V. Pallares, M. Blay, M. Pinent, S. Garcıa-Vallve, L. Arola, 
and A. Ardevol, J. Diabetes, 2009, Suppl. 1, A271. 

53. M. Pinent, L. Cedó, G. Montagut, M. Blay, and A. Ardévol, Crit. Rev. Food 
Sci. Nutr., 2012, 52, 569–584. 

54. J. Burns, T. Yokota, H. Ashihara, M. E. J. Lean, and A. Crozier, J. Agric. Food 
Chem., 2002, 50, 3337–3340. 

55. L. Frémont, Life Sci., 2000, 66, 663–673. 

56. M. Jasiński, L. Jasińska, and M. Ogrodowczyk, Cent. Eur. J. Urol., 2013, 66, 
144–9. 

57. M. Inoue, R. Suzuki, N. Sakaguchi, Z. Li, T. Takeda, Y. Ogihara, B. Y. Jiang, 
and Y. Chen, Biol. Pharm. Bull., 1995, 18, 1526–1530. 

58. D. H. Priscilla and P. S. M. Prince, Chem. Biol. Interact., 2009, 179, 118–24. 

59. P. Kopp, Eur. J. Endocrinol., 1998, 138, 619–20. 

60. J. Tomé-Carneiro, M. Gonzálvez, M. Larrosa, M. J. Yáñez-Gascón, F. J. 
García-Almagro, J. A. Ruiz-Ros, F. A. Tomás-Barberán, M. T. García-
Conesa, and J. C. Espín, Ann. N. Y. Acad. Sci., 2013, 1290, 37–51. 

61. Y. Liu, W. Ma, P. Zhang, S. He, and D. Huang, Clin. Nutr., 2015, 34, 27–34. 

62. L. G. Carter, J. A. D’Orazio, and K. J. Pearson, Endocr. Relat. Cancer, 2014, 
21, R209–25. 

63. H. A. Hausenblas, J. A. Schoulda, and J. M. Smoliga, Mol. Nutr. Food Res., 
2015, 59, 147–59. 

64. Y. Soong and P. Barlow, Food Chem., 2006, 97, 524–530. 

65. M. Bajpai, A. Pande, S. K. Tewari, and D. Prakash, Int. J. Food Sci. Nutr., 
2005, 56, 287–91. 

66. S. Pal, N. Ho, C. Santos, P. Dubois, J. Mamo, K. Croft, and E. Allister, J. 
Nutr., 2003, 133, 700–706. 



INTRODUCTION 

 44 

67. B. H. Kroes, A. J. van den Berg, H. C. Quarles van Ufford, H. van Dijk, and R. 
P. Labadie, Planta Med., 1992, 58, 499–504. 

68. M. Inoue, R. Suzuki, T. Koide, N. Sakaguchi, Y. Ogihara, and Y. Yabu, 
Biochem. Biophys. Res. Commun., 1994, 204, 898–904. 

69. S. S. Mirvish, A. Cardesa, L. Wallcave, and P. Shubik, J Natl Cancer Inst, 
1975, 55, 633–636. 

70. M. Kawada, Y. Ohno, Y. Ri, T. Ikoma, H. Yuugetu, T. Asai, M. Watanabe, N. 
Yasuda, S. Akao, G. Takemura, S. Minatoguchi, K. Gotoh, H. Fujiwara, and 
K. Fukuda, Anticancer. Drugs, 2001, 12, 847–52. 

71. C.-L. Hsu and G.-C. Yen, Br. J. Nutr., 2007, 98, 727–35. 

72. Y. Ohno, K. Fukuda, G. Takemura, M. Toyota, M. Watanabe, N. Yasuda, Q. 
Xinbin, R. Maruyama, S. Akao, K. Gotou, T. Fujiwara, and H. Fujiwara, 
Anticancer. Drugs, 1999, 10, 845–51. 

73. R. C. R. Latha and P. Daisy, Chem. Biol. Interact., 2011, 189, 112–8. 

74. I. Zanotti, M. Dall’Asta, P. Mena, L. Mele, R. Bruni, S. Ray, and D. Del Rio, 
Food Funct., 2015, 6, 13–31. 

75. C. Starp, B. Alteheld, and P. Stehle, Ann. Nutr. Metab., 2006, 50, 59–65. 

76. J. M. Gee, M. S. DuPont, A. J. Day, G. W. Plumb, G. Williamson, and I. T. 
Johnson, J. Nutr., 2000, 130, 2765–2771. 

77. M. Monagas, M. Urpi-Sarda, F. Sánchez-Patán, R. Llorach, I. Garrido, C. 
Gómez-Cordovés, C. Andres-Lacueva, and B. Bartolomé, Food Funct., 2010, 
1, 233–253. 

78. A. M. Aura, Phytochem. Rev., 2008, 7, 407–429. 

79. J. Serrano, R. Puupponen-Pimiä, A. Dauer, A. M. Aura, and F. Saura-Calixto, 
Mol. Nutr. Food Res., 2009, 53, S310–329. 

80. V. . Breinholt, E. . Offord, C. Brouwer, S. . Nielsen, K. Brøsen, and T. 
Friedberg, Food Chem. Toxicol., 2002, 40, 609–616. 

81. P. G. Wells, P. I. Mackenzie, J. R. Chowdhury, C. Guillemette, P. A. Gregory, 
Y. Ishii, A. J. Hansen, F. K. Kessler, P. M. Kim, N. R. Chowdhury, and J. K. 
Ritter, Drug Metab. Dispos., 2004, 32, 281–90. 

82. P. I. Mackenzie, A. Rogers, J. Treloar, B. R. Jorgensen, J. O. Miners, and R. 
Meech, J. Biol. Chem., 2008, 283, 36205–10. 

83. J. R. Cashman, B. Y. Perotti, C. E. Berkman, and J. Lin, Environ. Health 
Perspect., 1996, 104 Suppl , 23–40. 

84. R. H. Lewinsky, P. A. Smith, and P. I. Mackenzie, Xenobiotica., 2005, 35, 
117–29. 

85. M. B. Fisher, M. F. Paine, T. J. Strelevitz, and S. A. Wrighton, 2002. 

86. P. Jancova, P. Anzenbacher, and E. Anzenbacherova, Biomed. Pap., 2010, 
154, 103–116. 

87. A. J. Day, Y. Bao, M. R. . Morgan, and G. Williamson, Free Radic. Biol. Med., 
2000, 29, 1234–1243. 



INTRODUCTION 

 45 

88. A. Radominska-Pandya, S. M. Bratton, M. R. Redinbo, and M. J. Miley, Drug 
Metab. Rev., 2010, 42, 133–44. 

89. J. Matal, P. Jancova, M. Siller, V. Masek, E. Anzenbacherova, and P. 
Anzenbacher, Neuro Endocrinol. Lett., 2008, 29, 738–43. 

90. R. H. Tukey and C. P. Strassburg, Annu. Rev. Pharmacol. Toxicol., 2000, 40, 
581–616. 

91. Y. Chen, S. Xie, S. Chen, and S. Zeng, Biochem. Pharmacol., 2008, 76, 416–
25. 

92. N. Gamage, A. Barnett, N. Hempel, R. G. Duggleby, K. F. Windmill, J. L. 
Martin, and M. E. McManus, Toxicol. Sci., 2006, 90, 5–22. 

93. R. Weinshilboum, D. Otterness, I. Aksoy, T. Wood, C. Her, and R. 
Raftogianis, FASEB J, 1997, 11, 3–14. 

94. R. Dajani, A. Cleasby, M. Neu, A. J. Wonacott, H. Jhoti, A. M. Hood, S. Modi, 
A. Hersey, J. Taskinen, R. M. Cooke, G. R. Manchee, and M. W. H. 
Coughtrie, J. Biol. Chem., 1999, 274, 37862–37868. 

95. M. Vietri, A. Pietrabissa, F. Mosca, R. Spisni, and G. M. Pacifici, 2008. 

96. C. De Santi, A. Pietrabissa, F. Mosca, A. Rane, and G. M. Pacifici, 2008. 

97. H. Nishimuta, H. Ohtani, M. Tsujimoto, K. Ogura, A. Hiratsuka, and Y. 
Sawada, Biopharm. Drug Dispos., 2007, 28, 491–500. 

98. P. C. Wang, N. T. Buu, O. Kuchel, and J. Genest, J. Lab. Clin. Med., 1983, 
101, 141–51. 

99. P. T. Mannisto and S. Kaakkola, Pharmacol. Rev., 1999, 51, 593–628. 

100. R. Woodard, M. Tsai, H. Floss, P. Crooks, and J. Coward, J. Biol. Chem., 
1980, 255, 9124–9127. 

101. J. Chen, B. K. Lipska, N. Halim, Q. D. Ma, M. Matsumoto, S. Melhem, B. S. 
Kolachana, T. M. Hyde, M. M. Herman, J. Apud, M. F. Egan, J. E. Kleinman, 
and D. R. Weinberger, Am. J. Hum. Genet., 2004, 75, 807–821. 

102. T. Müller, Ther. Adv. Neurol. Disord., 2014, 7, 77–82. 

103. L. Lehmann, L. Jiang, and J. Wagner, Carcinogenesis, 2008, 29, 363–70. 

104. D. Chen, C. Y. Wang, J. D. Lambert, N. Ai, W. J. Welsh, and C. S. Yang, 
Biochem. Pharmacol., 2005, 69, 1523–31. 

105. C. S. Yang and E. Pan, Expert Opin. Drug Metab. Toxicol., 2012, 8, 677–89. 

106. M. V Selma, J. C. Espín, and F. A. Tomás-Barberán, J. Agric. Food Chem., 
2009, 57, 6485–6501. 

107. S. Stoupi, G. Williamson, J. W. Drynan, D. Barron, and M. N. Clifford, Arch. 
Biochem. Biophys., 2010, 501, 73–78. 

108. S. Stoupi, G. Williamson, J. W. Drynan, D. Barron, and M. N. Clifford, Mol. 
Nutr. Food Res., 2010, 54, 747–59. 

109. C. Manach and J. L. Donovan, Free Radic. Res., 2004, 38, 771–785. 

110. M. P. Gonthier, V. Cheynier, J. L. Donovan, C. Manach, C. Morand, I. Mila, C. 
Lapierre, C. Rémésy, and A. Scalbert, J. Nutr., 2003, 133, 461–467. 



INTRODUCTION 

 46 

111. G. Williamson and M. N. Clifford, Br. J. Nutr., 2010, 104 Suppl, S48–66. 

112. S. G. Parkar, D. E. Stevenson, and M. A. Skinner, Int. J. Food Microbiol., 
2008, 124, 295–8. 

113. N. Larsen, F. K. Vogensen, F. W. J. van den Berg, D. S. Nielsen, A. S. 
Andreasen, B. K. Pedersen, W. A. Al-Soud, S. J. Sørensen, L. H. Hansen, 
and M. Jakobsen, PLoS One, 2010, 5, e9085. 

114. R. E. Ley, P. J. Turnbaugh, S. Klein, and J. I. Gordon, Nature, 2006, 444, 
1022–3. 

115. C. De Filippo, D. Cavalieri, M. Di Paola, M. Ramazzotti, J. B. Poullet, S. 
Massart, S. Collini, G. Pieraccini, and P. Lionetti, Proc. Natl. Acad. Sci. U. S. 
A., 2010, 107, 14691–6. 

116. S. M. O’Mahony, J. R. Marchesi, P. Scully, C. Codling, A.-M. Ceolho, E. M. M. 
Quigley, J. F. Cryan, and T. G. Dinan, Biol. Psychiatry, 2009, 65, 263–7. 

117. R. E. Ley, M. Hamady, C. Lozupone, P. J. Turnbaugh, R. R. Ramey, J. S. 
Bircher, M. L. Schlegel, T. A. Tucker, M. D. Schrenzel, R. Knight, and J. I. 
Gordon, Science, 2008, 320, 1647–51. 

118. J.-S. Jin and M. Hattori, Biol. Pharm. Bull., 2012, 35, 2252–2256. 

119. J. Winter, M. R. Popoff, P. Grimont, and V. D. Bokkenheuser, Int. J. Syst. 
Bacteriol., 1991, 41, 355–357. 

120. M. Kutschera, W. Engst, M. Blaut, and A. Braune, J. Appl. Microbiol., 2011, 
111, 165–75. 

121. A. Takagaki, Y. Kato, and F. Nanjo, Arch. Microbiol., 2014, 196, 681–95. 

122. A. Takagaki and F. Nanjo, Biol. Pharm. Bull., 2015, 38, 325–30. 

123. C. D. Stalikas, J. Sep. Sci., 2007, 30, 3268–3295. 

124. G. Woodward, P. Kroon, A. Cassidy, and C. Kay, J. Agric. Food Chem., 2009, 
57, 5271–8. 

125. M. Friedman and H. S. Jürgens, J. Agric. Food Chem., 2000, 48, 2101–2110. 

126. M. Suárez, M. P. Romero, A. Macià, R. M. Valls, S. Fernández, R. Solà, and 
M. J. Motilva, J. Chromatogr. B, 2009, 877, 4097–4106. 

127. M. P. Martí, A. Pantaleón, A. Rozek, A. Soler, J. Valls, A. Macià, M.-P. 
Romero, and M.-J. Motilva, J. Sep. Sci., 2010, 33, 2841–2853. 

128. A. Serra, L. Rubió, X. Borràs, A. Macià, M.-P. Romero, and M.-J. Motilva, Mol. 
Nutr. Food Res., 2012, 56, 486–96. 

129. A. Serra, A. Macià, M. P. Romero, M. J. Salvadó, M. Bustos, J. Fernández-
Larrea, and M. J. Motilva, J. Chromatogr. B, 2009, 877, 1169–1176. 

130. M. Urpi-Sarda, M. Monagas, N. Khan, R. Llorach, R. M. Lamuela-Raventós, 
O. Jáuregui, R. Estruch, M. Izquierdo-Pulido, and C. Andrés-Lacueva, J. 
Chromatogr. A, 2009, 1216, 7258–7267. 

131. C. Tsang, C. Auger, W. Mullen, A. Bornet, J.-M. Rouanet, A. Crozier, and P.-
L. Teissedre, Br. J. Nutr., 2005, 94, 170–181. 

132. A. Vanzo, M. Terdoslavich, A. Brandoni, A. M. Torres, U. Vrhovsek, and S. 
Passamonti, Mol. Nutr. Food Res., 2008, 52, 1106–16. 



INTRODUCTION 

 47 

133. T. Miyazawa, K. Nakagawa, M. Kudo, K. Muraishi, and K. Someya, J. Agric. 
Food Chem., 1999, 47, 1083–1091. 

134. M. A. El Mohsen, J. Marks, G. Kuhnle, K. Moore, E. Debnam, S. K. Srai, C. 
Rice-Evans, and J. P. E. Spencer, Br. J. Nutr., 2007, 95, 51. 

135. K. de la Torre-Carbot, J. L. Chávez-Servín, O. Jaúregui, A. I. Castellote, R. M. 
Lamuela-Raventós, M. Fitó, M.-I. Covas, D. Muñoz-Aguayo, and M. C. López-
Sabater, Anal. Chim. Acta, 2007, 583, 402–10. 

136. K. de la Torre-Carbot, O. Jauregui, A. I. Castellote, R. M. Lamuela-Raventós, 
M.-I. Covas, I. Casals, and M. C. López-Sabater, J. Chromatogr. A, 2006, 
1116, 69–75. 

137. A. Serra, A. Macià, M. P. Romero, J. Valls, C. Bladé, L. Arola, and M. J. 
Motilva, Br. J. Nutr., 2010, 103, 944–952. 

138. A. Arola-Arnal, G. Oms-Oliu, A. Crescenti, J. M. Del Bas, M. R. Ras, L. Arola, 
and A. Caimari, Mol. Nutr. Food Res., 2013, 57, 1741–1752. 

139. M. J. Motilva, A. Serra, and A. Macià, J. Chromatogr. A, 2013, 1292, 66–82. 

140. J. K. Prasain, C.-C. Wang, and S. Barnes, Free Radic. Biol. Med., 2004, 37, 
1324–50. 

141. Y. Lu and L. Y. Foo, Food Chem., 1997, 59, 187–194. 

142. J. B. Harborne, Phytochemical Methods A Guide to Modern Techniques of 
Plant Analysis, 1998. 

143. C. Dass, Fundamentals of Contemporary Mass Spectrometry, John Wiley & 
Sons, 2007. 

144. E. A. McGaw, K. W. Phinney, and M. S. Lowenthal, J. Chromatogr. A, 2010, 
1217, 5822–5831. 

145. R. Flamini, Mass Spectrom. Rev., 2003, 22, 218–50. 

146. L. R. Snyder, J. J. Kirkland, and J. W. Dolan, Introduction to Modern Liquid 
Chromatography, 2011. 

147. E. Barceló-Barrachina, E. Moyano, M. T. Galceran, J. L. Lliberia, B. Bagó, 
and M. A. Cortes, J. Chromatogr. A, 2006, 1125, 195–203. 

148. F. Gerber, M. Krummen, H. Potgeter, A. Roth, C. Siffrin, and C. Spoendlin, J. 
Chromatogr. A, 2004, 1036, 127–133. 

149. D. Guillarme and M. W. Dong, Am. Pharm. Rev., 2013, 16, 36–43. 

150. P. A. Kroon, M. N. Clifford, A. Crozier, A. J. Day, J. L. Donovan, C. Manach, 
and G. Williamson, Am J Clin Nutr, 2004, 80, 15–21. 

151. M. Urpi-Sarda, E. Ramiro-Puig, N. Khan, S. Ramos-Romero, R. Llorach, M. 
Castell, S. Gonzalez-Manzano, C. Santos-Buelga, and C. Andres-Lacueva, 
Br. J. Nutr., 2010, 103, 1393–7. 

152. A. Serra, A. Macià, L. Rubió, N. Anglès, N. Ortega, J. R. Morelló, M. P. 
Romero, and M. J. Motilva, Eur. J. Nutr., 2013, 52, 1029–1038. 

153. P. Price, J. Am. Soc. Mass Spectrom., 1991, 2, 336–48. 

154. M. J. Gray, D. Chang, Y. Zhang, J. Liu, and A. Bensoussan, Biomed. 
Chromatogr., 2010, 24, 91–103. 



INTRODUCTION 

 48 

155. T. K. Mao, J. Van de Water, C. L. Keen, H. H. Schmitz, and M. E. Gershwin, 
J. Med. Food, 2002, 5, 17–22. 

156. H. Sies, T. Schewe, C. Heiss, and M. Kelm, Am. J. Clin. Nutr., 2005, 81, 
304S–312S. 

157. M. Pinent, M. C. Bladé, M. J. Salvadó, L. Arola, H. Hackl, J. Quackenbush, Z. 
Trajanoski, and A. Ardévol, Int. J. Obes. (Lond)., 2005, 29, 934–941. 

158. H. H. H. Feringa, D. A. Laskey, J. E. Dickson, and C. I. Coleman, J. Am. Diet. 
Assoc., 2011, 111, 1173–81. 

159. A. Serra, A. Macià, M. P. Romero, N. Anglés, J. R. Morelló, and M. J. Motilva, 
Food Chem., 2011, 126, 1127–1137. 

160. B. Sanchez-Bridge, A. Lévèques, H. Li, E. Bertschy, A. Patin, and L. Actis-
Goretta, Drug Metab. Dispos., 2015, 43, 9–16. 

161. H. Schroeter, R. R. Holt, T. J. Orozco, H. H. Schmitz, C. L. Keen, M. Serafini, 
and A. Crozier, Nature, 2003, 426, 788. 

162. A. Rodriguez-Mateos, M. J. Oruna-Concha, C. Kwik-Uribe, A. Vidal, and J. P. 
E. Spencer, Br. J. Nutr., 2012, 108, 2243–50. 

163. J. L. Donovan, A. Lee, C. Manach, L. Rios, C. Morand, A. Scalbert, and C. 
Rémésy, Br. J. Nutr., 2002, 87, 299–306. 

164. J. L. Donovan, V. Crespy, C. Manach, C. Morand, C. Besson, A. Scalbert, 
and C. Remesy, J. Nutr., 2001, 131, 1753–1757. 

165. T. Shoji, S. Masumoto, N. Moriichi, H. Akiyama, T. Kanda, Y. Ohtake, and Y. 
Goda, J. Agric. Food Chem., 2006, 54, 884–892. 

166. D. Rein, S. Lotito, R. R. Holt, C. L. Keen, H. H. Schmitz, and C. G. Fraga, J. 
Nutr., 2000, 130, 2109S–2114S. 

167. M. N. Clifford, J. J. J. van der Hooft, and A. Crozier, Am. J. Clin. Nutr., 2013, 
98, 1619S–1630S. 

168. F. A. Tomas-Barberan, E. Cienfuegos-Jovellanos, A. Marín, B. Muguerza, A. 
Gil-Izquierdo, B. Cerda, P. Zafrilla, J. Morillas, J. Mulero, A. Ibarra, M. A. 
Pasamar, D. Ramón, and J. C. Espín, J. Agric. Food Chem., 2007, 55, 3926–
3935. 

169. A. Serra, A. Macià, M. P. Romero, N. Anglès, J. R. Morelló, and M. J. Motilva, 
Food Funct., 2011, 2, 562–568. 

170. A. Serra, C. Bladé, L. Arola, A. Macià, and M.-J. Motilva, Br. J. Nutr., 2013, 
110, 1411–20. 

171. A. Ardévol, M. J. Motilva, A. Serra, M. Blay, and M. Pinent, Food Chem., 
2013, 141, 160–166. 

172. H.-H. S. Chow, I. A. Hakim, D. R. Vining, J. A. Crowell, J. Ranger-Moore, W. 
M. Chew, C. A. Celaya, S. R. Rodney, Y. Hara, and D. S. Alberts, Clin. 
Cancer Res., 2005, 11, 4627–33. 

173. E. Roura, M. P. Almajano, M. L. M. Bilbao, C. Andrés-Lacueva, R. Estruch, 
and R. M. Lamuela-Raventós, Free Radic. Res., 2015. 

174. F. Sánchez-Patán, M. Monagas, M. V. Moreno-Arribas, and B. Bartolomé, J. 
Agric. Food Chem., 2011, 59, 2241–2247. 



INTRODUCTION 

 49 

175. A. Rodriguez-Mateos, D. Vauzour, C. G. Krueger, D. Shanmuganayagam, J. 
Reed, L. Calani, P. Mena, D. Del Rio, and A. Crozier, Arch. Toxicol., 2014, 88, 
1803–1853. 

176. V. Ugartondo, M. Mitjans, J. L. Torres, and M. P. Vinardell, J. Agric. Food 
Chem., 2009, 57, 4459–65. 

177. V. Martínez, V. Ugartondo, M. P. Vinardell, J. L. Torres, and M. Mitjans, J. 
Agric. Food Chem., 2012, 60, 4090–5. 

178. J.-H. Moon, R. Nakata, S. Oshima, T. Inakuma, and J. Terao, Am J Physiol 
Regul. Integr. Comp Physiol, 2000, 279, R461–467. 

179. M. D’Archivio, C. Filesi, R. Di Benedetto, R. Gargiulo, C. Giovannini, and R. 
Masella, Ann. Ist. Super. Sanita, 2007, 43, 348–361. 

180. Y. C. Hou, S. P. Lin, S. Y. Tsai, M. H. Ko, Y. C. Chang, and P. D. L. Chao, 
Planta Med., 2011, 77, 455–60. 

181. C. Andres-Lacueva, M. T. Macarulla, M. Rotches-Ribalta, M. Boto-Ordóñez, 
M. Urpi-Sarda, V. M. Rodríguez, and M. P. Portillo, J. Agric. Food Chem., 
2012, 60, 4833–40. 

182. M. Azzolini, M. La Spina, A. Mattarei, C. Paradisi, M. Zoratti, and L. Biasutto, 
Mol. Nutr. Food Res., 2014, 58, 2122–32. 

183. F. Perez-Vizcaino, J. Duarte, and C. Santos-Buelga, J. Sci. Food Agric., 
2012, 92, 1822–5. 

184. M. Ohara and Y. Ohyama, Curr. Drug Metab., 2014, 15, 37–47. 

185. L. Guerrero, J. Castillo, M. Quiñones, S. Garcia-Vallvé, L. Arola, G. Pujadas, 
and B. Muguerza, PLoS One, 2012, 7, e49493. 

186. D. Amic, D. Davidovic-Amic, D. Beslo, V. Rastija, B. Lucic, and N. Trinajstic, 
Curr. Med. Chem., 2007, 14, 827–845. 

187. R. Mateos, A. Madrona, G. Pereira-Caro, V. Domínguez, R. M. A. Cert, J. 
Parrado, B. Sarriá, L. Bravo, and J. L. Espartero, Food Chem., 2015, 173, 
313–20. 

188. J. Xiao, X. Ni, G. Kai, and X. Chen, Crit. Rev. Food Sci. Nutr., 2015, 55, 16–
31. 

189. K. Azuma, K. Ippoushi, H. Ito, H. Higashio, and J. Terao, J. Agric. Food 
Chem., 2002, 50, 1706–1712. 

190. L. Bravo, R. Abia, and F. Saura-Calixto, J. Agric. Food Chem., 1994, 42, 
1481–1487. 

191. M. Karonen, J. Loponen, V. Ossipov, and K. Pihlaja, Anal. Chim. Acta, 2004, 
522, 105–112. 

192. J. Pérez-Jiménez, M. E. Díaz-Rubio, and F. Saura-Calixto, Nutr. Res. Rev., 
2013, 26, 118–29. 

193. E. Roura, C. Andrés-Lacueva, R. Estruch, M. Lourdes Mata Bilbao, M. 
Izquierdo-Pulido, and R. M. Lamuela-Raventós, Br. J. Nutr., 2008, 100, 846–
51. 

194. X. Meng, P. Maliakal, H. Lu, M.-J. Lee, and C. S. Yang, J. Agric. Food Chem., 
2004, 52, 935–42. 



INTRODUCTION 

 50 

195. N. Ortega, J. Reguant, M.-P. Romero, A. Macià, and M.-J. Motilva, J. Agric. 
Food Chem., 2009, 57, 5743–9. 

196. A. Rodriguez-Mateos, C. Rendeiro, T. Bergillos-Meca, S. Tabatabaee, T. W. 
George, C. Heiss, and J. P. Spencer, Am. J. Clin. Nutr., 2013, 98, 1179–
1191. 

197. D. M. Goldberg, J. Yan, and G. J. Soleas, Clin. Biochem., 2003, 36, 79–87. 

198. R. Leenen, A. J. Roodenburg, L. B. Tijburg, and S. A. Wiseman, Eur. J. Clin. 
Nutr., 2000, 54, 87–92. 

199. M. Serafini, A. Ghiselli, and A. Ferro-Luzzi, Eur. J. Clin. Nutr., 1996, 50, 28–
32. 

200. N. Dhankher and B. M. Chauhan, J. Food Sci., 1987, 52, 828–829. 

201. A. Rawson, M. B. Hossain, A. Patras, M. Tuohy, and N. Brunton, Food Res. 
Int., 2013, 50, 513–518. 

202. M. MichaIczyk, R. Macura, and I. Matuszak, J. Food Process. Preserv., 2009, 
33, 11–21. 

203. M. Şengül, H. Yildiz, and A. Kavaz, Int. J. Food Prop., 2013, 17, 481–490. 

204. M. Porrini, P. Riso, and G. Testolin, Br. J. Nutr. (United Kingdom), 1998. 

205. R. Mrad, M. Rouphael, R. G. Maroun, and N. Louka, LWT - Food Sci. 
Technol., 2014, 59, 874–882. 

206. J. A. Rothwell, J. Perez-Jimenez, V. Neveu, A. Medina-Remón, N. M’hiri, P. 
García-Lobato, C. Manach, C. Knox, R. Eisner, D. S. Wishart, and A. 
Scalbert, Database (Oxford)., 2013, 2013, bat070. 

207. E. J. Calabrese and L. A. Baldwin, Hum. Exp. Toxicol., 2002, 21, 91–97. 

208. D. P. Hayes, Eur. J. Clin. Nutr., 2007, 61, 147–59. 

209. E. J. Calabrese, J. W. Staudenmayer, and E. J. Stanek, Curr. Opin. Drug 
Discov. Devel., 2006, 9, 117–23. 

210. V. Calabrese, C. Cornelius, A. Trovato-Salinaro, M. Cambria, M. Locascio, L. 
Rienzo, D. Condorelli, C. Mancuso, A. De Lorenzo, and E. Calabrese, Curr. 
Pharm. Des., 2010, 16, 877–883. 

211. F. Visioli, C. Galli, F. Bornet, A. Mattei, R. Patelli, G. Galli, and D. Caruso, 
FEBS Lett., 2000, 468, 159–160. 

212. M. Kanai, A. Imaizumi, Y. Otsuka, H. Sasaki, M. Hashiguchi, K. Tsujiko, S. 
Matsumoto, H. Ishiguro, and T. Chiba, Cancer Chemother. Pharmacol., 2012, 
69, 65–70. 

213. M. Abd el Aziz, M. El-Asmer, A. Rezq, A. Al-Malki, T. Kumosani, H. Fouad, H. 
Ahmed, F. Taha, A. Hassouna, and H. Hafez, Biofactors, 40, 132–7. 

214. C. Gutierrez-Merino, C. Lopez-Sanchez, R. Lagoa, A. K. Samhan-Arias, C. 
Bueno, and V. Garcia-Martinez, Curr. Med. Chem., 2011, 18, 1195–1212. 

215. J. L. Donovan, C. Manach, R. M. Faulks, and P. A. Kroon, in Plant Secondary 
Metabolites: Occurrence, Structure and Role in the Human Diet, eds. A. 
Crozier, M. N. Clifford, and H. Ashihara, Blackwell Publishing, Oxford, 2006, 
pp. 303–351. 



INTRODUCTION 

 51 

216. S. Chirumbolo, Hum. Exp. Toxicol., 2011, 30, 2027–30. 

217. L. Baselga-Escudero, A. Arola-Arnal, A. Pascual-Serrano, A. Ribas-Latre, E. 
Casanova, M.-J. Salvadó, L. Arola, and C. Blade, PLoS One, 2013, 8, 
e69817. 

218. M. Pinent, M. Blay, M. C. Bladé, M. J. Salvadó, L. Arola, and A. Ardévol, 
Endocrinology, 2004, 145, 4985–4990. 

219. K. O. Chu, C. C. Wang, C. Y. Chu, K. P. Chan, M. S. Rogers, K. W. Choy, 
and C. P. Pang, J. Pharm. Sci., 2006, 95, 1372–1381. 

220. A. Fernández-Iglesias, D. Pajuelo, H. Quesada, S. Díaz, C. Bladé, L. Arola, 
M. J. Salvadó, and M. Mulero, Mol. Nutr. Food Res., 2014, 58, 727–37. 

221. M. Quiñones, M. Miguel, B. Muguerza, and A. Aleixandre, Food Funct., 2011, 
2, 649–653. 

222. R. Corti, A. J. Flammer, N. K. Hollenberg, and T. F. Lüscher, Circulation, 
2009, 119, 1433–1441. 

223. C. Manach, G. Williamson, C. Morand, A. Scalbert, C. Remesy, and C. 
Rémésy, Am J Clin Nutr, 2005, 81, 230S–242S. 

224. A. Murakami, K. Koshimizu, H. Ohigashi, S. Kuwahara, W. Kuki, Y. 
Takahashi, K. Hosotani, S. Kawahara, and Y. Matsuoka, BioFactors, 2002, 
16, 73–82. 

225. M. A. El-Mohsen, H. Bayele, G. Kuhnle, G. Gibson, E. Debnam, S. K. Srai, C. 
Rice-Evans, and J. P. E. Spencer, Br. J. Nutr., 2007, 96, 62–70. 

226. L. J. Machlin and E. G. Vitamins, Ann. N. Y. Acad. Sci., 1982, 393, 48–60. 

227. M. H. Bickel, Prog. drug Res., 1984, 28, 273–303. 

228. A. A. Mangoni and S. H. D. Jackson, Br. J. Clin. Pharmacol., 2003, 57, 6–14. 

229. U. Klotz, Drug Metab. Rev., 2009, 41, 66–76. 

230. E. Cohen, Y. Nardi, I. Krause, E. Goldberg, G. Milo, M. Garty, and I. Krause, 
J. Nephrol., 2014, 27, 635–641. 

231. H. A. Wynne, L. H. Cope, E. Mutch, M. D. Rawlins, K. W. Woodhouse, and O. 
F. W. James, Hepatology, 1989, 9, 297–301. 

232. T. Fülöp, I. Wórum, J. Csongor, G. Fóris, and A. Leövey, Gerontology, 1985, 
31, 6–14. 

233. J. S. Lee, W. O. Ward, D. C. Wolf, J. W. Allen, C. Mills, M. J. DeVito, and J. 
C. Corton, Toxicol. Sci., 2008, 106, 263–83. 

234. L. B. Lovat, Gut, 1996, 38, 306–309. 

235. B. E. Gidal, Epilepsy Res., 2006, 68 Suppl 1, S65–9. 

236. M. Hopkins and G. Macfarlane, J. Med. Microbiol., 2002, 51, 448–454. 

237. M. Hopkins, M. Sharp, and G. Macfarlane, Gut, 2001, 48, 198–205. 

238. M. J. Claesson, S. Cusack, O. O’Sullivan, R. Greene-Diniz, H. de Weerd, E. 
Flannery, J. R. Marchesi, D. Falush, T. Dinan, G. Fitzgerald, C. Stanton, D. 
van Sinderen, M. O’Connor, N. Harnedy, K. O’Connor, C. Henry, D. 
O’Mahony, A. P. Fitzgerald, F. Shanahan, C. Twomey, C. Hill, R. P. Ross, 



INTRODUCTION 

 52 

and P. W. O’Toole, Proc. Natl. Acad. Sci. U. S. A., 2011, 108 Suppl, 4586–
4591. 

239. K. M. Pate, M. Rogers, and M. Moss, Biophys. J., 2015, 108, 66a. 

240. S. E. Chastain and M. Moss, Biophys. J., 2015, 108, 357a. 

241. V. Tapias, J. R. Cannon, and J. T. Greenamyre, Neurobiol. Aging, 2014, 35, 
1162–76. 

242. A. Rodriguez-Mateos, T. Cifuentes-Gomez, I. Gonzalez-Salvador, J. I. 
Ottaviani, H. Schroeter, M. Kelm, C. Heiss, and J. P. E. Spencer, Mol. Nutr. 
Food Res., 2015, in press. 

243. C. A. Mugford and G. L. Kedderis, Drug Metab. Rev., 1998, 30, 441–498. 

244. D. D. Federman, N. Engl. J. Med., 2006, 354, 1507–1514. 

245. O. Varlamov, C. L. Bethea, and C. T. Roberts, Front. Endocrinol. (Lausanne)., 
2014, 5, 241. 

246. P. J. Harrison and E. M. Tunbridge, Neuropsychopharmacology, 2007, 33, 
3037–3045. 

247. K. Yahagi, H. R. Davis, E. Arbustini, and R. Virmani, Atherosclerosis, 2015, 
239, 260–267. 

248. H. B. Liu, K. K. Loo, K. Palaszynski, J. Ashouri, D. B. Lubahn, and R. R. 
Voskuhl, J. Immunol., 2003, 171, 6936–6940. 

249. B. Taylor, H. M. Irving, D. Baliunas, M. Roerecke, J. Patra, S. Mohapatra, and 
J. Rehm, Addiction, 2009, 104, 1981–1990. 

250. J. D. DeBethizy and J. R. Hayes, in Principles and Methods of Toxicology, ed. 
W. A. Hayes, Raven Press, New York, NY, 3rd edn., 1994, pp. 59–100. 

251. S. Dawling, N. Roodi, R. L. Mernaugh, X. Wang, and F. F. Parl, Cancer Res., 
2001, 61, 6716–22. 

252. R. S. Chhabra and J. R. Fouts, Drug Metab. Dispos., 1974, 2, 375–9. 

253. M. Kojima and M. Degawa, Drug Metab. Pharmacokinet., 2014, 29, 192–197. 

254. Y. Alnouti and C. D. Klaassen, Xenobiotica., 2011, 41, 187–97. 

255. J. Lee, S. E. Ebeler, J. A. Zweigenbaum, and A. E. Mitchell, J. Agric. Food 
Chem., 2012, 60, 8510–20. 

256. R. W. Dellinger, A. M. G. Garcia, and F. L. Meyskens, Jr., Drug Metab. 
Pharmacokinet., 2014, 29, 112–119. 

257. S. A. Isezuo, S. L. H. Badung, and A. B. O. Omotoso, J. Natl. Med. Assoc., 
2003, 95, 328–334. 

258. M. Tesauro and C. Cardillo, Acta Physiol., 2011, 203, 279–286. 

259. A. D. Dobrian, M. J. Davies, S. D. Schriver, T. J. Lauterio, and R. L. Prewitt, 
Hypertension, 2001, 37, 554–560. 

260. B. P. Sampey, A. M. Vanhoose, H. M. Winfield, A. J. Freemerman, M. J. 
Muehlbauer, P. T. Fueger, C. B. Newgard, and L. Makowski, Obesity (Silver 
Spring)., 2011, 19, 1109–17. 

261. M. D. Merrell and N. J. Cherrington, Drug Metab. Rev., 2011, 43, 317–134. 



INTRODUCTION 

 53 

262. S. Bolca, T. Van de Wiele, and S. Possemiers, Curr. Opin. Biotechnol., 2013, 
24, 220–225. 

263. M. Li, B. Wang, M. Zhang, M. Rantalainen, S. Wang, H. Zhou, Y. Zhang, J. 
Shen, X. Pang, M. Zhang, H. Wei, Y. Chen, H. Lu, J. Zuo, M. Su, Y. Qiu, W. 
Jia, C. Xiao, L. M. Smith, S. Yang, E. Holmes, H. Tang, G. Zhao, J. K. 
Nicholson, L. Li, and L. Zhao, Proc. Natl. Acad. Sci. U. S. A., 2008, 105, 
2117–22. 

264. R. Calvani, A. Miccheli, G. Capuani, A. Tomassini Miccheli, C. Puccetti, M. 
Delfini, A. Iaconelli, G. Nanni, and G. Mingrone, Int. J. Obes. (Lond)., 2010, 
34, 1095–8. 

265. J. K. Nicholson, E. Holmes, and I. D. Wilson, Nat. Rev. Microbiol., 2005, 3, 
431–8. 

266. P. J. Turnbaugh, V. K. Ridaura, J. J. Faith, F. E. Rey, R. Knight, and J. I. 
Gordon, Sci. Transl. Med., 2009, 1, 6ra14. 

267. B. A. Petriz, A. P. Castro, J. A. Almeida, C. P. Gomes, G. R. Fernandes, R. H. 
Kruger, R. W. Pereira, and O. L. Franco, BMC Genomics, 2014, 15, 511. 

268. G. Musso, R. Gambino, and M. Cassader, Annu. Rev. Med., 2011, 62, 361–
80. 

269. E. Holmes, J. V Li, J. R. Marchesi, and J. K. Nicholson, Cell Metab., 2012, 16, 
559–64. 

270. A. L. Kau, P. P. Ahern, N. W. Griffin, A. L. Goodman, and J. I. Gordon, 
Nature, 2011, 474, 327–36. 

271. L. C. Phua, X. P. Chue, P. K. Koh, P. Y. Cheah, H. K. Ho, and E. C. Y. Chan, 
Cancer Biol. Ther., 2014, 15, 389–97. 

272. A. Viveros, S. Chamorro, M. Pizarro, I. Arija, C. Centeno, and A. Brenes, 
Poult. Sci., 2011, 90, 566–78. 

273. F. Cardona, C. Andrés-Lacueva, S. Tulipani, F. J. Tinahones, and M. I. 
Queipo-Ortuño, J. Nutr. Biochem., 2013, 24, 1415–1422. 

274. A. Duda-Chodak, T. Tarko, P. Satora, and P. Sroka, Eur. J. Nutr., 2015, 54, 
325–41. 

275. D. Bialonska, S. G. Kasimsetty, S. I. Khan, and D. Ferreira, J. Agric. Food 
Chem., 2009, 57, 10181–6. 

276. H. Ishimoto, A. Tai, M. Yoshimura, Y. Amakura, T. Yoshida, T. Hatano, and H. 
Ito, Biosci. Biotechnol. Biochem., 2012, 76, 395–9. 

277. P. B. Crino, H. Miyata, and H. V. Vinters, Brain Pathol., 2006, 12, 212–233. 

278. A. M. Kulminski, K. G. Arbeev, I. Culminskaya, S. V Ukraintseva, E. Stallard, 
M. A. Province, and A. I. Yashin, Rejuvenation Res., 2015, 18, 128–35.  

 



 

 

 



 

 

 

 

 

 
!
!
!

BOOK CHAPTER: 
Analytical Methods for the Identification of 

Physiologically Bioactive Forms of Food 
Flavonoids  

Anna Arola-Arnal1*, Manuel Suárez1, Maria Margalef1, Gerard Aragonès1, 
Lluís Arola1, 2, Cinta Blade1, And Begoña Muguerza1, 2  

1Nutrigenomic Research Group Department of Biochemistry and 
Biotechnology, Universitat Rovira i Virgili, Tarragona, Spain. 

2 
Centre 

Tecnològic de Nutrició i Salut (CTNS), TECNIO, CEICS, Catalonia, Spain  
 

Recent progress in medical plants. Vol.40. Favonoids and Antioxidants. 

 In press. 



 

 

 

 

 

!



BOOK CHAPTER 

57 

2 RPMP Vol. 40—Flavonoids and Antioxidants

1. INTRODUCTION

Polyphenols are plant secondary metabolites that form one of the major
groups of phytochemicals. These compounds are widely dispersed
throughout the plant kingdom and are ubiquitous constituents of fruits,
vegetables, cereals, olives, dry legumes, chocolate and beverages such as
tea and wine. Polyphenols are divided into flavonoids and non-flavonoids.
The non-flavonoid group includes several subfamilies depending on the
number of phenol rings that they contain and the structural elements that
bind these rings to one another. According to the basic structure of their
skeletons, they can be differentiated in phenolic acids, acetophenones and
phenylacetic acid, hydroxycinnamic acids and coumarins, naphthoquinones,
xanthones and stilbenes (reviewed by Crozier et al., 2009). Flavonoids (from
the Latin word flavus for “yellow”) are the largest group of phenolic
compounds; more than 6,500 flavonoids have been identified.

2. FLAVONOID CLASSIFICATION

The chemical structure of flavonoids is based on a nucleus of three phenolic
rings referred to as A, B, and C rings (Fig. 1). Specifically, the flavonoid
basic structure is a 2-phenyl benzopyrone in which the three-carbon bridge
between the phenyl groups is usually a cyclised oxygen. Flavonoids can be
differentiated into 6 subfamilies according to their degree of unsaturation
and the oxidation level of the oxygenated heterocycle. Flavanols (essentially,
flavan-3-ols) and anthocyanidins have a heterocyclic pyran as their C ring
and are the most relevant for the human diet. In contrast, flavonols,
flavones, flavanones and isoflavones have a pyrone as their C ring (Aherne
and O’Brien, 2002).

In addition, the basic flavonoid skeleton can undergo numerous
substitutions, including glycosylation, hydrogenation, hydroxylation,
malonylation, methylation, and sulphation. Hydroxyl groups are usually
present at the 4-, 5- and 7-positions, sulphate groups and glycosides increase
the water solubility of flavonoids. In contrast, methyl and isopentyl groups
make flavonoids lipophilic. Flavonoid molecules that are not attached to
sugar moieties are referred to as being in the aglycone form, whereas
flavonoid molecules attached to sugar moieties are called flavonoid
glycosides.

Finally, different studies have revealed the important role that the
structure of flavonoid molecules plays in their biological function; the
position and number of substitutions in the flavonoid basic structure
significantly affect the antiproliferative, cytotoxic, antioxidant, anti-
inflammatory and anti-enzymatic activities of such compounds (Amic et
al., 2007; Guerrero et al., 2012).
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Fig. 1: Structures of the different subfamilies of flavonoids.
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berries or cocoa flavonoids lowered the blood pressure (BP), whereas
administration of hesperidin or epigallocatechingallate (EGCG) had no
effect. In animal studies, a reduction in BP appears to be mechanistically
related to improved endothelial function and increased NO bioavailability
induced by flavonoids (Galleano et al., 2012).

Flavonoid-rich foods and extracts have been shown to reduce the levels
of plasma triglycerides (TG), total cholesterol and low-density lipoprotein
(LDL)-cholesterol in humans with metabolic syndromes and in rodents
(Bladé et al., 2010). In addition, a grape seed proanthocyanidin extract
(GSPE) reduces plasma TG, apolipoprotein B and LDL-cholesterol
concentrations in healthy rats given an acute oral dose (Del Bas et al.,
2005) and in dyslipidemic rats after chronic administration (Quesada et
al., 2009). This hypolipidemic effect of GSPE is mainly due to the activation
of the nuclear receptor farnesoid-X-receptor (FXR) in the liver, which
favours fatty acid oxidation over triglyceride synthesis (Del Bas et al., 2009).

Recently, miRNAs have also been described as molecular mechanisms
by which flavonoids regulate lipid metabolism. Specifically,
proanthocyanidins, EGCG and quercetin repress miR-33a and/or miR-122,
two miRNAs that control lipid metabolism. Using Nuclear Magnetic
Resonance, it has been evidenced that flavonoids bind directly to these
miRNAs and that the binding features depend on the flavonoid’s chemical
structure (Baselga-Escudero et al., 2014).

Epidemiological, animal and in vitro studies support the beneficial effects
of dietary flavonoids on glucose homeostasis (Wedick et al., 2012).
Interestingly, some flavonoids have the same potency as the anti-diabetic
drugs habitually used in clinics, encouraging the study of the activity of
these compounds and their metabolites. Flavonoids exert their anti-diabetic
effects by targeting cellular signalling pathways in different organs involved
in glucose homeostasis, such as the pancreas, liver, skeletal muscle and
white adipose tissue (Babu et al., 2013). Specifically, flavan-3-ols,
flavanones, anthocyanidins, flavonols, flavones and isoflavones improve
glucose homeostasis through several mechanisms; they increase insulin
secretion by pancreatic b-cells, lower hyperglycaemia by repressing glucose
production in hepatocytes and/or reducing insulin resistance and enhance
glucose uptake in muscle and adipose tissue. The inhibition of intestinal
starch digestion by specific flavonoids, such as quercetin, may also
contribute to the anti-diabetic effect (Li et al., 2009). Additional anti-diabetic
activities have been described for flavonoids; for example,
proanthocyanidins are defined as short-lived insulin mimetics in rats
(Pinent et al., 2012).

Many studies have focused on flavonoid protection against cancer. A
meta-analysis study (Hui et al., 2013) shows that the intake of flavonols
and flavones, but not flavan-3-ols, flavanones, anthocyanins or total
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3. FLAVONOIDS AND THEIR FUNCTIONALITY

Epidemiological studies support that flavonoid-rich diets are associated
with a low incidence of chronic diseases, such as cardiovascular diseases
(CVD), type II diabetes, neurodegenerative diseases, and cancer. However,
as the majority of human studies have examined flavonoids in flavonoid-
rich food and fruits and vegetables contain additional nutrients and
phytochemicals that could impact the results, it is difficult to conclude
whether the beneficial effects can be directly attributed to a specific
flavonoid or food.

The best-described functionality of flavonoids is their antioxidant activity
by which they suppress the formation of reactive oxygen species (ROS),
scavenge ROS and enhance the antioxidant defences. However, it is now
recognised that the roles of the majority of flavonoids go beyond their
antioxidant properties and involve the targeting of cell signalling pathways
and epigenetic factors, such as DNA methylation, histone modifications
and mi(cro)RNAs (Bladé et al., 2013). Because flavonoids are poorly
absorbed, some authors suggest that they provide health benefits by
regulating the metabolism of gut microbiota, which in turn, modulates the
host metabolism (Lu et al., 2013).

Systematic reviews of prospective cohort studies indicate that the intake
of anthocyanidins, flavonols, flavones, flavanones, proanthocyanidins and
flavan-3-ols significantly reduces the risk (Wang et al., 2014) and mortality
(McCullough et al., 2012) of CVD. However, in young and middle-aged
women, only anthocyanin intake, is significantly associated with a reduced
risk of myocardial infarction (Cassidy et al., 2013). Therefore, it seems that
the effectiveness of specific flavonoids in protecting from CVD is dependent
on the age of the target population. This cardiovascular protection has been
ascribed to the capacity of flavonoids to reduce the risk factors associated
with CVD, such as endothelial dysfunction and inflammation, hypertension,
dyslipidemia, obesity and diabetes.

Endothelial dysfunction is an important and independent predictor of
the future development of CVD and dietary flavonoids can improve this
situation. For instance, meta-analysis studies show that the endothelial
function, measured as flow-mediated dilation is significantly improved after
the ingestion of grape polyphenols (Li et al., 2013) or isoflavones (Beavers
et al. 2012). In this respect, a pleiotropic effect of some flavonoids on
endothelial function has been described, which increases the bioavailability
of nitric oxide (NO), prevents endothelial cell apoptosis, and reduces
inflammation (Dayoub et al., 2013).

The effects of flavonoids on hypertension are well documented and their
effectiveness is dependent on the molecule’s chemical structure. For
example, in subjects with metabolic syndrome, supplementation with
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flavonoids is associated with a reduced risk of breast cancer, especially
among post-menopausal women. In contrast, there is no evidence that
dietary flavonoids lower the risk of stomach and colorectal cancer (Jin et
al., 2012; Woo and Kim, 2013). Several studies note that flavonoids interfere
with cancer initiation, promotion and progression by targeting receptors
and different components of cellular signal transduction pathways involved
in tumour growth and metastasis. Specifically, flavonoids target different
protein kinases, such as tyrosine kinases, protein serine-threonine kinases,
and cyclin-dependent kinases, inhibiting their activity. Notably, the many
cancer-inhibiting activities ascribed to flavonoids have presented them as
potential new anti-cancer agents that may replace traditional
chemotherapy, and flavonoids are currently investigated in the treatment
of ovarian, breast, cervical, pancreatic, and prostate cancers (Ravishankar
et al., 2013). Additionally, quercetin and genistein have entered late-phase
clinical trials for several oncological indications (Lazarevic et al., 2011).

Finally, recent epidemiological studies show that increased fruit and
vegetable intake is associated with an improvement in cognitive function
and reduced risk from age-related neurodegenerative diseases, which are
largely attributable to high flavonoid intake (Tangney et al., 2011). Although
flavonoids are poorly absorbed, they have been found in the brain, indicating
that they can cross the hematoencephalic barrier (Arola-Arnal et al., 2013).
In the brain, flavonoids prevent neurodegeneration, inhibit
neuroinflammation and reduce age-related cognitive decline. This occurs
through the activation of signalling pathways that are critical for controlling
synaptic plasticity and for inducing vascular effects, which promote the
growth of new nerve cells in the hippocampus (Rendeiro et al., 2012).

4. FLAVONOID METABOLISM AND BIOAVAILABILITY

Flavonoids are known to be poorly absorbed and to be recognised by the
body as xenobiotics; in the body, they undergo several modifications, which
are most likely intended to increase their water solubility and facilitate
their elimination. Hence, to associate flavonoids with their health effects,
it is necessary to understand how these compounds are absorbed,
metabolised and distributed throughout the body. However, polyphenols,
and flavonoids in particular, have a great diversity of chemical structures
and molecular weights (degrees of polymerisation), which highly influence
their absorption with the monomeric forms having higher bioavailability.

After an acute ingestion, some flavonoids, which are normally
glycosidated in plants are hydrolysed and absorbed in the small intestine
(Fig. 2). These compounds are thought to be hydrolysed in the limit of the
epithelial cells by the catalysis of cytosolic b-glucosidase (CBG) and enter
into the cells as aglycones by passive diffusion (Day et al., 2000). Another
possible mechanism is that conjugated flavonoids are transported into
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epithelial cells by the sodium-dependent glucose transporter 1 (SGLT1)

and hydrolysed within the cells by the action of CBG (Gee et al., 2000).

Once in the enterocytes, the aglycone flavonoids are rapidly conjugated to

form sulphated, glucuronidated and methylated derivatives – by the action

of the phase II enzymes sulphotransferases (SULTs), uridine-5’-diphosphate

glucuronosyltransferases (UGT) and catechol-O-methyltransferases

(COMTs), respectively – to reach the portal bloodstream. In the liver, the

flavonoids are further subjected to phase II metabolism, excreted via bilis

to the intestinal lumen and/or redirected to the systemic circulation to be

distributed throughout the body (Del Rio et al., 2013).

Those flavonoids forms that cannot be absorbed in the small intestine

are known to reach the colon after passing intact throughout the

gastrointestinal tract. The forms that are not absorbed in the small intestine

are mainly proanthocyanidins (i.e., degree of polymerisation greater than 3)

and those glucosides that are resistant to the action oflactase-phlorizin

hydrolase (LPH) or CBG. In fact, it is estimated that 90-95% of the dietary

polyphenols are able to reach the colon, where they are transformed by

microbial catabolism (Clifford, 2004). Thus, the colon, is an important organ

for the metabolism of flavonoids, and has a great diversity of microbial

populations either obligatory or facultative anaerobes (Bacteriodes,

Bifidobacterium, Enterobacteriaceae and Clostridium), that are responsible

of degrading the non-digested food matrix and turning its components in

microbial metabolites (Manichanh et al., 2010). The metabolites conjugating

moieties are cleaved and the oligomers undergo an interflavanic link cleavage

to produce monomers. After that, a wide range of enzymes produced by the

gut bacteria can hydrolyse, reduce, dehydroxylate, decarboxylate and

demethylate several polyphenolic functional groups; these are thus converted

into different low-molecular weight metabolites, such as valerolactone-related

compounds, valeric acids, phenylpropionic acids, phenylacetic acids, benzoic

acids and several conjugated phenolic acids (Dall’Asta et al., 2012). Thereafter,

the microbial metabolites can reach the portal circulation through the

transport of the colonocytes to the liver. In the liver, the metabolites can be

further subjected to phase II metabolism before entering the systemic

circulation, to finally reach different tissues or be excreted through the urine

(Clifford, 2004). However, it is not yet know the complete catabolic pathway

of flavonoids – and hence all the potential colonic metabolites – due to several

limitations; these include the difference in microbiota composition between

subjects, especially in humans and the limited number of identified human

gut bacteria able to catabolise flavonoids.

The absorption and phase II metabolism of flavonoids are fast, and they

reach the maximal plasma concentrations 1-2 hours post-ingestion (Serra

et al., 2010). Moreover, although polyphenols and their phase II metabolites

are known to be recognised by the body as xenobiotics and thus excreted

mainly via renal (Crozier et al., 2011), several studies in animals have
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demonstrated that at short times post-ingestion, they target most tissues,
such as the liver, kidney, adipose tissues, heart and spleen (Juan et al.,
2010; Serra et al., 2013). Interestingly, flavonoids have also been found in
the brain (Arola-Arnal et al., 2013) and hence are able to cross the blood-
brain barrier. However, further studies are needed to understand the details
of flavonoid metabolism and bioavaiability. For instance, it is not completely
understood how flavonoids and their metabolites travel through the blood;
this can be clarified by using pure labelled compounds. It is also largely
unknown how these compounds enter into different cells. It has been
suggested that the organic anionic transporter polypeptide 2 (OATP2) is
involved in the absorption of flavonoids and their conjugated forms into
hepatocytes and that the multi-resistant protein 2 (MRP2) is involved in
their efflux into the bile (König et al., 1999). Therefore, it seems that the
tissue uptake of these compounds may depend on specific transporters in
the cell membranes. Faria et al., (2011) demonstrated a stereoselective
process involved in crossing the blood-brain barrier for catechin and
epicatechin, suggesting that these compounds have different affinities for
their transporters. This can explain at least in part, the observed tissue
specificity of the compounds.

After phase II and colonic metabolism, the ingested flavonoid forms that
are in the body differ substantially from the original forms present in foods.
Hence, the beneficial health effects attributed to flavonoids could be
potentially due to the action of their metabolites rather than to the original
forms. Moreover, it has also been suggested that as-yet unidentified
flavonoid forms present in plasma may contribute to the health effects of
flavonoids (Manach et al., 2005).

5. IN VITRO BIOLOGICAL ACTIVITY

As previously mentioned, flavonoids exert multiple beneficial effects and
improve human health. These health effects have been usually tested in
animals and in human trials. However, the studies that aimed to test the
bioactivity of flavonoids and to identify the molecular mechanisms by which
these compound act have mostly utilised cell lines of different tissue origins.
As noted above, the postprandial flavonoid forms that circulate in an
organism are mainly the products of phase II and colonic microbiota
metabolism; yet in vitro analyses of the biological activity of flavonoids
normally utilise the non-metabolised forms, and most of the mechanisms
elucidated in vitro have relied on pure flavonoid compounds or plant
flavonoid-rich extracts. This is due to the difficulty of obtaining the flavonoid
conjugates, especially with plant extracts, which contain more than one
type of such compound. Nevertheless, flavonoid metabolites of colonic
microbiota can be readily obtained, and some studies have clearly shown
the bioactive effects of some gut derivatives on pancreatic beta cells
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(Fernández-Millán et al., 2014), neuronal PC12 cells (Pavlica and Gebhardt,
2010), Caco-2 cells (Forester et al., 2014), human colon cells (Miene et al.,
2011) and HepG2 cells (Baselga-Escudero et al., 2014).

At the moment, little is known about the biological activity and molecular
mechanisms involving flavonoid metabolites, particularly phase II
metabolites. These conjugated forms are chemically and physically distinct
from the aglycone flavonoids and thus also have distinct physiological
behaviour. In this regard, several studies have demonstrated that
conjugated flavonoids exert different bioactive effects in vitro than the non-
metabolised forms. Thus, a weaker estrogenic effect was observed for the
daidzein and genistein glucuronide conjugates than for their aglycones
forms (Zhang et al. 1999), and an endothelial property was demonstrated
for the (+)-catechin phase II metabolites but not for the aglycone flavonoid
(Koga and Meydani, 2001). Moreover, quercetin-3-O-glucuronide has been
identified as a bioactive compound that reduces b-amyloid peptides in
primary neuronal cultures (Ho et al., 2013). Hence, several recent authors
reported arguments for the use of physiological conjugated flavonoids at
appropriate concentrations, rather than the aglycone forms, for testing
bioactivity in vitro.

A number of in vitro analyses have demonstrated that the conjugated
moieties of flavonoids can be removed by enzymes inside the cells. As shown
by O’Leary et al. (2003), b-glucuronidase, which hydrolyses the glucuronide
group, deglucuronidates quercetin-glucuronide intracellularly in HepG2
cells to form the quercetin-free aglycone. This aglycone form can be further
metabolised to the corresponding glucuronidated, methylated and sulphated
derivatives, before they efflux. In addition,Mukai et al. (2012) showed that
quercetin-glucuronide is deconjugated in Neuro-2a cells. As b-glucuronidase
is known to be present in many human tissues, free aglycone flavonoids
formed inside the cells could be the bioactive forms responsible of the health
properties of flavonoids. Indeed, aglycone quercetin showed a better
antioxidant activity than the glucuronide form in vitro (Mukai et al., 2012).

In summary, it is important to identify the physiological bioactive forms
of flavonoids to further advance polyphenol research. Identifying the specific
flavonoid metabolites present in blood and tissues is crucial for
understanding the biological activities of flavonoids.

6. ANALYTICAL METHODS FOR THE IDENTIFICATION OF
BIOACTIVE FLAVONOIDS

6.1. Traditional Analytical Methods

The identification and quantification of flavonoids and their derived
metabolites in biological samples (from plasma to faeces, including tissues
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such as liver, kidney and adipose tissue) is crucial for determining the fate
of these compounds in the organism after ingestion and absorption.

The first point that is necessary to take into account in the analysis of
flavonoid metabolites is the analytical techniques used in these procedures.
Inspection of the vast literature reveals different methodologies and pieces
of equipment that have been used to conduct these analyses and highlights
the strong relationship between the technological evolution of the equipment
and the enhanced knowledge of these metabolites in the scientific
community. Initially, the derived metabolites were studied by traditional
procedures for identifying phenolic compounds, namely by the use of
capillary electrophoresis (CE), NMR and chromatographic techniques (both
gas and liquid, GC and LC, respectively). However, these analyses were
difficult to perform because of the great complexity of the biological samples,
the high number of possible metabolic forms (glucuronides, sulphates and
methylates, their combinations and the microbial-derived compounds) and
the extremely low concentration of these metabolites in biological samples.

Among these methodologies, CE was the least used because of the
limitations of the equipment used in these procedures, which hindered the
detection of trace metabolites. The major advantage NMR is obtaining
structural information about the metabolites, which is very important for
elucidating the structure of the multiple compounds generated after
flavonoid ingestion. However, the results are compromised by the
complexity of the samples and the use of NMR is therefore limited to isolated
compounds or simple samples.

In general, chromatography has been the method of choice for analysing
flavonoid metabolites, with a clear preference for LC over GC due to the
introduction of more adequate ionisation interfaces in the LC equipment.
Chromatographic equipment can be coupled to a diverse range of detectors,
such as ultraviolet (UV), diode array (DAD), fluorescence (FLD) and mass
spectrometry (MS). The major drawbacks of UV, DAD and FLD are their lower
specificity and accuracy and strong dependence on the correct separation of
the compounds to avoid interference, resulting in a long analysis time in most
cases. This issue was relieved, in part, by improving the chromatographic
separations achieved with the appearance of ultra-performance liquid
chromatography (UPLC). The chromatographic separations techniques are
sometimes neglected, but these are in fact essential for the success of the
analysis. UPLC was developed as a result of an improvement in the packing
materials used for the stationary phases of the columns. It is based on the van
Deemter equation, which shows that, as the particle sizes decreases to less
than 2.5 mm, there is a significant gain in efficiency which does not diminish
at increased flow rates (Barceló-Barrachina et al., 2006). The emergence of
UPLC led to an enhanced signal-to-noise ratio (S/N), a shorter analysis time
and improved peak resolution (Motilva et al., 2013).
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Yet this enhancement of the chromatographic technique was not in itself
sufficient to allow accurate and precise identification of flavonoid
metabolites. To be able to correctly identify and quantify bioactive
compounds in any sample, an authentic reference standard is needed.
However, because commercial standards of the conjugated metabolites are
usually not available, such standards cannot be used. Consequently, the
evolution of the MS detectors and particularly their use in the tandem
mode (MS/MS), had a great impact. In mass spectrometric detection, the
mass-to-charge ratio (m/z) of a bioactive compound is selected for
monitoring, with the exclusion of all the other m/z, thus resulting in high
specificity. This property is even more pronounced when working in the
tandem mass mode, whereby m/z is selected from both parent and daughter
ions, resulting in enhanced specificity and sensitivity. This reduces the
detection and quantification limits and allows quantification of metabolites
at very low concentrations in the samples. All these considerations have
led the scientific community to use detectors such as the triple quadrupole
(TQD), quadrupole coupled to ion trap (Q-TRAP) and quadrupole
hyphenated to time of flight (Q-TOF) in the study of these compounds (Gray
et al., 2010).

The second point that has a strong impact on the analysis of flavonoid
metabolites is the preparation of the samples. Flavonoid metabolites are
distributed in several tissues and therefore, it is necessary to optimise the
extraction methodologies to a diverse range of matrices, of both hydrophilic
and lipophilic nature. In general, liquid-liquid extraction (LLE) is set as a
starting point of the procedures. By this method, the use of organic solvents
(methanol, ethanol, acetone, etc.) allows the liberation and removal of
metabolites from the other components of the matrix, especially proteins.
After that, the samples can be either directly injected into the LC or purified
by solid-phase extraction (SPE). This last procedure is usually the best
choice for removing from the sample non-flavonoid interferences that are
also extracted with the organic solvents. In recent years, the introduction
of microSPE methodologies more suitable for biological samples due to the
lower amount of sample needed allowed not only the removal of
interferences but also concentration of the metabolites, with a consequent
decrease in the limits of detection. Therefore, their use has rapidly expanded
(Suárez et al., 2009; Motilva et al., 2013).

The final important point that should be considered is the lack of
reference standard compounds for the metabolites. Two different
approaches can be followed depending on whether intact metabolites or
free flavonoids need to be identified. These basically differ in the use of
enzymes as a sample pre-treatment prior to the LLE to hydrolyse the bonds
of the flavonoids with the conjugated groups. Thus, sulphates, methylases
and glucuronidases can be used to liberate the intact flavonoids. Following
these procedures, quantification is performed for the total amount of
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flavonoid equivalents distributed in the biological tissue after the ingestion
of a certain amount of sample. However, specific information about the
different metabolites species remains unknown and thus the particular
bioactive forms cannot be identified.

6.2. New Methodologies

The advances in the use of chromatographic analysis have allowed good
characterisation of the forms present in the body following flavonoid intake
and thus of those metabolites that are physiologically relevant. However,
the identification of the bioactive physiological forms of flavonoids is still
ambiguous. As stated above, clear identification requires the use of
physiologically appropriate conjugates of flavonoids in the in vitro analysis
of flavonoid bioactivity. Different approaches can be taken to evaluate the
effects of metabolites. Some researchers have chosen to chemically
synthesise the metabolites and use them both for in vitro studies and as
reference compounds in LC-MS/MS analysis. For example, Actis-Goretta
et al. (2012) synthesised standards of epicatechin sulphates, glucuronides
and O-methylsulphates and used them in LC-MS/MS analysis.

By another approach, the in vitro activity of flavonoids was evaluated
by treating cells with the sera of rats that had been orally administered a
flavonoid-rich extract (Guerrero et al., 2013), which would simulate the
physiological conditions that occur within the body (Fig. 3). Specifically,
this in vivo and in vitro system was used to establish the bioactivity of
flavonoids on de novo lipid synthesis and excretion in HepG2 cells. It is
important to note that the sera metabolites resulted from the metabolization
not only by liver hepatocytes but also by intestinal cells and microbiota.
Therefore, the metabolites used contained all the possible bioactive forms
of flavonoids that were present in the animal sera 2 hours after the
administration of a flavonoid-rich extract. Other researchers have also
treated cell cultures with sera of rats that had been previously administered
the compounds. Recently, the bioactivity of bezafibrate, which is a known
peroxisome proliferator-activated receptor-g ligand, was demonstrated in
HeLa cells using serum and a combined in vivo and in vitro system (del
Bas et al., 2012). In these studies, rats were used as a tool to produce
flavonoid metabolites. These physiological forms were then utilised to treat
cultured cells, allowing the evaluation of the functionality of the bioactive
forms.

It is important to note that before its use for the treatment of cells and
chromatographic analysis, the serum must be semi-purified and pre-
concentrated using microSPE columns. This step is considered crucial for
obtaining highly purified bioactive flavonoids and metabolites for both
chromatographic analysis and in vitro cell treatment.
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Although the combined in vivo and in vitro system was used to test the
functionality of phase II metabolites and some aglycones with a time-point
of 2 hours (Guerrero et al., 2013), this methodology can be a particularly
useful tool for testing the bioactivity of microbial metabolites by employing
serum from rats subjected to a longer treatment with polyphenols. These
studies could be especially relevant, considering the fact that microbial
metabolites are thought to be the forms responsible for a major part of the
health effects of polyphenols.

7. CONCLUSIONS

The impact of the flavonoid forms found in plasma and biological tissues is
very different from that of the original flavonoids present in food sources
because of the rapid conversion of flavonoids into their phase II and
microbial metabolites following absorption. Therefore, in vitro experiments
utilising food flavonoids to study their functionality or mechanism of action
do not necessarily reflect the in vivo situation. Hence, the large amount of
scientific data that has been generated using non-physiologically relevant
forms and/or concentrations of flavonoids may be questionable. In fact, the
most important limitation in current flavonoid research is the use of non-
physiologically relevant compound forms and/or concentrations for
analysing bioactivity. Understanding the bioactivity of flavonoids thus
requires advances in analytical methods to allow the detection and
quantification of all flavonoid metabolites present in biological samples
and the development of in vitro models using physiologically appropriate
conjugates, forms and concentrations of flavonoids that resemble those
observed in tissues after compound intake. This approach is particularly
important when extracts and non-purified compounds are used to treat
cells because the extracts consist of a complex mixture of different molecules.
Moreover, the post-absorption metabolism of the extract mixture, which

Fig. 3: Graphical representation of the in vivo and in vitro system used to test
the lipid-lowering effect of bioactive polyphenols (from Guerrero et al.
2013).
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yields numerous metabolites, makes it impossible to obtain compounds
from other sources that are the same as those in an in vivo organism. The
use of physiologically appropriate conjugates is therefore essential for the
in vitro analysis of flavonoid bioactivity.
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II. HYPOTHESIS AND AIMS 
Flavanols are considered the most abundant flavonoids in the human diet 
and their consumption has been associated with health promoting effects. 
However, their bioactivities are mainly attributed to their metabolic derived 
products. In fact, many of the in vitro studies where polyphenol food extracts 
were used to treat cells have been recently questioned since bioactive forms 
of polyphenols are different from those present in food. In this sense, 
flavonoids are recognized as xenobiotics and undergo phase-II enzymatic 
detoxification. Moreover, they can also reach the colon to be converted into a 
wide variety of low molecular weight compounds.  

Since there are several conditions that can interfere with xenobiotic -and 

therefore flavonoid- metabolism, we hypothesized that external factors like 
quantity and length of flavanol intake and internal factors such as age, 
gender and health state of the host may affect the metabolism, 
bioavailability and tissue distribution of dietary flavanols, influencing 
the physiological bioactivities of these compounds.  

Therefore, the aim of this thesis was to elucidate whether flavanol 
metabolism, bioavailability and tissue distribution were affected by different 
external and internal factors also influencing the bioactivities of these 
compounds.  

The aim of the present research is to elucidate whether metabolism, 
bioavailability and tissue distribution of flavanol are affected by different 
external and internal factors and also influence the bioactivities of these 
compounds. 

In order to assess the established assumption, specific objectives were 
proposed: 
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1. To determinate the colonic flavanol microbial biotransformation in 
rats (Chapter 2) 

 
While flavanol phase-II metabolism was well described, flavanol colonic 
microbial metabolism and pathways were studied mostly by in vitro studies. 
Therefore, it was necessary a proper in vivo flavanol colonic microbial 
biotransformation study to completely elucidate the flavanol metabolism. In 
order to assess this objective two goals were proposed. 
a) To develop and validate a method for the quantification of flavanol plasma 
colonic metabolites [Manuscript 1]. 
b) To determine the colonic biotransformation pathway and the plasma 
temporal appearance of flavanols colonic metabolites [Manuscript 2]. 

 
2. To evaluate external factors affecting flavanol metabolism in rats 

(Chapter 3). 
In order to assess this objective two goals were proposed. 
a) To elucidate whether flavanol metabolism, bioavailability and bioactivity 
differ depending on the flavanol ingested quantity through an in vitro-in vivo 
model using flavanol physiologically appropriate forms and concentrations 
[Manuscript 3] and [Manuscript 4] and if flavanol tissue distribution 
depends on the ingested amount [Manuscript 5]. 
b) To clarify if flavanols can be metabolized and distributed differently 
throughout the body depending on the length of flavanol intake by the 
quantification of flavanols in plasma and tissues after long-term 
administration [Manuscript 6]. 
 

3. To evaluate internal factors affecting flavanol metabolism in rats 
(Chapter 4) 
In order to assess this objective three goals were proposed. 
a) To elucidate whether flavanol metabolism and plasma bioavailability differ 
along time by the age of the host [Manuscript 7]. 
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b) To clarify if gender of the host affects metabolism, plasma bioavailability 
and tissue distribution of flavanols along time [Manuscript 8]. 
c) To assess whether different health conditions lead to different flavanol 
metabolism and bioactivity thought the study of flavanol plasma kinetics in a 
state of disease associated to metabolic syndrome [Manuscript 9] and to 
explore the relationships of flavanol bioactivities with their plasma and aorta 
levels in a genetically associated pathology [Manuscript 10]. 

To achieve all these objectives, different amounts of grape seed flavanols 
under different experimental conditions were administered to rats and the 
plasma and tissue concentrations of flavanols and their metabolites were 
analyzed by HPLC-MS/MS. 
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A Rapid Method to Determine Colonic Microbial Metabolites Derived
from Grape Flavanols in Rat Plasma by Liquid Chromatography−
Tandem Mass Spectrometry
Maria Margalef,† Zara Pons,† Begoña Muguerza,*,†,‡ and Anna Arola-Arnal†

†Nutrigenomic Group, Department of Biochemistry and Biotechnology, Universitat Rovira i Virgili, Tarragona 43007, Spain
‡Centre Tecnolog̀ic de Nutricio ́ i Salut, TECNIO, Campus of International Excellence Southern Catalonia, Reus 43204, Spain

ABSTRACT: This study describes the development and validation of a liquid chromatography−mass spectrometry method for
determination of a large number of flavanol colonic derivatives in biological samples. The method was validated with rat plasma
after the intake of grape seed flavanols. The minimum plasma volume necessary to maintain good recovery values within the
range of 83−110% for all of the standards was determined by micro solid-phase extraction (μ-SPE). In total, 16 commercial
standards were used to measure 30 different phenolic compounds present at low concentration levels (micromolar). The
chromatographic method enabled reliable quantification of plasma colonic flavanol derivatives with low limits of detection and
quantification, achieving values of 0.03 nM and 0.10 nM, respectively. The developed method can be readily applied to determine
all of the flavanol metabolites that are most likely responsible for the majority of biological effects of poorly absorbed flavanols.
KEYWORDS: bioavailability, gut microbial metabolism, colon, polyphenols, proanthocyanidins, flavanols, HPLC-ESI-MS/MS

■ INTRODUCTION

Flavanols are one of the most common groups of polyphenols
in the human diet and are mainly found in fruit, cocoa, tea,
wine, nuts, and beans.1,2 This group of polyphenols exist in
both monomeric (catechin and epicatechin) and oligomeric
(proanthocyanidins or condensed tannins, depending on the
molecular weight) aglycon forms and esterified by gallic acid.3

Flavanols improve human health, and grape flavanols,
specifically, have been shown to possess several health benefits.
In fact, our group has demonstrated that grape seed
proanthocyanidin extract (GSPE) exhibits antioxidant ca-
pacity,4 improves lipid metabolism,5,6 limits adipogenesis,7

acts as an insulin-mimetic agent,8 possesses antihypertensive
effects,9 and reduces inflammation.10

However, the beneficial health properties of polyphenols are
mainly attributed to the compounds derived from their
metabolism.11 Several studies have demonstrated that dietary
polyphenols are xenobiotic and, after their absorption in the
small intestine, follow the common metabolic pathway of
drugs; they undergo phase II enzymatic detoxification with
conjugations in the small intestine and/or in the liver to form
glucurono, methyl, and sulfo conjugates before entering the
bloodstream.12

In addition to absorption of polyphenols in the small
intestine, it is estimated that 90−95% of dietary polyphenols
can reach the colon.12 In the colon, the wide range of enzymes
produced by gut bacteria can hydrolyze several functional
groups; reduce, dehydroxylate, decarboxylate, and demethylate
the polyphenols; and convert them into different low molecular
weight metabolites (valerolactone compounds, valeric acids,
phenylpropionic acids, phenylacetic acids, benzoic acids, and
several conjugated phenolic acids, consecutively) that are able
to be absorbed in situ.12−14 Subsequently, these colonic

metabolites can also be conjugated during metabolism in the
small intestine and/or the liver.
As a consequence, multiple metabolites are potentially

formed after the ingestion of polyphenols, and therefore, the
levels of many of the metabolites in the plasma can be very low.
In addition, due to the numerous interferences and, in many
cases, the limited available volume of these types of samples,
the methodology used to identify these compounds and their
metabolites in biological samples is complex. Thus, pretreat-
ment of the sample to reduce contaminants and preconcentrate
the compounds is necessary.15 The most frequently used
sample pretreatment for polyphenol determination in the
plasma and tissues is off-line microelution solid-phase
extraction (μ-SPE) that allows rapid isolation of the
compounds to be analyzed by use of a reduced sample
volume.15−19 In addition, the analytical method for compound
quantification should guarantee sensitivity, selectivity, and
robustness with low limits of detection (LOD) and
quantification (LOQ) since polyphenols and their metabolites
appear in biological sample at low concentrations and also for
the complexity of the biological samples. SPE and μ-SPE, high-
performance liquid chromatography (HPLC) and ultra-high-
performance liquid chromatography (UHPLC) separation, and
detection by mass spectrometry (MS) are the most common
techniques to identify and quantify polyphenols in biological
samples; UHPLC coupled to tandem triple quadrupole MS
(UHPLC-MS/MS) detection is the most widely used.14,16,17,20

Most human and rat studies have been focused on identifying
flavanols and their phase II metabolites (glucuronide, methyl
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and sulfate forms of monomeric flavanols) after the ingestion of
proanthocyanidins,17,21−25 but only a few studies have been
focused on colonic microbial metabolites and the use of
proanthocyanidins.13,16,20,21,26,27

Therefore, the aim of this study was to develop and validate a
method that uses improved off-line μ-SPE followed by HPLC-
MS/MS detection for quantification of colonic metabolites
derived from grape flavanols in the plasma collected from rats.

■ MATERIALS AND METHODS
Grape Seed Proanthocyanidin Extract. Grape seed proantho-

cyanidin extract (GSPE) was obtained from Les Deŕives Reśiniques et
Terpeńiques (Dax, France). The individual flavanols and phenolic
acids contained in the grape seed extract that were used in this study
are detailed in Table 1 (adapted from Quiñones et al.9).

Chemicals and Reagents. Acetone (HPLC analytical grade),
methanol (HPLC analytical grade), and phosphoric acid were
purchased from Sigma-Aldrich (Barcelona, Spain). Ultrapure water
was obtained from a Milli-Q Advantage A10 system (Madrid, Spain).
Glacial acetic acid was purchased from Panreac (Barcelona, Spain).
(+)-Catechin, (−)-epicatechin, benzoic acid, phloroglucinol, 3-
hydroxybenzoic acid, 4-hydroxybenzoic acid, 3,4-dihydroxybenzoic
acid, 2-(4-hydroxyphenyl)acetic acid, 2-(3,4-dihydroxyphenyl)acetic
acid, 3-(4-hydroxyphenyl)propionic acid, vanillic acid, gallic acid,
hippuric acid, and ferulic acid (all from Fluka/Sigma−Aldrich, Madrid,
Spain) were individually dissolved in methanol at 4000 mg/L.
Procyanidin B2, epigallocatechin gallate (EGCG), and pyrocatechol
(internal standard, IS) (all from Fluka/Sigma−Aldrich, Madrid, Spain)
and 5-(3′,4′-dihydroxyphenyl)-γ-valerolactone (MicroCombiChem
e.K., Wiesbaden, Germany) were individually dissolved in methanol
at 2000 mg/L. All standard stock solutions were prepared every 3
months and stored in dark-glass flasks at −20 °C.
A mixed standard stock solution in methanol of all these

compounds [(+)-catechin, (−)-epicatechin, benzoic acid, phlorogluci-
nol, 3-hydroxybenzoic acid, 4-hydroxybenzoic acid, 3,4-dihydroxyben-
zoic acid, 2-(4-hydroxyphenyl)acetic acid, 2-(3,4-dihydroxyphenyl)-
acetic acid, 3-(4-hydroxyphenyl)propionic acid, vanillic acid, gallic acid,
hippuric acid, ferulic acid, EGCG, and 5-(3′,4′-dihydroxyphenyl)-γ-
valerolactone] at 200 mg/L and procyanidin B2 at 100 mg/L was

prepared weekly and stored in dark-glass flasks at −20 °C. This mixed
standard stock solution was diluted daily to the desired concentration
by use of an acetone/Milli-Q water/acetic acid (70/29.5/0.5 v/v/v)
solution and stored under the same conditions until chromatographic
analysis.

Animal and Plasma Collection. Male Wistar rats, weighing
between 226 and 260 g, were obtained from Charles River
Laboratories (Barcelona, Spain). All of the animals were housed at
22 °C with a light/dark cycle of 12 h (lights on at 9:00 a.m.) and were
fed a standard chow diet (AO4, Panlab, Barcelona, Spain) ad libitum
during the experiment. The animals were randomly divided into two
groups: the control group (n = 6) and the GSPE group (n = 6). On
the day of the experiment, the rats were starved for 12 h. To the GSPE
group, a dose of 1000 mg of GSPE/kg of body weight (1 mL) was
administered by oral gavage. Water (1 mL) was orally administered to
the control group. In both groups, oral administration was performed
by gastric intubation to the fasted rats between 9:00 and 10:00 a.m.
Blood samples were obtained via saphenous vein extraction by use of
heparin vials (Starsted, Barcelona, Spain) 7 h after GSPE or water
administration. Plasma samples were obtained by centrifugation
(2000g, 15 min, 4 °C). The plasma was pooled (n = 6) to obtain
sufficient sample volume to perform three replicate chromatographic
analyses. The pooled plasma samples were stored at −80 °C until
chromatographic analysis was performed. The study was performed in
accordance with the institutional guidelines for the care and use of
laboratory animals, and the experimental procedures were approved by
the Ethical Committee for Animal Experimentation of Universitat
Rovira i Virgili.

Off-line μ-SPE Extraction. Optimization of Plasma Volume. To
determine the minimum sample volume with good recovery values,
four different spiked blank plasma volumes were tested (350, 250, 200,
and 150 μL) at three different levels of concentration (50, 500, and
5000 μg/mL) for all the standards. Briefly, the Oasis HLB μ-Elution
Plates 30 μm (Waters, Barcelona, Spain) were conditioned
sequentially with 250 μL of methanol and 250 μL of 0.2% acetic
acid. To ensure full contact of the compounds with the sorbent
column, plasma aliquots were mixed with different volumes of 4%
phosphoric acid (300 μL for 350- and 250-μL plasma samples, 350 μL
for 200-μL plasma sample, and 400 μL for 150-μL plasma sample) and
50 μL of IS (200 μg/mL). The loaded plates were washed with 200 μL
of Milli-Q water and 200 μL of 0.2% acetic acid. The retained
polyphenols were then eluted with 2 × 50 μL of acetone/Milli-Q
water/acetic acid solution (70/29.5/0.5 v/v/v). The eluted solution
was directly injected into the HPLC-MS/MS.

Optimization of Cleanup Steps. The cleanup steps were further
evaluated following the procedure described under Optimization of
Plasma Volume) for a plasma volume of 250 μL. In this case, the
loaded plates were washed with 100 μL each or 150 μL each of Milli-Q
water and 0.2% acetic acid.

Optimization of Elution Steps. The elution steps were further
evaluated following the procedure described under Optimization of
Plasma Volume for a plasma volume of 250 μL. In this case, the
retained polyphenols were eluted with 2 × 25 μL of acetone/Milli-Q
water/acetic acid solution (70/29.5/0.5 v/v/v).

Plasma Flavanol Metabolite Extraction. Prior to extraction, the
plasma samples were centrifuged (1500g, 5 min, 4 °C) to remove
aggregates. The plasma extraction was performed by off-line μ-SPE as
described under Optimization of Plasma Volume for a plasma volume
of 250 μL The eluted solution was directly injected into the HPLC-
MS/MS.

Analysis of Plasma Flavanols and Their Metabolites.
Instrumental Conditions. The HPLC system consisted of a 1200
LC Series (Agilent Technologies, Palo Alto, CA) using Zorbax SB-Aq
(150 mm × 2.1 mm i.d., 3.5 μm particle size) chromatographic
column, from Agilent Technologies, Palo Alto, CA. The mobile phase
was 0.2% acetic acid (solvent A) and acetonitrile (solvent B). The flow
rate was 0.4 mL/min. The elution gradient was 5−55% B (0−10 min),
55−80% B (10−12 min), 80% B isocratic (12−15 min), and 80−5% B
(15−16 min). A 10 min post run was applied. The sample injection
volume used was 2.5 μL.

Table 1. Individual Phenolic Compounds of Grape Seed
Proanthocyanidin Extract (Flavanols and Phenolic Acids)a

compd concnb (mg/g)

catechin 90.7 ± 7.6
epicatechin 55.0 ± 0.8
procyanidin dimerc 144.2 ± 32.2
procyanidin trimerc 28.4 ± 2.0
procyanidin tetramerc 2.0 ± 0.2
dimer gallated 39.7 ± 7.1
epigallocatechin gallate 0.4 ± 0.1
epicatechin gallated 55.3 ± 1.5
p-coumaric acid 0.1 ± 0.0
gallic acid 17.7 ± 2.0
3,4-dihydroxybenzoic acid 1.0 ± 0.1
vanillic acid 0.1 ± 0.0
quercetin 0.3 ± 0.0
quercetin 3-O-gallate 0.2 ± 0.0
naringenin 7-glucoside 0.1 ± 0.0
kaempferol 3-glucoside 0.1 ± 0.0

aDetermined by reverse-phase HPLC-ESI-MS/TOF. Values are
expressed as milligrams of compound per gram of fresh extract and
are the means of three samples. bData adapted from Quiñones et al.9
cQuantified by use of the calibration curve of procyanidin B2.
dQuantified by use of the calibration curve of epigallocatechin gallate.
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This HPLC system was coupled to a 6210 time-of-flight (TOF)
mass spectrometer (Agilent Technologies, Palo Alto, CA) system or
coupled to a 6410 MS/MS (Agilent Technologies, Palo Alto, CA)
system. Ionization was done by electrospray (ESI) in the negative
mode. When HPLC-ESI-TOF/MS was performed, the ESI conditions
were drying gas temperature of 350 °C, flow of 12 L/min, rnebulizer
gas pressure of 45 psi, and capillary voltage of 4000 V. Moreover, when
HPLC-ESI-MS/MS was performed, the acquisition was done by
multiple reaction monitoring (MRM). The ESI working conditions
were as follows: capillary voltage, 3 kV; source temperature, 150 °C;
cone gas flow rate, 80 L/h; desolvation gas flow rate, 800 L/h; and
desolvation temperature, 400 °C. Nitrogen (>99% purity) was used as
a nebulizing and collision gas. Cone voltages and collision energies
were optimized by infusing a standard solution of 10 mg/L of each
standard or treated rat plasma for expected analytes in a mixture of
acetone/Milli-Q water/acetic acid (70/29.5/0.5 v/v/v) at a flow rate
of 0.4 μL/min. The full-scan mode was first acquired to select the most
abundant m/z value, and the fragmentor was optimized. Main [M −
H]− ions were selected as precursor ions. The collision energies were
then studied to find the most abundant product ions, and the most
sensitive transition was selected for subsequent quantification. The
second transition was used for confirmation purposes. All of the
HPLC-MS/MS conditions are outlined in Table 2. The dwell time
established for each transition was 30 ms. Data were acquired by use of
MassHunter qualitative analysis software B.02.00 (Agilent Technolo-

gies, Palo Alto, CA). All of the expected product transitions were
confirmed in the literature.

Method Validation. To validate the quantitative method, the
calibration curves, linearity, extraction recovery, matrix effect,
precision, and method detection and quantification limits were studied
by analyzing standard solutions and blank plasma samples spiked with
the standard polyphenols. Blank plasmas were obtained at 7 h from
rats that ingested water (without GSPE); no phenolic acid basal
metabolites were present in blank plasmas. The calibration curves were
obtained by plotting the analyte/IS peak abundance ratio and the
corresponding analyte/IS concentration ratio.

Method precision was determined as the relative standard deviation
(% RSD) of the concentration in a triplicate analysis of three different
spiked samples (50, 500, and 5000 μg/mL) randomly distributed
intraday. Recovery values were calculated by comparing the responses
of the abundance ratio analyte/IS spiked in pretreated plasma matrices
by adding the standards before and after pretreatment (off-line μ-SPE)
at three different concentration levels (50, 500, and 5000 μg/mL).
Matrix effects were evaluated by comparing the relative analyte/IS
abundance obtained from spiked blank plasma after off-line μ-SPE
with those obtained from commercial standard solutions at three
different concentration levels (50, 500, and 5000 μg/mL). Sensitivity
was evaluated by determining LOD, defined as the concentration
corresponding to 3 times the signal/noise ratio, and LOQ, defined as
the concentration corresponding to 10 times the signal/noise ratio.
Method detection and quantification limits (MDL and MQL,

Table 2. Retention Times, Exact Masses, and Optimized MRM Conditionsa

TOF/MSb MS/MS quantificationc MS/MS confirmationc

compd MW [M − H]−
RT

(min) MRM1

F
(V)

CE
(V) MRM2

F
(V)

CE
(V) ref

catechin 290.27 289.0735 6.6 289 > 203 120 20 289 > 245 120 20
epicatechin 290.27 289.0735 6.9 289 > 245 130 10 289 > 203 130 20
procyanidin B1 578.52 577.1360 6.5 577 > 425 130 10 577 > 407 130 30 41
procyanidin B2 578.52 577.1360 6.7 577 > 425 130 10 577 > 407 130 30
procyanidin B3 578.52 577.1360 6.1 577 > 425 130 10 577 > 407 130 30 41
gallic acid 170.12 169.0147 2.8 169 > 125 90 10 169 > 79 90 40
vanillic acid 168.15 167.0358 7.09 167 > 152 80 10 167 > 123 80 5
epigallocatechin gallate 458.37 457.0780 7.3 457 > 169 110 20 457 > 305 110 20
1-(3′,4′-dihydroxyphenyl)-3-(2″,4″,6″-
trihydroxyphenyl)propan-2-ol

292.28 291.088 7.1 291 > 247 70 20 291 > 96 70 20 27

5-(3′,4′-dihydroxyphenyl)-γ-valerolactone 208.21 207.0669 7.8 207 > 85 120 10 207 > 121 120 10
4-hydroxy-5-(3′,4′-dihydroxyphenyl)valeric acid 226.23 225.0779 9.2 225 > 163 70 10 225 > 181 70 10 27
4-hydroxy-5-(3′-hydroxyphenyl)valeric acid 210.23 209.0830 11.9 209 > 147 150 0 27
4-hydroxy-5-phenylvaleric acid 194.23 193.0880 9.8 193 > 175 60 10 27
3-(3,4-dihydroxyphenyl)propionic acid 182.17 181.0512 6.2 181 > 137 60 10 20
3-(3-hydroxyphenyl)propionic acid 166.17 165.0558 6.9 165 > 121 90 10 165 > 59 90 0 20,27
3-(4-hydroxyphenyl)propionic acid 166.17 165.0558 7.2 165 > 121 90 10 165 > 59 90 0
phenylpropionic acid 150.17 149.0615 9.5 149 > 105 90 10 27
2-(3,4-dihydroxyphenyl)acetic acid 168.15 167.0357 4.6 167 > 123 50 10 167 > 95 50 30 20
2-(3-hydroxyphenyl)acetic acid 152.15 151.0409 6.1 151 > 107 60 5 151 > 93 60 20 27
2-(4-hydroxyphenyl)acetic acid 152.15 151.0409 6.5 151 > 107 60 5 151 > 65 60 30
phenylacetic acid 136.15 135.0451 9.2 135 > 91 90 5 135 > 100 90 5 20
3,4-dihydroxybenzoic acid 154.12 153.0201 4.1 153 > 109 80 10 153 > 62 80 40 20
3-hydroxybenzoic acid 138.12 137.0243 6.5 137 > 93 70 10
4-hydroxybenzoic acid 138.12 137.0243 6.8 137 > 93 70 10 20
benzoic acid 122.12 121.0296 7.9 121 > 77 60 5 121 > 59 60 5
3-O-methylgallic acid 184.15 183.0308 5.6 183 > 168 90 10 183 > 124 90 10 20
homovanillic acid 182.17 181.0512 4.5 181 > 163 90 10 181 > 134 90 20 42
homovanillyl alcohol 168.19 168.0715 6.3 167 > 152 150 10 167 > 133 150 10 42
ferulic acid 194.18 193.0510 8.2 193 > 134 60 10 193 > 178 60 10
hippuric acid 179.17 178.0512 5.5 178 > 134 80 5 178 > 77 80 10
phloroglucinol 126.11 125.0250 2.27 125 > 57 90 10 125 > 125 90 0
aAbbreviations: MW, molecular weight; RT, retention time; F, fragmentor; CE, collision energy; MRM, multiple reaction monitoring. bFor
compounds studied by HPLC-ESI-TOF/MS. cFor analysis of phenolic compounds studied by HPLC-ESI-MS/MS.
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respectively) were calculated for the analysis of 250-μL plasma sample
following the procedure described previously.

■ RESULTS AND DISCUSSION
Currently, the common approach for quantification of flavanol
metabolites is to quantify the phase II metabolites from the
small intestine and liver in plasma or other tissues at short times
after the intake of proanthocyanidins.17−19 Additionally, there
are a few studies where microbial metabolites derived from
flavanols are analyzed in biological samples.16,21,26 However,
recent investigations revealed that the majority of ingested
polyphenols reach the colon, where the enzymes of gut bacteria
are able to convert polyphenols and their metabolites into a
wide variety of low molecular weight compounds, which can
then be absorbed in situ.11,28 Therefore, since colonic
metabolites could be responsible for many of the health
benefits attributed to flavanols, complete characterization of the
colonic metabolism of flavanols will help to elucidate the
bioavailability and metabolism of proanthocyanidins and
identify the derivatives responsible for the beneficial health
effects attributed to proanthocyanidins.11 Nevertheless, to our
knowledge, there are no validated chromatographic method-
ologies for the analysis of flavanol-derived microbial metabolites
in biological samples.16,20,21,29 Indeed, only a few studies have
analyzed colonic microbial metabolites in biological samples
after the ingestion of flavanols.16,21,26 Currently, the most
commonly used method for the study of colonic metabolites is
based on in vitro models using batch-culture fecal fermenta-
tions.13,27,30 Hence, in this study we set up an improved
methodology for analysis of flavanols and their microbial
metabolites.
Improved Off-line μ-SPE for Plasma Sample Pretreat-

ment. The off-line μ-SPE method, previously reported for
plasma samples treatment prior to analysis of proanthocyani-

dins, anthocyanins, and their phase II metabolites,15,17 was here
improved to further reduce plasma volume and to enable
extraction of colonic metabolites derived from flavanols. The μ-
SPE method enabled concentration of the compounds prior to
chromatographic analysis, since they are present in plasma
samples at very low levels. Furthermore, the plasma samples
had a large number of interferences, mainly proteins, which
were removed in this methodology by precipitation with-
phosphoric acid.15 In addition, in this study μ-SPE with
hydrophilic−lipophilic balanced (HLB) sorbent allowed the
extraction of flavanols and their colonic metabolites.
Furthermore, previous studies using this sorbent extracted
phase II metabolites derived from flavanols (i.e., the
glucuronidated, methylated and sulfated forms of catechin
and epicatechin).16,17 However, in this study phase II
metabolites were not analyzed, as the methodology was already
reported, and phase II metabolites should not be expected to
occur in significant amount in plasma 7 h after polyphenol
administration.16,17

A major limitation for the analysis of biological samples such
as plasma or serum is the sample volume.15 Especially for the
study of small subjects such as rats or mice, the sample volume
becomes the most critical parameter to consider. Moreover,
reducing the plasma volume will enable experimentation
without the sacrifice of animals. Hence, in this study the
sample volume for μ-SPE was reduced from 350 to 250 μL with
preservation of the recovery values (Table 3). All of the
recovery values for 350 μL of plasma sample were similar to
reported values of Marti ́ et al.15 When the extraction recovery
was tested with 250 μL of plasma sample, its related rates were
also suitable and ranged from 83% to 107%. However, when
the extraction recovery was tested with 200 or 150 μL, some
compounds showed poorer recovery percentages than when a
volume of 250 μL was evaluated. Specifically, recoveries showed

Table 3. Recovery Values for Analysis of Phenolic Compounds in Different Volumes of Spiked Plasma Samples by Off-line μ-
SPE

recovery (%)

150 μLa 200 μLa 250 μLa 350 μLb

compd
50 μg/
mL

500 μg/
mL

5000 μg/
mL

50 μg/
mL

500 μg/
mL

5000 μg/
mL

50 μg/
mL

500 μg/
mL

5000 μg/
mL

50 μg/
mL

500 μg/
mL

5000 μg/
mL

catechin 60 55 60 97 99 91 98 104 107 97 99 101
epicatechin 36 32 38 85 80 88 95 102 100 101 104 106
procyanidin B2 51 48 42 83 78 79 92 102 102 98 107 106
epigallocatechin gallate 54 51 63 82 80 82 93 94 96 90 84 101
gallic acid 54 50 36 65 68 86 85 83 96 97 95 91
vanillic acid 84 77 83 106 96 84 100 103 99 95 98 95
5-(3,4-dihydroxyphenyl)-γ-
valerolactone

57 52 70 82 76 75 93 93 96 95 99 109

3-(4-hydroxyphenyl)propionic
acid

63 69 65 88 84 81 106 97 92 113 112 94

2-(3,4-dihydroxyphenyl)acetic
acid

40 47 49 79 81 76 95 99 98 99 94 97

2-(3-hydroxyphenyl)acetic
acid

67 61 57 81 90 100 101 99 97 96 95 88

2-(4-hydroxyphenyl)acetic
acid

63 57 78 62 65 79 83 85 100 96 92 110

3-hydroxybenzoic acid 89 76 86 81 78 86 95 98 101 99 102 98
benzoic acid 67 64 78 96 92 90 94 93 90 109 97 101
ferulic acid 17 27 26 75 77 86 102 103 94 108 99 108
hippuric acid 46 51 82 96 92 82 100 99 94 94 92 94
phloroglucinol 25 27 14 86 80 83 100 93 92 96 103 92
aTotal volume added into μ-SPE sorbent was 600 μL. bTotal volume added into μ-SPE sorbent was 700 μL.
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values lower than 80% when the plasma volume was 150 μL.
Thus, 250 μL is the lowest plasma sample volume required to
achieve acceptable recovery values for all compounds and,
hence, was the plasma volume used in this study. On the other
hand, decreasing the cleanup solution volume from 200 μL to
either 150 or 100 μL did not improve the extraction recovery,

as some compounds, like 2-(3,4-dihydroxyphenyl)acetic acid or
gallic acid, were not detected by HPLC-ESI-MS/MS. In the
same way, decreasing the volume of elution solution from 100
to 50 μL also showed poor recovery values for all compounds
tested (Table 4), which indicate that more volume is needed to
elute all the compounds. Thus, from all the assessed factors, it

Table 4. Recovery Values Obtained after Testing Different Volumes of Clean-up and Elution Solutionsa

recovery (%)

100 μL clean-up step 150 μLclean-up step 50 μL elution step

compd
50 μg/
mL

500 μg/
mL

5000 μg/
mL

50 μg/
mL

500 μg/
mL

5000 μg/
mL

50 μg/
mL

500 μg/
mL

5000 μg/
mL

catechin 63.1 9.9 3.3 57.9 20.1 2.6 61.3 86.3 83.8
epicatechin 45.0 60.9 19.0 52.0 58.4 19.6 35.5 89.6 90.1
procyanidin B2 61.4 47.1 19.6 73.0 44.5 20.7 66.8 82.8 97.1
epigallocatechin gallate 5.8 0.8 0.0 9.2 2.9 0.1 50.4 62.5 70.1
gallic acid 0.0 0.0 0.0 0.0 0.0 0.0 43.2 26.8 92.8
vanillic acid 66.1 14.3 2.2 68.6 15.1 2.5 23.5 84.7 79.6
5-(3,4-dihydroxyphenyl)-γ-valerolactone 57.3 4.5 0.1 26.7 7.9 2.4 54.9 82.0 64.5
3-(4-hydroxyphenyl)propionic acid 0.0 0.0 44.5 0.0 0.0 37.5 0.0 99.7 90.9
2-(3,4-dihydroxyphenyl)acetic acid 0.0 0.0 0.0 0.0 0.0 0.0 53.3 73.4 88.5
2-(3-hydroxyphenyl)acetic acid 38.5 59.2 26.7 55.1 77.2 17.8 62.1 52.4 93.6
2-(4-hydroxyphenyl)acetic acid 68.9 65.0 17.7 69.1 69.2 20.6 58.8 15.8 35.2
3-hydroxybenzoic acid 71.7 10.0 7.7 71.7 11.6 1.9 26.5 66.9 75.3
benzoic acid 68.4 73.0 61.4 70.6 78.6 40.6 52.4 96.2 64.9
ferulic acid 20.3 3.4 0.7 14.2 3.1 0.2 15.3 84.9 86.9
hippuric acid 30.1 55.3 94.6 38.0 55.8 95.7 23.5 24.0 103.4
phloroglucinol 0.0 0.0 0.0 0.0 0.0 0.0 0.0 39.9 19.8
aResults are expressed as a percentage after comparing the spiked blank plasma response at three different levels (50, 500, and 5000 μg/mL) before
and after off-line μ-SPE.

Table 5. Parameters for Quantification of Phenolic Compounds in Spiked Plasma Samples by HPLC-ESI-MS/MSa

precision (% RSD,
n = 3) % matrix effect

compd
RT

(min)
calibration
curve

determ
coeff
(R2)

working linearity
range (μM)

50
μg/
mL

500
μg/
mL

5000
μg/
mL

50
μg/
mL

500
μg/
mL

5000
μg/
mL

LOD
(nM)

LOQ
(nM)

MDLb

(nM)
MQLb

(nM)

catechin 6.4 y = 0.799x 0.997 0.007−17.225 0.8 3.9 6.6 7.7 3.1 2.7 2.30 7.66 0.66 2.19
epicatechin 6.9 y = 1.674x 0.996 0.007−17.225 1.6 5.6 0.8 −1.0 0.3 1.2 1.66 5.52 0.47 1.58
procyanidin B2 6.7 y = 34.138x 0.991 0.008−4.321 0.6 3.6 5.4 −0.4 1.6 0.0 1.95 6.49 0.56 1.85
epigallocatechin gal-
late

7.3 y = 8.399x 0.990 0.004−10.908 1.1 4.2 2.0 2.2 1.5 6.0 0.76 2.52 0.22 0.72

gallic acid 2.8 y = 1.035x 0.991 0.059−29.391 1.6 4.6 4.2 0.7 0.8 1.4 11.75 39.22 3.36 11.20
vanillic acid 6.7 y = 0.862x 0.996 0.012−29.762 1.7 6.0 2.7 2.4 −0.2 2.5 4.29 14.29 1.22 4.08
5-(3,4-dihydroxy-
phenyl)-γ-valero-
lactone

7.2 y = 0.746x 0.998 0.048−24.038 3.8 3.4 4.9 5.5 4.7 1.8 14.42 48.08 4.12 13.74

3-(4-hydroxyphen-
yl)propionic acid

7.3 y = 0.063x 0.997 0.060−30.120 3.6 2.6 0.5 2.8 −1.7 0.5 24.10 80.32 6.88 22.95

2-(3,4-dihydroxy-
phenyl)acetic acid

4,3 y = 0.389x 0.996 0.060−29.762 3.2 4.5 3.4 0.6 0.8 0.3 11.90 39.68 3.40 11.34

2-(3-hydroxyphen-
yl)acetic acid

5.8 y = 0.775x 0.995 0.013−32.895 2.2 2.2 1.7 5.4 2.9 0.4 3.29 10.96 0.94 3.13

2-(4-hydroxyphen-
yl)acetic acid

6.1 y = 0.534x 0.994 0.013−32.895 5.0 8.5 2.4 0.1 4.1 −1.5 8.87 29.90 2.56 8.54

3-hydroxybenzoic
acid

6.3 y = 0.690x 0.998 0.072−36.232 3.1 1.1 2.8 3.2 2.7 4.2 39.13 130.43 11.28 37.37

benzoic acid 7.8 y = 0.510x 0.995 0.016−40.984 3.4 5.6 3.5 −0.2 1.2 3.2 3.78 12.61 1.08 3.60
ferulic acid 8.1 y = 5.658x 0.995 0.010−25.773 0.5 5.4 2.7 4.9 2.0 7.3 2.13 7.11 0.61 2.03
hippuric acid 5.5 y = 1.981x 0.986 0.011−27.933 2.4 5.0 4.5 −2.7 0.3 −0.1 0.10 0.34 0.03 0.10
phloroglucinol 2.3 y = 0.157x 0.990 0.079−39.683 2.5 6.2 1.7 2.1 1.3 −0.2 23.81 79.37 6.80 22.68
aAbbreviations: RT, retention time; LOD, limit of detection; LOQ, limit of quantification; MDL, method detection limit; MQL, method
quantification limit. bMethod detection and quantification limits are given as nanomoles per liter of fresh sample, calculated for analysis of 250-μL
plasma sample.
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can be concluded that, for off-line μ-SPE, the plasma volume
can be reduced to 250 μL but the cleanup needs to be realized

with 200 μL of Milli-Q water and 200 μL of 0.2% acetic acid
and the elution volume should be 100 μL.

Figure 1. Extracted ion chromatograms of plasma microbial metabolites and their respective mass spectra fragmentation 7 h after ingestion of GSPE
(1000 mg/kg).
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Quality Parameters. Basal plasma spiked with a range of
different concentrations of flavanols and phenolic acids was
analyzed via off-line μ-SPE coupled to HPLC-ESI-MS/MS to
determine the matrix effect, working linearity range, calibration
curves, reproducibility, LODs, and LOQs (Table 5). The
linearity of flavanols and phenolic acids was between 0.004 and
41 μM. All of the compounds possessed a R2 value equal or
higher than 0.99, even taking into account that the standards
present in the spiked blank plasma and the interactions
between compounds could have an adverse effect on the
working linearity range.31 The relative standard deviation (%
RSD) was calculated at three concentration levels (50, 500, and
5000 μg/mL) for all the standards in three randomly
distributed intraday analyses. For the flavanols and phenolic
acids studied, RSD values were between 0.51% and 8.5%. The
higher percent RSD values are correlated with a higher
dispersion; therefore, these RSD percentages indicate a large
variance between the compounds. However, all the percent
RSD results were considered the correct values because they
did not exceed 20%.32 Furthermore, no matrix effect was
observed with rates close to 0% for all the flavanols and
phenolic acids evaluated. For all of the phenolic compounds
studied, the LODs and LOQs were lower than 40 nM and 131
nM, respectively. The MDL and MQL values were 0.03−11.28
nM and 0.10−37.37 nM, respectively. The use of 5-(3′,4′-
dihydroxyphenyl)-γ-valerolactone as a standard for quantifica-
tion of all valerolactone and valeric acids metabolites was an
important improvement for the methodology developed in our
study, as these metabolites were previously quantified as
(−)-epicatechin equivalents.20

Identification of Colonic Microbial Metabolites De-
rived from Grape Seed Proanthocyanidins in Rat
Plasma. The strategy applied in this study to determine
colonic metabolites derived from GSPE was to identify all of
the colonic metabolites, including glucuronidated or sulfated
phenolic acids, present in the rat plasma from the exact mass of
all potential molecular ions by HPLC-ESI-TOF/MS. For this,
we analyzed a pool of rat plasma (n = 6) 7 h after GSPE
ingestion. The pooled plasma was necessary to collect enough
volume of plasma for three replicate chromatographic analyses
without the rat sacrifice (i.e., plasma obtained from saphenous
vein). Moreover, pooled plasma increases homogeneity and
sensitivity in order to allow the detection of all potential
metabolites.33,34 The 7 h time point was selected to allow the
flavanols to reach the colon, to be metabolized by gut bacteria,
and to be absorbed.
Of the 43 metabolites described in the literature from

human13,20,28 or rat,14,16,20 30 colonic metabolites were
detected in the plasma after 7 h. Interestingly, at 7 h post-
GSPE administration, no glucuronide or sulfate derivatives of
the phenolic acids were detected. The fragmentation pattern
and retention behavior were subsequently determined by a
literature search for all of the compounds identified (i.e., the
exact mass and retention time detected), and the compound
parameters were then optimized to be quantified by HPLC-
ESI-MS/MS (Table 2). Searching the literature for potential
compound fragmentation that could occur is very important
because the ionization conditions may vary depending on the
equipment used in the analysis. Therefore, all of the
compounds quantified that did not have their own commercial
standard were confirmed in the literature.20,29 All of the MRM
conditions and quality parameters for quantification by HPLC-
ESI-MS/MS are listed in Tables 2 and 5, respectively.

Application to Flavanol Bioavailability. The major
breakthrough of the method reported in this study was the
ability to analyze more than 20 different rat colonic metabolites
and additional nonmetabolized flavanols by the same plasma
extraction pretreatment and same chromatographic analysis,
with a large number of commercial standards (16) for the most
specific and accurate quantification possible.
The method developed was applied to analyze rat plasma

obtained from the saphenous vein after administration of 1000
mg/kg GSPE. This dose was selected because it was the
previously reported acute dose necessary to reach appropriate
levels of metabolized forms in the plasma.17 However, although
the high dose was used in rats, these methodologies are usually
further extended to the analysis of human plasma with more
physiological concentrations of polyphenols.26,35−37 HPLC-
ESI-MS/MS chromatograms of flavanol colonic products in the
plasma from treated rats and the respective mass spectra
fragmentations are shown in Figure 1. All of the compound
concentrations in rat plasma analyzed by HPLC-ESI-MS/MS
are shown in Table 6.
The plasma concentrations of catechin, epicatechin, and

procyanidin dimer B2, present in the GSPE, were 0.087, 0.532,
and 0.013 μM, respectively. The catechin and epicatechin
monomers are rapidly absorbed and appear in plasma between
1 and 2 h after ingestion.17 In this study, we showed that these
nonmetabolized compounds can still be quantified in the
plasma 7 h after GSPE ingestion, at even lower concentrations
than at the 2 h time point.16 However, EGCG was not detected,
which can be attributed to the low concentration in the GSPE
more than the poor solubility of the gallate forms of flavanols.38

Gallic and vanillic acids were two phenolic acids present in
GSPE (Table 1) and in plasma that reached concentrations of
0.745 and 0.555 μM, respectively. This high concentrations at 7
h after GSPE ingestion can be attributed to formation of these
phenolic acids as products of microbial metabolism.12,13,27

Regarding valerolactone or valeric acid compounds, the
results show that the only metabolite found in plasma 7 h after
administration of GSPE was 5-(3′,4′-dihydroxyphenyl)-γ-
valerolactone, although other in vitro experiments performed
in human feces with GSPE reported the presence of 5-(3′-
hydroxyphenyl)-γ-valerolactone and γ-valerolactone.13,39 On
the other hand, the phenolic acids that presented the highest
concentration in rat plasma were 3-(3,4-dihydroxyphenyl)-
propionic acid and 3-(4-hydroxyphenyl)propionic acid (9.467
and 7.605 μM, respectively). The rest of the studied phenolic
acids were found in concentrations lower than 1 μM. However,
it is important to take into account that when microbial
metabolites reach the liver, they can be subjected to phase II
enzymes and can be conjugated to different final products,12 as
has been observed for 3-O-methylgallic acid, the methyl
conjugate product from gallic acid28 whose rat plasma
concentration after GSPE intake was 0.217 μM, or ferulic
ac id , a methy l -conjugated der ivat ive of 3 -(3 ,4-
dihydroxyphenyl)propionic acid,28 which was quantified in
the rat plasma at a concentration of 0.241 μM. Unfortunately,
no comparable experiments exist in the literature for GSPE
colonic metabolites, as they differ in their experimental
approach and/or the composition of the extracts. Specifically,
when microbial metabolites were analyzed in the plasma, the
studies were performed with extracts from cocoa and
almonds.21,26 Almond polyphenols differ considerably in
composition from polyphenols found in grapes,21 and the
cocoa-derived polyphenols, which are very similar to grape-
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derived polyphenols in composition, were used for chronic
treatment in the study.26 On the other hand, all of the studies
performed with grape seed polyphenol extract,13 its fractions,40

or a red wine extract27 were performed in in vitro systems by
fecal fermentations.
In conclusion, the present study describes a rapid, simple,

and sensitive method for measuring flavanol colonic metabo-
lites in plasma samples by HPLC-ESI-MS/MS. The improved
method for off-line μ-SPE plasma pretreatment allowed the
flavanols and their colonic metabolites to be determined at low
concentrations in a reduced plasma volume, which is an
important factor to develop a complete in vivo study. In total,
30 flavanols and their colonic derivatives could be analyzed by a
unique pretreatment extraction and chromatographic analysis.

Hence, the method developed could be used for completed
pharmacokinetics and bioavailability studies in animals.
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Gibson, G. R.; Martín-Álvarez, P. J.; Bartolome,́ B.; Moreno-Arribas,
M. V. In vitro fermentation of grape seed flavan-3-ol fractions by
human faecal microbiota: Changes in microbial groups and phenolic
metabolites. FEMS Microbiol. Ecol. 2013, 83, 792−805.
(41) Serra, A.; Macia,̀ A.; Romero, M. P.; Piñol, C.; Motilva, M. J.
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A B S T R A C T

Flavan-3-ols and their oligomeric forms, proanthocyanidins (PAs), are poorly absorbed in
the small intestine and reach the colon where gut bacteria enzymes can hydrolyse them
to produce small molecular metabolites, which can reach systemic circulation. However,
the microbial metabolism of flavanols has been poorly described in vivo. The aim of this
study was to determine the colonic biotransformation pathway and the plasma temporal
appearance of grape seed flavanols colonic metabolites in rats. Rat plasma colonic metabo-
lites were analysed by HPLC-MS/MS at 2, 7, 24 and 48 h after 1000 mg/kg of a grape seed PA
extract (GSPE) administration. Results indicated that non-metabolised flavanols have peak
plasma concentrations 2 h after GSPE administration, whereas the colonic metabolites ap-
peared in plasma later, indicating their gradual colonic biotransformation as
valerolactone > phenylpropionic acids ≈ phenylacetic acids > benzoic acids. This study shows
how flavanols are biotransformed by gut bacteria in rats over time, facilitating potential
bioactive compound identification for particular health effects.

© 2014 Elsevier Ltd. All rights reserved.

Keywords:
Catabolic pathway
Colonic metabolites
HPLC-MS/MS
Polyphenols
Proanthocyanidins

1. Introduction

Flavanols are among the most common polyphenols in the
human diet and are mainly found in fruit, cocoa, tea, wine, nuts
and beans (Aherne & O’Brien, 2002). This polyphenol group
exists in both monomeric (catechin and epicatechin) and oligo-
meric (proanthocyanidins (PAs) or condensed tannins,
depending on the molecular weight) aglycone forms and es-
terified with gallic acid (Aron & Kennedy, 2008). Flavanols
improve human health, and our group has demonstrated that

grape seed flavanols exhibit antioxidant capacity (Puiggros et al.,
2005), improve lipid metabolism (Guerrero et al., 2013), limit adi-
pogenesis (Pinent et al., 2005), act as an insulin-mimetic agent
(Pinent et al., 2004), possess antihypertensive effects (Quiñones
et al., 2013) and reduce inflammation (Terra et al., 2011).

The beneficial health properties of polyphenols are mainly
attributed to the compounds derived from their metabolism
(Del Rio et al., 2013). Dietary polyphenols are known to be
recognised as xenobiotics and that they undergo phase II
enzymatic detoxification at the small intestine and liver to
form sulpho-, methyl- or glucorono-conjugates after their

* Corresponding author. Department of Biochemistry and Biotechnology, Universitat Rovira i Virgili, C/Marcel.lí Domingo s/n, 43007 Tar-
ragona, Spain. Tel.: +34 977559566; fax: +34 977558232.
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Hydroxyphenyl)propionic acid (PubChem CID: 10394); 3-O-Methylgallic acid (CID: 19829); Procyanidin B2 (PubChem CID: 122738); Vanillic
acid (PubChem CID: 8468).
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1756-4646/© 2014 Elsevier Ltd. All rights reserved.
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absorption in the small intestine. These metabolites can be re-
turned to the lumen through the bile by enterohepatic
circulation and can reach the systemic circulation to be trans-
ported to other tissues or to be excreted by the urine (Monagas
et al., 2010). However, the PA absorption in the small intes-
tine is determined by the degree of polymerisation, which has
usually been considered to be a limiting factor on the health
benefits from flavanol consumption (Del Rio et al., 2013).
Whereas monomeric and low molecular-weight forms are
mainly absorbed through the small intestine, some mono-
meric glucosides, oligomers with a degree of polymerisation
greater than 2–3 and those forms from enterohepatic circula-
tion cross the gastrointestinal tract and reach the colon, where
they are transformed by intestinal microbiota for their absorp-
tion or excretion (Aura, 2008; Monagas et al., 2010). It is
estimated that 90–95% of dietary polyphenols can reach the
colon (Clifford, 2004; Monagas et al., 2010), where they are sub-
jected to microbial catabolism.

The colon has diverse microbial populations composed of
either obligatory or facultative anaerobes (including Bacteriodes,
Bifidobacterium, Enterobacteriaceae and Clostridium) (Manichanh
et al., 2010) responsible for degrading undigested food matrix
and turn its components in microbial metabolites (Sánchez-Patán
et al., 2012a). In vitro studies have shown that flavanol oligo-
mers undergo an interflavanic link cleavage and turn into
monomers (Monagas et al., 2010).The variety of enzymes pro-
duced by the gut bacteria can hydrolyse, reduce, dehydroxylate,
decarboxylate and demethylate the polyphenols and convert
them into different low molecular weight metabolites
(valerolactone compounds, valeric acids, phenylpropionic acids,
phenyl acetic acids, benzoic acids and several conjugated phe-
nolic acids, consecutively) (Monagas et al., 2010; Sánchez-Patán
et al., 2012a,b). These metabolites may reach the portal circu-
lation through colonocytes being transported to the liver where
they can be further metabolised by hepatic phase II enzymes
and excreted into the urine or carried to the systemic circu-
lation to reach different tissues (Monagas et al., 2010).

The colon metabolises flavanols and the beneficial health
effects accredited to these compounds could be potentially pro-
duced not only by phase II but also by the colonic metabolites.
Many studies using in vitro fermentation systems have evalu-
ated the microbial metabolism of polyphenols (Sánchez-Patán
et al., 2012a,b; Serra et al., 2011). However, the study of the mi-
crobial catabolism of flavonoids in vivo is limited (Serra et al.,
2013; Urpi-Sarda et al., 2009a,b).The aim of this study is to evalu-
ate how flavanols are biotransformed by the colon in rats and
their colonic metabolites’ time of occurrence in plasma and
to establish a proposal of the rat flavanol catabolic pathway.
Rat plasma colonic metabolites were analysed by high-
performance liquid chromatography-tandem triple quadrupole
mass spectrometry (HPLC-MS/MS) after different times of grape
seed Pas administration.

2. Materials and methods

2.1. Grape seed proanthocyanidin extract

A grape seed PA extract (GSPE) was obtained from Les Dérives
Résiniques et Terpéniques (Dax, France). The total polyphenol

content and the individual flavanols and phenolic acids com-
prising the grape seed extract used in this study are detailed
in Table 1 (adapted from Quiñones et al., 2013).

2.2. Chemicals and reagents

Acetone (HPLC analytical grade), methanol (HPLC analytical
grade) and phosphoric acid were purchased from Sigma-
Aldrich (Barcelona, Spain). Ultrapure water was obtained from
a Milli-Q advantage A10 system (Madrid, Spain). Glacial
acetic acid was purchased from Panreac (Barcelona, Spain).The
following were individually dissolved in methanol at 4000 mg/
L: (+)-catechin; (−)-epicatechin; benzoic acid; phloroglucinol;
3-hydroxybenzoic acid; 4-hydroxybenzoic acid; 3,4-
dihydroxybenzoic acid; 2-(4-hydroxyphenyl)acetic acid; 2-(3,4-
dihydroxyphenyl)acetic acid; 3-(4-hydroxyphenyl)propionic acid;
vanillic acid; gallic acid; hippuric acid and ferulic acid (all from
Fluka/Sigma-Aldrich, Madrid, Spain). The following were in-
dividually dissolved in methanol at 2000 mg/L: procyanidin B2;
epigallocatechin gallate (EGCG); and pyrocatechol (internal stan-
dard (IS)) (all from Fluka/Sigma-Aldrich) and 5-(3′,4′-
dihydroxyphenyl)-γ-valerolactone (MicroCombiChem e.K.,
Wiesbaden, Germany). All standard stock solutions were pre-
pared every 3 months and stored in dark-glass flasks at −20 °C.

A mixed standard stock solution in methanol was pre-
pared weekly from the following compounds and stored in dark
glass flasks at −20 °C: (+)-catechin; (−)-epicatechin; benzoic acid;
phloroglucinol; 3-hydroxybenzoic acid; 4-hydroxybenzoic
acid; 3,4-dihydroxybenzoic acid; 2-(4-hydroxyphenyl)acetic acid;
2-(3,4-dihydroxyphenyl)acetic acid; 3-(4-hydroxyphenyl)
propionic acid; vanillic acid; gallic acid; hippuric acid; ferulic

Table 1 – Total polyphenols and individual flavanols and
phenolic acids of grape seed proanthocyanidin extract
(GSPE).

Compound Concentration (mg/g)

Total polyphenol content1 554.16 ± 13.02
Phenolic compound2

Catechin 90.7 ± 7.6
Epicatechin 55.0 ± 0.8
Procyanidin dimera 144.2 ± 32.2
Procyanidin trimera 28.4 ± 2.0
Procyanidin tetramera 2.0 ± 0.2
Dimer gallatea 39.7 ± 7.1
Epigallocatechin gallate 0.4 ± 0.1
Epicatechin gallateb 55.3 ± 1.5
p-coumaric acid 0.1 ± 0.0
Gallic acid 17.7 ± 2.0
3,4-dihydroxybenzoic acid 1.0 ± 0.1
Vanillic acid 0.1 ± 0.0
Quercetin 0.3 ± 0.0
Quercetin-3-O-gallate 0.2 ± 0.0
Naringenin-7-glucoside 0.1 ± 0.0
Kaempferol-3-glucoside 0.1 ± 0.0

Data adapted from Quiñones et al. 2013.
The results are expressed on a wet basis as the mean ± SD (n = 3).
1 Measured by Folin–Ciocalteu’s method.
2 HPLC-MS.
a Quantified using the calibration curve of proanthocyanidin B2.
b Quantified using the calibration curve of epigallocatechin gallate.
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acid; EGCG and 5-(3′,4′-dihydroxyphenyl)-γ-valerolactone at 200
and 100 mg/L of procyanidin B2, respectively. This mixed stan-
dard stock solution was diluted daily to the desired
concentration using an acetone/Milli-Q water/acetic acid (70/
29.5/0.5, v/v/v) solution and stored in dark glass flasks at −20 °C
until chromatographic analysis.

2.3. Animal and plasma collection

Male Wistar rats, weighing between 226 and 260 g, were ob-
tained from Charles River Laboratories (Barcelona, Spain). All
animals were housed at 22 °C with a light/dark cycle of 12 h
(lights on at 09:00 AM) and were fed a standard chow diet (AO4,
Panlab, Barcelona, Spain) ad libitum during the experiment. The
animals were randomly divided into two groups: the control
group (n = 6) and the GSPE group (n = 6). A dose of 1000 mg/
kg of GSPE (1 mL in water) was administered to the GSPE group
by oral gavage. Water (1 mL) was orally administered to the
control group. In both groups, oral administration was per-
formed by gastric intubation to fasted rats between 9 and 10
AM. Fasting blood samples were obtained via saphenous vein
extraction using heparin vials (Starsted, Barcelona, Spain) at
0, 2, 7, 24 and 48 h after GSPE or water administration, in order
to see the kinetic behaviour of microbial metabolites, which
are supposed to appear at later times than the flavanol phase-
II metabolites. Plasma samples were obtained by centrifugation
(2000 × g, 15 min, 4 °C) and pooled (n = 6), to have sufficient
volume for the analysis and also to remove the biological vari-
ability. The pooled plasma samples were stored at −80 °C until
chromatographic analysis was performed (Fig. 1). Plasma from
the control group (water oral gavage) was used to perform the
calibration curves in the chromatography analysis. Any com-
pound present in the plasma control group (0 h time-point) was
subtracted from the plasma concentration at all other time-
points.The plasma samples were not treated with glucuronidase
or sulphatase enzymes. The study was performed in accor-
dance with the institutional guidelines for the care and use
of laboratory animals, and the experimental procedures were
approved by the Ethical Committee for Animal Experimenta-
tion of Universitat Rovira i Virgili (permission number 6777).

2.4. Micro-solid phase plasma polyphenol extraction

Prior to chromatographic analysis, the pool of rat plasmas (n = 6)
for each time-point was pre-treated by off-line micro-Solid

Phase Extraction (µ-SPE) as described previously (Margalef, Pons,
Muguerza, & Arola-Arnal, 2014) (Fig. 1) using OASIS HLB
µ-Elution Plates 30 µm (Waters, Barcelona, Spain). Briefly, the
micro-cartridges were conditioned sequentially with 250 µL
methanol and 250 µL 0.2% acetic acid. A plasma aliquot (250 µL)
was mixed with 300 µL 4% phosphoric acid and 50 µL pyro-
catechol (250 ppb), and then this mixture was loaded into the
plates.The loaded plates were washed with 200 µL Milli-Q water
and 200 µL 0.2% acetic acid. The retained polyphenols were
eluted with 2 × 50 µL acetone/Milli-Q water/acetic acid solu-
tion (70/29.5/0.5, v/v/v).

2.5. Chromatographic analysis

The eluted solution was directly analysed using a 1200 LC Series
coupled to a 6410 MS/MS (Agilent Technologies, Palo Alto, U.S.A.)
as previously described (Margalef et al., 2014). Briefly, Zorbax
SB-Aq (150 × 2.1 mm i.d., 3.5 µm particle size, Agilent Tech-
nologies) was the chromatographic column. The mobile phase
was 0.2% acetic acid (solvent A) and acetonitrile (solvent B) with
a flow rate of 0.4 mL/min. The elution gradient was 0–10 min,
5–55% B, 10–12 min, 55–80% B, 12–15 min, 80% B isocratic, and
15–16 min 80–5% B. A post run of 10 min was applied and 2.5 µL
of sample were injected. Electrospray ionisation (ESI) was con-
ducted at 350 °C and 12 L/min with 45 psi of nebuliser gas
pressure, and 4000 V of capillary voltage. The mass spectrom-
eter was operated in negative mode and MS/MS data were
acquired in Multiple Reaction Monitoring (MRM) mode.
Optimised MRM conditions for the analysis of the phenolic com-
pounds studied using HPLC-ESI-MS/MS are presented in Table 2
and all quality parameters required to perform the analysis of
these metabolites are shown in Table 3.

3. Results

In this study, we quantified the colonic metabolites that ap-
peared in pooled (n = 6) rat plasma 0, 2, 7, 24 and 48 h after GSPE
(1000 mg/kg) ingestion using HPLC-MS/MS. The pooled plasma
was necessary to collect enough volume for three replicate chro-
matographic analyses at the different times without sacrificing
the rats. Moreover, pooled plasma increases homogeneity and
sensitivity in order to allow the detection of all potential me-
tabolites (Demelbauer, Plematl, Josic, Allmaier, & Rizzi, 2005;

Fig. 1 – Graphical representation of the experimental design used in this study.

480 j o u rna l o f f un c t i ona l f o od s 1 2 ( 2 0 1 5 ) 4 7 8 – 4 8 8



RESULTS 

100 

!

Margalef et al., 2014; McGaw, Phinney, & Lowenthal, 2010). A
range of time points was selected to detect all potential colonic
metabolites and to study how these metabolites appear in
plasma at different times, allowing the different flavanols to
reach the colon, to be metabolised by gut bacteria and to be
absorbed by rats (Demelbauer et al., 2005; Serra et al., 2011, 2013).

3.1. Plasma kinetics of non-metabolised PA in rat plasma

Procyanidin B2 (1), catechin (2), epicatechin (3), gallic acid (4)
and vanillic acid (5) are polyphenols present in GSPE at con-
siderable concentrations (Table 1). These compounds were
absorbed, peaked in plasma concentration 2 h after GSPE in-
gestion and disappeared at 24 h (Fig. 2). Interestingly, the
concentration of compound 5 increased again after 24 h but
did not reach as high concentrations as at 2 h (Fig. 2C).

3.2. Plasma kinetics of microbial PA metabolites in
rat plasma

3.2.1. Valerolactone metabolites
The colonic metabolite 5-(3′,4′-dihydroxyphenyl)-γ-valerolactone
(6) that had its highest plasma concentration at 7 h after GSPE
administration, was still present in the plasma at 24 h and

disappeared after 48 h (Fig. 3). No other valerolactone metabo-
lites were detected in rat plasma (data not shown).

3.2.2. Phenylpropionic acid metabolites
The phenylpropionic acids colonic metabolites 3-(4-
hydroxyphenyl) propionic acid (7), 3-(3,4-dihydroxyphenyl)
propionic acid (8) and 3-(3-hydroxyphenyl) propionic acid (9)
peaked in plasma concentrations 24 h post GSPE administra-
tion, and at 48 h, there was still a considerable amount of these
metabolites in plasma (Fig. 4). Interestingly, 7 and 8 reached
very high plasma concentrations, having a concentration of ap-
proximately 50 µM and 10 µM at 24 h, respectively (Fig. 4A). Much
lower concentrations were found for 9 and for phenylpropionic
acid (10) (Fig. 4B).

3.2.3. Phenylacetic acid metabolites
The phenylacetic acid metabolites had different kinetic
profiles depending on the metabolite. Although 2-(4-
dihydroxyphenyl) acetic acid (11), 2-(3-dihydroxyphenyl)
acetic acid (12) and phenylacetic acid (13) reached their highest
concentration in plasma as rapidly as 2 h post-GSPE admin-
istration (Fig. 5A), 3,4-dihydroxyphenylacetic acid (14) had peak
plasma concentration at 24 h post-administration. A higher
concentration of 14 was found in plasma (approximately 2 µM

Table 2 – Optimized MRM conditions for the analysis of the phenolic compounds studied using HPLC-ESI-MS/MS.

Compound MS/MS Conditions

Quantification Confirmation

MRM1 F (V) CE (V) MRM2 F (V) CE (V)

Catechin 289 > 203 120 20 289 > 245 120 20
Epicatechin 289 > 245 130 10 289 > 203 130 20
Procyanidin B1 577 > 425 130 10 577 > 407 130 30
Procyanidin B2 577 > 425 130 10 577 > 407 130 30
Procyanidin B3 577 > 425 130 10 577 > 407 130 30
Gallic acid 169 > 125 90 10 169 > 79 90 40
Vanillic acid 167 > 152 80 10 167 > 123 80 5
Epigallocatechin gallate 457 > 169 110 20 457 > 305 110 20
1-(3′,4′-Dihydroxyphenyl)-3-(2″,4″,6″-trihydroxyphenyl)-propan-2-ol 291 > 247 70 20 291 > 96 70 20
5-(3′,4′-Dihydroxyphenyl)-γ-valerolactone 207 > 85 120 10 207 > 121 120 10
4-Hydroxy-5-(3′,4′-dihydroxyphenyl)-valeric acid 225 > 163 70 10 225 > 181 70 10
4-Hydroxy-5-(3′-hydroxyphenyl)-valeric acid 209 > 147 150 0 – – –
4-Hydroxy-5-(phenyl)-valeric acid 193 > 175 60 10 – – –
3-(3,4-Dihydroxyphenyl)propionic acid 181 > 137 60 10 – – –
3-(3-Hydroxyphenyl)propionic acid 165 > 121 90 10 165 > 59 90 0
3-(4-Hydroxyphenyl)propionic acid 165 > 121 90 10 165 > 59 90 0
Phenylpropionic acid 149 > 105 90 10 – – –
2-(3,4-Dihydroxyphenyl)acetic acid 167 > 123 50 10 167 > 95 50 30
2-(3-Hydroxyphenyl)acetic acid 151 > 107 60 5 151 > 93 60 20
2-(4-Hydroxyphenyl)acetic acid 151 > 107 60 5 151 > 65 60 30
Phenylacetic acid 135 > 91 90 5 135 > 100 90 5
3,4-Dihydroxybenzoic acid 153 > 109 80 10 153 > 62 80 40
3-Hydroxybenzoic acid 137 > 93 70 10 – – –
4-Hydroxybenzoic acid 137 > 93 70 10 – – –
Benzoic acid 121 > 77 60 5 121 > 59 60 5
3-O-Methylgallic acid 183 > 168 90 10 183 > 124 90 10
Homovanillic acid 181 > 163 90 10 181 > 134 90 20
Homovanillyl alcohol 167 > 152 150 10 167 > 133 150 10
Ferulic acid 193 > 134 60 10 193 > 178 60 10
Hippuric acid 178 > 134 80 5 178 > 77 80 10
Phloroglucinol 125 > 57 90 10 125 > 125 90 0

Abbreviations: F, Fragmentor; CE, Collision Energy; MRM, Multiple reaction monitoring.
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at 24 h after the GSPE administration) with respect to the other
phenylacetic metabolites (less than 1.2 µM at 2 h) (Fig. 5B).

3.2.4. Benzoic acid metabolites
Benzoic acid derivatives can be formed by different flavanol
metabolisation pathways (Selma, Espín, & Tomás-Barberán,
2009; Serra et al., 2011; Urpi-Sarda et al., 2009a,b), and a variety
of compounds may be formed. However, we were able to quan-
tify only rat plasma 3-hydroxybenzoic acid (15) and benzoic
acid (16), and no other benzoic acid metabolites were de-
tected in plasma (data not shown); 15 and 16 reached
considerable plasma concentration levels with comparable
kinetic profiles (Fig. 6). These metabolites peak in plasma con-
centration at 2 h post GSPE administration, and then from 2
to 7 h, the concentration in plasma decreased and was main-
tained until 48 h.

3.2.5. Phenolic acids metabolites
The phenolic acids detected in this study were hippuric acid
(17), homovanillic acid (18), homovanillyl alcohol (19) and 3-O-
methyl gallic acid (20). It is important to note that microbial
metabolites can reach the portal circulation through colonocytes
being transported to the liver where they can be further sub-
jected to phase II metabolism before entering the circulation
(Gonthier et al., 2003). Thus, 18, 19 and 20 were some of the
methylated products detected in rat plasma (Fig. 7), and these
final metabolites have different kinetic profiles. Although 18,
19 and 20 reached the highest concentration in plasma at 2 h
post GSPE administration, the concentration of 18 was main-
tained for 48 h, but the plasma levels of 19 and 20 were
decreased within 24 h. Otherwise, 17 had a completely differ-
ent kinetic profile as it reached peak concentration in plasma
at 7 h post GSPE administration, and later levels were de-
creased down to 24 h and maintained up to 48 h. Moreover, 17
had maximum concentration levels of approximately 0.7 µM,

whereas 18, 19 and 20 did not reach concentrations higher than
0.5 µM. No other phase II conjugated colonic metabolites were
detected in rat plasma (data not shown).

4. Discussion

The changes occurring during the first-pass metabolism are
an important aspect of flavanols. The molecular forms that
reach the peripheral circulation and tissues are different from
those that are present in foods (Kroon et al., 2004). Microflora
extensively affect flavanol cleavage and hence further con-
tribute to the variation in the molecular forms of the flavanols
found in blood and tissues (Dall’Asta et al., 2012; Gonthier et al.,
2003). These findings suggest that the bioactive forms of
flavanols could be products of their wide metabolism (Del Rio
et al., 2013; Guerrero et al., 2013). Although there are several
studies in rats and humans evaluating flavanol phase II me-
tabolism (Arola-Arnal et al., 2013; Das & Rosazza, 2006), the
microbial colonic catabolism of flavanols has been poorly
studied in vivo, but it has been evaluated extensively by in vitro
experiments using a human or rat faecal matrix (Cueva et al.,
2013; Sánchez-Patán et al., 2012a,b Serra et al., 2012). As the
phase II metabolism of flavanols is already well established,
in this study, we focused only on the evaluation of rat micro-
bial biotransformation of flavanols through a kinetic analysis
of rat plasma after acute GSPE administration (1000 mg/kg). We
propose an in vivo microbial metabolic pathway for grape seed
flavanols (Fig. 8).

Similar to other studies, we found that the non-metabolised
compounds reach their peak plasma concentrations at 2 h post-
administration of GSPE (Serra et al., 2013). Although also
abundant in GSPE, non-metabolised dimeric procyanidins or
those with higher molecular weights showed much less

Table 3 – The retention behaviour (RT, min), calibration curve, determination coefficient (R2), working linearity range,
LODs, LOQs, MDLs and MQLs for phenolic compound quantification in spiked plasma samples using HPLC-ESI-MS/MS.
(Adapted from Margalef et al. 2014 [19])

Compound RT
(min)

Calibration
curve

Determination
coefficient (R2)

Working linearity
range (µM)

LOD
(nM)

LOQ
(nM)

MDLa

(nM)
MQLa

(nM)

Catechin 6.4 y = 0.799x 0.997 0.007–17.225 2.30 7.66 0.66 2.19
Epicatechin 6.9 y = 1.674x 0.996 0.007–17.225 1.66 5.52 0.47 1.58
Procyanidin B2 6.7 y = 34.138x 0.991 0.008–4.321 1.95 6.49 0.56 1.85
Epigallocatechin gallate 7.3 y = 8.399x 0.990 0.004–10.908 0.76 2.52 0.22 0.72
Gallic acid 2.8 y = 1.035x 0.991 0.059–29.391 11.75 39.22 3.36 11.20
Vanillic acid 6.7 y = 0.862x 0.996 0.012–29.762 4.29 14.29 1.22 4.08
5-(3,4-Dihydroxyphenyl)-γ-valerolactone 7.2 y = 0.746x 0.998 0.048–24.038 14.42 48.08 4.12 13.74
3-(4-Hydroxyphenyl)propionic acid 7.3 y = 0.063x 0.997 0.060–30.120 24.10 80.32 6.88 22.95
2-(3,4-Dihydroxyphenyl)acetic acid 4,3 y = 0.389x 0.996 0.060–29.762 11.90 39.68 3.40 11.34
2-(3-Hydroxyphenyl)acetic acid 5.8 y = 0.775x 0.995 0.013–32.895 3.29 10.96 0.94 3.13
2-(4-Hydroxyphenyl)acetic acid 6.1 y = 0.534x 0.994 0.013–32.895 8.87 29.90 2.56 8.54
3-Hydroxybenzoic acid 6.3 y = 0.690x 0.998 0.072–36.232 39.13 130.43 11.28 37.37
Benzoic acid 7.8 y = 0.510x 0.995 0.016–40.984 3.78 12.61 1.08 3.60
Ferulic acid 8.1 y = 5.658x 0.995 0.010–25.773 2.13 7.11 0.61 2.03
Hippuric acid 5.5 y = 1.981x 0.986 0.011–27.933 0.10 0.34 0.03 0.10
Phloroglucinol 2.3 y = 0.157x 0.990 0.079–39.683 23.81 79.37 6.80 22.68

Abbreviations: RT (Retention behaviour); LOD (Limit of detection); LOQ (Limit of quantification); MDL (Method detection limit); MQL (Method
quantification limit).
a Method of detection and quantification limits in nmol/L of fresh sample calculated for the analysis of 250 µL of plasma sample.
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significant plasma levels than non-metabolised flavan-3-ols or
did not appear in plasma, respectively. This is attributed to the
larger flavanol molecular weight, making small intestine ab-
sorption more difficult, and hence the polymeric forms reach
the colon to be subjected to microbial metabolism (Del Rio et al.,
2013; Monagas et al., 2010). Once in the colon, flavanols can
be biotransformed by three different metabolic pathways (Fig. 8).
The first pathway is meta-substitution of the flavanol A ring
producing 5-(2′,4′-dihydroxy) phenyl-2-ene-valeric acid (21).
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Fig. 2 – Kinetic profiles of rat plasma non-metabolised
flavanols from grape seed proanthocyanidin extract (GSPE).
Proanthocyanidin dimer B2 (1) (A), Monomeric flavanols (2
and 3) (B) and Phenolic acids (4 and 5) (C). Concentrations
(µM) were quantified using HPLC-MS/MS in negative mode
in plasma of rats (n = 6) treated with GSPE (1000 mg/kg) for
0 h, 2 h, 7 h, 24 h and 48 h.
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Fig. 3 – Kinetic profiles of rat plasma valerolactone
metabolite (6) from grape seed proanthocyanidin extract
(GSPE). Concentrations (µM) were quantified using HPLC-
MS/MS in negative mode in the plasma of rats (n = 6)
treated with GSPE (1000 mg/kg) for 0 h, 2 h, 7 h, 24 h and
48 h.

Fig. 4 – Kinetic profiles of rat plasma phenylpropionic acid
from grape seed proanthocyanidin extract (GSPE). 3-(4-
hydroxyphenyl)propionic acid (7) and 3-(3,4-
dihydroxyphenyl)propionic acid (8) (A) and 3-(3-
hydroxyphenyl)propionic acid (9) and phenylpropionic acid
(10) (B). Concentrations (µM) were quantified using HPLC-
MS/MS in negative mode in the plasma of rats (n = 6)
treated with GSPE (1000 mg/kg) for 0 h, 2 h, 7 h, 24 h and
48 h.
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However, this metabolite was not detected in rat plasma (data
not shown), suggesting that it could be an exclusively human
metabolite because it was detected using human faecal
microbiota. Alternatively, it is an intermediate unable to reach
the bloodstream as it is known to be further metabolised by
reduction reactions (Stoupi, Williamson, Drynan, Barron, &
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Fig. 5 – Kinetic profiles of rat plasma phenylacetic acids
from grape seed proanthocyanidin extract (GSPE). 2-(4-
hydroxyphenyil)acetic acid (11), 2-(3-hydroxyphenyil)acetic
acid (12) and phenylacetic acid (13) (A) and 2-(3,4-
dihydroxyphenyil)acetic acid (14) (B). Concentrations (µM)
were quantified using HPLC-MS/MS in negative mode on
the plasma of rats (n = 6) treated with GSPE (1000 mg/kg)
for 0 h, 2 h, 7 h, 24 h and 48 h.
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Fig. 6 – Kinetic profiles of rat plasma benzoic acids (15 and
16) from grape seed proanthocyanidin extract (GSPE).
Concentrations (µM) were quantified using HPLC-MS/MS in
negative mode on the plasma of rats (n = 6) treated with
GSPE (1000 mg/kg) for 0 h, 2 h, 7 h, 24 h and 48 h.
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Fig. 7 – Kinetic profiles of rat plasma phenolic acids from
grape seed proanthocyanidin extract (GSPE). Hippuric acid
(17) (A), homovanillic acid (18) and homovanillyl alcohol (19)
(B) and 3-O-methyl gallic acid (20) (C). Concentrations (µM)
were quantified using HPLC-MS/MS in negative mode on
the plasma of rats (n = 6) treated with GSPE (1000 mg/kg)
for 0 h, 2 h, 7 h, 24 h and 48 h.
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Clifford, 2010a). The second pathway is biotransformation to
valerolactone compounds, such as 6, by the microbial cleav-
age of flavanol C- and A- rings (Appeldoorn, Vincken, Aura,
Hollman, & Gruppen, 2009).The final pathway is microbial cleav-
age of the flavanol interflavanic bond C4–C8 to be transformed
in their respective monomeric forms (2 and 3) (Appeldoorn et al.,
2009). Monomeric aglycones can also get to the colon from con-
jugated compounds such as epicatechin gallate by microbial
cleavage of the gallate moiety (Selma et al., 2009) or from phase
II conjugates that reach the colon through bile extraction by
enterohepatic recirculation or from non-absorbed mono-
meric flavanol glucosides that pass intact throughout the
gastrointestinal tract. Monomeric flavan-3-ols (2 and 3) can
undergo a microbial cleavage of the C-ring to produce propan-
2-ol metabolites with different degrees of hydroxylation by a
microbial dehydroxylation of the B-ring. Propan-2-ol metabo-
lites may become valerolactones (6) by microbial A-ring cleavage.
Alternatively, it is suggested that these valerolactones could
come directly from the PA dimers by the microbial cleavage
of the C- and A- rings (Appeldoorn et al., 2009). This meta-
bolic process is in agreement with the kinetic behaviour of 6,
which had a maximum plasma concentration 7 h after the non-
metabolised flavanols had sufficient time to be processed. The
propan-2-ol metabolites were not detected in rat plasma (data
not shown), which supports the metabolic pathway proposed
in this study (Fig. 8) as propan-2-ol are intermediates that are
further metabolised.

These early metabolites undergo microbial cleavage of the
lactone ring by acidic hydrolysis (Dall’Asta et al., 2012; Del Rio
et al., 2013) to form valeric acid metabolites, which were also
not detected in rat plasma as they are intermediate com-
pounds (data not shown). Although no valeric acid or propan-
2-ol metabolites were detected in rat plasma, previous in vitro
studies with rat (Serra et al., 2011, 2012) or human (Cueva et al.,
2013; Sánchez-Patán et al., 2012a,b) faecal microflora de-
tected these compounds. This study found that these
intermediates do not reach the systemic circulation at suffi-
cient concentration levels to be detected and quantified by MS,
which suggests that they may remain in the colon to be subject
to the microbial metabolism.

It has been described that valeric acids may suffer a
β-oxidation of the branched chain to form phenyl propionic
acids and their derivatives (Selma et al., 2009; Stoupi et al.,
2010a), which are the main compounds from the microbial me-
tabolism (Aura, 2008). In this sense, the main grape seed flavanol
metabolite product of the microbial biotransformation was 7,
which reached levels of 50 µM in rat plasma at 24 h after GSPE
ingestion. Propionic acids appeared in plasma after
valerolactone metabolites, which agrees with our proposed
metabolic pathway (Fig. 8). Other phenylpropionic acids (such
as 8–10) were quantified in rat plasma. However, 7–10 are
further metabolised to form phenylacetic acids (11–14) and
benzoic acids (15–17) by the β- and α-oxidation of their branched
chain, respectively (Stoupi, Williamson, Drynan, Barron, &
Clifford, 2010b). A different kinetic behaviour was demon-
strated between 14 and phenylacetic acids (Fig. 5), which
suggests that the hydroxylation pattern could be performed
when the compounds reach the systemic circulation by the hy-
droxylation enzymes, more than by the microbial metabolism
(Aura, 2008).

Phenolic acid derivatives (17–20) are the final products of
the metabolism, which are formed by the enzymatic conju-
gation of phenolic acids (Gregus, Fekete, Halaszi, & Klaassen,
1996; O’Leary et al., 2001), and hence a heterogeneous kinetic
profile was also observed in rat plasma. In this sense, 17, also
known as benzoylglycine, is formed in the liver from benzoic
acid in two enzymatic steps with benzoyl-coA synthase
and benzoyl-CoA glycine N-transferase (Gregus et al., 1996;
Nandi, Lucas, & Webster, 1979); 18 and 19 are methylated
derivatives of phenylacetic acids, and 20 is a methylated
derivative of gallic acid. The methylation is produced mainly
by hepatic catechol-O-methyltransferase (COMT) (O’Leary et al.,
2003). As final products of flavanol metabolism, all of these
compounds are still present in plasma 48 h post GSPE admin-
istration. Particularly, 5 reached maximal concentrations in
plasma 2 h post GSPE administration as this compound is also
present in GSPE. After 24 h, its concentration in plasma
starts to increase again as a product of the flavanol colonic
metabolism.

This study shows how grape seed flavanols are bio-
transformed by rat gut bacteria enzymes and how they
appear in rat plasma over time. These results may facilitate
identification of flavanol bioactive forms for particular health
effects. Further human studies using the described method-
ology will be interesting due to the different metabolism
between species and the intra- and inter-individual colonic bac-
teria variations (Kleessen, Bezirtzoglou, & Mättö, 2000; Lampe,
2003).
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Abstract

The regular consumption of flavonoids has been associated with reduced mortality and a decreased risk of cardiovascular diseases. The proanthocyanidins
found in plasma are very different from the original flavonoids in food sources. The use of physiologically appropriate conjugates of proanthocyanidins is
essential for the in vitro analysis of flavonoid bioactivity.

In this study, the effect of different proanthocyanidin-rich extracts, which were obtained from cocoa (CCX), Frenchmaritime pine bark (Pycnogenol extract, PYC)
and grape seed (GSPE), on lipid homeostasis was evaluated. Hepatic human cells (HepG2 cells) were treated with 25 mg/L of CCX, PYC or GSPE. We also performed
in vitro experiments to assess the effect on lipid synthesis that is induced by the bioactive GSPE proanthocyanidins using the physiological metabolites that are
present in the serum of GSPE-administered rats. For this, Wistar rats were administered 1 g/kg of GSPE, and serumwas collected after 2 h. The semipurified serum of
GSPE-administered rats was fully characterized by liquid chromatography tandem triple quadrupole mass spectrometry (LC–QqQ/MS2). The lipids studied in the
analyses were free cholesterol (FC), cholesterol ester (CE) and triglycerides (TG).

All three proanthocyanidin-rich extracts induced a remarkable decrease in the de novo lipid synthesis in HepG2 cells. Moreover, GSPE rat serum metabolites
reduced the total percentage of CE, FC and particularly TG; this reduction was significantly higher than that observed in the cells directly treated with GSPE. In
conclusion, the bioactivity of the physiological metabolites that are present in the serum of rats after their ingestion of a proanthocyanidin-rich extract was
demonstrated in Hep G2 cells.
© 2013 Elsevier Inc. All rights reserved.

Keywords: Grape seed proanthocyanidin extract; Serum metabolites; Lipid synthesis; Cell cultures; HepG2 cells

1. Introduction

Cardiovascular disease (CVD) is the main cause of death
worldwide. According to the World Health Organization, 17.3 million
people died from CVD in 2008; this number represents 30% of the
total deathsworldwide. In addition, starting from 2015, it is estimated
that approximately 20 million people will die every year from this
disease. Among the modifiable risk factors for CVD, dyslipidemia,
hypertension, smoking and diabetes mellitus are of particular
relevance [1]. Specifically, hyperlipidemia, which is the elevation of
cholesterol and/or triglyceride (TG) levels, is a significant risk factor
for the development of atherosclerosis and heart disease.

There is a body of evidence that indicates that a diet rich in
vegetables and fruits decreases the risk of CVD [2–4]; in addition, this

decrease has been attributed to the phenolic compounds that are
present in plants. Flavonoids are phenolic compounds that are
commonly found in fruits and vegetables at high concentrations,
and their regular consumption has been associated with a reduced
mortality and a decreased risk of CVD [5–8]. More specifically, grapes,
wine, cocoa and pine are known to be significant sources of
flavonoids, particularly flavan-3-ols and proanthocyanidins [9,10].

It is well known that proanthocyanidins improve human health by
affecting the cellular and physiological processes. Several studies have
shown the beneficial effects of proanthocyanidins on lipid metabo-
lism in different experimental models [11,12] and humans [13,14].
Our group has previously shown that the oral administration of grape
seed proanthocyanidins significantly reduces the postprandial levels
of TG-rich and apolipoprotein-B-containing lipoproteins and im-
proves several atherosclerotic risk indexes in normolipidemic rats
[15]. In addition, grape seed proanthocyanidins lead to a reduction in
the production and secretion of TG in the human hepatocarcinoma
cell line HepG2 [16]. However, the effect of other proanthocyanidin
extracts on lipid production and secretion has not been studied in
hepatic cells.
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It is generally accepted that polyphenol bioavailability is relatively
poor [17], although the monomeric flavan-3-ols (or flavanols) are
among the polyphenols that exhibit higher bioavailability [18].
Moreover, the rapid conversion of flavonoids into their metabolites
is well known [19]. Therefore, the large amount of scientific data that
has been generated using nonphysiologically relevant forms and/or
concentrations of flavonoids is questionable [20,21]. In fact, the
limited description of flavonoid bioactivity that is based on studies
that use nonphysiologically relevant forms and/or concentrations of
these compounds is considered the most important limitation in
flavonoid research [20]. Thus, the development of in vitro models
using physiologically appropriate conjugates, forms and concentra-
tions of flavonoids that are more similar to those observed in tissues
after the intake of these compounds is an important requirement for
the analysis of flavonoid bioactivity [21]. Hence, we hypothesized that
this question could be addressed through the treatment of cells with
the sera of rats that were orally administered a proanthocyanidin-rich
extract. In this study, the cells were incubated directly with the
flavonoid metabolites in the rat sera, which would simulate the
physiological conditions that occur within the body. The use of the
sera of rats that were previously administered the compound under
study for the treatment of cell cultures has been recently described. In
fact, a previous study confirmed the bioactivity of bezafibrate, which
is a known peroxisome proliferator-activated receptor-γ ligand, in
HeLa cells using serum [22]. In a similar manner, in this study, rats
were used as a tool to produce flavonoid metabolites. These
physiological forms were utilized to treat HepG2 cells, allowing the
evaluation of the functionality of the bioactive forms.

Therefore, the aim of this study was to first evaluate the effect of
different proanthocyanidin-rich extracts on the lipid production and
secretion in HepG2 cells. Moreover, the lipid-lowering effect of
bioactive proanthocyanidins was also evaluated using an in vitro
system; in this system, the cells were treated with the physiological
metabolites that were present in the serum of rats that ingested a
grape seed proanthocyanidin extract (GSPE).

2. Materials and methods

2.1. Chemicals and reagents

Chromatographic analysis: Methanol (Scharlab S.L., Barcelona, Spain), acetone
(Sigma-Aldrich, Madrid, Spain) and glacial acetic acid (Panreac, Barcelona, Spain) were
of high-performance liquid chromatography (HPLC) analytical grade. Ultrapure water
was obtained from a Milli-Q advantage A10 system (Madrid, Spain). The 1000-mg/L
standard stock solutions of (+)-catechin, (−)-epicatechin, gallic acid, epigallocatechin
gallate (EGCG), proanthocyanidin B2 and proanthocyanidin B1 (all from Fluka/Sigma-
Aldrich, Madrid, Spain) in methanol and the 2000-mg/L standard solution of
pyrocatechol in methanol, which was used as an internal standard (Fluka/Sigma-
Aldrich), were stored in a dark-glass flask at −20°C.

Standard stock mixtures with a concentration of 200 mg/L of (+)-catechin, (−)-
epicatechin, EGCG and gallic acid in methanol and 100 mg/L of proanthocyanidin B2
and proanthocyanidin B1 in methanol were prepared weekly and stored at −20°C.
These standard stock solutions were diluted daily to the desired concentration using an
acetone/water/acetic acid (70:29.5:0.5, v:v:v) solution.

Cell culture: Dulbecco’s modified Eagle’s medium (DMEM), fetal bovine serum, L-
glutamine, penicillin and streptomycin were purchased from Bio Whittaker Europe
(Verviers, Belgium). The Bradford protein reagent was obtained from Bio-Rad
Laboratories (Life Science Group, Hercules, CA, USA). 14C-acetate was purchased from
Amersham Biosciences (Buckinghamshire, England).

2.2. Proanthocyanidin-rich extracts

The GSPE was provided by Les Dérives Résiniques et Terpéniques (Dax, France).
According to the manufacturer, this proanthocyanidin extract contains monomeric
(16.55%), dimeric (18.77%), trimeric (16%), tetrameric (9.3%) and oligomeric (N5)
(35.7%) proanthocyanidins.

The cocoa proanthocyanidin extract (CCX) used for this study was provided by
Natraceutical (Valencia, Spain). This extract was obtained from a polyphenol-rich
cocoa powder that was produced from unfermented, blanch-treated, nonroasted cocoa
beans, which preserve the degradation of polyphenols [23]. The data obtained using
normal-phase HPLC showed that the proanthocyanidin cocoa extract contains

monomeric (23.7%), dimeric (15.8%), trimeric (18.4%), tetrameric (13.9%) and
oligomeric proanthocyanidins (N5) (36.2%) [24].

The Pycnogenol extract (PYG) was provided by Shirota Functional Foods
(Tarragona, Spain). The PYG contains monomeric (38.0%), dimeric (40.9%) and oli-
gomeric (containingmore than threemonomeric units, 62.0%) proanthocyanidins. [25].

2.3. Experimental procedure in rats

In this study, 17- to 20-week-old male Wistar rats that weighed 300–350 g were
used. The Animal Ethics Committee of our university approved all procedures
(reference number 6777 by Generalitat de Catalunya). The animals were obtained
from Charles River Laboratories (Barcelona, Spain) and housed in animal quarters at
22°C with a 12/12-h light/dark cycle (light from 9:00 a.m. to 21:00 p.m.). The animals
consumed tap water and a standard chow diet (Panlab A04, Barcelona, Spain) ad
libitum throughout the experiment. The rats were randomly divided into two groups:
control (n=4) and GSPE (n=3). The rats from the experimental group were
administered 1 ml of 1 g/kg of body weight of GSPE by oral gavage. The control
group was orally administered 1 ml of water. The corresponding treatments were
administered between 9 and 10 a.m. after overnight fasting. Two hours after the
treatment, the rats were anaesthetized with sodium pentobarbital (80 mg/kg), and
their blood was collected by cardiac puncture (Fig. 1). The blood was maintained at
room temperature for 30 min. Once the blood coagulated, it was centrifuged at 2000×g
and 4°C for 15 min to obtain the serum. The sera were inactivated at 56°C for 30 min to
avoid the risk of complement-mediated cell lysis and stored at−80°C until analysis. All
of the methods were in accordance with the guidelines for the care and use of
laboratory animals of the University Rovira i Virgili (Tarragona, Spain).

2.4. Extraction of serum proanthocyanidins

Prior to the cell culture and chromatographic analysis, the rat serum samples were
pretreated by off-line micro-solid-phase extraction procedure (μSPE) following the
methodology that was previously described by Martí et al. (2010) [26] using 30-μm
OASIS HLB μElution Plates (186001828BA; Waters, Barcelona, Spain). Briefly, the
microcartridges were sequentially conditioned with 250 μl of methanol and 250 μl of
0.2% acetic acid. Prior to extraction, the serum was centrifuged at 2000×g and 4°C for 5
min. Two serum aliquots (each of 350 μl) were mixed, each of them, with 300 μl of 4%
phosphoric acid and 50 μl of pyrocatechol (2000 ppb) and then loaded onto two
different plates. The two loaded plates were washed with 200 μl of Milli-Q water and
200 μl of 0.2% acetic acid. The retained flavanols on each plate were eluted with 2×50 μl
of an acetone/Milli-Q water/acetic acid (70:29.5:0.5, v:v:v) solution. The two elutions
were mixed to obtain a final volume of 200 μl. Part of the solution (25 μl) was
evaporated to dryness using a SpeedVac Concentrator SPD 2010 SAVANT (Thermo
Scientific, USA) at room temperature and redissolved in 25 μl of an acetone/Milli-Q
water/acetic acid (70:29.5:0.5, v:v:v) solution. These samples were then directly
injected in the liquid chromatography tandem triple quadrupole mass spectrometry
(LC–QqQ/MS2) for chromatographic analysis; the sample volume used was 2.5 μl. The
remaining 175 μl of the semipurified serum was also evaporated to dryness at room
temperature using the same procedure described above and then stored at−80°C until
its use in the cell culture experiments (Fig. 1).

2.5. Chromatographic analysis

The chromatographic analysis was performed using a 1200 LC Series coupled to a
6410 QqQ/MS2 (Agilent Technologies, Palo Alto, CA, USA). The separations were
achieved using a Zorbax C18 (100mm×2.1 mm internal diameter, 1.8-μmparticle size)
chromatographic column from Agilent Technologies. The mobile phase consisted of
0.2% acetic acid (solvent A) and acetonitrile (solvent B) at a flow rate of 0.4 ml/min. The
elution gradient was 0–10 min, 5%–55% B; 10–12 min, 55%–80% B; 12–15 min, 80% B
isocratic; and 15–16 min, 80%–5% B. A post run of 10 min was applied. The ESI
conditions were the following: drying gas temperature and flow rate of 350°C and 12 L/
min, respectively, nebulizer gas pressure of 45 psi and capillary voltage of 4000 V. The
QqQ was operated in the negative mode. The QqQ acquisition was performed in the
MRM mode for the analysis of the proanthocyanidins and their metabolites.

2.6. Method validation and sample quantification

To validate the quantitative method, the calibration curves, linearity, extraction
recovery, precision, sensitivity, and the method detection and quantification limits
(MDL and MQL, respectively) were studied through an analysis of the standard
solutions and blank serum samples that were spiked with standard flavanols. The
calibration curves were obtained by plotting the analyte/IS peak abundance ratios and
the corresponding analyte/IS concentration ratios. The extraction recovery was
evaluated through a comparison of the responses of the spiked samples with the
calibration curves of the standard solutions. The precision of the method was assessed
from the relative standard deviation (RSD) in a triplicate analysis of a spiked sample.
The sensitivity was evaluated by determining the limit of detection (LoD), which is
defined as the concentration that corresponds to three times the signal-to-noise ratio,
and the limit of quantification (LoQ), which is defined as the concentration that
corresponds to 10 times the signal-to-noise ratio. The MDL andMQL were calculated in
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the analysis of 350 μl of a sample. Table 1 shows the values that were obtained for each
quality parameter.

To quantify the samples, eight spiked blank samples with different concentration
levels were used to obtain the calibration curves. The standard compounds in the
samples were then quantified through the interpolation of the analyte/IS peak
abundance ratios in these curves. Due to the lack of appropriate standards, the
catechin, epicatechin and epicatechin gallate metabolites were tentatively quantified
using the calibration curves of the catechin, epicatechin and EGCG standards,
respectively. Similarly, the proanthocyanidin B3 dimer and the proanthocyanidin
trimer were quantified using the calibration curves of the proanthocyanidin B2 dimer.

2.7. Cell culture

The human hepatocellular carcinoma cell line HepG2 (ATCC code HB-8065,
Manassas, VA, USA) was cultured in DMEM supplemented with 10% (v/v) fetal calf
serum, 100 U/ml penicillin, 100 μg/ml streptomycin and 2 mM L-glutamine in a cell
culture flask at 37°C in a humidified atmosphere with 5% CO2. The cells were fed every
2–3 days.

2.8. Lipid analysis

Once they reached 80%–90% confluence, the HepG2 cells were seeded at a cell
density of 500×103 cell/well in 12-well plates. The growth medium was replaced by
supplemented culture medium 12 h before the addition of the treatments. In the first in
vitro study, the HepG2 cells were treated with 25 mg/L of GSPE, CCX or PYG, which was
dissolved in 1% EtOH, or vehicle (1% EtOH), which was used as the negative control. In
the second in vitro study, the HepG2 cells were treated with the semipurified rat
serum. The dried semipurified serum was redissolved in supplemented culture
medium and then added to the growthmedium on thewell (1:10, v/v). GSPE (25mg/L)
and EtOH (1%) were used as positive and negative controls, respectively. In both in
vitro studies, 14C-acetate (0.6 μCi/ml) was added to the cell culture medium at the same
time as the treatment to assess the lipid synthesis.

After 6 h of treatment with the different proanthocyanidin extracts or sera, the
media and cells were collected. The lipid fractions were obtained through a hexane/
isopropanol (3:2, v:v) extraction and separated through thin layer chromatography
(TLC). The lipids analyzed in both studies were cholesterol ester (CE), free cholesterol
(FC) and TG. TLC was performed as previously described [27] with an additional
separation using a hexane/MTBE/NH3 (30:20:0.1, v:v:v) solvent to obtain the TG
fraction [16]. The obtained lipid fractions were separated, and the radioactivity was
measured by scintillation counting. The values were corrected per milligram of protein,
which was determined using the Bradford methodology [28].

2.9. Statistical analysis

The results are expressed as the mean±standard error (S.E.M.) of the mean and
were analyzed by Student’s t test and one-way analysis of variance using the SPSS
software. The differences between the groups were assessed using the Bonferroni test

(to correct for multiple comparisons). The differences between the means were
considered significant when Pb.05.

3. Results

3.1. Proanthocyanidin-rich extracts decrease lipid synthesis and
excretion in HepG2 cells

All three tested proanthocyanidin-rich extracts (GSPE, CCX and
PYC) induced a 50%–60% decrease in the synthesis of CE in HepG2
cells; no differences were observed between the three extracts
(Fig. 2A). Furthermore, GSPE and PYC also induced a 40%–50%
decrease in the levels of both FC and TG. However, even though CCX
also induced a decrease in the FC and TG levels, this decrease was not
statistically significant (Fig. 2B and C).

Moreover, no significant difference was measured in the amount
of CE, FC and TG in the medium in response to any of the three
proanthocyanidin-rich extracts. Therefore, the observed decrease in
the synthesis of FC, CE and TGwas due to a significant reduction of the
lipids inside the cells (Fig. 2).

3.2. Characterization of the GSPE metabolites in the rat serum

To assess the bioactive compounds in GSPE that affect the de novo
lipid synthesis and excretion, we characterized the proanthocyanidin
metabolites that are present in the sera of GSPE-administered rats by
LC–ESI–QqQ/MS. This analysis was performed 2 h after the admin-
istration of 1 g/kg GSPE to the rats. Fig. 3 illustrates the extracted ion
chromatograms of the analysis of the flavonoids and their metabo-
lites. The results of this analysis are shown in Table 2, which details
the amount of each flavonoid and metabolite in the rat serum. Hence,
2 h after GSPE ingestion, the main compounds detected in the rat sera
were conjugated forms of the monomeric flavan-3-ols (catechin and
epicatechin). Specifically, the flavan-3-ol metabolites (epi)catechin
glucuronide, methyl-(epi)catechin-glucuronide, epicatechin-sulfate,
methyl-epicatechin and methyl-(epi)catechin-sulfate were detected
at concentrations of at least 0.15 μM (Table 2). The glucuronidated
forms were present in the sera at a substantially higher concentration
than the concentrations of the methylated and sulfated conjugates.

Fig. 1. Graphical representation of the in vivo and in vitro systems used in this study.

Table 1
Quality parameters of the quantitative method used for the determination of proanthocyanidins by LC-ESI-QqQ/MS2

Compound Calibration curve Determination coefficient (R2) Linearity (μM) Recovery (%) Precision (%RSD, n=3) LoD (nM) LoQ (nM) MDLa (nM) MQLa (nM)

Catechin y=0.1472x 0.99 0.19–39 99 0.29 20.70 68.90 5.90 19.70
Epicatechin y=0.1127x 0.99 0.18–36 80 1.06 12.40 41.30 3.50 11.80
B2 dimer y=0.2474x 0.99 0.04–9.0 92 0.27 6.90 23.00 2.00 6.60
B1 dimer y=0.3335x 0.99 0.04–8.6 69 0.85 31.10 103.70 8.90 29.60
EGCG y=2.0337x 0.99 0.20–12 73 8.77 1.20 4.00 0.30 1.10
Gallic acid y=0.2719x 0.98 0.31–61 48 0.42 35.30 117.60 10.10 33.60

a Method detection and quantification limits are expressed in μmol/L of fresh sample, which were calculated for the analysis of a 350-μl serum sample.
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However, in contrast to the high amount of these compounds in
the extract, free forms of unconjugated catechin, epicatechin and
dimeric proanthocyanidins were detected in low amounts [29].
Moreover, other compounds that were also abundant in GSPE were
not detected in the sera, such as monomeric gallate conjugates and
trimeric proanthocyanidins. The retention times of each compound
are shown in Fig. 3.

3.3. The metabolites in the serum of GSPE-administered rats decrease
lipid synthesis and excretion in HepG2 cells

Two hours after the administration of GSPE, the rat serum was
extracted, semipurified and used to treat HepG2 cells as a source of
bioactive GSPE metabolites. The results show that the metabolites in
the serum extracted from GSPE-administered rats significantly

Fig. 2. Effect of proanthocyanidin-rich extracts on lipid synthesis and secretion in HepG2 cells. Changes induced by GSPE, CCX and PYC on the de novo synthesis and secretion of CE (A),
FC (B) and TG (C). The HepG2 cells were simultaneously incubated with 14C-labeled acetate and 25mg/L of GSPE, CCX, PYG or vehicle (control). After 6 h of treatment, the radioactivity
that was incorporated into the media and cellular lipids was measured. %CE, %TC and %TG were calculated considering the control as the 100%. All of the values are the mean±S.E.M. of
triplicates of three independent experiments; the bars with different letters indicate statistically significant differences compared to the control (Pb.05).
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reduced the total percentage of CE and FC in both the cells and the
culture medium compared with the effect obtained with the sera of
rats that were administered water (Fig. 4A and B). The percentage of
TG was also reduced inside the cell but not in the medium (Fig. 4C).
The GSPE metabolites induced 39%, 52% and 72% reductions in the
cellular levels of CE, FC and TG.

4. Discussion

Dietary proantocyanidins are known to have numerous
potential health benefits; these compounds present a protective
role against different cardiovascular risk factors [30,31], including
high serum lipid levels. In fact, our research group has reported
a reduction in postprandial TG as a result of the administration
of 25 mg/kg of GSPE to normolipidemic rats [16], mice [32] and
rats that received a high-fat diet [33]. In addition, the GSPE-
induced suppression of some lipogenic enzymes, which are

induced by a high-fat diet, has been described [33,34]. Moreover,
a previous in vitro study reported the reduction of de novo TG
synthesis and secretion in HepG2 cells that were treated with
50 mg/kg GSPE [16].

In our study, the GSPE-treated HepG2 cells exhibited hypolipi-
demic effects compared to the control cells. In particular, we found a
significant reduction in the accumulation of intracellular 14C-lipids
but no significant differences in the lipid contents in the media. This
result is likely because the incorporated radioactivity was measured
after 6 and not after 12 h of treatment, as previously described [16].
Interestingly, our results show that half of the dose of GSPE (25 mg/L)
and half of the treatment duration were sufficient to reduce lipid
synthesis and production. Similar results were observed with
the other proanthocyanidin-rich extracts (CCX and PYC). However,
CCX did not significantly decrease the syntheses and the amount
(both the cell and medium contents) of FC and TG (Fig. 4B and C,
respectively); this difference is likely because of the different
composition of the extracts.

Fig. 3. Extracted ion chromatograms of the compounds in Table 2. These chromatographs were used for the analysis of the serum of GSPE-administered rats. The serumwas extracted 2
h after the administration of 1 g/kg of GSPE. The following compounds were analyzed: (1) gallic acid, (2) B1 dimer, (3) B1+B3 dimer, (4) B2 dimer, (5) methyl-catechin-glucuronide,
(6) methyl-epicatechin-glucuronide, (7) catechin glucuronide, (8) epicatechin glucuronide, (9) catechin, (10) epicatechin, (11) epicatechin sulfate, (12) epicatechin gallate, (13)
methyl-catechin-O-sulfate, (14) methyl-epicatechin-O-sulfate, (15) 3-methyl-epicatechin and (16) 4-methyl-epicatechin.
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The data obtained using nonbioactive molecules and extracts to
treat cultured cells have been questioned [22]. More specifically, the
in vitro results obtained using nonphysiologically relevant forms
and/or concentrations of flavonoids are considered an important
limitation of the studies that aim to determine the in vivo bioactivity
of these compounds [20,21]. An important aspect of polyphenols is
the changes that occur to these molecules during first-pass metab-
olism. Thus, the molecular forms that reach the peripheral circulation
and tissues are different from those that are present in foods [20]. In
addition, themicroflora extensively affects polyphenol hydrolysis and
hence further contributes to the variation in the molecular forms of
the polyphenols that are found in the blood and tissues [12,35,36].
These findings suggests that the bioactive forms of polyphenols are
different from those that are present in food and that in vitro
experiments with food polyphenols do not necessarily capture the in
vivo situation [37]. In fact, GSPE is rich in monomers, namely, catechin
and epicatechin, which are found both free and conjugated to a gallate
moiety, and dimers [29]. However, these free forms are not found in a
high concentration in the serum, which is predominantly composed
of conjugated metabolites, such as catechin and epicatechin glucuro-
nide. Moreover, only dimeric proanthocyanidins are detected in
serum, whereas trimeric proanthocyanidins are not detected despite
their abundance in GSPE [29]. The serum metabolites that were
detected in this study are similar to those that were previously
reported by other authors that analyzed plasma after the adminis-
tration of the same dose of GSPE [29]. Therefore, the bioactive
flavanols in rat serum differ considerably from the compounds that
are present in GSPE. Hence, it is important to perform flavan-3-ol
functionality studies using the metabolites in the serum of GSPE-
administered rats for the treatment of cells. This approach is
particularly important when extracts and not pure compounds are
used to treat cells since the extracts consist of a complex mixture of
different molecules. Moreover, the postabsorption metabolization of
the extract mixture, which yields numerous metabolites [29], turns

into impossible to obtain the same compounds from other sources
rather than from the rat.

In this study, we combined the in vivo and in vitro system
described to establish the bioactivity of proanthocyanidins on de novo
lipid synthesis and excretion. Thus, HepG2 cells were incubated with
the physiological metabolites that are present in the serum of GSPE-
administered rats. It is important to point out that the sera
metabolites come from the metabolization not only by the liver
hepatocytes but also by the intestinal cells and by the microbiota.
Therefore, themetabolites used in our study contained all the possible
bioactive forms of polyphenols that are present in the sera of the
animals 2 h after the administration of an extract rich in proantho-
cyanidins. The rats were administered with an acute dose of 1 g/kg

Table 2
Flavonoids and metabolites in the serum of rats that ingested an acute dose of 1 g/kg
of GSPE

Total amount (μM)

Compound
Catechin 0.08±0.02
Epicatechin 0.52±0.14
Procyanidin B1 dimer 0.10±0.06
Proanthocyanidin B2 dimer 0.19±0.50
Proanthocyanidin B3 dimer c 0.10±0.02
Gallic acid 0.89±0.13
Epicatechin gallated n.d.
Dimer gallatec n.d.
Trimerc n.d.
EGCG n.d.

Metabolites
Catechin-glucuronidea N39±14.89
Epicatechin-glucuronideb N36±14.51
Methyl-catechin-glucuronidea 14.89±1.96
Methyl-epicatechin-glucuronideb 12.35±1.16
Catechin-sulfatea n.d.
Epicatechin-sulfateb 0.76±0.16
3-o-methyl-epicatechinb 0.15±0.03
4-o-methyl-epicatechinb 0.34±0.05
Methyl-catechin-o-sulfatea 1.50±0.30
Methyl-epicatechin-o-sulfateb 3.91±0.63

The quantification was performed 2 h after the administration of GSPE. The data are
presented as the mean (μM)±S.E.M. (n=4).
Abbreviations: n.d.=not detected; n.q.=not quantified.

a Quantified as catechin.
b Quantified as epicatechin.
c Quantified as dimer B2.
d Quantified as EGCG.

Fig. 4. Effect of semipurified serum from GSPE-administered rats on lipid synthesis and
secretion in HepG2 cells. Changes induced by the semipurified serum of GSPE-
administered rats on the de novo synthesis and secretion of CE (A), FC (B) and TG (C).
The serumwas extracted 2 h after the administration of water (control group) or 1 g/kg
of GSPE. The HepG2 cells were simultaneously incubated with 14C-labeled acetate and
semipurified rat serum. After 6 h of treatment, the radioactivity that was incorporated
into the media and the cellular lipids was measured. %CE, %TC and %TG were calculated
considering the control as the 100%. All of the values are the mean±S.E.M. of triplicates
of three independent experiments.
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body weight of GSPE to obtain a sufficient amount of the proantho-
cyanidins metabolites to observe a further functionality in HepG2
cells [29]. The rat serum was obtained 2 h after the administration of
the proanthocyanidin-rich extract because the highest plasma peak
concentrations of flavanols are obtained 2 to 3 h after the ingestion of
the extract in a dose-dependent manner [38,39]. Specifically, the
maximumpeakswere obtained in the plasma of rats that received 1 g/
kg of GSPE 1 to 2 h postadministration [29]. Moreover, before its use
for the treatment of HepG2 cells and chromatographic analysis, the
sera were semipurified using a μSPE, which is a standard method that
has been used prior to the chromatographic analysis of the poly-
phenols in biological samples, such as plasma [40]. Through this
method, the numerous interferences in the sera, which are mainly
proteins, are reduced. In addition to the pretreatment of the plasma,
this method preconcentrates the phenolic compounds because these
are present in the plasma and serum in trace amounts [40]. Therefore,
we consider this semipurification and preconcentration step crucial to
obtain mostly purified bioactive flavonoids and metabolites for both
chromatographic analysis and in vitro cell treatment.

The results obtained using the metabolites in the sera of GSPE-
administered rats, which were compared to the results obtained with
the sera of rats that were orally administered water, showed a
decrease in the de novo lipid synthesis and excretion in HepG2 cells,
especially of TG. Similarly, a marked decrease in the TG level was also
observed in previous in vivo studies that administered GSPE to rats,
which showed that GSPE induced a clear hypotriglyceride effect in
animals [15]. The lipid-lowering effect of semipurified rat sera is
indicative that the physiological forms of the GSPE flavonoids also
exhibit hypolipidemic properties. It was recently postulated that
orally administered quercetin and likely other flavonoids are
conjugated in the intestine and liver prior to their transport to the
bloodstream and that the flavonoid released from their glucuroni-
dated metabolite is responsible for its activity [41,42]. Although our
study has been performed with other cell types and using other
flavonoids that are different from quercetin, as well as with extracts
instead of pure compounds, the obtained results also show the
bioactivity of the conjugated metabolites.

Finally, although this study was realized with the phase II
metabolites and some aglycones (i.e., a time point of 2 h was
selected), this methodology can be a particularly useful tool to test the
bioactivity of microbial metabolites through the use of serum from
rats administered proanthocyadins after long time points. These
studies could be especially relevant taking into account that the
microbial metabolites are thought to be the responsible forms of a
great part of the health effects of proanthocyanidns [43].

In conclusion, this study demonstrates the high hypolipidemic in
vitro effect of different proanthocyanidin-rich extracts. Furthermore,
the bioactivity of the proanthocyanidin rat sera metabolites of GSPE
was also demonstrated in HepG2 cells, which exhibited a decrease in
lipid synthesis and excretion. All these results demonstrated that the
proposed in vivo–in vitro combined system is useful to study the
functionality of the bioactive forms of flavonoids.
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Hyperlipidemia is one of the principal causes of cardiovascular disease and proanthocyanidins (PAs) regu-
late lipid homeostasis. This study aims to evaluate the concentration of PAs in rat serum after the adminis-
tration of different doses of PAs and to determine the capacity of these metabolites to reduce de
novolipid synthesis in HepG2 cells. Two hours after oral administration of different doses of a grape seed
proanthocyanidin extract (GSPE) (1000, 375, 250 and 125 mg/kg), serum was semi-purified and
characterised by HPLC–ESI–MS/MS before analysing the synthesis and secretion of lipids in HepG2 cells. Re-
sults showed a dose-dependent appearance of metabolised PAs in serum at doses up to 375 mg/kg and sat-
uration at 1000 mg/kg of GSPE. A reduction in cholesterol esters (CE), free cholesterol (FC) and triglycerides
(TG) synthesis was observed without dose-dependence when the cells were treated with PAs metabolites.
Moreover, a low dose of metabolites (125 mg/kg) was sufficient to reduce FC and TG synthesis. In conclu-
sion, the study demonstrated that PAs metabolise in a dose-dependent manner up to 370 mg/kg but not
dose-dependent effect was shown in reducing the de novosynthesis of lipids.

© 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Hyperlipidemia is a metabolic disorder that is characterised by in-
creased blood levels of total cholesterol, low density lipoprotein choles-
terol (LDL) and/or triglycerides (TG) all of which are correlatedwith the
development of atherosclerosis, the underlying cause of cardiovascular
disease (CVD) and stroke (Yang et al., 2012). On the contrary, high den-
sity lipoprotein cholesterol (HDL) prevents atherosclerosis by reverting
the stimulatory effect of oxidised-LDL. Several lines of evidence indicate
that lipid-lowering treatments can reduce the development of coronary
atherosclerosis (Nissen et al., 2004); in fact, a primary goal of clinical
treatments for CVD risk reduction is to achieve therapeutic target levels
for all lipid parameters (Wang et al., 2011).

Polyphenols are among the most abundant phytochemicals present
in the human diet, and increasing evidence points to the important
health-promoting effects of select flavonoids (Hertog et al., 1995;

Rasmussen, Frederiksen, Struntze Krogholm, & Poulsen, 2005). Inverse
relationships between plant-derived food intake and coronary heart
disease risk have been previously reported (Shivashankara & Acharya,
2010). One of the main contributors to polyphenol intake in humans
are the flavanols or proanthocyanidins (PAs),which are foundprimarily
in grapes, beans, nuts, cocoa, tea and wine (Bladé, Arola, & Salvadó,
2010; Borriello, Cucciolla, Della Ragione, & Galletti, 2010). Our group
has previously shown that the oral administration of grape seed PAs re-
duces TG and cholesterol and modulates the hepatic expression of sev-
eral related genes and microRNAs in fatty acid, TG, and cholesterol
metabolism (Baselga-Escudero et al., 2013;Del Bas et al., 2008). Howev-
er, the intake of large amounts of polyphenol-rich products is not direct-
ly linked to the concentration of these compounds and theirmetabolites
in blood and tissues (Manach, Scalbert, Morand, Rémésy, & Jiménez,
2004). It is generally accepted that the bioavailability of polyphenol is
relatively poor, althoughmonomeric flavan-3-ols showhigher bioavail-
ability (Tomas-Barberan et al., 2007). It has been proposed that oligo-
meric and polymeric PAs are degraded into smaller units, especially
monomers, by gastric juice (Ottaviani, Kwik-Uribe, Keen, & Schroeter,
2012; Prasain et al., 2009). In addition, after digestion, the metabolised
compounds can lose their original properties or even acquire new activ-
ities (Gutierrez-Merino et al., 2011). In fact, the uptake andmetabolism
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of polyphenols is usually associated with their methylation, sulphation,
or glucuronidation. In addition, considerable quantities of ingested fla-
vonoids are degraded by colonic microbiota upon reaching the large in-
testine, where they yield other, smaller molecules that are also
absorbed into the body (Del Rio et al., 2013). Thus, in plasma, polyphe-
nols occur more often in more diverse forms than are present in food
(Rice-Evans, 2001). Therefore, the properties of polyphenol compounds
or extracts differ depending onwhether they are studied using in vitroor
in vivo models (Del Bas, Laos, Caimari, Crescenti, & Arola, 2012; Kroon
et al., 2004). Thereby, the development of bioactive in vitromodels
using physiologically appropriate conjugates and concentrations is an
important requirement for establishing the flavonoid bioactivity mech-
anisms (Kay, 2010). Recently, we showed the bioactivity of physiologi-
cal rat metabolites after the ingestion of grape seed polyphenols using
an in vivo–in vitrosystem (Guerrero et al., 2013). This previous study
was realised with a dose of 1000 mg/kg of a grape seed
proanthocyanidin extract (GSPE) to obtain the metabolites maximum
concentrations in serum. Hence, in the present study, we aim to evalu-
ate the absorption and serum bioavailability of PAs at low GSPE doses
(i.e. lower than 1000 mg/kg). Moreover, the lipid-lowering effects of
rat generated metabolites after the ingestion of different doses of
GSPE was evaluated in HepG2 cells.

2. Materials and methods

2.1. Chemicals and reagents

Methanol (Scharlab S.L., Barcelona, Spain), acetone (Sigma-Aldrich,
Madrid, Spain), and glacial acetic acid (Panreac, Barcelona, Spain)
were of high performance liquid chromatography (HPLC) analytical
grade. Ultrapure water was obtained from a Milli-Q advantage A10
system (Madrid, Spain). Stock standard solutions of 1000mg/L (+)-cat-
echin, (−)-epicatechin, gallic acid, epigallocatechin gallate (EGCG), PAs
B1 and B2 (all from Fluka/Sigma-Aldrich, Madrid, Spain) in methanol
and a standard solution of 2000 mg/L of pyrocatechol in methanol as
the internal standard (IS) (Fluka/Sigma-Aldrich, Madrid, Spain) were
stored in a dark glass flask at−20 °C.

A 200mg/L stock standardmixture of (+)-catechin, (−)-epicatechin,
EGCG, and gallic acid in methanol, and 100 mg/L of PAs B1 and B2 were
prepared weekly and stored at −20 °C. The stock standard solution
was diluted daily to the desired concentration using an acetone:water:
acetic acid (70:29.5:0.5, v:v:v) solution.

2.1.1. Cell culture
Dulbecco's modified Eagle's medium (DMEM), foetal bovine serum

(FBS), L-glutamine, penicillin and streptomycin were purchased from
Bio Whittaker Europe (Verviers, Belgium). Bradford protein reagent
was obtained from Bio-Rad Laboratories (Life Science Group, Hercules,
CA, USA). 14C-acetate was purchased from Amersham Biosciences
(Buckinghamshire, England).

2.2. Grape seed rich-proanthocyanidin extract

GSPE was provided by Les Dérives Résiniques et Terpéniques
(Dax, France). Table 1 shows the total polyphenol, phenolic com-
pounds (flavan-3-ols and phenolic acids) and the antioxidant capac-
ity of the extract used in this study (adapted from Quiñones et al.,
2013).

2.3. Experimental procedure in rats

Seventeen- to twenty-week-oldmaleWistar rats (n=15)weighing
300–326 g were used for this study. The animals were obtained from
Charles River Laboratories (Barcelona, Spain) and housed in animal
quarters at 22 °C with 12 h light/dark cycles (light from 9:00 a.m. to
9:00 p.m.). The animals consumed tap water and a standard chow

diet (Panlab A04, Barcelona, Spain) ad libitum during the experiment.
Rats were randomly divided into five groups, which were administered
either 1mLwater (control group) or different doses of GSPE dissolved in
1 mL of water (125, 250, 375, and 1000 mg/kg groups). GSPE doses or
water were administered by oral gavage between 9 and 10 a.m. follow-
ing overnight fasting. Two hours after treatment, rats were anesthetised
with sodium pentobarbital (80 mg/kg) and blood was collected by car-
diac puncture. To obtain serum samples, bloodwas left at room temper-
ature for 30 min to coagulate and was then centrifuged (2000 ×g,
15 min, 4 °C). Serum were inactivated at 56 °C for 30 min to avoid the
risk of complement-mediated cell lysis and stored at−80 °C until anal-
ysis. All methods were in accordance with the guidelines for care and
use of laboratory animals of the University Rovira i Virgili (Tarragona,
Spain); procedure number 6777.

2.4. Serum proanthocyanidin extraction

Prior to cell culture and chromatographic analysis, rat serum PAs
were extracted and semi-purified by off-line micro-solid phase
extraction (μSPE) following the previously described methodology
(Guerrero et al., 2013), using 30 μmOASIS HLB μ-Elution Plates (Wa-
ters, Barcelona, Spain). Briefly, micro-cartridges were conditioned
sequentially with 250 μL of methanol and 250 μL of 0.2% acetic acid.
Serum was centrifuged prior to extraction (2000 ×g, 5 min, 4 °C).
Two serum aliquots (350 μL each) were individually mixed with
300 μL of 4% phosphoric acid and 50 μL of pyrocatechol (1000 μg/L)
and were then loaded onto two different plates. The two loaded
plates were washed with 200 μL of Milli-Q water and 200 μL of 0.2%
acetic acid. The retained flavanols were eluted with 2 × 50 μL of ace-
tone:Milli-Q water:acetic acid solution (70:29.5:0.5, v:v:v) for each
plate. Finally, the two elutions were mixed to obtain a final volume
of 200 μL. Part of that solution (25 μL) was evaporated to dryness
using a SpeedVac Concentrator SPD 2010 SAVANT (Thermo Scientif-
ic, San Jose, CA, USA) at room temperature and redissolved with

Table 1
Total polyphenols (mg/g) and main phenolic compounds (flavan-3-ols and phenolic
acids) (mg/g) of the grape seed proanthocyanidin extract (GSPE) used in this study.

Amount

Total polyphenolsa 516.8 ± 12.1
Phenolic compoundsb

Gallic acid 17.7 ± 2.0
Protocatechuic acid 1.0 ± 0.1
Vanillic acid 0.1 ± 0.0
Proanthocyanidin dimer1 144.2 ± 32.2
Catechin 90.7 ± 7.6
Epicatechin 55.0 ± 0.8
p-Coumaric acid 0.1 ± 0.0
Dimer gallate1 39.7 ± 7.1
Epigallocatechin gallate 0.4 ± 0.1
Proanthocyanidin trimer1 28.4 ± 2.0
Proanthocyanidin tetramer1 2.0 ± 0.2
Epicatechin gallate2 55.3 ± 1.5
Quercetin-3-O-galactoside 0.2 ± 0.0
Naringenin-7-glucoside 0.1 ± 0.0
Kaempferol-3-glucoside 0.1 ± 0.0
Quercetin 0.3 ± 0.0

Antioxidant capacityc 16,936 ± 651

Adapted from Quiñones et al. (2013).
The results are expressed on a wet basis as the mean ± SD (n = 3).

a Spectrophotometric method Folin–Ciocalteu. The results are expressed as mg gallic
acid equivalent/g of fresh GSPE.

b HPLC–MS. The results are expressed as mg of phenolic compound/g of fresh GSPE.
c Hydrophilic ORAC (H-ORAC) assay, expressed as μmol of Trolox equivalents (TE)/g of

fresh GSPE.
1 Quantified using the calibration curve of proanthocyanidin B2.
2 Quantified using the calibration curve of epigallocatechin gallate.
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25 μL of an acetone:Milli-Qwater:acetic acid solution (70:29.5:0.5, v:
v:v). These samples were then directly injected in the HPLC tandem
triple quadrupole mass spectrometer (HPLC–MS/MS) for chromato-
graphic analysis; the sample volume was 2.5 μL. The remaining
175 μL of the semi-purified serum was also evaporated to dryness
using the same procedure described above and was then stored at
−80 °C until the cell culture experiment.

2.5. Chromatographic analysis

The chromatographic analysis was performed using a 1200 LC Series
coupled to a 6410MS/MS (Agilent Technologies, Palo Alto, CA, USA). The
separationswere achieved using a Zorbax SB-Aq (150mm× 2.1mm i.d.,
3.5 μm particle size) as a chromatographic column from Agilent Tech-
nologies. The mobile phase consisted of 0.2% acetic acid (solvent A)
and acetonitrile (solvent B) at aflow rate of 0.4 mL/min. The elution gra-
dient was 0–10 min, 5–55% B; 10–12 min, 55–80% B; 12–15 min, 80% B
isocratic; 15–16 min 80–5% B. A post run of 10 min was applied. The
electrospray ionisation (ESI) conditions were 350 °C and 12 L/min of
drying gas temperature and flow, respectively, a nebuliser gas pressure
of 45 psi, and 4000 V of capillary voltage. MS/MS was operated in nega-
tivemode.MS/MS acquisitionwas performed inmultiple reactionmon-
itoring (MRM)mode for PAs and their metabolites. Data acquisitionwas
conducted using the MassHunter Software (Agilent Technologies, Palo
Alto, CA, USA).

For sample quantification, spiked blank sera at 8 different con-
centrations were used to obtain calibration curves, and standard
compounds in the samples were quantified by interpolating the an-
alyte/IS peak abundance ratio in these curves. Catechin, epicatechin,
and EGCG metabolites were tentatively quantified using the stan-
dard catechin, epicatechin, and EGCG calibration curves, respective-
ly, due to the lack of standards. In the same way, dimer PA B3 and

trimer PAs were quantified using the calibration curve of dimer PA
B2 (see Supplementary information SI1).

2.6. Cell culture

The human hepatocellular carcinoma cell line HepG2 (ATCC code
HB-8065, Manassas, VA, USA) was cultured in DMEM medium supple-
mented with 10% (v/v) foetal calf serum, 100 U/mL of penicillin,
100 μg/mL of streptomycin and 2 mM of L-glutamine in a cell culture
flask at 37 °C and a humidified atmosphere of 5% CO2. The cells were
fed every 2–3 days.

2.7. Lipid analysis

The HepG2 cells were seeded at 500 × 103 cells/well in 12-well
plates, and they were used upon reaching 80–90% confluence.
Growth medium was replaced by supplemented culture media 12
h before the treatments. HepG2 cells were cultivated with the PAs
metabolites derived from semi-purified rat serum (Guerrero et al.,
2013). Rat serum were obtained for in vitro use 2 h after the admin-
istration of either water or increasing doses of GSPE (125, 250, or
375 mg/kg). The dried, semi-purified serumwas redissolved in sup-
plemented culture medium and was then added to the growth me-
dium in the well (1:10, v/v). GSPE (25 mg/L) and ethanol (1%)
were used as a positive and negative control, respectively. 14C-
acetate (0.6 μCi/mL) and the appropriate treatment were added si-
multaneously to the cell culture medium to evaluate lipid synthesis.
Six hours after treatment with the purified serum, media and cells
were collected and the lipid fraction was obtained via hexane:
isopropanol (3:2, v:v) extraction and separated by Thin Layer Chro-
matography (TLC). In all experiments, the lipids evaluated were
cholesterol esters (CE), free cholesterol (FC) and TG. TLC was per-
formed as previously described (Pill, Aufenanger, Stegmeier,

Table 2
Flavanols and their metabolites quantified in rat serum over a 2-h period after the ingestion of an acute intake of grape seed proanthocyanidin extract (GSPE) (1000, 375, 250, or
125 mg/kg) by HPLC–ESI–MS/MS.

Compound Total amount (μM)

125 mg/kg 250 mg/kg 375 mg/kg 1000 mg/kg

Catechin 0.04 ± 0.013 0.06 ± 0.023 0.15 ± 0.034 0.12 ± 0.005
Epicatechin 0.24 ± 0.051 0.56 ± 0.188 0.74 ± 0.148 0.48 ± 0.031
Proanthocyaidin dimer B1 n.q. 0.01 ± 0.003a 0.03 ± 0.024ab 0.09 ± 0.001ab

Proanthocyanidin dimer B2 n.q. 0.01 ± 0.003a 0.03 ± 0.019a 0.27 ± 0.016ab

Proanthocyanidin dimer B33 n.q. 0.01 ± 0.002a 0.012 ± 0.004a 0.07 ± 0.001ab

Gallic acid 0.21 ± 0.087 0.46 ± 0.034 0.59 ± 0.238 0.80 ± 0.164
Epicatechin gallate4 n.d. n.d. n.d. n.d.
Dimer gallate3 n.d. n.d. n.d. n.d.
Trimer3 n.d. n.d. n.d. n.d.
EGCG n.d. n.d. n.d. n.d.

Metabolite
Catechin-glucuronide1 13.09 ± 1.038a 29.78 ± 2.134ab 40.16 ± 6.389b 41.30 ± 5.800ab

Epicatechin-glucuronide2 11.41 ± 1.058 26.63 ± 0.036 37.56 ± 6.943 37.54 ± 6.750
Methyl-catechin-glucuronide1 12.58 ± 1.037 17.71 ± 1.673 22.04 ± 1.678 7.68 ± 0.556
Methyl-epicatechin-glucuronide2 9.73 ± 1.064 12.46 ± 0.858 19.01 ± 2.749 36.79 ± 5.889
Catechin-sulphate1 0.06 ± 0.010 0.14 ± 0.055 0.53 ± 0.358 0.06 ± 0.010
Epicatechin-sulphate2 n.d. n.d. n.d. 0.03 ± 0.003
3-o-methyl-epicatechin2 0.12 ± 0.010 0.11 ± 0.025 0.33 ± 0.094 0.09 ± 0.006
4-o-methyl-epicatechin2 0.15 ± 0.016 0.13 ± 0.019 0.42 ± 0.143 0.10 ± 0.001
Methyl-catechin-o-sulphate1 0.62 ± 0.043 0.47 ± 0.122 1.97 ± 0.827 0.19 ± 0.012
Methyl-epicatechin-o-sulphate2 1.55 ± 0.308 1.48 ± 0.329 4.49 ± 1.553 0.58 ± 0.045

The data are given as the mean (μM) ± SEM (n = 3); values with different letters indicate statistically significant differences between GSPE doses (One-way ANOVA, p b 0.05).
Abbreviations: n.d. = not detected. n.q. = not quantified. EGCG = epigallocatechin gallate.

1 Quantified as catechin.
2 Quantified as epicatechin.
3 Quantified as proanthocyanidin dimer B2.
4 Quantified as EGCG.
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Schmidt, & Müller, 1987), with an additional separation using a
Hexane:MTBE:NH3 (30:20:0.1, v:v:v) solvent to obtain the TG frac-
tion (Del Bas et al., 2008). The obtained lipid fractions were

separated, and radioactivity was measured by scintillation counting.
The values were normalised to milligrams of protein, determined
using the Bradford methodology (Bradford, 1976).
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Fig. 1. Extracted ion chromatogram of serum flavonoids 2 h after the administration of 1000 mg GSPE/kg (in green), 375 mg GSPE/kg (in black), 250 mg GSPE/kg (in red), and 125 mg
GSPE/kg (in blue). (1) Gallic acid; (2) Dimer B1; (3) Dimer B3; (4) Dimer B2; (5) Methyl-catechin-glucuronide; (6) Methyl-epicatechin-glucuronide; (7) Catechin glucuronide; (8) Epi-
catechin glucuronide; (9) Catechin; (10) Epicatechin; (11) Catechin sulphate; (12)Methyl-catechin-O-sulphate; (13)Methyl-epicatechin-O-sulphate; (14) 3-methyl-epicatechin; (15) 4-
methyl-epicatechin. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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2.8. Statistical analysis

The results were expressed as the mean ± standard error of the
mean (SEM) and analysed by Student's t-test and one-way ANOVA
using the IBM SPSS Statistics software (Version 20.0.0). Differences be-
tween groups were assessed using the Bonferroni test (to correct for
multiple comparisons). Differences between means were considered
significant when p b 0.05.

3. Results

3.1. GSPE serum metabolites determination

The HPLC–ESI–MS/MS analysis of rat serum PAsmetabolites collect-
ed 2 h after the ingestion of 1000, 375, 250, or 125 mg/kg GSPE is pre-
sented in Table 2 and Fig. 1. Free forms of catechin, epicatechin, and
dimeric PAs, in addition to phenolic acids such as gallic acid, were de-
tected at low concentrations in serum (up to 0.80 μM), in contrast to
the high concentrations of these compounds found in GSPE (Quiñones
et al., 2013). Moreover, other compounds abundant in GSPE were not
detected in serum, such as monomeric and dimeric gallated conjugates
or trimeric PAs (Table 2). However, the primary compounds detected in
rat serum were conjugated forms of the monomeric flavan-3-ols (cate-
chin and epicatechin). For all doses tested, the glucuronidated forms of
flavanols were present in serum at substantially higher concentrations
compared to methylated and sulphated conjugates (Fig. 2). In addition,
although the metabolite serum concentration was very compound-
specific, the results corresponding to many physiological forms of PAs
showed a dose-dependent effect on both metabolised and non-
metabolised flavonoids up to a dose of 375 mg/kg, so that at the dose
of 1000 mg/kg of GSPE, the metabolism of many compounds was re-
duced (Figs. 2 and 3).

3.2. GSPE rat serum metabolites decrease lipid synthesis and excretion in
HepG2 cells

3.2.1. Effect of different doses of GSPE rat serum metabolites on cholesterol
ester synthesis in HepG2 cells

Treating HepG2 cells with semi-purified serum from GSPE-
administered rats produced a dose-dependent decrease in CE synthesis
relative to the cells treated with serum from water-administered rats
(Fig. 4A). However, only serum from the 375 mg/kg GSPE dose signifi-
cantly reduced the CE synthesis compared to the control animals. The
differences in CE synthesis were due to a decrease in the intracellular
lipid content (69 ± 4.1%, after setting the CE synthesis of the control
group to 100% for the dose of 375 mg/kgGSPE). For the three doses test-
ed, the CE secretion into culture medium was similar to controls.

3.2.2. Effect of different doses of GSPE rat serum metabolites on free
cholesterol synthesis in HepG2 cells

The total amount of intracellular FCwas reducedwhen cells were in-
cubated with the metabolites present in serum (Fig. 4B). No differences
in the synthesised FC were observed for the three doses studied. The FC
secreted by the cells into the culture medium was similar to that of the
controls for all three tested doses.

3.2.3. Effect of different doses of GSPE rat metabolites on triglyceride
synthesis in HepG2 cells

Although a decrease in TG synthesis and intracellular TG was ob-
served for all doses, surprisingly, only treatment with a low dose of me-
tabolites (GSPE intake of 125 mg/kg) resulted in a statistically
significant difference compared to the control (70 ± 4.0%, whereas
the control was set to 100%). TG secretion into the cell culture medium
was similar to that of the controlmetabolites for all three doses (Fig. 4C).
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4. Discussion

The regular consumption of flavonoids in the human diet has been
associated with reduced mortality and morbidity of cardiovascular dis-
ease (CVD) (Crozier, Jaganath, & Clifford, 2009; Rasmussen et al., 2005).
PAs are considered the most abundant flavonoids in the human diet
(Bladé et al., 2010) and, similar to other flavonoids, their beneficial ef-
fects depend on both the amount consumed and their bioavailability
(Manach et al., 2004). It has been shown that low molecular weight
forms, especially monomeric flavan-3-ols and dimers, are absorbed in
the small intestine and metabolised by the phase-II enzymes, whereas
the polymeric forms are metabolised by the colonic microbiota (Aura,
2008; Monagas et al., 2010). It has also been demonstrated that at 2 h
after an acute PA administration, the main compounds that reach the
systemic circulation and tissues are phase-II metabolites (Serra et al.,
2010, 2013). In addition, the bioactive compounds that eventually

reach tissues are substantially different from those that are initially
present in food (Kroon et al., 2004). In fact, the qualitative and quantita-
tive PAs composition differs substantially between GSPE and the serum
of animals administered a 1000 mg/kg dose of this same extract
(Guerrero et al., 2013). As a result of these structural changes, many in
vitro studies with no physiological forms of flavonoids have been
questioned because their beneficial effects could be modulated by
their metabolic conjugates (Kay, 2010; Kroon et al., 2004). In a previous
study, we described a new methodology for evaluating the effects of
bioactive forms of PAs on de novo lipid synthesis in cultured cells
(Guerrero et al., 2013). Hence, the objective of the present work was
to determine whether PAs are absorbed or metabolised differently de-
pending on the dose administered to rats andwhether the different ab-
sorption or amount of metabolites could affect the bioactivity of the PAs
in regulation de novo lipid synthesis using the previously described
methodology (Guerrero et al., 2013).
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This study was conducted at 2 h post GSPE administration and fo-
cused on flavanol-phase-II metabolites, since these compounds are
known to peak serum concentration at 2 h post PAs administration
(Serra et al., 2010). In addition, it is known that although smaller pheno-
lic compounds are generated from the action of colonic bacteria after
polyphenols intake, these colonic metabolites appear in circulation
later in time (Del Rio et al., 2013). Acute PAs bioavailability studies are
usually conducted with high, non-physiological doses of PAs extracts,
such as 1000 mg/kg of GSPE, to reach a serum or plasma metabolite
concentration that is detectable by chromatographic analysis
(Arola-Arnal et al., 2013; Guerrero et al., 2013; Serra et al., 2010).
However, in this study is demonstrated that following treatment with
lowphysiological doses of GSPE (i.e.; 125 mg/kgGSPE), PAsmetabolites

can be detected and quantified in serum and that a dose of 1000 mg/kg
of GSPE saturates the system. Moreover, a clear dose–response of both
metabolised and non-metabolised PAs can be observed in rat serum 2
h following the acute administration of low doses of GSPE (125, 250,
and 375 mg/kg). These results indicate that the rat's ability to conjugate
many flavonoids could be overwhelmed at high doses. Therefore, the
administration of high doses of GSPE (from 375 mg/kg) does not result
in a greater presence of serum PAs metabolites. In fact, the concentra-
tion of some metabolites at 1000 mg/kg is even decreased respect to
lower doses. Only some minority aglycone forms, such as gallic acid
and dimeric PAs, had greater serum concentrations at 1000 mg/kg
than at 375 mg/kg. Similarly, when a 1000 mg/kg dose is administered
to rats, the methyl-epicatechin glucuronide concentration is increased
relative to 375 mg/kg. However, there are no differences between
methyl glucuronidated metabolites (sum of methyl epicatechin glucu-
ronide and methyl catechin glucuronide) when the doses of 375 and
1000 mg/kg of GSPE are compared. This observation could indicate
that the enzyme O-methyl transferase has greater affinity for epicate-
chin than catechin (Fig. 3).

On the other hand, several studies have shown the beneficial effects
of flavonoids in reducing TG levels both in vitro (Pal et al., 2003) and in
vivo (Auger et al., 2002; Vinson, Teufel, & Wu, 2001). Similarly, this is
not the first demonstration of GSPE reducing lipid synthesis, especially
for TG (Josep Maria Del Bas et al., 2008, 2009; Guerrero et al., 2013;
Quesada et al., 2009). Furthermore, we have previously reported that
a 1000 mg/kg dose of grape seed PAs metabolites in rat serum reduced
de novo lipid synthesis in HepG2 cells (Guerrero et al., 2013). In this
study, the lipid-lowering effect of metabolites at lower doses of GSPE
(125, 250, and 375 mg/kg) on de novo lipid synthesis were evaluated
because the highest dose (1000 mg/kg) did not yield a higher concen-
tration of serum metabolites than the 375 mg/kg dose (i.e. the system
is saturated). The results showed a reduction in de novo lipid synthesis
at all doses studied. However, although elevating the dose of GSPE to
375 mg/kg increased the metabolite concentrations appearing in
serum, a dose-dependent effect was only observed on CE, but not TG
or FC. Moreover, the lowest dose of 125 mg/kg showed the strongest ef-
fect on TG, indicating that a relativelymoderate dose of 125 mg/kg is ef-
fective. The lack of dose-dependence effect of PAs has been previously
reported by our group, indicating that lower doses of GSPE can be
more efficient than higher doses (Quiñones et al., 2013).

Given the high concentrations of conjugate forms present in serum,
specifically the glucuronic acid conjugates, thesemetabolites seem to be
involved in reducing the de novo synthesis of lipids in hepatic cells.
However, these conjugated forms may not act directly at the cellular
level. Previous studies have indicated that there is no direct relationship
between the plasma concentration and the target tissue concentration
of flavonoids, besides varying the distribution between blood and tis-
sues depending on the concerned flavonoid (Hong, Kim, Kwon, Lee, &
Chung, 2002; Maubach et al., 2003). In HepG2 cells, O'Leary et al. dem-
onstrated that glucuronidated flavonoids are deconjugated following
intact entry into cells by an unidentified transporter (O'Leary et al.,
2003). Therefore, the deconjugation of glucuronidated metabolites to
their bioactive forms insideHepG2 cells could explain the lack of a direct
relationship between the serum concentration of these conjugated
compounds and their biological functionality, including any effects on
de novo lipid synthesis. Additionally, the lack of a relationship between
the serummetabolite concentration and the regulation of lipid synthe-
sis could be explained by the presence of other minority compounds in
the serum that regulate lipid synthesis and have not been detected.

5. Conclusion

This study showed the dose-dependent appearance of both
metabolised and non-metabolised PAs in rat serum 2 h following the
acute administration of low doses of GSPE (up to 375 mg/kg) but a sat-
uration of the system when a high dose of GSPE was administered.

A

B

C

Fig. 4. Effect of rat semi-purified serumobtained 2 h after the administration of GSPE (375,
250, and 125 mg/kg) on HepG2 cells. Cells were simultaneously incubated with 14C-
labelled acetate and rat semi-purified serum. Six hours after the treatment, radioactivity
incorporated intomedia (□) and cellular (■) lipidswasmeasured. The total synthesis rep-
resents the radioactivity present in the cells and culture medium (■). All values are the
mean± SEM of triplicates of three independent experiments. A. Results related to choles-
terol ester synthesis and secretion inHepG2 cells. B. Results related to free cholesterol syn-
thesis and secretion in HepG2 cells. C. Results related to triglycerides synthesis and
secretion in HepG2 cells. Different letters indicate statistically significant differences com-
pared to the control (p b 0.05).
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Moreover, the study demonstrated that these PAs metabolites
exhibit no dose-dependent effects in reducing the de novo synthesis of
lipids, especially TG, and showed that a relatively moderate dose of
125 mg/kg is effective.
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Abstract

Flavanols are metabolized in the small intestine and the liver to produce their glucuronidated, sulfated or methylated conjugates that can be body distributed
or excreted in the urine. However, the intake of large amounts of flavanols is not directly related to their bioavailability. This study aims to investigate the
administered dose dependence of flavanols' conjugation and body distribution. In this study, different doses of a grape seed proanthocyanidin extract (GSPE;
125, 250, 375 and 1000 mg/kg) were orally administered to male Wistar rats. Tissues were collected 2 h after GSPE administration. Flavanols were quantified by
HPLC–MS/MS. Results show that the majority of GSPE metabolites are located in the kidney, followed by the liver. Lower concentrations were found in
mesenteric white adipose tissue (MWAT) and the brain. Moreover, flavanol metabolites followed a tissue-specific distribution pattern independent of dosage. In
the kidney, glucuronidated metabolites were the most abundant; however, in the liver, it was mainly methyl-glucuronidated metabolites. In MWAT, free
flavanols were dominant, and methylated metabolites were dominant in the brain. Concentration within a tissue was dependent on the administered dose. In
conclusion, flavanol metabolites follow a tissue-specific distribution pattern and only the tissue concentration of flavanol metabolites is dependent on the
administered dose.
© 2015 Elsevier Inc. All rights reserved.

Keywords: Brain; Grape seed extract; HPLC–MS/MS; Mesenteric white adipose tissue; Proanthocyanidins

1. Introduction

Polyphenols are among themost abundant phytochemicals present in
the human diet, and increasing evidence points to the important health-
promoting effects of selectflavonoids [1,2]. Inverse relationships between
plant-derived food intake and coronary heart disease risk have been
previously reported [3]. The flavanoin-type flavan-3-ols, or flavanols, are
one of the main polyphenols ingested by humans. These phytochemicals
are found primarily in grapes, beans, nuts, cocoa, tea andwine [4,5]. They
range from the flavanol monomers (+)-catechin and its isomer (−)-
epicatechin to more complex structures that include oligomeric and
polymeric proanthocyanidins (PAs), which are also known as condensed
tannins. Our group has previously shown that the oral administration of
grape seed flavanols exerts unique beneficial properties on some
metabolic syndrome-related parameters and cardiovascular diseases by
acting as antioxidants [6], limiting adipogenesis [7], presenting anti-
inflammatory properties [8] and acting either as an insulin-mimetic [9] or
as an antihypertensive [10,11] agent. A reduction in the de novo synthesis
of hepatic lipids, mainly triglycerides, has also been demonstrated [12].
However, the beneficial effects of flavanols are dependent on several

factors, such as themodel used, the timeof treatment or the administered
dose of the flavanol extract in both in vitro and in vivomodels [13].

It is generally accepted that the bioavailability of polyphenols is
relatively poor, although monomeric flavan-3-ols show higher bioavail-
ability [14]. It has also been proposed that oligomeric and polymeric
flavanols, or PAs, aredegraded into smallerunits, especiallymonomers, by
gastric juices [15,16]. In addition, after digestion, the metabolized
compounds can lose their original properties or even acquire new
activities [17]. In fact, the uptake and metabolism of polyphenols are
usually associatedwith theirmethylation, sulfation or glucuronidation by
phase II enzymes [18–20]. Considerable quantities of ingested flavanols
are degraded by colonic microbiota upon reaching the large intestine,
where they yield other smaller molecules that are also absorbed into the
body [21]. Some studies have demonstrated that after conjugation,
flavanols are distributed throughout the body and are found at
considerable concentrations in most tissues after an acute intake of a PA
extract [12,13,22–24]. However, the intake of large amounts of
polyphenol-rich products is not directly linked to an increase in the
concentrationof these compounds in theblood and tissues [25]. It has also
been demonstrated that different doses of flavanols do not always lead to
different concentrations of metabolites in rat sera after an acute
administration, and the in vitro effects of these metabolites have a
dose–response behavior [13]. Therefore, the aim of this study is to
elucidate whether flavanols can also be conjugated and distributed
differently throughout the body when the intake dosage of a grape seed
PAs extract is varied.
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2. Materials and methods

2.1. Chemicals and reagents

Methanol (Scharlab S.L., Barcelona, Spain), acetone (Sigma-Aldrich, Madrid, Spain)
and glacial acetic acid (Panreac, Barcelona, Spain) were of HPLC analytical grade.
Ultrapure water was obtained from a Milli-Q advantage A10 system (Madrid, Spain).
Individual stock standard solutions of 2000 mg/l in methanol of (+)-catechin,
epigallocatechin gallate (EGCG), 3-hydroxybenzoic acid, 2-(4-hydroxyphenyl)acetic
acid, 2-(3,4-dihydroxyphenyl)acetic acid, 3-(4-hydroxyphenyl)propionic acid, vanillic
acid, gallic acid, hippuric acid, ferulic acid, benzoic acid and pyrocatechol as the internal
standard (IS) (all from Fluka/Sigma-Aldrich, Madrid, Spain), as well as a standard
solution of 1000 mg/l in methanol of procyanidin B2, (−)-epicatechin (Fluka/Sigma-
Aldrich) and 5-(3′,4′-dihydroxyphenyl)-γ-valerolactone (MicroCombiChem e.K.,
Wiesbaden, Germany) were prepared and stored in a dark-glass flask at −20°C.

A 20-mg/l stock standard mixture in methanol of (+)-catechin, (−)-epicatechin, 3-
hydroxybenzoic acid, 2-(4-hydroxyphenyl)acetic acid, 2-(3,4-dihydroxyphenyl)acetic acid,
3-(4-hydroxyphenyl)propionic acid, vanillic acid, gallic acid, hippuric acid, ferulic acid,
benzoic acid, procyanidin B2 and 5-(3′,4′-dihydroxyphenyl)-γ-valerolactone was prepared
weekly and stored at −20°C. This stock standard solution was diluted daily to the desired
concentration using an acetone/water/acetic acid (70:29.5:0.5, vol/vol/vol) solution.

2.2. Grape seed polyphenol extract

Grape seed polyphenol extract (GSPE) was provided by Les Dérives Résiniques et
Terpéniques (Dax, France). Table S1 shows the total polyphenol content and thephenolic
compound (flavan-3-ols and phenolic acids) concentrations of the extract used in this
study (adapted from Quiñones et al. [10]).

2.3. Experimental procedure in rats

Male Wistar rats (17–20 weeks old) weighing 300–326 g were used for this study.
The animals were obtained from Charles River Laboratories (Barcelona, Spain) and
housed in animal quarters at 22°C with 12-h light/dark cycles (light from 9:00 a.m. to
9:00 p.m.). The animals consumed tap water and a standard chow diet (Panlab A04,
Barcelona, Spain) ad libitum during the experiment. The rats were randomly divided
into five groups and administered the following by oral gavage: 1 ml of water (n=3),
125 mg/kg of GSPE (n=3), 250 mg/kg of GSPE (n=3), 375 mg/kg of GSPE (n=3) and
1000 mg/kg of GSPE (n=3). Oral administration in all groups occurred between 9 and
10 a.m. after overnight fasting, and the total oral administered volumewas always 1 ml
of either water or GSPE–water solution. Rats were anesthetized with sodium
pentobarbital (80 mg/kg) and sacrificed by exsanguination 2 h after the GSPE or
water ingestion. The liver, kidneys, mesenteric white adipose tissue (MWAT) and brain
were excised from the rats and freeze-dried for the extraction of free flavanols and
flavanol metabolites. Dried tissues were stored at−80°C. The study was in accordance
with the guidelines for care and use of laboratory animals of the University Rovira i
Virgili (Tarragona, Spain).

2.4. Free flavanol and flavanol metabolite extraction from the tissues

Prior to the chromatographic analysis of the free flavanols and their metabolites in
rat tissues, the sampleswere pretreated using previously reportedmethodology [23,26]
based on an offline liquid–solid extraction (LSE) in tandem with a micro-solid-phase
extraction (μSPE). Briefly, the LSE procedure involves adding 50 μl of 1% ascorbic acid
and 100 μl of 4% phosphoric acid to 60 mg of freeze-dried tissue. All tissue sampleswere
then extracted 4 timeswith 400 μl of water/methanol/4% phosphoric acid (94.4:4.5:1.5,
vol/vol/vol). In each extraction, the 400 μl extraction solution was added, the sample
was sonicated for 30 s with the sample in an ice water bath to avoid heating, and then it
was centrifuged for 15 min at 17,150×g at room temperature (except forMWAT, which
was centrifuged at 4°C to achieve the proper separation between the fat and the
aqueous phase). The obtained supernatants from the tissue LSEwere cleaned up by μSPE
using 30 μm OASIS HLB μ-Elution Plates (Waters, Barcelona, Spain). The micro-
cartridges were conditioned sequentially with 250 μl of methanol and 250 μl of 0.2%
acetic acid. Then, 300 μl of phosphoric acid 4% and 50 μl of the IS (1000 μg/ml) were
added to 350 μl of the tissue extract, and the mixture was loaded onto the plate. The
loaded plates were washed with 200 μl of Milli-Q water and 200 μl of 0.2% acetic acid.
The retained free flavanols and their metabolites were then eluted with 2×50 μl of
acetone/Milli-Q water/acetic acid solution (70:29.5:0.5, vol/vol/vol). The eluted
solution was directly injected in the HPLC–MS/MS, and the sample volume was 2.5 μl.

2.5. Chromatographic analysis

The chromatographic analysis was performed using a 1200 LC Series coupled to a
6410 MS/MS (Agilent Technologies, Palo Alto, CA, USA). The separations were achieved
using a Zorbax SB-Aq (150 mm×2.1 mm i.d., 3.5-μm particle size) as the chromato-
graphic column (Agilent Technologies). The mobile phase consisted of 0.2% acetic acid
(solvent A) and acetonitrile (solvent B) at aflow rate of 0.4 ml/min. The elution gradient
was as follows: 0–10 min, 5%–55% B; 10-12 min, 55%–80% B; 12–15 min, 80% B
isocratic; and 15–16 min, 80%–5% B. A post-run of 10 min was applied. Electrospray

ionization (ESI) conditions were a drying gas temperature of 350°C and a flow rate of 12 l/
min, 45 psi of nebulizer gas pressure, and 4000 V of capillary voltage. The MS/MS was
operated in negative mode, and the acquisition was performed in MRM mode for free
flavanols and their metabolites. The acquisition method was performed as previously
reported for the quantification of phase II and microbial flavanol metabolites [12,13]. Data
acquisition was carried out using MassHunter Software (Agilent Technologies).

2.6. Sample quantification

For sample quantification, a pool of blank tissue extracts or sera from rats
administered water were spiked with 10 different concentrations to obtain calibration
curves, and standard compounds in the samples were quantified by interpolating the
analyte/IS peak abundance ratio in the resulting standard curves. Quality parameters,
such as calibration curve detection and quantification limits and method detection and
quantification limits, were also calculated (Table S2).

2.7. Statistical analysis

Results were expressed as the mean±standard error (S.E.M.) of the mean (n=3)
and analyzed by one-way or two-way analysis of variance (ANOVA) using SPSS 21.0
software. One-way ANOVA was applied when the results were compared within the
same tissue. Differences between groups were assessed by the Bonferroni test (to
correct formultiple comparisons). Two-way ANOVAwas appliedwhen the results were
compared considering all tissues. Differences between means were considered
significant when Pb.05.

3. Results

Tables 1 and 2 detail the concentrations of each phase II and colonic
flavanol metabolite in the different tissues (i.e., liver, kidney, MWAT
and brain) at 2 h after the administration of 125, 250, 375 and
1000 mg/kg of GSPE. These data provide insight into how flavanols are
metabolized and distributed throughout the bodies of rats.

3.1. Distribution of free flavanols and their phase II metabolites in rat tissues

When the administered dose of GSPE is varied, free flavanols and
their phase II metabolites reach different concentrations in different
tissues (Table 1, Fig. S1, and Fig. 1). In fact, it is quite clear that there are
large differences in the concentrations of each metabolite depending
on the tissue types and the corresponding doses. In all of the tissues
evaluated, gallated flavanol could not be detected.

As shown in Fig. 1, in all of the tissues and GSPE doses evaluated,
the majority of the flavanol phase II metabolites were found in the
kidneys, with total concentrations from 300 to almost 900 nmol/g.
These kidney concentrations are approximately 3 times higher than
those in the liver. However, in MWAT and brain, the amount of
flavanol metabolites targeted to these tissues is lower than that in the
kidneys or the liver, with total flavanol metabolite concentrations of
lower than 40 nmol/g. Moreover, in the brain, there is a clear dose–
response effect up to 1000 mg/kg of GSPE that is not reproduced in the
liver, kidneys or MWAT.

Interestingly, the distribution of each specific phase II metabolite was
dependent on the tissue and the dose of GSPE (Table 1 and Figs. 2 and 3).
In this sense, the main metabolites in liver were the phase II methyl-
glucuronidated form for all of the evaluated doses with concentrations of
approximately 40–120 nmol/g. In the liver, the concentrations of free
flavanols and their glucuronidated, sulfated and methylated derivatives
increased as the dose increases. Notably, a strong increase from 375 to
1000 mg/kg for the sulfated and nonconjugated free flavanols (catechin,
epicatechin and procyanidin dimers) was observed. Conversely, the
amount of gallic acid in the liver was reduced with increasing doses of
GSPE (Fig. 2A).

In the kidneys, themain phase IImetaboliteswere the glucuronidated
and methyl-glucuronidated forms, with concentrations from 100 to
400 nmol/g, whereas much lower concentrations were found for the
sulfated, methylated and nonconjugated free flavanols (Fig. 2B). Further-
more, these concentrations remained similar for nearly all of the doses
evaluated, although some variation at the 1000-mg/kg dose was
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observed: the methylated, sulfated and nonconjugated free flavanols
increased in concentration, but the glucuronidated and methyl-glucur-
onidated concentrations decreased (Fig. 3).

In MWAT, the major compounds found were glucuronidated
derivatives at low doses of GSPE and nonconjugated free flavanols at
the highest dose (1000 mg/kg) (Fig. 2C). Very low concentrations were
observed for the othermetabolites in theMWAT, and themethylated and
sulfated metabolites were not detected in this tissue (Table 1).

In the brain, only a fewmetabolitesweredetected (glucuronidated,
methyl-glucuronidated and methylated flavanol metabolites) at very
low concentrations. The methylated conjugate was the form with the
highest concentration at all of the evaluated doses. Moreover, in the
brain, the epicatechin metabolites were found in greater concentra-
tions than the catechin conjugates (Table 1). All of these metabolites
seem to behave equally at all doses, increasing their concentrations as
the dose increases (Fig. 2D).

Overall, in Fig. 3, it can be seen that the metabolite distribution is
highly variable between tissues and that this distribution is quite
sensitive to different GSPE doses. It can also be observed that at the
highest dose (1000 mg/kg), free flavanols (monomers and dimers)
increased proportionally while their metabolites decreased.

3.2. Distribution of flavanol colonic metabolites in rat tissues

At 2 h post-GSPE administration (with 125, 250, 375 and 1000 mg/
kg of body weight doses), only few microbial metabolites at very low
concentrations could be detected in the rat tissues. The majority of
these metabolites were not detected by HPLC–ESI–MS/MS. Notably,
simple phenols and final products of microbial metabolism (namely,
methyl conjugated phenols) were the most abundant compounds
identified in all tissues. 5-(3′,4′-Dihydroxyphenyl)-γ-valerolactone
was only found in MWAT and brain tissue, albeit at low concentration
levels. Likewise, 3-(4-hydroxyphenyl)propionic acid was found in the
kidneys. Interestingly, 3-O-methylgallic acid was the main compound
found in kidney and liver tissues, but it was detected at much higher
concentrations in the kidneys (160–1240 nmol/g) than in the liver (3-
24 nmol/g) (Table 2). However, this compound was not detected in
the brain and was found at very low concentrations in MWAT. The
othermajor flavanol colonicmetabolitewas benzoic acid, which could
be found in all tissues at concentrations ranging from approximately 2
to 19 nmol/g of tissue.

4. Discussion

The regular consumption of flavonoids in the human diet has been
associated with beneficial health effects for people suffering from
several diseases [2,27]. Flavanols are considered the most abundant
flavonoids in the humandiet [4], and their beneficial effects depend on
both the amount consumed and their bioavailability [19]. It has been
shown that low molecular weight forms, especially monomeric
flavan-3-ols and dimers, are first absorbed and then glucuronidated,
methylated and sulfated in the small intestine before they are further
metabolized in the liver [18,19,28]. Therefore, the bioactive com-
pounds that eventually reach the tissues are substantially different
from those that are initially present in food [29]. In fact, the qualitative
and quantitative flavanol composition differs substantially between
GSPE and the sera of animals administered a 1000-mg/kg dose of this
same extract [12]. Hence, the objective of the present work was to
determine whether flavanols are metabolized and distributed differ-
entially throughout the bodies of rats depending on the tissue and on
the dose administered.

The present study was realized at 2 h post-GSPE administration
since it has been reported between 1 and 2 h the maxim times of
appearance of flavanol phase II metabolites in plasma and tissues
[14,26,30]. Moreover, at these short times, GSPE has been reported toTa
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exert some of their health effects in rats as lowering blood pressure
[10] or increasing secretion of GLP-1 and insulin and hence a decrease
in plasma glucose levels [31]. Furthermore, the doses of GSPE of 125,
250, 375 and 1000 mg/kg were selected as the doses of 250 and
375 mg/kg of GSPE are those acute doses administered to rats for the
study of physiological effects of GSPE as in lipid and glucose
metabolism [9,32] or hypertension [10,11] among others. On the
other hand, bioavailability studies with GSPE have always been
realized with a dose of 1000 mg/kg, which we have also used to
compare with other bioavailability studies previously realized
[12,23,33,34]. Finally, we also selected 125 mg/kg as a lower dose to
thenormally used in acute studieswithGSPE.Moreover,wehave realized
a previous study in serum with the same doses [13]. After an acute
administration of these doses of GSPE, flavanol metabolites were
quantified in liver as the main tissue of flavanol phase II metabolization,
MWAT as the storage organ, kidney to evaluate one of the excretionways
of flavanols and brain as an important peripheral organ difficult to cross.

The distribution of free flavanols and flavanol metabolites differs
considerably in different tissues and at different doses. This result
could be attributed to the different solubility proprieties of each
flavanolmetabolite or to specific transporters in each tissue [13,26,29].
Nevertheless, the functionality of the tissue also needs to be
considered. The fact that the majority of the phase II flavanol
metaboliteswere quantified in the kidneys at all of the doses evaluated
and shortly after administration (i.e., 2 h post-GSPE administration)
may be because these compounds are mainly rapidly excreted in the
urine. Thus, the body recognizes them as xenobiotics [21]. In the liver,
the quantity of phase II metabolites was also abundant, which is
reasonable because the main metabolism of flavanols occurs in this
tissue [25] and other studies have demonstrated similar levels of
metabolite concentrations at 1000 mg/kg of GSPE in this tissue
[22,23,26]. The metabolites present in tissues, mainly in the liver
and the kidneys, are equivalent to those found previously in the serum
at the same doses [12,13]. Nevertheless, there are important
differences in the found amount of the different metabolites. For
example, glucuronidated metabolite concentration in kidney is more
than 3 times more than in serum. The nonmetabolized flavanols
concentrations in serum are mostly lower than those in tissues. For
example, aglycone flavanols and gallic acid reached concentrations
after 1000 mg/kg of GSPE administration less than 1 μM in serum, but
concentrations of 2–112, 5–78 and 5–17 nmol/gweremeasured in the
liver, kidneys and MWAT, respectively. However, these metabolites
were not found in the brain.

Finally, the quantity of flavanol metabolites that target the MWAT
and brain is fewer than those that target the liver and kidneys but is
still significant at 2 h. This observation probably results from the fact

that those compounds are the physiological active forms. Not all of the
flavanolmetabolites are able to cross the blood–brain barrier (BBB), as
only a few of these compounds (most notably the methylated forms)
were detected in the brain. It has been previously reported that
flavanols can cross the BBB, but different results were observed [23].
The study by Arola-Arnal et al. [23] also involved detecting GSPE
metabolites at 2 h after the administration of 1000 mg/kg of GSPE, but
their findings differ from the results presented herein because no
methylated flavanols where detected in the brain, and instead, free
flavanols were quantified. These differences could be due to
differences in the experimental methods, such as the gender of the
rats. Faria et al. [35] suggest that the female hormoneprogesterone can
act as an endogenous factor that modulates P-glycoproteins' abilities
to serve as flavanol transporters that could be used to cross the BBB.
Moreover, our results showed that the epicatechin forms are more
able to cross the BBB than the catechin, suggesting that specific
transporters of each polyphenol structure may be involved, as
previously suggested by Faria et al. [35] in in vitro studies.
Furthermore, in general, epicatechin metabolites are the main
compounds absorbed, possibly because of a stereospecific mechanism
of transport or absorption [35]. Additionally, the MWAT seems to
accumulate nonmetabolized flavanols, as previously reported [23,24].
In this tissue, increasing the concentration of GSPE administered to
rats decreases the levels of the metabolized forms and increases the
levels of those that are not conjugated. The presence of flavanols in
adipose tissue is considered important because flavanols have been
described to present different beneficial properties relating to
metabolic syndrome [11]. The leading cause of metabolic syndrome
is excess energy intake. This excess energy is stored in the adipocytes,
which suffer from hyperplasia and start releasing proinflammatory
cytokines and adipocyte-related hormones. These factors then
promote a proinflammatory state and the production of reactive
oxygen species. Therefore, the presence of flavanols in adipose tissue
could be related to their beneficial effects on this disorder. In fact, it has
been demonstrated in vitro that grape seed flavanols exhibit beneficial
effects in adipose tissue, such as limiting adipogenesis [7]. In summary,
our results demonstrated that the metabolites present in the liver and
the kidneys are equivalent to those found in the serum or plasma.
However, specifically and independently of the GSPE administered,
there is an accumulation of themethylatedderivatives in the brain and
unconjugated free flavanols in the MWAT.

When interpreting the differential flavanol distribution between
tissues, it is important to note that different metabolites reach
different tissues as the products of metabolism. In addition, the
dose–response study is very consistent with previous results in serum
using the same doses of GSPE where a saturation of the system was

Fig. 1. Total concentrations of flavanol and their phase II metabolites (catechin, epicatechin, procyanidin dimers, gallic acid and their methylated, glucuronidated and sulfated
derivatives) quantified byHPLC–ESI–MS/MS in rat tissues at 2 h after the ingestion of 125, 250, 375 and 1000 mg/kg of a GSPE. Data are given as themeans±S.E.M. (n=3) and expressed
in nmol/g of dried tissue. Different letters indicate statistically significant differences between treatment groups (Pb.05). P was estimated by one-way ANOVA when the treatment
groups were compared within the same tissue. P was estimated by two-way ANOVA when the treatment groups were compared considering all tissues.
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observed at very high doses of the extract (1000 mg/kg) [13]. In liver
and kidney tissue, a dose–response effect up to 375 mg/kg has been
observed, but at 1000 mg/kg, the total amount of metabolites did not
increase further. Moreover, at this high dose, the quantity of
nonconjugated free flavanols increased, but the glucuranidated
forms decreased in the MWAT. This result confirms the saturation of
the system at 1000 mg/kg of GSPE administration. Therefore, as
observed previously in plasma, there is a saturation of the system at
375 mg/kg of GSPE in the liver and kidneys but not in theMWATor the
brain. Otherwise, our results show that, depending on the dose of GSPE
administered, flavanol metabolites distribute differently throughout the
different tissues.However, further studieswill be required toelucidate the
characteristic distributions of the flavanol metabolites in tissues such as
adipose tissue and brain, as well as to elucidate the biological significance
of particular flavanol metabolites in particular tissues.

Finally, once ingested, the large molecular weight flavanols go to
the colon, where they are metabolized by the gut microbiota to
produce low-molecular-weight phenolic acids [21]. These compounds
are products of the catabolism of the gut microbiota and were also
analyzed in the various tissues of rats given different doses. However,
because the study was conducted 2 h post-GSPE administration, the
majority of the colonic flavanolmetabolites were not detected asmost
of themmay not appear until later time points. This is because prior to
absorption, the compounds need tomove to the colon, bemetabolized
and then be reabsorbed into the circulatory system [21,22]. However,
even at only 2 h, some final products of this catabolism, such as 3-O-
methylgallic acid and benzoic acids, could be detected in the kidneys
and liver but not in the brain or the MWAT; at later time points, they
might also be target dose tissues.

5. Conclusions

This study demonstrated that the experimental conditions, such as
the extract dose administered, influence the metabolism and
distribution of flavanols throughout the bodies of rats. This finding
may be due to the different functionalities of these compounds in the
various tissues because different physiological bioactive forms are
generated. In addition, independent of the used doses, a specific
distribution of the flavanol derivatives in the various tissues can be
observed, with the notable presence of free and methylated flavanols
in the MWAT and the brain, respectively. Therefore, that flavanols are
conjugated and distributed differently throughout the body when the
intake dosage of a grape seed PA extract is varied may involve a
difference in their biological effects in the target tissue. These findings
point to the clinical research to find the best dose for a specific
biological or health effect.

Supplementary data to this article can be found online at http://dx.
doi.org/10.1016/j.jnutbio.2015.04.006.
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Abstract 

Flavanols, one of the most abundant dietary polyphenols in human diet and 
well-known for their health benefits, are absorbed in the small intestine and 
metabolized by phase-II enzymes and the microflora and are distributed 
throughout the body depending on several factors. In this study, we aim to 
evaluate whether flavanols are tissue-accumulated after the long-term 
administration of a grape seed polyphenol extract (GSPE) in rats and if the 
compounds that are present in tissues differ in a cafeteria diet obesity state. 
For that, plasma, liver, mesenteric white adipose tissue (MWAT), brain and 
aorta flavanol metabolites from standard chow-diet-fed rats (ST) and 
cafeteria-diet-fed rats (CAF) were analyzed by HPLC-MS/MS 21 h after the 
last 12-week-daily GSPE (100 mg/kg) dosage. Results showed that the long-

term GSPE intake did not trigger a flavanol tissue accumulation, indicating a 
clearance of products at each daily-dosage. Moreover, the detected 
compounds differed substantially between ST and CAF-obese rats. 
Therefore, these results suggest that polyphenol benefits in a disease state 
would be due to a daily pulsatile effect. Moreover, obesity induced by diet 
influences the metabolism and bioavailability of flavanols in rats. 

Keywords: bioavailability, metabolites, obesity, polyphenol, tissue 
distribution.  
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1. Introduction 

Flavanols, or flavan-3-ols, are a flavanoid-type polyphenol that is mostly 

ingested by humans, as these phytochemicals are mainly found in grapes, 

cocoa, chocolate, red wine, and green tea 1–3. These flavanols consist of the 

monomers (+)-catechin and (-)-epicatechin and their polymeric and 

oligomeric forms, known as proanthocyanidins (PAs) 4,5. The potential health 

benefits of flavanols have been widely studied in animal models 6–9 and in 

humans 10–14, indicating that these compounds exert beneficial health effects 

on some related cardiovascular 15–18 and metabolic disorders 14,19,20. 

Specifically, flavanols from grape seed improve lipid metabolism 21, increase 

insulin secretion 22, exhibit antioxidant and anti-inflammatory capacities 23, 

and act as antihypertensive agents 24.  

However, the beneficial health properties of flavanols are mainly attributed to 

the compounds that are derived from their metabolism 4. In this sense, once 

ingested, flavanol monomers and dimers are absorbed through the small 

intestine and recognized as xenobiotics by the body to be subjected to 

phase-II metabolism by the enterocyte or hepatocyte phase-II enzymes 

uridin-glucuronil transferases (UGTs), sulfotransferases (SULTs) and/or 

catechol-O-methyl transferases (COMTs) to form their respective 

glucuronidated, sulfated or methylated metabolites 25. In addition, flavanols 

with a degree of polymerization greater than 2 pass intact through the small 

intestine and reach the colon, where they are subjected to the microbiota 

metabolism to form small phenolic compounds that could after undergo the 

phase-II metabolism 4,25. In fact, after an acute intake of a flavanol extract, 

these compounds are conjugated to their phase-II metabolites, which are 

then distributed throughout the body and are found at considerable 

concentrations in tissues at short times 26. However, few studies have 

evaluated the tissue distribution of flavanols after long-term flavanol 

administration 27 or reported the accumulation of polyphenols in tissues after 
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the acute administration of flavonoids, although this accumulation was 

evidenced at short times after ingestion 28,29. However, some compounds, 

such as fat-soluble vitamins or some toxins, accumulate in some organs or 

tissues after chronic ingestion 30,31.  

There are several factors that can interfere with the metabolism, the 

production of a specific metabolite and its body distribution, such as the host-

internal factors related to the phase-II enzyme activity, the intestinal transit 

time, colonic microbiota and host systemic factors, such as the age, gender 

physiological conditions, genetics, or pathologies/disorders 2. In particular, we 

previously reported that the bioavailability and time of appearance of grape 

seed flavanols in rats after a short-term administration differ between tissues 
26, or at varying doses 26,32 and that different metabolites can present distinct 

bioactivities 21,32. Otherwise, regarding differences due to 

pathologies/disorders, obesity changes in the gene expression or in the 

activity of phase-II enzymes have been reported for rat/mouse obese models 
33. Moreover, changes in the gut microbiome are associated with obesity 34,35. 

Thus, the present study aims to evaluate whether flavanols can be 

accumulated in tissues after 12 weeks of the daily intake of a grape seed 

polyphenol extract, understanding the term accumulation in the different 

tissues as a storage process different from those related to the normal flow of 

the compounds that reach the tissues through the systemic circulation, and 

whether the compounds that are present in tissues after this long-period 

differ in a cafeteria diet obesity state.  

2. Materials and Methods 

2.1. Chemicals and Reagents 

Methanol (Scharlab S.L., Barcelona, Spain), acetone, acetonitrile (both from 

Sigma-Aldrich, Madrid, Spain) and glacial acetic acid (Panreac, Barcelona, 

Spain) were of HPLC analytical grade. Ultrapure water was obtained from a 

Milli-Q advantage A10 system (Madrid, Spain). Individual stock standard 

solutions of 2000 mg/L in methanol of (+)-catechin, (-)-epicatechin, 
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procyanidin B2, 3-hydroxybenzoic acid, 3,4-dihydroxybenzoic acid, 2-(3-

hydroxyphenyl)acetic acid, 2-(4-hydroxyphenyl)acetic acid, 2-(3,4-

dihydroxyphenyl)acetic acid, 3-(4-hydroxyphenyl)propionic acid, vanillic acid, 

gallic acid, hippuric acid, ferulic acid, benzoic acid, and pyrocatechol as the 

internal standard (IS) (all from Fluka/Sigma-Aldrich, Madrid, Spain), as well 

as 5-(3’,4’-dihydroxyphenyl)-γ-valerolactone (MicroCombiChem e.K., 

Wiesbaden, Germany), were prepared and stored in a dark glass flask at -20 

ºC.  

A 20 mg/L stock standard mixture in methanol of all of the compounds 

described above was prepared weekly and stored at -20 ºC. This stock 

standard solution was diluted daily to the desired concentration using an 

acetone:water:acetic acid (70:29.5:0.5, v:v:v) solution. 

2.2. Grape Seed Polyphenol Extract (GSPE) 

Grape seed polyphenol extract (GSPE) was provided by Les Dérives 

Résiniques et Terpéniques (Dax, France). Table 1 shows the phenolic 

compound (flavan-3-ols and phenolic acids) concentrations of the extract 

used in this study. 

2.3. Experimental Procedure in rats 

Six-week-old male Wistar rats Crl:WI (Charles River Laboratories, Barcelona, 

Spain) were singly housed in animal quarters at 22 ºC with a light/dark period 

of 12 h. After a quarantine period of 2 weeks, the animals weighed 230-240 g 

and were divided into two dietary groups. The control group (ST, n=12) was 

fed the standard chow Panlab A04 (Panlab, Barcelona, Spain) and tap water 

ad libitum. The second group (CAF, n=12) had free access to a fresh 

cafeteria diet consisting of bacon (10-12 g), sausage (8–12 g), biscuits with 

paté (12–15 g), cheese (10–12 g), ensaïmada (sweetened pastry) (4-5 g), 

carrots (8-10 g), and sweetened milk (20% sucrose (w/v)) daily renewed and 

tap water in addition to the standard chow diet. The standard chow had a 

calorie breakdown of 14% protein, 8% fat and 73% carbohydrates, whereas 

the calorie breakdown of the cafeteria diet was 14% proteins, 35% fat and 



RESULTS 

148 

51% carbohydrates. All of the animals were fed ad libitum, and the diets were 

maintained for 12 weeks until sacrifice. The ST group was daily administered 

vehicle (condensed milk and water (1:1 v/v)) (n=6) or with 100 mg/kg GSPE 

in vehicle (n=6). The CAF group was also daily administered vehicle (n=6) or 

GSPE (n=6) as described above. All the administrations were daily voluntary 

licked between 6:00 – 7:00 pm until sacrifice (12 weeks). Rats were weighed 

and sacrificed by exsanguination after a 6 h fasting period and 21 h after the 

last GSPE or vehicle administration. Blood, liver, mesenteric white adipose 

tissue (MWAT), aorta and brain were excised from the rats. Plasma was 

obtained by blood centrifugation (2000 x g, 4 ºC, 15 min), and all of the 

tissues were freeze-dried. Dried tissues and plasma were stored at −80 ºC 

until the chromatographic analysis. This study was performed in accordance 

with the guidelines for the care and use of laboratory animals of the 

University Rovira i Virgili. 

2.4. Flavanol and flavanol metabolite extraction from plasma and 

tissues  

Prior to the chromatographic analysis of the flavanols and their metabolites in 

rat plasma and tissues, the samples were pre-treated using previously 

reported methodology based on a micro solid-phase extraction (μSPE) for 

plasma and an off-line liquid–solid extraction (LSE) in tandem with a μSPE 

for tissues 26,36.  

2.5. Chromatographic analysis  

The chromatographic analysis was performed using a 1290 LC Series 

UHPLC coupled to a 6490 MS/MS (Agilent Technologies, Palo Alto, CA, 

USA). The separations were achieved using a Zorbax SB-Aq (150 mm × 2.1 

mm i.d., 3.5 μm particle size) as the chromatographic column (Agilent 

Technologies, Palo Alto, CA, USA). The MS system consisted of an Agilent 

Jet Stream (AJS) ionization source. The mobile phase, electrospray 

ionization (ESI) conditions and acquisition method were performed as 

previously reported for the quantification of phase-II and microbial flavanol 
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metabolites in plasma and tissues 26,36. Data acquisition was carried out 

using MassHunter Software (Agilent Technologies, Palo Alto, CA, USA). 

2.6. Sample quantification 

For sample quantification, a pool of blank tissue extracts or plasma (n=6) 

from the rats that were administered the vehicle were spiked with 7 different 

concentrations of standards to obtain calibration curves for ST and CAF rats. 

The studied compounds in the samples were quantified by interpolating the 

analyte/IS peak abundance ratio in the resulting standard curves. Quality 

parameters, such as calibration curve detection and quantification limits 

(LOD and LOQ, respectively) and method detection and quantification limits 

(MDL and MQL, respectively), are shown in Table S1 for ST rats and in Table 

S2 for CAF rats.  

The flavanols and phenolic acids that are present in the blank plasma and 

tissue (i.e., from the rats administered vehicle) from the diets were quantified 

by HPLC-MS/MS, and all of the values were subtracted from the final results 

(i.e., from the rats administered GSPE) in order to quantify only the phenolic 

compounds from the GSPE.  

2.7. Statistical analysis 

Animal weights were statistically analyzed by one-way ANOVA using the IBM 

SPSS Statistics software (Version 20.0.0) and expressed as the mean ± 

standard error of the mean (SEM). Differences between groups were 

assessed using the Bonferroni test (to correct for multiple comparisons). 

Differences between means were considered significant when p<0.05. 

3. Results 

Compared to the control group (mean body weight of 409 ± 19 g), the 

animals that were fed a cafeteria diet (mean body weight of 523 ± 27 g) had 

significantly increased body weight. No differences were found in the body 

weight by the administration of GSPE either in ST rats (406 ± 6 g) or in CAF 

rats (516 ± 34 g). 
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Table 2, Table 3 and Figure 1 show the distribution of flavanols, phenolic 

acids, flavanol phase-II metabolites and microbial flavanol metabolites in rat 

tissues (i.e., liver, MWAT, aorta and brain) quantified by HPLC-MS/MS after a 

daily intake of 100 mg/kg GSPE for 12 weeks and 21 h after the last 

administration of the extract in both the ST and CAF groups. No gallate 

flavanols or PA trimers were detected in the plasma or in the studied tissues.  

3.1. Plasma and liver flavanol and flavanol metabolite concentrations 

after long-term GSPE administration in ST and CAF rats 

The rat plasmas of animals which were daily-administered GSPE for 12 

weeks were analyzed by HPLC-MS/MS 21 h after the last administration of 

GSPE, and no flavanol or flavanol metabolites were quantified (data not 

shown).  

Rat livers were also analyzed (Table 2, Table 3 and Figure 1A) to evaluate 

whether flavanols accumulate in this tissue after a long-term extract 

administration (100 mg/kg). Few microbial metabolites and scarcely some 

flavanol and their phase-II metabolites were quantified in the liver. Otherwise, 

the results evidenced an effect on the cafeteria diet on these compounds that 

were quantified in the liver. Although there are no differences in the total 

amount of flavanols that were detected in this tissue, being 6.96 nmol/g in 

ST-diet-fed rats and 6.90 nmol/g in CAF-rats, the CAF rats had a greater 

quantity of non-metabolized flavanols and phenolic acids (14%) than did the 

ST rats (2%) (Figure 1A). The main phase-II metabolite that was found in this 

tissue was the methyl-catechin glucuronide, ranging from 0.242 nmol/g in ST 

rats and 0.063 nmol/g in CAF rats. Furthermore, some compounds were 

detected specifically in the CAF rat liver but not in the ST rat liver, including 

the dimer B3 and the sulfated and methyl-sulfated flavanol metabolites 

(Table 2).  

Moreover, the liver of CAF rats also has fewer microbial metabolites (5.81 

nmol/g) than the ST rats (6.51 nmol/g) and more non-conjugated microbial 

metabolites; the benzoic acids (BA) were the major microbial metabolite in 
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CAF rats, and the 4-hydroxy-5-(3’,4’-dihidroxyphenyl)-valeric-acid-specific 

metabolite was only present in the liver of CAF rats but not in the ST rats 

(Table 3). In the liver of the ST rats, the main microbial compounds were 

those of the final products: homovanillic, hippuric and ferulic acids (Figure 

1A). 

3.2. Mesenteric White Adipose tissue (MWAT) flavanol and flavanol 

metabolite concentrations after long-term GSPE administration in ST 

and CAF rats 

After 12 weeks of daily GSPE administration (100 mg/kg) and 21 h after the 

last dose, few flavanols, phenolic acids and microbial metabolites were 

quantified in MWAT without the detection of any flavanol phase-II metabolite. 

Both ST and CAF rats have the same total amount of compounds (3.29 

nmol/g), with catechin and gallic acid being the predominant polyphenols that 

were found in this tissue (Table 2, Table 3 and Figure 1B). However, the 

cafeteria diet influenced those compounds that were present in MWAT; in the 

MWAT of CAF rats, 64% of the compounds were microbial metabolites and 

only 36% were non-metabolized compounds, whereas in the MWAT of the 

ST rats, 61% were non-metabolized compounds and 39% were microbial 

metabolites (Figure 1B). In addition, phenyl-acetic acids (PAA) and 

valerolactones (V) seem to be exclusive compounds of the cafeteria diet 

group.  

3.3. Aorta flavanol and flavanol metabolite concentrations after long-

term GSPE administration in ST and CAF rats  

In the aorta, after 12 weeks of a daily intake of GSPE and 21 h after the last 

extract dose, only a small amount of compounds were detected in both the 

ST (1.43 nmol/g) and CAF (1.03 nmol/g) rats. In the aorta of CAF rats, any 

flavanol or flavanol phase-II metabolite could be quantified, and only 

microbial metabolites were detected (Table 1, Table 2 and Figure 1C). 

However, in the aorta of ST rats, 47% of the quantified compounds were the 

non-metabolized compounds catechin (0.465 nmol/g), epicatechin (0.171 
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nmol/g) and vanillic acid (0.039 nmol/g) (Table 2). Regarding the microbial 

metabolites, there are some metabolites that are specific for each group 

(Table 3). For example, phenylpropionic acid was only found in ST rats, 

reaching 0.244 nmol/g. For CAF rats, 3-(3,4-dihydroxyphenyl)propionic acid 

reached a concentration of 0.374 nmol/g and was not found in ST rats. 

Finally 3,4-dihydroxybenzoic acid (also known as protocatechuic acid) was 

also a specific compound in the aorta of CAF rats, with a concentration of 

0.032 nmol/g. 

3.4. Brain flavanol and flavanol metabolite concentrations after long-

term GSPE administration in ST and CAF rats  

Any flavanol and flavanol phase-II metabolites were quantified in the brain 

after 12 weeks of daily GSPE administration (100 mg/kg) and 21 h after the 

last dose, which was not affected by the diet (Table 2). Therefore, in the 

brain, only few microbial flavanol metabolites were quantified (Table 3). 

Benzoic acid was the most abundant form that was found in both groups 

(1.50 nmol/g in ST and 2.43 nmol/g in CAF rats). Benzoic acid hydroxylated 

on the third position (3-hydroxybenzoic acid) was the second most important 

microbial metabolite, reaching 0.64 nmol/g in ST and 0.76 nmol/g in CAF rat 

brain. Homovanillic acid (a methylated form of 2-(3,4-dihydroxyphenyl)acetic 

acid) was the only final product of the microbial metabolism that could be 

found in both brain groups, reaching 0.53 nmol/g and 1.74 nmol/g (ST and 

CAF rats, respectively). However, in the brain of CAF rats, the quantity of 

microbial metabolites (4.94 nmol/g) is approximately 1.7 times greater than 

that in the brain of ST rats (2.82 nmol/g) (Figure 1D), and 5-(3’,4’-

dihidroxyphenyl)-γ-valerolactone seem to be an specific metabolite for ST 

rats (0.20 nmol/g), as it was not detected in the brain of CAF rats.  

4. Discussion 

Flavanols are some of most important dietary polyphenols with beneficial 

health effects 4 described in both in vitro 21,22,32 and in vivo 16,21,32,37 models. 

These compounds, which are present in most fruits and vegetables, are 
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abundant phytochemicals in the human diet and, once ingested, are 

absorbed in the small intestine and recognized by the body as xenobiotics, 

which are manly metabolized in the small intestine and liver by phase-II 

enzymes to their methyl, sulfate and glucuronide forms. Moreover, those 

forms that are too big to be absorbed in the small intestine pass intact to the 

colon, where they are metabolized to small phenolic acids by microbiota 36. 

Therefore, the health effects of flavanols are mainly attributed to the products 

of their metabolism 4. We previously reported that after an acute dose of 

grape seed flavanols, phase-II and microbial flavanol metabolites are 

distributed throughout the body and appear in the plasma and tissue short 

times after their ingestion 21,26,32,36. However, considering that a 

Mediterranean diet consists of a daily intake of fruits, nuts and vegetables 

and hence a daily consumption of flavanols, there are few studies that 

explore the distribution or accumulation of polyphenols after a long-term 

intake period 27,38–40. We have also reported that the metabolism and 

distribution of these compounds depends on several factors, such as the 

dosage, and the tissue 26,32. Therefore, we herein aim to study whether 

flavanols can accumulate in tissues after a daily long-term administration of 

grape seed flavanols in rats and whether the compounds that are present in 

tissues after this long period differ in a cafeteria-diet-obesity state. 

We previously reported how flavanols from grape seeds are distributed in rat 

tissues 2 h after a single acute administration of a low dose of 125 mg/Kg of 

GSPE 26. Therefore, in this study, a dose of 100 mg/Kg of GSPE was 

selected to be compared with our previous acute study. However, in order to 

evaluate whether these compounds undergo long-term accumulation in 

tissues, understanding the term of accumulation in the different tissues as a 

storage process different from those related to the normal flow of the 

compounds that reach the tissues through the systemic circulation, we 

administered GSPE to rats daily for 12 weeks together with a standard or 

cafeteria diet. Most importantly, the last dose of GSPE was administered 21 

h before the sacrifice, as it is well known that after an acute dose of GSPE, 
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the maximal times of appearance of flavanol metabolites in plasma and 

tissues is 1 to 2 h after ingestion, and after 24 h, there are hardly any of 

these compounds 36,41,42. In this sense, the only long-term study with GSPE 

was performed for 3 weeks and 5 h after the last dose, which does not permit 

a study of the long-term accumulative effect, as at 5 h, there are still flavanols 

in the plasma and tissues from the last dosage 27. Our results clearly indicate 

that 21 h after GSPE administration, there are no flavanol metabolites in the 

plasma and that very few of these compounds were detected in the studied 

tissues (liver, MWAT, aorta and brain) in both ST and CAF rats, indicating 

that these small amounts of flavanol metabolites are from the last ingested 

dosage of GSPE and not as a result of a repetitive dosage. Specifically, the 

concentrations in tissues 21 h after daily GSPE administration for 12 weeks 

are much lower than the total amounts that were quantified 2 h after a single 

GSPE ingestion of a similar dose (i.e., in liver, approximately 28 times lower; 

in MWAT, approximately 7 times lower; and in brain, 3.5 times lower) 26. 

Moreover, the majority of the metabolites in tissues at 21 h are products of 

the colonic microbiota and not phase-II metabolites, as these phenolic 

compounds require more time to be produced 26,36. These results indicate 

that flavanols are not accumulated in tissues after a long-term period 

independent of the diet or physiological state. According to our study, Bieger 

et al. 39 showed that quercetin was not accumulated in the studied tissues of 

pigs (including brain and liver) administered quercetin twice a day for 4 

weeks. However, other authors have reported brain accumulation after 4 

weeks of oral intake of 213 mg of quercetin per day in rats 38. Nevertheless, 

the concentration that was achieved in this tissue is of the pmol/g range, 

which is significantly lower than the levels reached in the present study. This 

result suggests that the low concentration of quercetin in the brain could be 

from the last dose more than from an accumulative effect. In fact, our results 

after 12 weeks clearly indicate that grape seed flavanols do not accumulate 

in the liver, brain, MWAT or aorta, which agrees with the fact that flavanols 

are recognized by the body as xenobiotics and that after ingestion are rapidly 
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conjugated to increase their solubility and be easily and rapidly excreted 25. In 

fact, our results seem to indicate that the tissue-detected compounds do not 

come from a long-term accumulation but from the 21st acute GSPE 

administration dosage. Hence, the health effects of flavanols as evidenced in 

long-term studies with a disease state could interestingly be attributed to a 

kind of pulsatile and repetitive effect of the bioactive forms of flavanols. This 

timely strategy would agreement with previous studies that reported that 

polyphenols exhibited health effects at short times after their acute ingestion, 

being reversed at longer times 24,37,43,44. Moreover, rapid reversions of the 

health benefits of polyphenol-rich products (increasing blood pressure) were 

observed after halting their long-term administration to hypertensive rats 
17,45,46. 

Cafeteria diet is a reported robust model for metabolic syndrome that can 

lead to liver and adipose tissue inflammation 47 and, as shown in this study, 

increased body weight. In this study, the results indicate that the 

metabolization and tissue distribution of the scarce concentrations of 

flavanols 21 h after the last GSPE dosage differed substantiality in an obesity 

pathological state. This result could be attributed to the fact that diet can 

rapidly alter the gut microbiome and that, in obesity, phase-II enzymes could 

also be altered. Obese Zucker 48 or high-fat-diet rats 49 altered the mRNA 

expression of their main phase-II enzymes (glucuronyltransferases (UGTs), 

and sulfotransferases (SULTs), respectively). Interestingly, in the liver of CAF 

rats, there are more non-conjugated free flavanols than phase-II metabolites 

compared to the liver of ST rats. These results agree with Perez-Viscaino et 

al. 50, who hypothesized that unconjugated flavanols are responsible for the 

flavanol health benefits, being unconjugated in the target tissue. Although our 

results indicate that, in obesity, flavanols are metabolized and distributed 

differently throughout the body, acute studies with GSPE administration to 

healthy and obese rats at different time points will be needed to elucidate 

how different the bioavailability of flavanols is in this pathological state.  
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This study demonstrates that grape seed flavanols do not accumulate in rat 

tissues after a long-term daily orally intake of GSPE in ST or obese CAF rats. 

Moreover, the metabolites that were detected in the tissues after a long-term 

intake would be the bioactive forms of flavanols from the last dosage, which 

would indicate that the protective and preventive health effects of flavanols 

may be not due to an accumulative response of all of the flavanol doses but 

because of cyclic acute responses. Otherwise, the obesity that is induced by 

the cafeteria diet influences the metabolization and distribution of phase-II 

and microbial flavanol metabolites in rats. However, additional studies, which 

we are currently conducting, are necessary to clarify the differences in 

flavanol metabolism and distribution in obesity. 
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Figure Legends 
 
Figure 1. Distributions of non-metabolized compounds (i.e., the flavanols 
catechin, epicatechin and proanthocyanidin dimers and the gallic and vanillic 
acids), the flavanol phase-II metabolites and the microbial metabolites as 
quantified by HPLC-ESI-MS/MS in rat tissues after 12 weeks of the daily 
ingestion of 100 mg/kg grape seed polyphenol extract (GSPE) and 21 h after 
the last extract administration in both Standard (ST, left panels) and Cafeteria 
(CAF, right panels)-fed rats. (A) Liver. (B) Mesenteric white adipose tissue 
(MWAT). (C) Aorta. (D) Brain. The final products (FP) are the homovanillic, 
hippuric and ferulic acids. The data are given as the means (n=6) and 
expressed as percentages.  
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Table 1. Main phenolic compounds (flavanols 
and phenolic acids) of the grape seed polyphenol 
extract (GSPE) used in this study, analysed by 
HPLC-MS/MS. 

Compound Concentration (mg/g) 

Gallic acid 31.07 ± 0.08 
Protocatechuic acid 1.34 ± 0.02 
Vanillic acid 0.77 ± 0.04 
PA dimer B2 33.24 ± 1.39 
PA dimer B11  88.80 ± 3.46 
PA dimer B31 46.09 ± 2.07 

Catechin 121.32 ± 3.41 
Epicatechin 93.44 ± 4.27 
Dimer gallate1 8.86 ± 0.14 
Epicatechin gallate 21.24 ± 1.08 
Epigallocatechin gallate 0.03 ± 0.00 
Epigallocatechin2 0.27 ± 0.03 
PA trimer1 4.90 ± 0.47 
PA tetramer1 0.05 ± 0.01 

Abbreviations: PA (proanthocyanidin) 
The results are expressed on a wet basis as the mean ± SD 
(n=3).  
The results are expressed as mg of phenolic compound/g of 
GSPE 

1 Quantified using the calibration curve of proanthocyanidin B2. 
2 Quantified using the calibration curve of epigallocatechin 
gallte. 
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Figure 1 
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Table S1. Method validation for the determination of flavanols and phenolic acids by off-line µSPE-HPLC-MS/MS in 
the studied tissues from rats fed with standard chow diet assessed by the following parameters: calibration curve, R2, 
linearity range, LOD, and LOQ, MDL, and MQL. 
 

Tissue Compound Calibration 
Curve 

Determinatio
n Coeficient 

(R2) 

Linearity 
(µM) 

LOD 
(nM) 

LOQ 
(nM) 

MDL* 
(nmol/g) 

MQL* 
(nmol/g) 

Liver Catechin y=0.007x 0.998 0.03-17.22 0.86 2.75 0.006 0.020 
Epicatechin y=0.020x 0.993 0.03-17.22 0.69 2.32 0.005 0.017 
Procyanidin dimer B2 y=0.018x 0.999 0.02-8.64 0.09 0.26 0.001 0.002 
Gallic Acid y=0.141x 0.993 0.06-29.39 0.26 0.94 0.002 0.007 
Vanillic Acid y=0.265x 0.996 0.06-29.76 0.60 2.15 0.004 0.015 
5-(3’,4’-dihydroxyphenyl)-γ-valerolactone y=0.225x 0.993 0.04-24.04 0.09 0.43 0.001 0.003 
3-(4-hydroxyphenyl) propionic acid y=0.027x 0.992 0.06-30.12 0.17 0.60 0.001 0.004 
2-(3,4-dihydroxyphenyl) acetic acid y=0.014x 0.996 0.06-29.76 0.17 0.60 0.001 0.004 
2-(3-hydroxyphenyl) acetic acid y=0.054x 0.997 0.06-32.90 0.17 0.60 0.001 0.004 
2-(4-hydroxyphenyl) acetic acid y=0.035x 0.996 0.06-32.90 0.17 0.60 0.001 0.004 
3,4-dihydroxybenzoic acid y=0.331x 0.996 0.06-36.23 0.17 0.60 0.001 0.004 
3-hydroxybenzoic acid y=0.271x 0.995 0.08-36.23 0.26 0.77 0.002 0.006 
Benzoic Acid y=0.096x 0.997 0.07-40.98 0.17 0.69 0.001 0.005 
Ferulic Acid y=0.106x 0.998 0.08-25.78 0.26 0.77 0.002 0.006 
Hippuric Acid y=0.310x 0.999 0.05-27.93 0.17 0.52 0.001 0.004 

MWAT Catechin y=0.037x 0.999 0.03-17.22 0.86 2.75 0.006 0.018 
Epicatechin y=0.046x 0.993 0.03-17.22 0.69 2.32 0.005 0.015 
Procyanidin dimer B2 y=0.048x 0.999 0.02-8.64 0.09 0.26 0.001 0.002 
Gallic Acid y=0.174x 0.999 0.06-29.39 0.26 0.94 0.002 0.006 
Vanillic Acid y=0.373x 0.995 0.06-29.76 0.60 2.15 0.004 0.014 
5-(3’,4’-dihydroxyphenyl)-γ-valerolactone y=0.322x 0.992 0.04-24.04 0.09 0.43 0.001 0.003 
3-(4-hydroxyphenyl) propionic acid y=0.054x 0.997 0.06-30.12 0.17 0.60 0.001 0.004 
2-(3,4-dihydroxyphenyl) acetic acid y=0.022x 0.998 0.06-29.76 0.17 0.60 0.001 0.004 
2-(3-hydroxyphenyl) acetic acid y=0.065x 0.995 0.06-32.90 0.17 0.60 0.001 0.004 
2-(4-hydroxyphenyl) acetic acid y=0.040x 0.998 0.06-32.90 0.17 0.60 0.001 0.004 
3,4-dihydroxybenzoic acid y=0.323x 0.991 0.06-36.23 0.17 0.60 0.001 0.004 
3-hydroxybenzoic acid y=0.182x 0.996 0.08-36.23 0.26 0.77 0.002 0.005 
Benzoic Acid y=0.295x 0.996 0.07-40.98 0.17 0.69 0.001 0.005 
Ferulic Acid y=0.396x 0.997 0.08-25.78 0.26 0.77 0.002 0.005 
Hippuric Acid y=0.113x 0.999 0.05-27.93 0.17 0.52 0.001 0.003 

Aorta Catechin y=0.019x 0.997 0.03-17.22 0.86 2.75 0.012 0.039 
Epicatechin y=0.058x 0.998 0.03-17.22 0.69 2.32 0.010 0.033 
Procyanidin dimer B2 y=0.049x 0.999 0.02-8.64 0.09 0.26 0.001 0.004 
Gallic Acid y=0.175x 0.999 0.06-29.39 0.26 0.94 0.004 0.013 
Vanillic Acid y=0.376x 0.997 0.06-29.76 0.60 2.15 0.009 0.030 
5-(3’,4’-dihydroxyphenyl)-γ-valerolactone y=0.327x 0.993 0.04-24.04 0.09 0.43 0.001 0.006 
3-(4-hydroxyphenyl) propionic acid y=0.042x 0.996 0.06-30.12 0.17 0.60 0.002 0.009 
2-(3,4-dihydroxyphenyl) acetic acid y=0.017x 0.999 0.06-29.76 0.17 0.60 0.002 0.009 
2-(3-hydroxyphenyl) acetic acid y=0.060x 0.999 0.06-32.90 0.17 0.60 0.002 0.009 
2-(4-hydroxyphenyl) acetic acid y=0.037x 0.997 0.06-32.90 0.17 0.60 0.002 0.009 
3,4-dihydroxybenzoic acid y=0.314x 0.999 0.06-36.23 0.17 0.60 0.002 0.009 
3-hydroxybenzoic acid y=0.328x 0.998 0.08-36.23 0.26 0.77 0.004 0.011 
Benzoic Acid y=0.240x 0.999 0.07-40.98 0.17 0.69 0.002 0.010 
Ferulic Acid y=0.542x 0.999 0.08-25.78 0.26 0.77 0.004 0.011 
Hippuric Acid y=0.114x 0.999 0.05-27.93 0.17 0.52 0.002 0.007 

Brain Catechin y=0.126x 0.995 0.03-17.22 0.86 2.75 0.010 0.032 
Epicatechin y=0.029x 0.997 0.03-17.22 0.69 2.32 0.008 0.027 
Procyanidin dimer B2 y=0.027x 0.998 0.02-8.64 0.09 0.26 0.001 0.003 
Gallic Acid y=0.180x 0.992 0.06-29.39 0.26 0.94 0.003 0.011 
Vanillic Acid y=0.271x 0.999 0.06-29.76 0.60 2.15 0.007 0.025 
5-(3’,4’-dihydroxyphenyl)-γ-valerolactone y=0.206x 0.997 0.04-24.04 0.09 0.43 0.001 0.005 
3-(4-hydroxyphenyl) propionic acid y=0.030x 0.998 0.06-30.12 0.17 0.60 0.002 0.007 
2-(3,4-dihydroxyphenyl) acetic acid y=0.017x 0.998 0.06-29.76 0.17 0.60 0.002 0.007 
2-(3-hydroxyphenyl) acetic acid y=0.051x 0.999 0.06-32.90 0.17 0.60 0.002 0.007 
2-(4-hydroxyphenyl) acetic acid y=0.033x 0.993 0.06-32.90 0.17 0.60 0.002 0.007 
3,4-dihydroxybenzoic acid y=0.349x 0.993 0.06-36.23 0.17 0.60 0.002 0.007 
3-hydroxybenzoic acid y=0.170x 0.995 0.08-36.23 0.26 0.77 0.003 0.009 
Benzoic Acid y=0.152x 0.997 0.07-40.98 0.17 0.69 0.002 0.008 
Ferulic Acid y=0.411x 0.994 0.08-25.78 0.26 0.77 0.003 0.009 
Hippuric Acid y=0.117x 0.997 0.05-27.93 0.17 0.52 0.002 0.006 

*MDL and MQL for the analysis of 60mg of tissue. 

Abreviations: Determination coefficient (R2); limit of detection (LOD); limit of quantification (LOQ); method detection 
limit (MDL); method quantification limit (MQL); mesenteric white adipose tissue (MWAT). 
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Table S2. Method validation for the determination of flavanols and phenolic acids by off-line µSPE-HPLC-MS/MS in 
the studied tissues from rats fed with cafeteria diet assessed by the following parameters: calibration curve, R2, 
linearity range, LOD, and LOQ, MDL, and MQL. 
 

Tissue Compound Calibration 
Curve 

Determination 
Coeficient (R2) 

Linearity 
(µM) 

LOD 
(nM) 

LOQ 
(nM) 

MDL* 
(nmol/g) 

MQL* 
(nmol/g) 

Liver Catechin y=0.027x 0.998 0.03-17.22 0.86 2.75 0.007 0.010 
Epicatechin y=0.077x 0.998 0.03-17.22 0.69 2.32 0.005 0.009 
Procyanidin dimer B2 y=0.099x 0.998 0.02-8.64 0.09 0.26 0.001 0.002 
Gallic Acid y=0.145x 0.998 0.06-29.39 0.26 0.94 0.002 0.008 
Vanillic Acid y=0.637x 0.999 0.06-29.76 0.60 2.15 0.005 0.017 
5-(3’,4’-dihydroxyphenyl)-γ-valerolactone y=0.438x 0.999 0.04-24.04 0.09 0.43 0.001 0.003 
3-(4-hydroxyphenyl) propionic acid y=0.077x 0.998 0.06-30.12 0.17 0.60 0.001 0.005 
2-(3,4-dihydroxyphenyl) acetic acid y=0.012x 0.998 0.06-29.76 0.17 0.60 0.001 0.005 
2-(3-hydroxyphenyl) acetic acid y=0.066x 0.999 0.06-32.90 0.17 0.60 0.001 0.005 
2-(4-hydroxyphenyl) acetic acid y=0.053x 0.999 0.06-32.90 0.17 0.60 0.001 0.005 
3,4-dihydroxybenzoic acid y=0.328x 0.998 0.06-36.23 0.17 0.60 0.001 0.005 
3-hydroxybenzoic acid y=0.328x 0.999 0.08-36.23 0.26 0.77 0.002 0.006 
Benzoic Acid y=0.361x 0.999 0.07-40.98 0.17 0.69 0.001 0.005 
Ferulic Acid y=1.213x 0.998 0.08-25.78 0.26 0.77 0.002 0.006 
Hippuric Acid y=0.089x 0.998 0.05-27.93 0.17 0.52 0.001 0.004 

MWAT Catechin y=0.039x 0.998 0.03-17.22 0.86 2.75 0.006 0.020 
Epicatechin y=0.042x 0.997 0.03-17.22 0.69 2.32 0.005 0.017 
Procyanidin dimer B2 y=0.042x 0.999 0.02-8.64 0.09 0.26 0.001 0.002 
Gallic Acid y=0.157x 0.994 0.06-29.39 0.26 0.94 0.002 0.007 
Vanillic Acid y=0.340x 0.997 0.06-29.76 0.60 2.15 0.004 0.015 
5-(3’,4’-dihydroxyphenyl)-γ-valerolactone y=0.328x 0.998 0.04-24.04 0.09 0.43 0,001 0.003 
3-(4-hydroxyphenyl) propionic acid y=0.046x 0.993 0.06-30.12 0.17 0.60 0.001 0.004 
2-(3,4-dihydroxyphenyl) acetic acid y=0.019x 0.996 0.06-29.76 0.17 0.60 0.001 0.004 
2-(3-hydroxyphenyl) acetic acid y=0.060x 0.994 0.06-32.90 0.17 0.60 0.001 0.004 
2-(4-hydroxyphenyl) acetic acid y=0.037x 0.994 0.06-32.90 0.17 0.60 0.001 0.004 
3,4-dihydroxybenzoic acid y=0.334x 0.998 0.06-36.23 0.17 0.60 0.001 0.004 
3-hydroxybenzoic acid y=0.180x 0.995 0.08-36.23 0.26 0.77 0.002 0.006 
Benzoic Acid y=0.238x 0.996 0.07-40.98 0.17 0.69 0.001 0.005 
Ferulic Acid y=0.366x 0.998 0.08-25.78 0.26 0.77 0.002 0.006 
Hippuric Acid y=0.107x 0.999 0.05-27.93 0.17 0.52 0.001 0.004 

Aorta Catechin y=0.017x 0.998 0.03-17.22 0.86 2.75 0.014 0.044 
Epicatechin y=0.051x 0.995 0.03-17.22 0.69 2.32 0.011 0.038 
Procyanidin dimer B2 y=0.048x 0.999 0.02-8.64 0.09 0.26 0.001 0.004 
Gallic Acid y=0.168x 0.998 0.06-29.39 0.26 0.94 0.004 0.015 
Vanillic Acid y=0.378x 0.997 0.06-29.76 0.60 2.15 0.010 0.035 
5-(3’,4’-dihydroxyphenyl)-γ-valerolactone y=0.305x 0.994 0.04-24.04 0.09 0.43 0.001 0.007 
3-(4-hydroxyphenyl) propionic acid y=0.041x 0.997 0.06-30.12 0.17 0.60 0.003 0.010 
2-(3,4-dihydroxyphenyl) acetic acid y=0.017x 0.999 0.06-29.76 0.17 0.60 0.003 0.010 
2-(3-hydroxyphenyl) acetic acid y=0.063x 0.999 0.06-32.90 0.17 0.60 0.003 0.010 
2-(4-hydroxyphenyl) acetic acid y=0.038x 0.998 0.06-32.90 0.17 0.60 0.003 0.010 
3,4-dihydroxybenzoic acid y=0.314x 0.999 0.06-36.23 0.17 0.60 0.003 0.010 
3-hydroxybenzoic acid y=0.323x 0.999 0.08-36.23 0.26 0.77 0.004 0.013 
Benzoic Acid y=0.239x 0.997 0.07-40.98 0.17 0.69 0.003 0.011 
Ferulic Acid y=0.120x 0.995 0.08-25.78 0.26 0.77 0.004 0.013 
Hippuric Acid y=0.556x 0.999 0.05-27.93 0.17 0.52 0.003 0.008 

Brain Catechin y=0.012x 0.998 0.03-17.22 0.86 2.75 0.010 0.032 
Epicatechin y=0.028x 0.993 0.03-17.22 0.69 2.32 0.008 0.027 
Procyanidin dimer B2 y=0.025x 0.994 0.02-8.64 0.09 0.26 0.001 0.003 
Gallic Acid y=0.183x 0.997 0.06-29.39 0.26 0.94 0.003 0.011 
Vanillic Acid y=0.264x 0.997 0.06-29.76 0.60 2.15 0.007 0.025 
5-(3’,4’-dihydroxyphenyl)-γ-valerolactone y=0.213x 0.999 0.04-24.04 0.09 0.43 0.001 0.005 
3-(4-hydroxyphenyl) propionic acid y=0.032x 0.997 0.06-30.12 0.17 0.60 0.002 0.007 
2-(3,4-dihydroxyphenyl) acetic acid y=0.018x 0.993 0.06-29.76 0.17 0.60 0.002 0.007 
2-(3-hydroxyphenyl) acetic acid y=0.052x 0.999 0.06-32.90 0.17 0.60 0.002 0.007 
2-(4-hydroxyphenyl) acetic acid y=0.033x 0.996 0.06-32.90 0.17 0.60 0.002 0.007 
3,4-dihydroxybenzoic acid y=0.359x 0.995 0.06-36.23 0.17 0.60 0.002 0.007 
3-hydroxybenzoic acid y=0167x 0.998 0.08-36.23 0.26 0.77 0.003 0.009 
Benzoic Acid y=0.167x 0.996 0.07-40.98 0.17 0.69 0.002 0.008 
Ferulic Acid y=0.455x 0.999 0.08-25.78 0.26 0.77 0.003 0.009 
Hippuric Acid y=0.117x 0.996 0.05-27.93 0.17 0.52 0.002 0.006 

*MDL and MQL for the analysis of 60mg of tissue. 

Abreviations: Determination coefficient (R2); limit of detection (LOD); limit of quantification (LOQ); method detection 
limit (MDL); method quantification limit (MQL); mesenteric white adipose tissue (MWAT). 
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Abstract  

Dietary flavanols produce beneficial health effects, and once absorbed, they 
are recognized as xenobiotics and undergo phase-II enzymatic detoxification. 
However, flavanols with a degree of polymerisation greater than 2 reach the 

colon where they are subjected to microbial metabolism and can be further 
absorbed and suffer phase-II reactions. In this sense, flavanols health-
promoting properties are mainly attributed to their metabolic products. 
Several age-related physiological changes have been evidenced and it is 
known that flavanols bioavailability is affected by internal factors. Therefore, 
this study aimed to elucidate whether animals of different age, young and 
elderly rats, exhibit differences in the flavanol metabolism and plasma 
bioavailability. To accomplish this aim, an acute dose of a grape seed 
polyphenol extract was administered to male rats and after 2, 4, 7, 24 and 48 
h flavanols and their phase II and microbial metabolites were quantified by 
HPLC-ESI-MS/MS in plasma. Results indicated important age-related 
quantitative differences in plasma flavanol metabolites. Interestingly, elderly 
rats presented a remarkably reduction in flavanol absorption and phase-II 
flavanol metabolisation. Consequently, microbial-derived flavanol metabolism 
is triggered by higher flavanol affluence in the colonic tract. Furthermore, 
young rats presented a faster metabolic profile than elderly rats. Hence, our 
results indicate that the physiological bioactivities of flavanols may depend on 
age.  

 

 

Keywords: Bioavailability, grape seed, metabolites, microbiota, polyphenols. 
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1. Introduction 

Polyphenols are plant secondary metabolites present in the human diet and 

can be classified in two different groups, the flavonoids and the non-

flavonoids. Including flavonols, flavonas, isoflavonas, flavanones, 

anthocyanidins, flavan-3-ols and dihydrochalcones, flavonoids are the most 

numerous polyphenols and can be found throughout the plant kingdom. 

Grapes are a flavonoid-rich food, containing the flavan-3-ols or flavanols (+)-

catechin and (-)-epicatechin and their polymeric forms, proanthocyanidins 

(PA) (1). Flavanols present a wide range of biological activities. Indeed, our 

group has demonstrated that grape-seed flavanols exert an antioxidant effect 

(2) , restore blood pressure (3) , reduce several risk factors of cardiovascular 

diseases (4) , improve lipid profile (5) , protect against weigh gain (6) , and 

reduce inflammation (7) . 

Flavanol-derived metabolites are responsible for most of the health beneficial 

effects reported (1). In this sense, dietary flavanols after their absorption are 

recognized as xenobiotics and undergo phase-II enzymatic detoxification at 

both the small intestine and liver. Methyl-, glucuronido- and sulfo-metabolites 

are formed due to the enzymatic activity of catechol-O-methyltransferase 

(COMT), uridine 5'-diphosphate glucoronosyltransferases (UGTs) and 

cytosolyc sulfotransferases (SULTs), respectively (8). It is worth to note that 

polymers greater than trimers are unlikely to be absorbed in the small 

intestine and reach the colon where they can undergo microbial 

biotransformation (8–10). Gut bacteria are able to hydrolyze flavanols into 

small molecular weight flavanol metabolites which can be also absorbed and 

reach different tissues (11)  and therefore suffer phase-II reactions (8). 

Metabolised and no metabolised flavanols have been found to reach the 

kidney (11–13) and to be extracted via urine (14).  

Several factors affect xenobiotic metabolism, including gender, 

physiopathological conditions and age (15). During ageing some of the 



RESULTS 

174 

regulatory processes providing integration between cells and organs become 

disrupted. Consequently, failures in the maintenance of homeostasis under 

physiological stress appear (16). Several of these changes have 

pharmacokinetic implications (17). In addition, glomerular filtration rate (18), 

liver volume and apparent liver blood flow (19) decrease in ageing. Lee et al. 

not only reported that liver expression of xenobiotic metabolizing enzymes 

depended on the age, but also that several of these enzymatic activities did 

vary as well (20). Although few gastrointestinal functions decline to an 

important extent in healthy ageing (21), ageing leads to physiological 

changes that affect oral and esophageal function, gastric pH and intestinal 

transit times (22). In addition, major changes in bacterial population that 

include metabolically active groups occur (23). This could lead to important 

changes in the biochemical capacity of the gut. In addition, it should be 

highlighted that faecal studies demonstrated great variability in bacterial 

populations in the elderly (24). Moreover, body composition also changes 

during ageing. A loss of body weight, body cell mass, body water and a gain 

in body fat occur. Body weight loss has been strongly associated with lean 

mass loss (17). It should be highlighted that understanding the metabolism of 

flavanols in the elderly populations is of key importance as this target 

population can greatly benefit from the health effects of these compounds. 

Indeed, health benefits of flavanol consumption have been reported 

specifically in elderly populations (25,26). Moreover, polyphenols have been 

reported to exert beneficial functions against most of common age-related 

diseases such as type-II diabetes, cardiovascular diseases, Alzheimer, 

Parkinson, among others (1). 

Despite we have shown that the flavanol metabolisation and bioavailability 

differs considerably depending on the experimental conditions like the model 

used, the time of treatment or the dosage (5,11), there are scare studies 

comparing different aged populations using polyphenols and more 

specifically flavanols (14). In addition, as flavanol health-promoting properties 

are mainly attributed to their metabolic products (1), we hypothesize that 
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flavanol metabolisation and absorption differ in youth and old age and that 

these differences could influence the physiological bioactivities of these 

compounds. Therefore, the aim of this study is to elucidate whether flavanols 

plasma kinetics are affected by age and if these compounds can be 

differently absorbed and metabolised in young and elderly rats. 

2. Materials and Methods 

2.1. Grape seed polyphenol extract 

A grape seed polyphenol extract (GSPE) was obtained from Les Dérives 

Résiniques et Terpéniques (Dax, France). The total polyphenol, the individual 

flavanols and phenolic acids comprising this extract are detailed in Table 1. 

2.2. Chemicals and reagents 

Acetone (HPLC analytical grade), methanol (HPLC analytical grade), 

acetonitril (HPLC analytical grade) and phosphoric acid were purchased from 

Sigma-Aldrich (Barcelona, Spain). Ultrapure water was obtained from Milli-Q 

Advantage A10 system (Madrid, Spain). Glacial acetic acid was purchased 

from Panreac (Barcelona, Spain). (+)-catechin, (-)-epicatechin, benzoic acid, 

phloroglucinol, 3-hydroxybenzoic acid, 4-hydroxybenzoic acid, protocatechuic 

acid, 2-(4-hydroxyphenyl)acetic acid, 2-(3,4-dihydroxyphenyl)acetic acid, 3-

(4-hydroxyphenyl)propionic acid, vanillic acid, gallic acid, hippuric acid, feluric 

acid, PA B2, epigallocatechin gallate (EGCG), pyrocatechol (internal 

standard, IS), all purchased from Fluka/Sigma-Aldrich (Madrid, Spain) and 5-

(3',4'-dihydroxyphelyl)-γ-valerolactone, purchased from MicroCombiChem 

e.K. (Wiesbaden, Germany), were individually dissolved in methanol at the 

concentration of 2000mg/L. All standard stock solutions were prepared every 

3 months and stored in dark-glass flasks at -20ºC.  

A mixed standard stock solution in methanol at the concentration of 200mg/L 

of all of these compounds [(+)-catechin, (-)-epicatechin, benzoic acid, 
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phloroglucinol, 3-hydroxybenzoic acid, 4-hydroxybenzoic acid, protocatechuic 

acid, 2-(4-hydroxyphenyl)acetic acid, 2-(3,4-dihydroxyphenyl)acetic acid, 3-

(4-hydroxyphenyl)propionic acid, vanillic acid, gallic acid, hippuric acid, feluric 

acid, EGCG and 5-(3',4'-dihydroxyphelyl)-γ-valerolactone] and 

proanthocyanidin B2 at the concentration of 100mg/L was prepared weekly 

and stored in dark-glass flasks at -20ºC. This stock solution was daily diluted 

to the desired concentration with acetone/Milli-Q water/acetic acid 

(70/29.5/0.5; v/v/v) and stored under the same conditions until 

chromatographic analysis.  

2.3. Animal and Plasma collection  

Young 10-week-old (n=6), weighing between 262 g and 288 g, and elderly 

24-week-old (n=6) male Wistar rats, weighing between 482 g and 537 g, 

were obtained from Charles River Laboratories (Barcelona, Spain).. All of the 

animals were housed at 22ºC with a light/dark cycle of 12 h (lights on at 9:00 

a.m.) and consumed tap water and a standard chow diet (AO4, Panlab, 

Barcelona, Spain) ab libitum during the experiment. Each young and elderly 

animals were randomly divided into 2 different sub-groups: the control group 

(n=1) and the GSPE group (n=5). A dosage of 1000 mg/Kg of GSPE (1mL in 

water) was administered to the GSPE group by oral gavage whilst water (1 

mL) was orally administered to the control group. Oral administration was 

performed by gastric intubation to rats between 9 and 11 a.m. Blood samples 

were obtained via saphenous vein extraction using heparin vials (Starsted, 

Barcelona, Spain) at 0, 2, 4, 7, 24 and 48 h after GSPE or water 

administration (Figure 1). Plasma samples were obtained by centrifugation 

(2000 x g, 15 minutes, 4 ºC) and pooled (n=5) as a way to obtain sufficient 

volume for the analysis and also remove biological variability. Plasma 

samples were stored at -80 ºC until chromatographic analysis. The plasma 

from the control group (water oral gavage) was used to perform the 

calibration curves in the chromatographic analysis. Any compound present in 

the plasma GSPE group (0 h time-point) was subtracted from the plasma 



RESULTS 

177 

concentrations at all other time-points. Plasma samples were not treated with 

glucuronidase or sulfatase enzymes. The study was performed in 

accordance with the institutional guidelines for care and use of laboratory 

animals, and the experimental procedures were approved by the Ethical 

Cometee for Animal Experimentationof Universitat Rovira i Virgili (reference 

number 283).  

2.4. Micro-solid phase plasma flavanol extraction  

Prior to chromatographic analysis, plasma pools (n=5) for each time-point 

were pre-treated by off-line micro-Solid Phase Extraction (μ-SPE) as 

described previously (10) using OASIS HLB μ-Elution Plates 30 μm (Waters, 

Barcelona, Spain). Briefly, the micro-cartridges were sequentially conditioned 

with 250 μL methanol and 250 μL 0.2 % acetic acid. Plasma aliquots (250 

μL) were mixed with 300 μL 4 % phosphoric acid and 50 μL IS (250 ppb) 

before being loaded into the plates. The loaded plates were washed with 

200μL Milli-Q water and 200 μL 0.2 % acetic acid. The retained flavanols and 

their metabolites were eluted with 2 x 50 μL acetone/Milli-Q water/acetic acid 

solution (70/29.5/0.5; v/v/v). The eluted solution was directly injected into the 

HPLC-MS/MS. 

2.5. Chromatographic analysis 

The eluted solutions were directly analysed using a 1200 LC Series coupled 

to a 6410 MS/MS (Agilent Thechnologies, Palo Alto, U.S.A.) as previously 

described (10). Briefly, Zorbax SE-aq (150 x 2.1 mm i.d., 3.5 μm particle size, 

Aglient Technologies) was the used chromatographic column. The mobile 

phase used for the separation of the flavanols was composed of 0.2 % acetic 

acid (solvent A) and acetonitrile (solvent B) in a gradient mode set as follows: 

initial conditions 5 % B; 0-10 min, 5-55 % B; 10-12min, 55-88 % B; 12-15 

min, 80 % B isocratic; and 15-16 min, 80-5 % B. A post-run of 10min was 

applied for column equilibration. 2.5 μL of sample were injected and flow rate 
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of 0.4 mL/min was fixed for all the runs. Electrospray ionization (ESI) was 

conducted at 350 ºC and 12 L/min with 45 psi of nebuliser gas pressure, and 

4000 V of capillary voltage. The mass spectrometer was operated in the 

negative mode and MS/MAS data were acquired in Multiple Reaction 

Monitoring (MRM) mode. Optimised MRM conditions for the analysis of the 

phenolic compounds studied using HPLC-ESI-MS/MS can be found 

elsewhere (10,11).  

2.6. Sample quantification 

For sample quantification, plasma from the control group (water) was spiked 

with 7 different concentrations of the standard compounds to obtain 

calibration curves. Samples were quantified by interpolating the analyte/IS 

peak abundance ratio in the standard curves. All quality parameters required 

to perform the analysis are presented in Table 2. Data acquisition was 

carried out using MassHunter Software (Agilent Technologies, Palo Alto, 

U.S.A.).  

3. Results 

In this study, no metabolised flavanols, phase-II flavanol metabolites and 

microbial-derived flavanols present in pooled (n=5) rat plasma 0, 2, 4, 7, 24 

and 48 h after GSPE (1000 mg/Kg) ingestion were quantified using HPLC-

ESI-MS/MS. Pooling the plasma was required to obtain sufficient volume to 

perform the chromatographic analyses and extract blood from the animals at 

different times while avoiding their sacrifice. In addition, pooling the plasma 

increases homogeneity and sensitivity which, in turn, allows the detection of 

all potential metabolites as we have previously realized (9). A range of time-

points was selected in accordance with the literature in order to detect no 

metabolised flavanols and their phase-II and microbial metabolites (9,11).  

Figure 2 shows the plasma kinetic behaviour of total flavanols, no 

metabolised flavanols, phase-II metabolites and microbial-derived 
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compounds after an acute dosage of GSPE (1000 mg/Kg) in elderly and 

young rat and Figure 3 shows their relative abundance in plasma at different 

times (2, 4, 7, 24 and 48 h). Detailed individual concentrations of these 

compounds can be found in Table 3 and Table 4. This data provides insights 

into how flavanols are metabolised depending on the rat age.  

3.1. Total flavanols 

The highest total flavanol plasma concentration was reached 2 h after GSPE 

(1000 mg/Kg) administration in young and elderly rats (Figure 2A), and 

interestingly young rats (218.21 μM) have more than 3 time more 

concentration than elderly rats (65.09 μM) in plasma at this time-point (Figure 

3). Nevertheless, young rats presented a more rapid decrease in total 

flavanol plasma concentration, being more gradual the one reported in elderly 

rats (Figure 2A). In this sense, whilst during the first time-points of the kinetic 

study (i.e. 2, 4 and 7 h) young rats presented a remarkably higher total 

flavanol concentration, higher concentrations were found in elderly rats at 24 

h (42.53 μM) and 48 h (14.35 μM) when compared to young rats (4.92 μM 

and 4.93 μM respectively) after GSPE administration (Figure 3).  

3.2. No metabolised flavanols 

Both young and elderly rats presented the highest concentration of no 

metabolised flavanols in plasma at 2 h after GSPE dosage (Figure 2B). The 

concentrations reached at this time-point were 4.31 μM for young rats and 

12.20 μM for elderly rats, being all compounds but vanillic acid more 

concentrated in elderly rat than in young (Table 3). Epicatechin and PA dimer 

B2 were the major compounds detected in young and elderly rats, 

respectively. Generally speaking, most compounds concentrations 

decreased during the kinetic study, but catechin, epicatechin and gallic acid 

increased at 48 h after GSPE dosage in young rats. With regards to their 

relative abundance, no metabolised compounds represented a small 

percentage in young rats until 24 h after GSPE administration time when a 

higher percentage was found in young rat plasma (Figure 3). Interestingly, 
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their plasma behaviour in elderly rats was different, representing higher 

amounts at 2 h (19% of 65.09 μM) and 4 h (13% of 65.09 μM) and scarce 

levels at 7, 24 and 48 h after GSPE administration (Figure 3). Thus, the 

plasma kinetic profile of no metabolised compounds in young and elderly rats 

also differs in its reduction rate. However, whilst elderly rats presented a 

rapid decrease in no metabolised flavanols 2 h after the GSPE dosage, the 

reduction in young rats was not as sharp.  

3.3. Phase-II flavanol metabolites 

The highest plasma concentration of phase-II flavanol metabolites was also 

reached 2 h after the GSPE dosage (1000 mg/Kg), being higher in young rats 

(209.78 μM) than in elderly rats (32.82 μM) (Figure 2C). Catechin-

glucuronide, representing a plasma concentration of 118.528 μM in young 

rats and 15.358 μM in elderly rats at 2 h, was the compound with the highest 

plasma concentrations during all the kinetic study in both groups of rats 

(Table 3). Also, the most representative compounds at all times and in both 

groups were the glucuronide and methyl-glucuronide forms. Compared with 

them, few sulfated, methyl-sulfated and methylated forms were detected. 

Despite that, elderly rats present a wider variety of phase-II flavanol 

metabolites at 2 and 4 h after GSPE dosage than young rats and at 7 h, only 

glucuronidated and methyl-glucuronidated metabolites are quantified in 

elderly rats, whereas a wider range of compounds are detected in young rats 

at 7 h. Also, phase-II plasma kinetic behaviour is very similar in both cases, 

presenting a steady decrease 2 h after GSPE administration. It is worth 

noting, though, that total phase-II flavanol concentration has been found to 

be lower in young rats only after 24 h after GSPE dosage. With regards to its 

relative abundance, until 7 h after GSPE dosage phase-II flavanol 

metabolites represented more than 95 % in young rats and more than 45 % 

of the quantified compounds in elderly rats and lower percentages are 

observed 7 h after GSPE dosage in both groups (Figure 3).  
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3.4. Microbial-derived flavanol metabolites  

Total microbial-derived compound were found to be more concentrated at all 

time-points in elderly rats (Figure 2D) and several differences were 

evidenced in individual microbial metabolites in plasma between ages (Table 

4). Also, the kinetic profile was different between young and elderly rats. In 

this sense, whilst after 7 h after GSPE dosage microbial-derived flavanols 

increased their concentration in young rats plasma, their concentration 

dropped 24 h after in elderly rats plasma. In reference to their relative 

abundance in young rats, microbial-derived metabolites did not represent a 

high percentage of the total compounds quantified in plasma until 24 h after 

GSPE dosage (59 % of 4.92 μM at 24 h and 77 % of 4.93 μM at 48 h) 

(Figure 3). In contrast, microbial-derived flavanols quantified in elderly rat 

plasma represent a high percentage of total compounds at all times, reaching 

their higher percentage at 24 h (76 % of 42.53 μM).  

4. Discussion  

Flavanols are some of the most abundant dietary polyphenols and exert 

several biological functions (2–6). Once ingested, these compounds are 

absorbed in the small intestine and undergo phase-II reactions in the small 

intestine and liver, generating methyl, sulfate and glucuronide derivates (8). 

Polymeric forms, unable to be absorbed at this level, reach the colon where 

they are subjected to microbial biotransformation. The smaller compounds 

formed can be absorbed via colonocytes and later undergo phase-II 

reactions (8) to be eliminated by the urine (14). In this sense, the beneficial 

effects of flavanols are mainly attributed to their metabolized-derived 

compounds (1) and their metabolism and absorption are known to be 

affected by multiple factors (5,11). Several are the studies focused on the 

kinetic behavior of flavanols (9,13,12) but scarce are the ones comparing 

their behavior within different ages (14), although one of the factors affecting 

xenobiotic metabolism is ageing (15). Hence, in this study we aim to evaluate 

whether flavanols can be differently absorbed and metabolized depending on 
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the age. For this, we compared the pharmacokinetic behavior between young 

and early rats that were acutely administered grape seed flavanols. Based on 

previous studies, a dose of 1000 mg/kg was selected for evaluation in acute 

bioavailability studies following flavanol ingestion in rats (9,27). However, 

although we have previously reported that this high dose leads to saturation 

of the system (11,28), it is still a valid dose for comparing differences in 

young and elderly rats pharmacokinetics since it leads to concentrations of 

flavanols that are high enough to enable the detection of clear differences 

between the groups. 

Flavanol concentrations were analyzed in plasma before and at 2, 4, 7, 24 

and 48 h after an acute administration of GSPE and in both groups of rats the 

total flavanols, the unconjugated forms and their phase II metabolites have 

maximum concentrations after 2h indicating no differences in the time point 

of maximum absorption between ages. Our results are in agreement with 

many studies (9,12,13,29) that described that these compounds appear in 

plasma shortly after ingestion, with maximum concentrations of phase-II 

metabolites being reached between 1 and 2 h, and significant decrease at 4 

h after ingestion of flavanols (12,13,30).  

Interestingly, the total flavanol concentration in elderly rats was about 3 times 

lower than young rats at short times (i.e. 2-7 h). Therefore, bearing in mind 

that oral dosage of GSPE was equal in both groups of rats and that no 

significant changes are detected in stomach emptiness and small intestine 

rates depending on age (31), our results seem to indicate intestinal 

absorption is reduced in elderly animals. Indeed, the motility patterns of the 

small intestine are maintained during the ageing process (32), whilst 

paracellular and transcellular transport decreases during ageing (33), facts 

that also seem to support our results. This low flavanol absorption in old age 

is in agreement with the fact that elderly rats have a considerable amount of 

colonic flavanol metabolites at short times after GSPE ingestion (i.e. 2 h). 
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Regarding to the kinetic profile, the results presented herein clearly 

evidenced that the phase-II flavanol metabolites in young rats disappeared in 

plasma much faster than the elderly rats, although the non-metabolised 

flavanols showed a lighter decrease in plasmas compared with the elderly 

rats. The differences in decreased concentration rate between ages could be 

attributed to both decreased renal clearance rate associated with ageing (17) 

and a higher flavanol income due to reduced small intestine absorption.  

In the elderly rats the phase II metabolism is also poorer than young rats as 

the concentrations of unconjugated flavanols at 2 h is higher than for young 

rats and at 7 h it seems that elderly rats have all the flavanols metabolised as 

there are no free flavanols in plasma. A reduction in both phase-II 

metabolising enzyme expression and activity related to age (20) could 

potentially be the responsible for this. Moreover, considering that at old age 

the system is normally more injured, these results also agree with Perez-

Viscaino et al., who hypothesized that unconjugated flavanols are 

responsible for the flavanol health benefits, being unconjugated in the target 

tissue (34).  

Elderly rats showed to have much higher concentrations of microbial 

metabolites than young rats at all times event at 2 h after GSPE ingestion, 

indicating a remarkable difference in the microbial metabolism related to age. 

As indicated before, due to reduced absorption at the small intestine, more 

compounds are to reach the colon tract, where they are to be metabolised by 

the microbiota, resulting into higher formation of this compounds at all times 

of the pharmakokinetic study. In addition, elderly populations have been 

reported to present a slower colonic transit time (31), lower renal clearance 

rates for different drugs (17). Moreover, the wider variety of compounds 

detected in the elderly rats could be attributed to the fact that microflora 

composition is more variable in elderly subjects (24).  
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In conclusion, this study demonstrates that elderly rats not only presented a 

reduced absorption at the small intestine, but also a reduction in phase-II 

metabolism of flavanols after GSPE ingestion. As a result of decreased 

absorption, higher amounts of microbial-derived metabolites are found in 

elderly rats compared to young rats. Furthermore, young rats present a faster 

metabolic profile than elderly rats. Therefore, the physiological bioactivities of 

flavanols may depend on the age, and hence this factor should be 

considered when investigating flavanol compounds in animal and clinical 

studies. 
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Figure Legends 

Figure 1. Extracted ion chromatograms of flavanols and their phase-II 
metabolites 2 h after the administration of 1000 mg/kg of a grape seed 
polyphenol extract (GSPE) in male (continuous line) and female 
(discontinuous line) rat plasma. (1) Gallic acid, (2) Dimer B1, (3) Dimer B3, 
(4) Dimer B2, (5) Methyl-catechin-glucuronide, (6) Methyl-epicatechin-
glucuronide, (7) Catechin glucuronide, (8) Epicatechin glucuronide, (9) 
Catechin, (10) Epicatechin, (11) Catechin sulfate, (12) Epicatechin sulfate 
(13) Methyl-catechin-O-sulfate, (14) Methyl-epicatechin-O-sulfate, (15) 3-
Methyl-epicatechin, and (16) 4-Methyl-epicatechin. 
 
Figure 2. Pharmacokinetic profiles of flavanols and their metabolites in rat 

plasma and tissues after acute ingestion of grape seed polyphenol extract 
(GSPE) in both male (left panels) and female (right panels) rats. (A) Plasma. 
(B) Liver. (C) Mesenteric white adipose tissue (MWAT). (D) Brain. Data are 
displayed as the mean ± standard error of the mean (SEM) (n=6). The results 
are expressed in μM for plasma samples and in nmol/g for the studied tissue 
samples.  
 
Figure 3. Distributions of flavanols (catechin, epicatechin and PA dimers) 
and their phase-II metabolites, as quantified by HPLC-ESI-MS/MS in rat 
plasma and tissues at 2 h after the ingestion of 1000 mg/kg of grape seed 
polyphenol extract (GSPE) in both male (left panels) and female (right 
panels) rats. (A) Plasma. (B) Liver. (C) Mesenteric white adipose tissue 
(MWAT). (D) Brain. Data are displayed as the mean (n=6) and expressed as 
percentages. 
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Table 1. Main phenolic compounds (flavanols and phenolic 

acids) of the grape seed polyphenol extract (GSPE) used in 

this study, analysed by HPLC-MS/MS. 

Compound Concentration (mg/g) 

Gallic acid 31.07 ± 0.08 

Protocatechuic acid 1.34 ± 0.02 

Vanillic acid 0.77 ± 0.04 

PA dimer B2 33.24 ± 1.39 

PA dimer B11  88.80 ± 3.46 

PA dimer B31 46.09 ± 2.07 

Catechin 121.32 ± 3.41 

Epicatechin 93.44 ± 4.27 

Dimer gallate1 8.86 ± 0.14 

Epicatechingallate 21.24 ± 1.08 

Epigallocatechingallate 0.03 ± 0.00 

Epigallocatechin2 0.27 ± 0.03 

PA trimer1 4.90 ± 0.47 

PA tetramer1 0.05 ± 0.01 
Abbreviations: PA (proanthocyanidin) 

The results are expressed on a wet basis as the mean ± SD (n=3).  

The results are expressed as mg of phenolic compound/g of GSPE 

1 Quantified using the calibration curve of proanthocyanidin B2. 
2 Quantified using the calibration curve of epigallocatechingallte. 

!
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Table 2. The calibration curve, determination coefficient (R2), working linearity range, 
LODs, LOQs, MDLs and MQLs for phenolic compound quantification in spiked 
plasma samples using HPLC-ESI-MS/MS. 

Compound Calibratio
n Curve R2 Linearity (µM) LOD 

(nM) 
LOQ 
(nM) 

MDL* 
(nM) 

MQL* 
(nM) 

Catechin y=0.010x 0.991 0.007 - 17.255 6.890 22.967 2.756 9.187 

Epicatechin y=0.030x 0.995 0.007 - 17.255 4.698 15.659 1.879 6.264 

PA dimer B2 y=0.022x 0.997 0.003 - 8.643 0.648 2.161 0.259 0.864 

Gallic acid y=0.199x 0.994 0.012 - 29.391 1.102 3.674 0.441 1.470 

Vanillic acid y=0.313x 0.996 0.012 - 29.762 0.116 0.387 0.046 0.155 

EGCG y=0.301x 0.995 0.004 - 10.908 1.608 5.358 0.643 2.143 
5-(3',4'-dihydroxyphenyl)-γ-
valerolactone y=0.324x 0.990 0.010 - 24.038 0.114 0.381 0.046 0.152 

2-(3,4-dihydroxyphenyl)acetic acid y=0.011x 0.995 0.012 - 29.762 0.116 0.387 0.046 0.155 

3-(4-hydroxyphenyl)propionic acid y=0.055x 0.995 0.012 - 30.120 0.888 2.959 0.355 1.184 

2-(3-hydroxyphenyl)acetic acid y=0.061x 0.990 0.013 - 32.895 0.293 0.976 0.117 0.390 

2-(4-hydroxyphenyl)acetic acid y=0.085x 0.991 0.013 - 32.895 1.715 5.715 0.686 2.286 

3,4-dihydroxybenzoic acid y=0.228x 0.997 0.016 - 40.323 0.916 3.053 0.366 1.221 

3-hydroxybenzoic acid y=0.242x 0.999 0.014 - 36.232 0.539 1.797 0.216 0.719 

Benzoic acid y=0.240x 0.997 0.016 - 40.984 0.277 0.924 0.111 0.370 

Ferulic acid y=0.311x 0.998 0.010 - 25.773 0.336 1.119 0.134 0.448 

Hippuric acid y=0.122x 0.998 0.011 - 27.933 0.018 0.059 0.007 0.024 

Phloroglucinol y=0.011x 0.999 0.016 - 39.683 0.366 1.220 0.146 0.488 
*MDL and MQL for the analysis of 250 µL of plasma. 

Abbreviations: Determination coefficient (R2); limit of detection (LOD); limit of quantification (LOQ); method detection 
limit (MDL); method quantification limit (MQL); proanthocyanidin (PA).!
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Figure 1. 
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Figure 2. 
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Figure 3. 
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Abstract 
Dietary flavanols produce beneficial health effects, and once absorbed, they 

are recognized as xenobiotics and undergo phase-II enzymatic detoxification. 
Flavanols health-promoting properties are mainly attributed to their metabolic 
products. This work aimed to elucidate whether rats of the opposite sex 
exhibited differences in the metabolism and distribution of ingested flavanols. 
To accomplish this aim, acute doses of grape seed polyphenols were 
administered to male and female rats. After 1, 2 and 4 h, plasma, liver, 
mesenteric white adipose tissue (MWAT), brain and hypothalamus flavanol 
metabolites were quantified by HPLC-MS/MS. Results indicated important 
sex-related quantitative differences in plasma and in brain. Moreover, 
remarkable sex-related differences in the distributions and types of flavanol 
metabolites were also observed between liver and brain. Therefore, this 
study demonstrated that sex differentially influences the metabolism and 
distribution of flavanols throughout the bodies of rats, which may affect the 
physiological bioactivities of flavanols between males and females. 

 

Chemical compounds studied in this article 

(+)-Catechin (PubChem CID: 9064); (-)-Epicatechin (PubChem CID: 72276); 
Epicatechin gallate (PubChem CID: 367141); Gallic acid (PubChem CID: 
370); Procyanidin B2 (PubChem CID: 122738); Protocatechuic acid 
(PubChem CID: 72); Vanillic acid (PubChem CID: 8468) 

 

Keywords: bioavailability; grape seed; metabolites; polyphenol; sex 
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1. Introduction 

Polyphenols are among the most abundant phytochemicals that are present 

in the human diet, and the flavanoid-type flavan-3-ols, or flavanols, are one of 
the primary types of polyphenol that are ingested by humans. Flavanols are 
mainly found in grapes, beans, nuts, cocoa, tea and wine. Flavanols range 
from the monomers (+)-catechin and (-)-epicatechin to the oligomeric and 
polymeric proanthocyanidins (PAs) (Bladé, Arola, & Salvadó, 2010). 
Increasing evidence has indicated the important health-promoting effects of 
flavonoids (Del Rio et al., 2013). Specifically, grape seed flavanols exhibit 
antioxidant and anti-inflammatory capacities (Terra et al., 2011), improve lipid 
metabolism (Guerrero et al., 2013), increase insulin secretion (González-
Abuín et al., 2014) and act as antihypertensive agents (Quiñones et al., 
2013).  

The beneficial health properties of flavanols are mainly attributed to the 
compounds that are derived from their metabolism (Del Rio et al., 2013). 
Hence, the absorption and tissue distribution of flavanol metabolites should 
bear a close relationship to their biological functions and beneficial health 
effects. These compounds have been shown to be recognized by the body 
as xenobiotics and to undergo phase-II enzymatic detoxification in the small 
intestine and liver, leading to the formation of sulfo-, methyl- or glucuronide-
conjugates after their absorption. These metabolites can enter systemic 
circulation to be transported to other tissues or to be excreted by the urine 
(Monagas et al., 2010). Whereas monomeric and low molecular-weight forms 
are primarily absorbed through the small intestine, oligomers cross the 
gastrointestinal tract and reach the colon, where they are transformed by 
intestinal microbiota to either be absorbed or excreted (Aura, 2008; Monagas 

et al., 2010).  

Recently, we have shown that differences in experimental conditions, such 
as flavanol dosage, affect the metabolization and bodily distribution of 
flavanol metabolites (Margalef, Pons, Bravo, Muguerza, & Arola-Arnal, 2015). 
Moreover, several studies have demonstrated that the beneficial effects of 



RESULTS 

202 

flavanols that are observed under laboratory conditions are dependent on 
several experimental factors, such as the model used (in vitro or in vivo 

models), the time of treatment or the administered dose of the flavanol 
extract (Guerrero et al., 2013; Kay, 2010; Kroon et al., 2004; Margalef, 
Guerrero, et al., 2014; Z Pons et al., 2014). Furthermore, numerous sex-
related differences in both humans and other mammals have been shown in 
processes such as lipid and glucose metabolism (Varlamov, Bethea, & 
Roberts, 2014), in psychiatric disorders (Harrison & Tunbridge, 2007) and in 
coronary artery disease (Yahagi, Davis, Arbustini, & Virmani, 2015). There 
are also sex-related differences in susceptibility to inflammatory and 
infectious diseases (Liu et al., 2003) and in the level of protective health 
benefits that are imparted by drinking moderate amounts of alcohol (Taylor et 
al., 2009). Furthermore, it has been observed that responses to xenobiotics 
are different between genders. For example, male rats have been observed 
to more quickly metabolize xenobiotics and to have higher phase-II 
detoxification enzyme activities compared to female rats (DeBethizy & 
Hayes, 1994). Additionally, female rats are known to have less cytochrome 
P450 (CYP), which facilitates the detoxification and excretion of xenobiotics 
(phase-I metabolism), than male rats (Mugford & Kedderis, 1998).  

Therefore, because flavanols are recognized as xenobiotics by the body, we 
hypothesize that the metabolism and subsequent tissue distribution of 
flavanols is different between male and female rats and that these properties 
may also differentially influence the physiological bioactivities of these 
compounds between males and females. Therefore, the aim of this study 
was to elucidate whether flavanols can be differentially absorbed, conjugated 
and distributed throughout the bodies of rats of opposite sexes.  

2. Matherials and methods 

2.1. Chemicals and reagents 

Methanol (Scharlab S.L., Barcelona, Spain), acetone (Sigma-Aldrich, Madrid, 
Spain) and glacial acetic acid (Panreac, Barcelona, Spain) were of HPLC 
analytical grade. Ultrapure water was obtained from a Milli-Q advantage A10 
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system (Madrid, Spain). Phosphoric acid (98%) and ascorbic acid were also 
purchased from Sigma-Aldrich (Madrid, Spain). Individual, standard stock 

solutions of 2000 mg/L (+)-catechin, (-)-epicatechin, epigallocatechin gallate 
(EGCG), gallic acid, vanillic acid, PA B2, and, pyrocatechol as internal 
standard (all from Fluka/Sigma-Aldrich, Madrid, Spain, except for PA B2, 
which was from Extrasynthese, Lyon, France) were prepared in methanol 
and stored in dark-glass flasks at -20 ºC.  

Standard 20 mg/L stock mixtures of (+)-catechin, (-)-epicatechin, EGCG, 
gallic acid, vanillic acid and PA B2 in methanol were prepared weekly and 
stored at -20 ºC. These solutions were diluted daily to the desired 
concentrations using an acetone:water:acetic acid (70:29.5:0.5, v:v:v) 
solution. 

2.2. Grape seed polyphenol extract 

Grape seed polyphenol extract (GSPE) was obtained from white grape seeds 
and was provided by Les Dérives Résiniques et Terpéniques (Dax, France). 
According to the manufacturer, the PA profile of the extract was composed of 
monomers of flavan-3-ols (21.3%), dimers (17.4%), trimers (16.3%), 
tetramers (13.3%) and oligomers (5-13 units; 31.7%) of PAs. 
Chromatographic separation, using a 1290 LC Series, was performed for the 
quantification of phenolic compounds (flavan-3-ols and phenolic acids). The 
separations were achieved using a Zorbax SB-Aq (150 mm x 2.1 mm i.d., 3.5 
μm particle size) chromatographic column (Agilent Technologies, Palo Alto, 
CA, USA). The mobile phase consisted of 0.2% acetic acid (solvent A) and 
acetonitrile (solvent B) at a flow rate of 0.4 mL/min. The elution gradient was 
as follows: 0-10 min, 5-55% B; 10-12 min, 55-80% B; 12-15 min, 80% B 
isocratic; 15-16 min 80-5% B. A post run of 10 min was applied. 

Quantification was performed by coupling the LC system to a 6490 MS/MS 
(Agilent Technologies, Palo Alto, CA, USA). Electrospray ionization (ESI) 
conditions included a drying gas temperature of 200 ºC and a flow rate of 14 
L/min, 20 psi of nebulizer gas pressure, and 3000 V of capillary voltage. The 
MS/MS was operated in negative mode, and the acquisition was performed in 



RESULTS 

204 

Multiple Reaction Monitoring (MRM) mode for all of the phenolic compounds 
(Table 1). Data acquisition was carried out using MassHunter Software 

(Agilent Technologies, Palo Alto, CA, USA).  

2.3. Experimental procedures in rats 

Male (n=20) and female Wistar rats (n=20) that were 8-10 weeks old and 
weighed 280-320 g and 190-220 g, respectively, were used for this study. 
The animals were obtained from Charles River Laboratories (Barcelona, 
Spain) and housed in animal quarters at 22 ºC with 12 h light/dark cycles 
(light from 9:00 a.m. to 21:00 p.m.). Rats consumed tap water and a standard 
chow diet (Panlab A04, Barcelona, Spain) ad libitum. On the day of the 
experiment, 1000 mg/kg of GSPE was administered to each rat by oral 
gavage, which was applied to both male (n=18) and female rats (n=18). The 
rats were divided according to sex into three different groups (n=6) 
depending on the time of sacrifice (1, 2, or 4 h after GSPE administration). In 
all groups, oral administration occurred between 9 and 10 am after overnight 
fasting, and the total orally administered volume per animal was always 1 mL 
of a GSPE-water solution. Livers, mesenteric white adipose tissues (MWAT), 
brains and hypothalami were excised from all of the rats and were freeze-
dried for later extraction of flavanols and flavanol metabolites. Plasma 
samples were obtained by centrifuging blood samples (2000 × g, 15 min, 4 
°C) in Sarstedt heparinized tubes (16 I.U.) (Barcelona, Spain). Dried tissues 
and plasma samples were stored at -80ºC. Additionally, 1 mL of tap water 
was administered via oral gavage to each of 2 extra male and 2 extra female 
rats to obtain blank samples as controls and blank matrix for calibration 
curves. All procedures were performed in accordance with the guidelines for 
care and use of laboratory animals of the University Rovira i Virgili 

(Tarragona, Spain, permission number 282).  

2.4. Extraction of flavanols and flavanol metabolites from plasma 

Prior to performing chromatographic analyses of flavanols and flavanol 
metabolites in rat plasma, the samples were pretreated using previously 
reported methodology that is based on a micro solid-phase extraction (μSPE) 
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(Margalef, Pons, Muguerza, & Arola-Arnal, 2014). The plasma samples were 
cleaned up by μSPE using 30 μm OASIS HLB μ-Elution Plates (Waters, 

Barcelona, Spain). Briefly, micro-cartridges were sequentially conditioned 
with 250 μL of methanol and 250 μL of 0.2% acetic acid. Following this, 300 
μL of 4% phosphoric acid and 50 μL of IS (2000 μg/mL) were added to 250 
μL aliquots of plasma samples, and the mixtures were loaded onto a plate. 
The loaded plates were washed with 200 μL of Milli-Q water and 200 μL of 
0.2% acetic acid. The retained flavanols and their metabolites were then 
eluted twice with 50 μL aliquots of an acetone/Milli-Q water/acetic acid 
solution (70/29.5/0.5, v/v/v). The eluted solution was directly injected into the 
HPLC-MS/MS, and the sample volume was 2.5 μL. 

2.5. Extraction of flavanols and flavanol metabolites from tissues  

Prior to chromatographic analysis of flavanols and their metabolites in rat 
tissues, the samples were pretreated using previously reported methodology 
(Margalef et al., 2015; Margalef, Pons, et al., 2014) that was based on an off-
line liquid-solid extraction (LSE) in tandem with a micro solid-phase extraction 
(μSPE). Briefly, the LSE procedure involved adding 50 μL of 1% ascorbic 
acid and 100 μL of 4% phosphoric acid to 60 mg of freeze-dried tissue. All 
tissue samples were then extracted 4 times with 400 μL aliquots of 
water/methanol/4% phosphoric acid (94.4/4.5/1.5, v/v/v). In each extraction, 
400 μL of extraction solution was added, after which the sample was 
sonicated (in an ice water bath to avoid heating) for 30 s using a Vibracell 
Ultrasonic Sonicator (Sonics & Materials, Newtown, CT, USA). Following this, 
the sample was centrifuged for 15 min at 17150 x g at room temperature 
(except for samples of MWAT, which were centrifuged at 4 ºC to achieve 
proper separation between fat and the aqueous phase). The supernatants 

that were obtained from the LSE procedure were cleaned up by μSPE 
following a previously described methodology for plasma but using 350 μL of 
tissue extract instead of plasma.  
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2.6. Chromatographic analysis of flavanols and flavanol metabolites  

Chromatographic analyses were performed using the same chromatographic 

system as is described above (Section 2.2). The acquisition method was 
performed as previously reported for the quantification of phase-II flavanol 
metabolites (Serra et al., 2009). Data acquisition was conducted using 
MassHunter Software (Agilent Technologies, Palo Alto, CA, USA). The 
retention times and the ion chromatograms that were extracted from the 
studied compounds are shown in Figure 1.  

2.7. Sample quantification 

For sample quantification, either pooled blank plasma or pooled tissue 
extracts from rats that were administered water were spiked with standard 
compounds at 7 different concentrations to obtain calibration curves, and 
standard compounds in the samples were quantified by interpolating the 
analyte/IS peak abundance ratio in the resulting standard curves. Quality 
parameters, such as calibration curve detection and quantification limits 
(LOD and LOQ, respectively) and method detection and quantification limits 
(MDL and MQL, respectively), are shown in Table 2. Any flavanol 
concentrations that were quantified in blank plasma and tissues (i.e., from 
rats administered water) were subtracted from both the calibration curve and 
from the samples. The results are expressed as the mean ± standard error of 
the mean (SEM) (n=6).  

3. Results 

The composition of the extract that was used in this study is described in 
Table 3. The extract contained most of the representative flavanols of grape 
seed extract (Quiñones et al., 2013), including gallic acid, monomeric flavan-
3-ols (catechin and epicatechin) and their gallate forms (epigallocatechin, 

epicatechin gallate, and epigallocatechin gallate), and oligomeric PAs (n=2-
4). All of the identified compounds in the extract were studied in relation to 
their bioavailability in male and female rats. 
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Tables 4 and 5 detail the concentrations of each of the phase-II flavanol 
metabolites and their free forms in plasma and tissues (i.e., liver, MWAT and 

brain) at 1, 2 and 4 h after the administration of 1000 mg/kg of GSPE to 
female and male rats. No gallate flavanols or PA trimers were detected either 
in plasma or in the studied tissues.  

3.1. Sex-related differences in GSPE flavanol distribution in plasma and 
liver  

Following acute administration of GSPE, both male and female rats quickly 
metabolized epicatechin and catechin into their methylated, glucuronidated 
and sulfated derivatives, all of which were primarily present in the livers and 
plasma of both male and female rats alike. Both male and female rats 
exhibited peak maximum concentrations of unconjugated flavanols and their 
metabolites in plasma between 1 and 2 h after administration, without 
indicating evident differences between genders in pharmacokinetic studies 
(Figure 2A). In liver tissues, the kinetics of the flavanol metabolites were 
similar between genders, with the maximums occurring between 1 and 4 h; 
however, for unconjugated flavanols the maximum was at 1 h, and this peak 
was more prominent for females than for males (Figure 2B and Tables 4 and 
5). Moreover, important differences between male and female rats were 
observed in total polyphenol content and in metabolite distribution. Female 
rats had twice total metabolites in plasma than male rats (for example, at 2 h 
the concentration was 65.1 μM in males and 141.4 μM in females; Figure 
3A), although the total metabolites in the liver was very similar between 
genders (for example, at 2 h the concentration was 445 nmol/g in males and 
448 nmol/g in females; Figure 3B). More specifically, male and female rats 
had different proportions of flavanol metabolites in their plasma and livers 

(Table 4 and 5). For example, when considering the 2 h time point as a 
maximum for flavanol concentrations, the following observations held true: in 
plasma, 2 h after the ingestion of GSPE, male rats exhibited a greater 
proportion of methyl-glucuronidated metabolites (20%) than females (12%) 
and a reduced proportion of methyl-sulfated metabolites (7%) than females 
(20%) (Figure 3A). At the 2 h time point, when examining the liver, male rats 
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had a higher proportion of methyl-glucuronidated metabolites (48%) than 
females (29%) and reduced proportions of both sulfated (5%) and methyl-

sulfated (13%) metabolites than females (15% sulfated and 25% methyl-
sulfated) (Figure 3B). 

3.2. Sex-related differences in GSPE flavanol distributions in 
mesenteric white adipose tissue  

Aglycone flavanols (catechin and epicatechin) and gallic acid were primarily 
found in MWAT in both male and female rats, although the quantity of 
flavanol metabolites was very low and only the glucuronidated forms were 
detected in both genders. In particular, epicatechin was the major flavanol 
that was found to be present in this tissue in both females (22.4, 17.4 and 4.5 
nmol/g at 1, 2 and 4 h, respectively) and males (10.7, 14.2 and 4.6 nmol/g at 
1, 2 and 4 h, respectively) (Table 4 and 5). Unconjugated flavanols reached a 
maximum in MWAT between 1 and 2 h in male rats, but in female rats they 
were at a maximum by 1 h, and at 2 h their concentrations in this tissue 
decreased considerably (Figure 2C). The total amount of metabolites and 
their distribution patterns were also very similar between male and female 
rats (Table 4 and 5) in this tissue. For example, at 2 h, the concentrations of 
total metabolites were 29.7 nmol/g in males and 27.7 nmol/g in females 
(Figure 3C).  

3.3. Sex-related differences in GSPE flavanol distribution in brain 
tissues  

Brain was found to be the tissue type with the lowest concentrations of 
flavanols, and sulfated metabolites were not detected in either male or female 
rats. In both genders, the maximum concentrations of flavanols and their 
metabolized forms in brain were reached at 2 h following GSPE ingestion, 

and at 4 h these concentrations were dramatically reduced (Figure 2D). 
However, several sex-related differences were found with respect to flavanol 
bioavailability in brain tissues following the ingestion of GSPE. Typically, 
brains from male rats had higher amounts of flavanols and metabolites than 
brains from female rats. For example, at 2 h, which was the maximum 
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absorption point in this tissue, the average concentration of total metabolites 
in brains from male rats was 26 nmol/g, and in brains from female rats it was 

15.5 nmol/g. Furthermore, 46, 61 and 51% of flavanols in male rats were 
methylated epicatechins at 1, 2 and 4 h, respectively, whereas this 
metabolite was not detected in female rats at any point in time (Table 4 and 
5). Moreover, using the 2 h time point as an example, in male rats only 6% of 
the total metabolites were nonconjugated flavanols, and 24% were 
glucuronide metabolites (Figure 3D). In contrast, in the brains of female rats, 
no methylated flavanols were detected, and at 2 h 23-34% of the metabolites 
were non-conjugated compounds, and the  glucuronidated flavanols (46-
68%) were the main metabolized compounds quantified in this tissue (Figure 
3D, Table 4 and 5). Interestingly, PA dimers were detected in the brains of 
both sexes, and were more abundant in female rats (0-2.2 nmol/g) than in 
males (0-0.3 nmol/g) (Table 4 and 5). We also analyzed the hypothalami of 
rats from both genders, but no metabolites were detected in this tissue in 
either male or female rats (data not shown).  

4. Discussion 

Flavanols are abundant phytochemicals in the human diet, and their 
consumption has been associated with beneficial health effects (Z Pons et 
al., 2014; Quesada et al., 2009; Terra et al., 2011). Flavanols are recognized 
by the body as xenobiotics, and in the small intestine and the liver they are 
subjected to phase-II detoxification enzymes, which convert them into their 
methylated, sulfated and glucuronidated derivatives. However, their primary 
health effects, metabolism and bioavailability depend on several factors, such 
as intestinal enzyme activity, intestinal transit time, colonic microbiota, 
pathologies, genetics, and physiological conditions, among others (Aherne & 

O’Brien, 2002; D’Archivio et al., 2007). Furthermore, it has previously been 
observed that xenobiotic metabolism is different between genders (Mugford 
& Kedderis, 1998) and that drug-metabolizing enzymes are differentially 
affected by xenobiotics depending on sex (Finnen & Hassall, 1984; Mugford 
& Kedderis, 1998). Therefore, in light of these sex-related differences, we 
analyzed differences in the metabolism and distribution of flavanols between 
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male and female rats. To accomplish this, we administered acute doses of 
GSPE to male and female rats and then analyzed the concentrations of 

flavanols and their metabolites in plasma, liver, MWAT, brain and 
hypothalamus, which were chosen as representative tissues for elucidating 
how flavanols are distributed throughout the body. Based on previous 
studies, a dose of 1000 mg/kg was selected for evaluation in acute 
bioavailability studies following flavanol ingestion in rats (Margalef et al., 
2015; Serra et al., 2009; Shoji et al., 2006). However, although we have 
previously reported that this high dose leads to saturation of the system 
(Margalef et al., 2015; Margalef, Guerrero, et al., 2014), it is still a valid dose 
for comparing differences in male and female tissue distribution and 
metabolism because it leads to concentrations of flavanols that are high 
enough to enable the detection of clear differences between the groups. 
Flavanol concentrations were analyzed in tissues at 1, 2 and 4 h following the 
acute administration of GSPE, as it has been well described that these 
compounds appear in plasma and tissues shortly after ingestion, with 
maximum concentrations of phase-II metabolites being reached between 1 
and 2 h, and significant decrease at 4 h after ingestion of flavanols (Serra et 
al., 2013; Tomas-Barberan et al., 2007). Additionally, GSPE has been 
reported to exert beneficial health effects at these early time points, such as 
increasing GLP-1 and insulin secretions (González-Abuín et al., 2014), 
decreasing plasma glucose levels (Pinent, Cedó, Montagut, Blay, & Ardévol, 
2012) and exhibiting antihypertensive effects (Zara Pons, Margalef, Bravo, 
Arola-Arnal, & Muguerza, 2015; Quiñones et al., 2013).  

It has been reported that male rats metabolize drugs faster than female rats, 
which has also been proven to be true with other xenobiotics such as 

polyphenols (Sipes & Gandolfi, 1991). However, in this study, plasma 
flavanol pharmacokinetics were similar in both genders; although, in the liver, 
female rats appeared to possess a faster metabolism than male rats, as 
unconjugated flavanols seemed to disappear from the livers of female rats 
faster than in males. However, the primary sex-related differences in plasma 
and liver tissues were in the total amounts and distributions of flavanols and 
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their metabolites. In this case, female rats were found to have twice the 
amount of flavanol metabolites in plasma than male rats. Generally, females 

have less water in their body compositions than males of similar body 
weights (Harris, Benet, & Schwartz, 1995); in this study, the female rats that 
were employed weighed an average of 32% less than the male rats, as the 
rats were age-matched (8-10 weeks old). Therefore, administering equivalent 
doses of GSPE led to higher concentrations of flavanol metabolites in female 
versus male rats. Flavanol phase-II metabolism principally occurs in the liver, 
and therefore the majority of methylated, sulfated and glucuronidated 
metabolites are found in this tissue in both genders (Del Rio et al., 2013). 
Previous studies in male (Margalef et al., 2015) and female (Arola-Arnal et 
al., 2013) rats have demonstrated similar concentrations of metabolites in 
this tissue following the administration of 1000 mg/Kg of GSPE. Although 
previous drug and xenobiotic enzymatic detoxification studies have 
demonstrated that male rats have higher phase-II enzymatic activities than 
female rats (DeBethizy & Hayes, 1994; Mugford & Kedderis, 1998), in this 
study, total amounts of flavanols and their metabolites in liver tissues were 
not affected by gender differences. Rather, the primary sex-related difference 
in this tissue, which was also true in plasma, was related to the proportions of 
individual metabolites. Sulfated and methyl-sulfated metabolites were found 
to be more abundant in the livers of female rats than in males, although male 
rats exhibited higher quantities of methyl-glucuronide metabolites than female 
rats at all of the time points that were evaluated. These results suggest that 
the sulfotransferase (SULT) enzymatic system may be more active in 
females, whereas the uridine 5'-diphospho-glucuronosyltransferase (UGT) 
and catechol-O-methyltransferase (COMT) enzymatic systems may be more 

active in males. However, Dellinger et al. (Dellinger, Garcia, & Meyskens, Jr., 
2014) demonstrated that women are more efficient at glucuronidating 
pterostilbene and resveratrol polyphenols than men, indicating that enzymatic 
system activities could be different for polyphenols other than flavanols. 
Nevertheless, these results are in agreement with previous studies that have 
shown that the balance between the sulfation and glucuronidation of 
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polyphenols is affected by sex (Piskula, 2000) and that there are sex-related 
differences in how xenobiotics affect metabolic enzymes in the livers of rats 

(Finnen & Hassall, 1984; Mugford & Kedderis, 1998).  

According to other studies that also employed GSPE (Ardévol, Motilva, Serra, 
Blay, & Pinent, 2013; Arola-Arnal et al., 2013; Margalef et al., 2015), in 
MWAT, the main compounds that were quantified were non-conjugated 
flavanols, whereas only very poor concentrations of phase-II metabolites 
were measured, and only glucuronide and methyl-glucuronide forms were 
detected. This specific distribution of free flavanols in MWAT is most 
probably due to the hydrophobic properties of adipose tissue rather than 
because of differences in enzymatic activities in this tissue. The total 
concentrations of flavanols and the individual proportions of flavanols and 
flavanol metabolites in MWAT were not found to be different between male 
and female rats, indicating that their tissue distributions are similar in both 
genders. However, in males, the accumulation of free flavanols (i.e., catechin 
and phenolic acids) in MWAT occurred over a longer period of time than in 
females, as in females the quantity of these compounds began to decrease 
at 2 h, which was similar to the results observed for unconjugated 
metabolites in the liver. These results may be because females have a faster 
metabolism than males or because of physiological differences (e.g., body 
weight, height, body surface area, total body water, and quantities of 
extracellular and intracellular water).  

Finally, in brain tissues, the kinetic behaviors of flavanols and their 
metabolites was the same in both male and female rats: the maximum 
concentrations of these compounds in brain tissues were reached 2 h after 
the ingestion of GSPE, and they were later excreted into systemic circulation 

as opposed to being stored in target tissues. Indeed, only a few of these 
compounds could be detected in brain tissues, which agrees with previous 
results that demonstrated that not all flavanols are able to cross the blood-
brain barrier (BBB) (Arola-Arnal et al., 2013; Margalef et al., 2015). 
Furthermore, both the types and quantities of flavanols that targeted the brain 
were distinct between male and female rats. For example, the quantity of 
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flavanol metabolites that targeted the brains of male rats was greater than in 
female rats, and the main metabolites in this tissue in male rats were methyl-

epicatechin metabolites, whereas these compounds were not detected in the 
brains of female rats. However, the brains of female rats were found to have 
a higher quantity of PA dimers than the brains of male rats. We hypothesize 
that these gender differences in brain tissues could have arisen for two 
different reasons: 1) A sex-related specificity was imposed with regard to 
what types of flavanols were able to cross the BBB. In support of this 
reasoning, it has been previously reported that estrogens may have an 
important role in modulating free flavanol uptake by blood brain barrier (BBB) 
cells in vitro, and it has been further suggested that the female hormone 
progesterone can act as an endogenous factor that modulates the abilities of 
P-glycoproteins to serve as transporters of flavanols across the BBB (Faria et 
al., 2011); and 2) Different phase-II enzyme activities exist within the brains 
of male versus female rats. In support of this reasoning, the majority of the 
methylated flavanols found within the brains of male rats and the lack of 
these compounds found within the brains of female rats could be explained 
because estrogen is an important regulator of COMT activity in the brain 
(Harrison & Tunbridge, 2007; Mannisto & Kaakkola, 1999). It has further 
been reported that COMT activity in the prefrontal cortex is 17% higher in 
men than in women (Harrison & Tunbridge, 2007). These differences are 
important because polyphenols that target the brain are probably these 
physiologically active forms. For example, Wang J et al. (Wang et al., 2012) 
reported that flavanols that were able to target the brain after the ingestion of 
grape polyphenols increased cognition by improving synaptic plasticity in the 
brain. Therefore, the fact that different flavanols and flavanol metabolites are 

targeted to the brains of male versus female rats may be due to different 
flavanol bioactivities in their brain tissues.  

This study demonstrated that the metabolism and tissue distribution of 
flavanols in rats is influenced by sex. These differences are probably due to 
inherent physiological differences between the sexes, such as total body 
water, differences in phase-II enzyme activities in target tissues (i.e., in liver 
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and in brain), and differences in tissue specificities. It is important to note that 
these differences in bioavailability may differentially influence the 

physiological bioactivities of these compounds in males and females. 
Although further studies will be necessary to elucidate sex-related differences 
in the physiological bioactivities of flavanols, experimental conditions such as 
gender should already be taken into consideration when investigating 
flavanol compounds in vivo. Moreover, understanding flavanol metabolism is 
vital to its interpretation and utility in the clinic and to delineating whether 
different treatments are necessary for male versus female patients.  
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Figure Legends 
 
Figure 1. Extracted ion chromatograms of flavanols and their phase-II 

metabolites 2 h after the administration of 1000 mg/kg of a grape seed 
polyphenol extract (GSPE) in male (continuous line) and female 
(discontinuous line) rat plasma. (1) Gallic acid, (2) Dimer B1, (3) Dimer B3, 
(4) Dimer B2, (5) Methyl-catechin-glucuronide, (6) Methyl-epicatechin-
glucuronide, (7) Catechin glucuronide, (8) Epicatechin glucuronide, (9) 
Catechin, (10) Epicatechin, (11) Catechin sulfate, (12) Epicatechin sulfate 
(13) Methyl-catechin-O-sulfate, (14) Methyl-epicatechin-O-sulfate, (15) 3-
Methyl-epicatechin, and (16) 4-Methyl-epicatechin. 
 
Figure 2. Pharmacokinetic profiles of flavanols and their metabolites in rat 
plasma and tissues after acute ingestion of grape seed polyphenol extract 
(GSPE) in both male (left panels) and female (right panels) rats. (A) Plasma. 
(B) Liver. (C) Mesenteric white adipose tissue (MWAT). (D) Brain. Data are 
displayed as the mean ± standard error of the mean (SEM) (n=6). The results 
are expressed in μM for plasma samples and in nmol/g for the studied tissue 
samples.  
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Table 1. Optimized MRM conditions in HPLC-MS/MS for the study of the 

polyphenols present in the grape seed polyphenol extract (GSPE) and their 

metabolites studied in plasma and tissues after an acute administration of 1000 

mg/kg of GPSE per body weight. 

Compound 

Quantification  Confirmation 

MRM 
CE 

(V) 

 
MRM 

CE 

(V) 
MRM 

CE 

(V) 

Gallic acid 169>125 5  169>169 0 169>79 40 

Protocatechuic acid 153>109 10  153>62 40 - - 

Vanillic acid 167>152 10  167>123 5 - - 

PA dimer B2 577>425 10  577>407 20 577>289 20 

PA dimer B1 577>425 10  577>407 20 577>289 20 

PA dimer B3 577>425 10  577>407 20 577>289 20 

Catechin 289>245 5  289>203 10 289>179 5 

Epicatechin 289>245 5  289>203 10 289>179 5 

Dimer gallate 729>577 20  729>441 30 729>407 50 

Epicatechin gallate 441>331 0  441>289 5 - - 

Epigallocatechin gallate 457>169 20  457>305 20 457>457 0 

Epigallocatechin 305>125 5  305>179 5 - - 

PA trimer 865>577 20  865>713 20 - - 

PA tetramer 1153>865 40  1153>1153 0 - - 

Catechin glucuronide 465>289 20  465>203 40 - - 

Epicatechin glucuronide 465>289 20  465>203 40 - - 

Methyl-catechin glucuronide 479>303 20  479>289 20 - - 

Methyl-epicatechin glucuronide 479>303 20  479>289 20 - - 

Catechin-sulfate 369>245 20  369>289 20 - - 

Epicatechin-sulfate 369>245 20  369>289 20 - - 

Methyl-catechin-sulfate 383>245 10  383>303 20 - - 

Methyl-epicatechin-sulfate 383>245 10  383>303 20 - - 

3-O-methyl-epicatechin 303>137 20  303>285 10 - - 

4-O-methyl-epicatechin 303>137 20  303>285 10 - - 

Abbreviations: PA (proanthocyanidin), MRM (Multiple Reaction Monitoring), CE 
(Collision Energy), V (Volts)!
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Table 3. Main phenolic compounds (flavanols and 

phenolic acids) of the grape seed polyphenol extract 

(GSPE) used in this study, analysed by HPLC-MS/MS. 

Compound Concentration (mg/g) 

Gallic acid 31.07 ± 0.08 

Protocatechuic acid 1.34 ± 0.02 

Vanillic acid 0.77 ± 0.04 

PA dimer B2 33.24 ± 1.39 

PA dimer B11  88.80 ± 3.46 

PA dimer B31 46.09 ± 2.07 

Catechin 121.32 ± 3.41 

Epicatechin 93.44 ± 4.27 

Dimer gallate1 8.86 ± 0.14 

Epicatechin gallate 21.24 ± 1.08 

Epigallocatechin gallate 0.03 ± 0.00 

Epigallocatechin2 0.27 ± 0.03 

PA trimer1 4.90 ± 0.47 

PA tetramer1 0.05 ± 0.01 

Abbreviations: PA (proanthocyanidin) 

The results are expressed on a wet basis as the mean ± SD (n=3).  

The results are expressed as mg of phenolic compound/g of GSPE 

1 Quantified using the calibration curve of proanthocyanidin B2. 
2 Quantified using the calibration curve of epigallocatechin gallte. 

!
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Figure 3.!
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Abstract 
Flavanols, one of the main important dietary polyphenols, once ingested are 

recognized as xenobiotics, and undergo phase-II colonic and microbial 
metabolism. As flavanols health benefits have been attributed to their 
metabolic products, the study of their bioavailability is one of the most 
important points in understanding their bioactivity. Different factors such as 
gender, age, or physiological condition may influence the metabolism, 
bioavailability, and tissue distributions of these compounds. Therefore, the 
aim of this study was to evaluate whether a pathological state could influence 
flavanol plasma bioavailability. Standard (ST) and cafeteria diet (CAF) fed 
rats, a robust model of metabolic syndrome (MeS), were administered 1000 
mg/kg of a flavanol enriched grape seed polyphenol extract (GSPE). 
Flavanols and their metabolites were quantified by HPLC-MS/MS in plasma 
before and at 2, 4, 7, 24, and 48 h after GSPE ingestion. Increased plasma 
bioavailability, a 2 h delay in the maximum plasma concentration and lower 
prevalence of the compounds over time were observed in CAF rats. CAF rats 
also showed increased plasma concentration of gallic acid and 
glucuronidated metabolites, lower absorption of flavanol dimers, and reduced 
flavanol microbial derivative metabolites. This study demonstrates that a 
pathological state such as MeS modifies flavanol bioavailability, supporting 
the hypothesis that flavanol metabolism, and therefore flavanol functionality, 
depend on the organisms’ state of health. Hence, many of the polyphenol 
studies carried out in healthy hosts cannot be extrapolated to health disorder 
states because many metabolic forms of polyphenols could be different 
different in healthy and diseased states.   
.   

Key words: bioactivity; cafeteria diet; kinetic profile; metabolism; obesity; 
polyphenols 
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1. Introduction 
Flavanols comprise one of the most important groups of dietary polyphenols 

and are mainly found in grapes, cocoa, red wine, and green tea (Manach, 
Scalbert, Morand, Rémésy, & Jiménez, 2004). They are also known as 
flavan-3-ols, and their monomers consist of (+)-catechin, and (-)-epicatechin 
units. Oligomeric and polymeric forms of flavan-3-ols are commonly named 
proanthocyanidins (PAs) (Bladé, Arola, & Salvadó, 2010). These 
phytochemicals have been associated with several health benefits (Del Rio et 
al., 2013), acting as lipid homeostasis modulators (Guerrero et al., 2013; 
Margalef, Guerrero, et al., 2014), free radical scavengers (Fraga, Galleano, 
Verstraeten, & Oteiza, 2010), antihypertensives (Zara Pons, Margalef, Bravo, 
Arola-Arnal, & Muguerza, 2015; Quiñones et al., 2013), anti-diabetics (Castell 
et al., 2009; González-Abuín et al., 2014) and anti-inflammatory agents 
(Martinez-Micaelo et al., 2015). Nevertheless, as the beneficial health-
promoting effects of flavanol are largely attributed to their metabolic products, 
the study of the metabolism of the ingested compounds, the derived 
bioavailable products and their distribution through target tissues is essential 
to elucidating their bioactivities (Bohn et al., 2015). 

Once ingested, flavanol monomers and PA dimers are recognized as 
xenobiotics and undergo a phase-II enzymatic detoxification in the small 
intestine and liver (Monagas et al., 2010). Uridin-glucuronil transferases 
(UGTs), sulfotransferases (SULTs) and/or catechol-O-methyl transferases 
(COMTs) are the phase-II enzymes responsible for the detoxification of 
flavanol parent compounds, producing glucuronidated, sulfated and 
methylated conjugates, respectively, in order to increase their solubility and 
enhance their excretion through the urine (Del Rio et al., 2013; Monagas et 

al., 2010). In addition, PAs with a high degree of polymerization cannot be 
absorbed at the level of the small intestine and reach the colon to undergo 
microbial catabolism, leading to the formation of small phenolic compounds 
able to reach the liver, where they can also be subjected to phase-II 
conjugation (Aura, 2008; Monagas et al., 2010; Stoupi, Williamson, Drynan, 
Barron, & Clifford, 2010). Both flavanol phase-II and microbial metabolites 
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reach the systemic circulation to be distributed to different tissues or reach 
the kidneys to be excreted through the urine (Monagas et al., 2010).  

Flavanol metabolism has been widely studied for years (Slanina & Taborska, 
2004; Walle, 2004), but there are still many gaps in our knowledge about the 
factors affecting the metabolism and bioavailability of these 
phytochemicals(Bohn et al., 2015). Bioavailability and bioactivity of flavanols 
depend on two main factors, external and host-related factors (D’Archivio et 
al., 2007). External factors include those related to ingested flavanol, namely 
its structure, the food matrix, the food processing, and the ingestion length 
(Bohn et al., 2015; D’Archivio et al., 2007). The internal factors include those 
factors related to the internal state of the individual subjects, such as gender, 
age, physiological condition, and any existing pathology states (D’Archivio et 
al., 2007). Physiological conditions such as body mass index (BMI), fat, and 
body lean content may affect the metabolism of all ingested foods or drugs 
(Isezuo, Badung, & Omotoso, 2003; Tesauro & Cardillo, 2011), including the 
metabolism of polyphenols. Obesity is one of the most important metabolic 
disorders that causes chronic diseases such as type-II diabetes, 
hypertension, or atherosclerosis and is also one of the required conditions for 
the diagnosis of Metabolic Syndrome (MeS) (Dobrian, Davies, Schriver, 
Lauterio, & Prewitt, 2001; Sampey et al., 2011; Tesauro & Cardillo, 2011). 
Cafeteria-diet-fed obese rats are an animal model for the study of MeS and 
have been used for the study of specific pathologies included in the cluster 
diseases that define MeS, such as hypertension or obesity (Z Pons et al., 
2014; Sampey et al., 2011). 

The aim of this study was to evaluate whether flavanol metabolism and 
plasma bioavailability are affected by the pathological metabolic state 

induced by a cafeteria diet.  

2. Materials and Methods 
Methanol (Scharlab S.L., Barcelona, Spain), acetone, acetonitrile (both from 
Sigma-Aldrich, Madrid, Spain) and glacial acetic acid (Panreac, Barcelona, 
Spain) were of HPLC analytical grade. Ultrapure water was obtained from a 
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Milli-Q advantage A10 system (Madrid, Spain). Individual stock standard 
solutions of 2000 mg/L in methanol of (+)-catechin, (-)-epicatechin, 

procyanidin B2, 3-hydroxybenzoic acid, 3,4-dihydroxybenzoic acid, 2-(3-
hydroxyphenyl)acetic acid, 2-(4-hydroxyphenyl)acetic acid, 2-(3,4-
dihydroxyphenyl)acetic acid, 3-(4-hydroxyphenyl)propionic acid, vanillic acid, 
gallic acid, hippuric acid, ferulic acid, benzoic acid, and pyrocatechol (the 
internal standard (IS)) (all from Fluka/Sigma-Aldrich, Madrid, Spain), and 5-
(3’,4’-dihydroxyphenyl)-γ-valerolactone (MicroCombiCheme.K., Wiesbaden, 
Germany), were prepared and stored in a dark glass flask at -20 ºC.  
A 20 mg/L stock standard mixture in methanol of all of the compounds 
described above was prepared weekly and stored at -20 ºC. This stock 
standard solution was diluted daily to the desired concentration using an 
acetone:water:acetic acid (70:29.5:0.5, v:v:v) solution. 

2.2. Grape Seed Polyphenol Extract (GSPE) 

A grape seed polyphenol extract (GSPE) rich in flavanols was provided by 
Les Dérives Résiniques et Terpéniques (Dax, France). Table 1 shows the 
phenolic compound (flavan-3-ols and phenolic acids) concentrations of the 
extract used in this study. 

2.3. Experimental Procedure in rats 

Six-week-old male Wistar rats Crl:WI (Charles River Laboratories, Barcelona, 
Spain) were singly housed at 22 ºC with a light/dark period of 12 h. After a 
quarantine period of 2 weeks, the animals weighed 230-240 g and were 
divided into two dietary groups. The control group (ST, n=6) was fed standard 
chow (Panlab A04, Panlab, Barcelona, Spain) and tap water ad libitum. The 
second group (CAF, n=6) had free access to a fresh cafeteria diet consisting 
of bacon (10-12 g), sausage (8–12 g), biscuits with paté (12–15 g), cheese 

(10–12 g), ensaïmada (sweetened pastry) (4-5 g), carrots (8-10 g), and 
sweetened milk (20% sucrose (w/v)) renewed daily, plus tap water in addition 
to the standard chow diet. The standard chow diet had a calorie breakdown 
of 14% protein, 8% fat and 73% carbohydrates, whereas the calorie 
breakdown of the cafeteria diet was 14% proteins, 35% fat and 51% 
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carbohydrates. All of the animals were fed ad libitum, and the diets were 
maintained for 12 weeks until the day of the experiment. 

The day of the experiment, both animal groups were randomly divided into 
two different subgroups: the GSPE group (n=5) and the control group (n=1). 
A dose of 1000 mg/Kg of GSPE (1 mL in water) was administered to the 
GSPE group by oral gavage. Water (1 mL) was orally administered to the 
control group. In both groups, oral administration was performed by gastric 
intubation between 9 and 10 a.m. Blood samples were obtained via 
saphenous vein extraction using heparin vials (Starsted, Barcelona, Spain) at 
0, 2, 4, 7, 24 and 48 h after GSPE or water administration, in order to 
measure the kinetics of phase-II and microbial metabolites. Plasma samples 
were obtained by centrifugation (2000 x g, 15 min, 4ºC) and pooled to obtain 
a sufficient volume for the analysis and also to remove biological variability. 
The pooled plasma samples were stored at -80ºC until chromatographic 
analysis was performed. Pooled plasma from the control group (water oral 
gavage) was used for the calibration curves in the chromatography analysis. 
Any compound present in the plasma at the 0 h time-point was subtracted 
from the plasma concentrations at all other time-points in order to remove the 
compounds endogenous to the diet. This study was performed in accordance 
with institutional guidelines for the care and use of laboratory animals, and 
the experimental procedures were approved by the Ethical Committee for 
Animal Experimentation of the Universitat Rovira i Virgili. 

2.4. Micro-Solid Phase plasma flavanol extraction  

Prior to chromatographic analysis, the pooled rat plasma for each time-point 
was pre-treated by off-line micro-Solid Phase Extraction (μ-SPE) as 
described previously (Margalef, Pons, Muguerza, & Arola-Arnal, 2014) using 

OASIS HLB μ-Elution Plates 30 μm (Waters, Barcelona, Spain). Briefly, the 
micro-cartridges were conditioned sequentially with 250 μL of methanol and 
250 μL of 0.2% acetic acid. Plasma aliquots (250 μL) were mixed with 300 
μL of 4% phosphoric acid and 50 μL of pyrocatechol (1000 ppb), and this 
mixture was loaded into the plates. The loaded plates were washed with 200 
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μL of Milli-Q water and 200 μL 0.2% acetic acid. The retained flavanols were 
eluted with 2 x 50 μL of acetone/Milli-Q water/acetic acid solution 

(70/29.5/0.5, v/v/v).  

2.5. Chromatographic Analysis 

The chromatographic analysis was performed using a 1290 LC Series 
UHPLC coupled to a 6490 MS/MS (Agilent Technologies, Palo Alto, CA, 
USA). The separations were achieved using a Zorbax SB-Aq (150 mm × 2.1 
mm i.d., 3.5 μm particle size) column as the chromatographic column (Agilent 
Technologies, Palo Alto, CA, USA). The MS system consisted of an Agilent 
Jet Stream (AJS) ionization source. The mobile phase, electrospray 
ionization (ESI) conditions and acquisition method were performed as 
previously reported for the quantification of phase-II and microbial flavanol 
metabolites in plasma and tissues (Margalef, Pons, Bravo, Muguerza, & 
Arola-Arnal, 2015a, 2015b; Margalef, Pons, et al., 2014). Data acquisition 
was carried out using MassHunter Software (Agilent Technologies, Palo Alto, 
CA, USA). 

3. Results 

Flavanol phase-II and microbial metabolites were quantified in pooled rat 
plasma using HPLC-MS/MS at different times (0, 2, 4, 7, 24, and 48 h) after 
the ingestion of GSPE (1000 mg/kg) in both healthy and MeS obese rats. 
Pooling the plasma was necessary to collect enough volume for three 
replicate chromatographic analyses at the different times without sacrificing 
the rats.  

Moreover, pooling the plasma increased homogeneity and sensitivity to allow 
for the detection of all potential metabolites (Demelbauer, Plematl, Josic, 
Allmaier, & Rizzi, 2005; McGaw, Phinney, & Lowenthal, 2010). A range of 

time points was selected to detect all potential metabolites and to study how 
these metabolites appear in plasma at different times. All the flavanols from 
the extract were able to reach the major absorbing parts of the 
gastrointestinal tract (small intestine and colon) in the time course, which 
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assured their metabolization by phase-II enzymes and colonic bacteria (Serra 
et al., 2011, 2013). 

We found increased plasma bioavailability of flavanols and their metabolites 
and a 2 h delay of the maximum plasma concentration in MeS obese rats 
compared to healthy rats. Maximum concentration values of total 
polyphenolic compounds were 170 μM at 4 h for CAF fed rats and 70 μM at 2 
h for ST fed rats (Figure 1A). Moreover, the compounds present in ST rat 
plasma remained in the systemic circulation longer. Twenty-four hours after 
GSPE consumption, these compounds were present at higher concentrations 
in ST rats than in their MeS counterparts. Almost all the compounds found in 
MeS rat plasma were monomers, small phenolic compounds, and phase-II 
metabolites (Figure 1B). However, a reduced absorption of PA dimers (Figure 
1C) and lower microbial metabolism was observed; both were decreased 
more than 3-fold in MeS rats (Figure 1D).   

3.1. Plasma kinetics of non-metabolized flavanols in rat plasma  

Figure 2 shows non-metabolized GSPE compounds (i.e. catechin and 
epicatechin monomers, dimers, and phenolic acids present in the pure 
extract). The maximum plasma concentration for the non-metabolized 
compounds was reached at 4 h for CAF rats and at 2 h for ST rats, except for 
gallic acid, which did not show clear differences in the time of maximum 
bioavailability between CAF and ST rats. In addition, no metabolized 
compounds remained in CAF rat plasma longer than in ST rats. Catechin 
maximum plasma concentrations were decreased in CAF rats compared to 
ST rats (0.4 and 1.6 μM, respectively), although epicatechin concentrations 
were equal (Figure 2A). Similarly, a decrease in the bioavailability of PA 
dimers was observed in CAF rats compared to ST rats. PA B2 maximum 

concentrations values were 1.2 μM at 4 h in CAF rats and 3.0 μM at 2 h in 
ST rats (Figure 2B). Gallic acid was the only non-metabolized compound 
found in plasma that showed an increased bioavailability in the MeS state, 
reaching plasma maximum concentrations 3 times higher in CAF rats 
compared to ST rats (5.4 μM and 1.7 μM both at 4 h, respectively) (Figure 



RESULTS 

 
239 

2C). However, vanillic acid did not show changes in short-term plasma 
concentrations, but showed an increased bioavailability in CAF rats 24 h after 

the ingestion of GSPE. 

3.2. Plasma kinetics of phase-II flavanol metabolites in rat plasma 

Flavanol phase-II metabolites also showed the highest concentrations in 
plasma at 2 h after GSPE consumption in the ST group and at 4 h in the CAF 
group (Figure 3). In addition, all glucuronidated metabolites increased in the 
plasma of CAF rats compared to ST rats, reaching maximum concentration 
values of 64 μM in CAF rats and 15 μM in ST rats for catechin glucuronide 
and of 45 μM in CAF rats and 5 μM in ST rats for epicatechin glucuronide 
(Figure 3A). Methyl-glucuronidated metabolites also showed an increase in 
plasma bioavailability in CAF rats compared to the ST dietary group (Figure 
3B). Interestingly, an inversion of the major methyl-glucuronidated compound 
was observed, as a maximum of 5 μM methyl-epicatechin glucuronide was 
detected in ST rats, increasing to 10 μM in CAF rats. Methyl-catechin 
glucuronide reached maximum concentrations at 1.3 μM in ST rats and 20 
μM in CAF rats, becoming the major methyl-glucuronidated compound in 
plasma. 

Catechin sulfated metabolites showed a reduction in CAF compared to ST 
rats (Figure 3C), from 1.5 to 0.4 μM, respectively. Epicatechin sulfate was 
increased 5-fold in CAF rats (1 μM) compared with the ST group (0.2 μM). 
Methyl-sulfated metabolites (Figure 3D) showed the same crossover kinetics 
as sulfated metabolites. The methyl-catechin-O-sulfate was the major 
metabolite in ST rats, whereas the epicatechin homologue was the major 
metabolite found in CAF obese rats. 

Finally, methylated epicatechin metabolites showed an almost two-fold 

decrease in obese rats compared with ST rats (Figure 3E). 4-methyl-
epicatechin was the major metabolite identified in both cases (0.6 μM and 1.2 
μM respectively). Metabolites methylated at the third position measured 0.7 
μM in ST rats and 0.3 μM in CAF rats. 
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3.3 Plasma kinetics of microbial flavanol metabolites in rat plasma 

The kinetic profiles of all studied microbial flavanol metabolites was 

significantly different between the two dietary groups (Figure 4). The products 
of flavanol microbial catabolism showed a very sharp decrease in plasma 
concentration in the CAF obese rats for almost all compounds (Figure 4). 

For valeric acid derivatives (Figure 4A), the main plasma metabolite found in 
both dietary groups was 4-hydroxy-5-(3’,4’-dihydroxyphenyl) valeric acid, 
which reached maximal concentrations of 0.25 μM in the ST and of 0.10 μM 
in the CAF group. The microbial metabolite 3-(4-hydroxyphenyl) propionic 
acid was the main metabolite found in the plasma of healthy rats, with values 
reaching 25 μM 24 h after the ingestion of GSPE (Figure 4B). However, in 
the plasma of the CAF group, 3-(4-hydroxyphenyl) propionic acid did not 
exceed 0.2 μM. 2-(4-hydroxyphenyl)acetic acid was the major phenylacetic 
compound found in rat plasma, with concentrations of 5 μM in ST rats at 2 h, 
but only 0.12 μM in the CAF rats (Figure 4C). Benzoic acids are the only non-
conjugated catabolic products found at considerable concentrations in CAF 
rats (Figure 4D). Benzoic acid was the most abundant compound in both 
groups, reaching maximal concentrations of 1.9 μM in ST rats and 0.7 μM in 
CAF rats. 

The final compounds of microbial metabolism had both quantitative and 
qualitative differences in ST rats compared with CAF rats (Figure 4E). In ST 
rats, the major compound was hippuric acid, which reached its maximum 
concentration 7 h after GSPE consumption (10 μM), but it was not detected 
in the plasma of CAF rats at any time. The methylated metabolites of gallic 
acid (3-O-methyl gallic acid) and homovanillic acid were the only microbial 
metabolites that were found at higher concentrations in CAF rats. The 

microbial derivative 3-O-methyl gallic acid reached maximum values of 7 and 
5.7 μM in CAF and ST rats, respectively, while homovanillic acid was found 
only in CAF rats, with maximum values of 2.9 and 3.2 μM at 4 and 24 h after 
GSPE ingestion, respectively.  
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4. Discussion 

Flavanols are some of most important dietary polyphenols, with beneficial 

health effects (Del Rio et al., 2013) reported in both in vitro (González-Abuín 
et al., 2014; Guerrero et al., 2013; Margalef, Guerrero, et al., 2014) and in 
vivo (Guerrero et al., 2013; Margalef, Guerrero, et al., 2014; Z Pons et al., 
2014; Zara Pons et al., 2015) models. The first pass metabolism is one of the 
most important aspects of flavanol biotransformation, as the molecular forms 
that reach the systemic circulation differ significantly from those present in 
ingested foods (Kroon et al., 2004). Therefore, factors that may affect 
flavanol metabolism influence its bioactivity. Specifically, the health state is a 
host-related factor of special relevance, as it may influence both the 
metabolism and the bioactivity of flavanols and their health-promoting 
properties. For instance, flavanols exhibit potent antihypertensive effects in 
hypertensive rats but not in normotensive animals (Cienfuegos-Jovellanos et 
al., 2009; Zara Pons et al., 2015). Owing to these facts, the aim of this study 
was to evaluate whether flavanol metabolism and plasma bioavailability 
kinetics differ in a metabolic pathological state using an animal model of 
obesity induced by a CAF diet. 

Previous studies by our group and others showed that after an acute dose of 
grape seed flavanols to healthy animals, flavanols and their phase-II 
metabolites are distributed throughout the body and appear in the plasma 
and tissues at maximal concentrations between 1 and 2 h after consumption 
(Guerrero et al., 2013; Margalef et al., 2015a, 2015b; Margalef, Guerrero, et 
al., 2014). Interestingly, the results obtained in this study clearly showed that 
when metabolism is disrupted by MeS, maximum concentration values are 
delayed 2 h, reaching maximal amounts in the plasma 4 h after flavanol 

ingestion, instead of 2 h as observed in the ST group. These data indicate an 
alteration of flavanol absorption in obese animals. Our results also showed 
higher concentrations of total phenolic compounds in CAF rats (non 
conjugated flavanols, phase-II metabolites and small phenolic compounds), 
indicating higher absorption at the level of the small intestine of small 
phenolic compounds and flavanol monomers, which appear in plasma as free 
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and conjugated monomers. Our combined data together point to the fact that 
in metabolic disorders, intestinal permeability is altered by the disruption of 

tight junctions within the small intestine, which affects the passive diffusion of 
flavanol aglycones through the enterocytes (Manach et al., 2004; Miele et al., 
2009). Interestingly, in CAF-fed rats, the plasma levels of PA dimers were 
significantly lower than in healthy rats. Therefore, PA dimers probably have a 
specific and undescribed active transport mechanism that is disrupted by the 
MeS state. Moreover, CAF fed rats showed a faster decrease in total flavanol 
plasma levels, which could be explained by the over-activation of phase II 
enzymes increasing the hydrosoluble, easily extractable forms.  

This enzymatic alteration is in agreement with the higher plasma levels of 
phase-II metabolites in CAF rats that would be indicative of over-activation of 
hepatic phase-II enzymes. Specifically, our data suggest over-activation of 
UGT activity, while SULT and COMT activities seem to be inhibited by the 
metabolic disease induced by CAF diet. This fact, our data agree with prior 
reports of higher expression of UGT genes and lower activity of SULT 
enzymes in non-alcoholic fatty liver disease obese mice (Merrell & 
Cherrington, 2011). Interestingly, SULT enzymes showed different 

steroselectivety for catechin and epicatecnin depending on health status. In 
fact, catechin-sulfated and methyl-sulfated metabolites showed higher 
concentrations in ST rats and were decreased in CAF animals. On the 
contrary, epicatechin metabolites were increased in CAF rats and decreased 
in ST rats.  

Finally, it is known that obesity significantly affects the gut microbiota 
(DiBaise et al., 2008; Ley, Turnbaugh, Klein, & Gordon, 2006; Turnbaugh et 
al., 2006). In fact, gut microbiota show daily changes depending on lifestyle 
(David, Materna, et al., 2014) and diet (David, Maurice, et al., 2014; Graf et 
al., 2015). In addition, polyphenols have been reported as microbiota 
modulators (Cardona, Andrés-Lacueva, Tulipani, Tinahones, & Queipo-
Ortuño, 2013; Duda-Chodak, Tarko, Satora, & Sroka, 2015; Viveros et al., 
2011), and their microbial metabolites have health-promoting effects as 
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antioxidants (Bialonska, Kasimsetty, Khan, & Ferreira, 2009; Ishimoto et al., 
2012). Therefore, flavanol microbial metabolites were affected in obese rats. 

This study clearly shows that obesity leads to a decrease in bioavailable 
microbial metabolites. The importance of these findings should be studied in 
greater detail, taking into account that many of the bioactivities of many 
polyphenols are related to their microbial metabolites (Del Rio et al., 2013; 
Selma, Espín, & Tomás-Barberán, 2009). 
In conclusion, we demonstrated that metabolic disorder induced by the diet 
significantly influences the metabolism, plasma bioavailability and kinetics of 
flavanols, leading to qualitative and quantitative differences in circulating 
flavanol levels, their phase II metabolites and their microbial metabolites over 
time. These differences could explain why flavanols show health benefits in a 
pathological state but not in a healthy state. Therefore, flavanol studies 
carried out in healthy subjects should not be extrapolated to the unhealthy 
ones.  
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Figure Legends 

 
Figure 1. Kinetic profiles of compounds in pooled plasma (n=5), quantified by 
HPLC-MS/MS in standard (ST) and cafeteria-fed (CAF) rats at 0, 2, 4, 7, 24, 
and 48 h after the ingestion of a grape seed polyphenol extract (GSPE 1000 
mg/kg). Plasma concentrations are given in μM. A) Total plasma 
polyphenolic compounds; B) Flavanol monomers (catechin and epicatechin), 
small phenols (gallic and vanillic acids), and flavanol phase-II metabolites; C) 
PA Dimers; D) Microbial metabolites. 
 
Figure 2. Kinetic behavior of non-metabolized flavanols in pooled plasma 
(n=6) quantified by HPLC-MS/MS in standard (ST) and cafeteria-fed (CAF) 
rats at 0, 2, 4, 7, 24, and 48 h after the ingestion of a grape seed polyphenol 
extract (GSPE 1000 mg/kg). Plasma concentrations are given in μM. A) 
flavanol monomers; B) PA dimers; C) phenolic acids. 
 
Figure 3. Kinetic behavior of phase-II flavanol metabolites in pooled plasma 
(n=6) quantified by HPLC-MS/MS in standard (ST) and cafeteria-fed (CAF) 

rats at 0, 2, 4, 7, 24, and 48 h after the ingestion of a grape seed polyphenol 
extract (GSPE 1000 mg/kg). Plasma concentrations are given in μM. A) 
glucuronidated metabolites; B) methyl-glucuronidated metabolites; C) 
sulfated metabolites; D) methyl-sulfated metabolites; E) methylated 
metabolites. 
 
Figure 4. Kinetic behavior of microbial flavanol metabolites in pooled plasma 
(n=6) quantified by HPLC-MS/MS in standard (ST) and cafeteria-fed (CAF) 
rats at 0, 2, 4, 7, 24, and 48 h after the ingestion of a grape seed polyphenol 
extract (GSPE 1000 mg/kg). Plasma concentrations are given in μM. A) 
valeric acids metabolites; B) phenylpropionic acids metabolites; C) 
phenylacetic acids metabolites; D) benzoic acids metabolites; E) final 
products of microbial metabolism. 
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Table 1. Main phenolic compounds (flavanols and phenolic acids) 1"

of the grape seed polyphenol extract (GSPE) used in this study, 2"

analysed by HPLC-MS/MS. 3"

Compound Concentration (mg/g) 

Gallic acid 31.07 ± 0.08 

Protocatechuic acid 1.34 ± 0.02 

Vanillic acid 0.77 ± 0.04 

PA dimer B2 33.24 ± 1.39 

PA dimer B11  88.80 ± 3.46 

PA dimer B31 46.09 ± 2.07 

Catechin 121.32 ± 3.41 

Epicatechin 93.44 ± 4.27 

Dimer gallate1 8.86 ± 0.14 

Epicatechin gallate 21.24 ± 1.08 

Epigallocatechin gallate 0.03 ± 0.00 

Epigallocatechin2 0.27 ± 0.03 

PA trimer1 4.90 ± 0.47 

PA tetramer1 0.05 ± 0.01 

Abbreviations: PA (proanthocyanidin) 4"

The results are expressed on a wet basis as the mean ± SD (n=3).  5"

The results are expressed as mg of phenolic compound/g of GSPE 6"
1 Quantified using the calibration curve of proanthocyanidin B2. 7"
2 Quantified using the calibration curve of epigallocatechin gallte. 8"
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Figure 1 
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Figure 2. 
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Figure 3.  
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Table S1. Validation of the determination of plasma flavanols and phenolic acids by off-line µSPE-HPLC-
MS/MS in tissues from both diet groups, assessed by the following parameters: calibration curve, R2, linearity 
range, LOD, and LOQ, MDL, and MQL. 

Diet 
Group Compound Calibration 

Curve 
Determination 
Coeficient (R2) 

Linearity 
(µM) 

LOD 
(nM) 

LOQ 
(nM) 

MDL* 
(nM) 

MQL* 
(nM) 

 
Standard 

Diet 

Catechin y=0.011x 0.992 0.03-17.22 0.86 2.75 0.006 0.020 
Epicatechin y=0.031x 0.995 0.03-17.22 0.69 2.32 0.005 0.017 
Procyanidin dimer B2 y=0.022x 0.997 0.02-8.64 0.09 0.26 0.001 0.002 

Gallic Acid y=0.120x 0.995 0.06-29.39 0.26 0.94 0.002 0.007 
Vanillic Acid y=0.313x 0.996 0.06-29.76 0.60 2.15 0.004 0.015 
5-(3’,4’-dihydroxyphenyl)-γ-valerolactone y=0.324x 0.991 0.04-24.04 0.09 0.43 0.001 0.003 
3-(4-hydroxyphenyl) propionic acid y=0.056x 0.997 0.06-30.12 0.17 0.60 0.001 0.004 
2-(3,4-dihydroxyphenyl) acetic acid y=0.012x 0.996 0.06-29.76 0.17 0.60 0.001 0.004 

2-(3-hydroxyphenyl) acetic acid y=0.061x 0.991 0.06-32.90 0.17 0.60 0.001 0.004 
2-(4-hydroxyphenyl) acetic acid y=0.085x 0.992 0.06-32.90 0.17 0.60 0.001 0.004 
3,4-dihydroxybenzoic acid y=0.228x 0.997 0.06-36.23 0.17 0.60 0.001 0.004 
3-hydroxybenzoic acid y=0.242x 0.999 0.08-36.23 0.26 0.77 0.002 0.006 
Benzoic Acid y=0.241x 0.997 0.07-40.98 0.17 0.69 0.001 0.005 

Ferulic Acid y=0.311x 0.999 0.08-25.78 0.26 0.77 0.002 0.006 
Hippuric Acid y=0.122x 0.999 0.05-27.93 0.17 0.52 0.001 0.004 

 
Cafeteria 

Diet 

Catechin y=0.018x 0.997 0.03-17.22 0.86 2.75 0.006 0.018 
Epicatechin y=0.026x 0.994 0.03-17.22 0.69 2.32 0.005 0.015 
Procyanidin dimer B2 y=0.084x 0.997 0.02-8.64 0.09 0.26 0.001 0.002 
Gallic Acid y=0.093x 0.999 0.06-29.39 0.26 0.94 0.002 0.006 
Vanillic Acid y=0.045x 0.996 0.06-29.76 0.60 2.15 0.004 0.014 

5-(3’,4’-dihydroxyphenyl)-γ-valerolactone y=0.374x 0.996 0.04-24.04 0.09 0.43 0.001 0.003 
3-(4-hydroxyphenyl) propionic acid y=0.045x 0.992 0.06-30.12 0.17 0.60 0.001 0.004 
2-(3,4-dihydroxyphenyl) acetic acid y=0.012x 0.999 0.06-29.76 0.17 0.60 0.001 0.004 
2-(3-hydroxyphenyl) acetic acid y=0.064x 0.995 0.06-32.90 0.17 0.60 0.001 0.004 
2-(4-hydroxyphenyl) acetic acid y=0.045x 0.996 0.06-32.90 0.17 0.60 0.001 0.004 

3,4-dihydroxybenzoic acid y=0.663x 0.993 0.06-36.23 0.17 0.60 0.001 0.004 
3-hydroxybenzoic acid y=0.377x 0.995 0.08-36.23 0.26 0.77 0.002 0.005 
Benzoic Acid y=0.265x 0.996 0.07-40.98 0.17 0.69 0.001 0.005 
Ferulic Acid y=0.496x 0.997 0.08-25.78 0.26 0.77 0.002 0.005 
Hippuric Acid y=0.117x 0.991 0.05-27.93 0.17 0.52 0.001 0.003 

* MDL and MQL for the analysis of 250 µL of plasma.  
Abbreviations:  Limit of detection (LOD); limit of quantification (LOQ); method detection limit (MDL); method quantification limit (MQL).  
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Abstract 
The study of the flavanol metabolism is essential to identify the compounds 

involved in their bioactivity, as beneficial effects of flavanols have been 
attributed to their metabolic products,. However, host-related factors, such as 
pathological conditions, may affect flavanol metabolism and in turn, their 
bioactivity. The aim of this study was to elucidate whether the health status 
affects the flavanol metabolism, influencing their bioactivity in relation to 
hypertension. Blood pressure (BP) effect of flavanols was studied in 
spontaneously hypertensive rats and healthy Wistar rats at 6 h after the 
administration of 375 mg/kg of a grape seed extract rich in flavanols. Then 
animals were sacrificed, and plasma bioavailability and aorta distribution of 
flavanol metabolites were studied by HPLC-MS/MS in both groups. This 
study demonstrates important differences in bioactivity and target tissue 
flavanol derivative levels between healthy and diseased rats, indicating those 
flavanol forms most probably responsible of the antihypertensive effect. 
 
Key words: aorta; bioavailability; colonic metabolites; essential 
hypertension; grape seed polyphenols. 
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1. Introduction 

Hypertension (HTN) is a major risk factor for the development of 

cardiovascular disease (Papadogiannis & Protogerou, 2010) and is also the 

most common disease diagnosed in primary care (Chobanian et al., 2003). 

The incidence of HTN is estimated to increase over 24% in developed 

countries and to 80% in developing countries by 2025 (Messerli, Williams, & 

Ritz, 2007). Spontaneously hypertensive rats (SHR) are one of the most used 

experimental models of HTN. These animals present high blood pressure 

(BP) values at approximately 4-6 weeks of life without pharmacological or 

surgical intervention (Zicha & Kunes, 1999). The importance of this model 

has been attributed to the similarity of its pathophysiology to essential HTN in 

humans (Trippodo & Frohlich, 1981). 

Increasing evidence suggests that a vegetable and fruit-rich diet, which is 

abundant in polyphenolic compounds, helps to control BP. In fact, increased 

fruit and vegetable intake has been included in the guidelines for the 

management of arterial HTN (Mancia et al., 2007). Grapes are a significant 

source of polyphenols, particularly flavanols. Flavanols, or flavan-3-ols, are 

characterized as one of the most important plant dietary polyphenol groups 

that can be found in grapes, apples, cocoa, red wine, and green tea (Aherne 

& O’Brien, 2002). Their monomers consist of (+)-catechin and (-)-epicatechin 

units that can be found in oligomeric and polymeric forms, also known as 

proanthocyanidins (PAs). Their beneficial health effects have been 

demonstrated for years in human (Del Rio et al., 2013; Manach et al., 2005; 

Williamson & Manach, 2005) and animal (Baselga-Escudero et al., 2013; 

Pinent et al., 2006; Pons, Margalef, Bravo, Arola-Arnal, & Muguerza, 2015; 

M. Quiñones et al., 2013) studies, attributing them healthy properties 

(Fernández-Iglesias et al., 2014; Guerrero et al., 2013; Margalef, Guerrero, et 

al., 2014; Martinez‐Micaelo, González‐Abuín, Ardèvol, Pinent, & Blay, 2012; 

Pinent et al., 2004; Pons et al., 2015; M. Quiñones et al., 2013). Our 

research group has previously demonstrated an anti-hypertensive effect as a 

result of grape seed extract rich in flavanols (GSPE) administration in 
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hypertensive rats, with 375 mg/kg being the most effective dose and 6 h 

post-administration the time at which the maximum decrease of BP was 

observed (Pons et al., 2015; M. Quiñones et al., 2013). 

However, as the beneficial effects of flavanols have been attributed to their 

metabolic products, their study is essential to understand the mechanism 

involved in flavanol bioactivity (Kroon et al., 2004). As non-essential nutrients 

in the diet, once ingested, flavanols and PA dimers are recognized as 

xenobiotics (Monagas et al., 2010). Thus, they are absorbed in the small 

intestine and undergo phase-II enzymatic detoxification in situ or in the liver 

(Del Rio et al., 2013; Monagas et al., 2010). Moreover, non-absorbed 

flavanols, metabolites from enterohepatic circulation via bilis, and all PAs with 

a degree of polymerization higher than 2 reach the colon, where they are 

subjected to microbial metabolism to form smaller phenolic compounds as a 

result of microbial cleavage of flavanol structures capable of reaching the 

liver to undergo phase-II metabolism (Aura, 2008; Monagas et al., 2010). 

Next, all metabolic products and non-metabolized compounds reach the 

systemic circulation to be distributed throughout the organism or to be 

excreted through the urine (Del Rio et al., 2013; Monagas et al., 2010). In 

addition, several external factors (Bohn et al., 2015; D’Archivio et al., 2007), 

such as the amount of consumed polyphenol (Margalef, Pons, Bravo, 

Muguerza, & Arola-Arnal, 2015b; Margalef, Guerrero, et al., 2014) or the 

length of ingestion, and host-related factors, such as the gender, age, or the 

pathological state of the studied subject (D’Archivio et al., 2007), may affect 

the metabolism, bioavailability and distribution of polyphenols in general and 

in particular flavanols. Therefore, the aim of this study was to elucidate 

whether rat health status affects flavanol metabolism, influencing their 

bioactivity. To assess this objective, the plasma bioavailability and aorta 

distribution of flavanols and their metabolites were studied in hypertensive 

and healthy rats 6 h after the ingestion of 375 mg/kg of GSPE, and the 

obtained levels of these compounds were related to their BP effects. 
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2. Material and Methods 

Methanol (Scharlab S.L., Barcelona, Spain), acetone, acetonitrile (both from 

Sigma-Aldrich, Madrid, Spain) and glacial acetic acid (Panreac, Barcelona, 

Spain) were of HPLC analytical grade. Ultrapure water was obtained from a 

Milli-Q advantage A10 system (Madrid, Spain). Individual stock standard 

solutions of 2000 mg/L (+)-catechin, (-)-epicatechin, procyanidin B2, 3-

hydroxybenzoic acid, 3,4-dihydroxybenzoic acid, 2-(3-hydroxyphenyl)acetic 

acid, 2-(4-hydroxyphenyl)acetic acid, 2-(3,4-dihydroxyphenyl)acetic acid, 3-

(4-hydroxyphenyl)propionic acid, vanillic acid, gallic acid, hippuric acid, ferulic 

acid, benzoic acid, and pyrocatechol as the internal standard (IS) (all from 

Fluka/Sigma-Aldrich, Madrid, Spain), as well as 5-(3’,4’-dihydroxyphenyl)-γ-

valerolactone (MicroCombiChem e.K., Wiesbaden, Germany) in methanol 

were prepared and stored in dark glass flasks at -20 ºC.  

A stock standard solution (20 mg/L) of all compounds described above in 

methanol was prepared weekly and stored at -20 ºC. This stock standard 

solution was diluted daily to the desired concentrations using an 

acetone:water:acetic acid (70:29.5:0.5, v:v:v) solution. 

2.1. Grape Seed Polyphenol Extract (GSPE) 

GSPE was provided by Les Dérives Résiniques et Terpéniques (Dax, 

France). Table 1 shows the phenolic compound (flavan-3-ols and phenolic 

acids) concentrations of the extract used in this study. 

2.2. Experimental Procedure in Rats 

Male Wistar (Crl:WI, n=12) and SHR (n=12), aged 22 weeks old (Charles 

River Laboratories, Barcelona, Spain), were singly housed in animal quarters 

at 22 ºC with a light/dark period of 12 h and fed a standard chow Panlab A04 

(Panlab, Barcelona, Spain) diet and tap water ad libitum for a quarantine 

period of 2 weeks. The day of the experiment, animals were weighed (380-

400 g for Crl:WI and 307-310 g for SHR) and divided into two different 

subgroups (water and GSPE, n=6 per group). Rats from the water group 
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were orally administered tap water (1 mL), while rats from the GSPE group 

were administered 375 mg/kg of GSPE (1 mL in water). In all groups, oral 

administration was performed by gastric intubation of fasted rats between 9 

and 10 am. BP values were recorded by the tail-cuff method (Buñag, 1973) in 

both the GSPE and water groups at 6 h after GSPE or water administration. 

The 6 h time point was selected because it is the time of the maximum drop 

in BP (M. Quiñones et al., 2013). Next, all animals were sacrificed by 

exsanguination. Blood and the aorta were excised from the rats. Plasma 

samples were obtained by centrifugation (2000 x g, 15 min, 4 ºC) and stored 

at -80 ºC until chromatographic analysis was performed. Aortas were stored 

under the same plasma conditions. Plasma and aortas from the water group 

were used to create the calibration curves for the chromatography analysis. 

The study was performed in accordance with the institutional guidelines for 

the care and use of laboratory animals, and the experimental procedures 

were approved by the Ethical Committee for Animal Experimentation of 

Universitat Rovira i Virgili. 

2.3. Flavanol and flavanol metabolite extraction from plasma and aorta  

Prior to chromatographic analysis of the flavanols and their metabolites in rat 

plasma and aortas, the samples were pre-treated using the previously 

reported methodology based on a micro solid-phase extraction (μSPE) for 

plasma and an off-line liquid–solid extraction (LSE) in tandem with a μSPE 

for the aorta (Margalef et al., 2015b; Margalef, Pons, Muguerza, & Arola-

Arnal, 2014).  

2.4. Chromatographic analysis  

Chromatographic analysis was performed using a 1290 LC Series UHPLC 

coupled to a 6490 MS/MS (Agilent Technologies, Palo Alto, CA, USA). The 

separations were achieved using a Zorbax SB-Aq (150 mm × 2.1 mm i.d., 3.5 

μm particle size) as the chromatographic column (Agilent Technologies, Palo 

Alto, CA, USA). The MS system consisted of an Agilent Jet Stream (AJS) 

ionization source. The mobile phase, electrospray ionization (ESI) conditions 
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and acquisition method were performed as previously reported for the 

quantification of phase-II and microbial flavanol metabolites in plasma and 

tissues (Margalef, Pons, Bravo, Muguerza, & Arola-Arnal, 2015a; Margalef et 

al., 2015b). Data acquisition was performed using MassHunter Software 

(Agilent Technologies, Palo Alto, CA, USA). 

2.5. Sample quantification 

For sample quantification, a pool of blank aorta extracts or plasma from the 

Crl:WI (n=6) and SHR (n=6) rats that were administered water were spiked 

with 7 different concentrations of standards to obtain calibration curves for 

Crl:WI and SHR rats. The studied compounds in the samples were quantified 

by interpolating the analyte/IS peak abundance ratio in the resulting standard 

curves. Quality parameters, such as calibration curve detection and 

quantification limits (LOD and LOQ, respectively) and method detection and 

quantification limits (MDL and MQL, respectively), are shown in Table S1 for 

Crl:WI and in Table S2 for SHR rats.  

The flavanols and phenolic acids present in the blank plasma and tissue (i.e., 

from the rats administered with water) quantified by HPLC-MS/MS were 

considered to emerge from the diet. Hence, all quantified values were 

subtracted from any other concentration found after GSPE ingestion to 

quantify only the compounds derived from the GSPE.  

3. Results 

3.1. Effect of GSPE on arterial blood pressure 

The administration of GSPE resulted in a significant decrease in BP at 6 h in 

SHR but not in healthy Wistar rats (Figure 1). Conversely, water 

administration did not lead to changes in BP (data not shown). 

3.2. Plasma flavanol metabolites in healthy and spontaneously 

hypertensive rats 

The total amount of bioavailable plasma flavanols in healthy Wistar rats 

(135.27 ± 20.63 μM) and SHR rats (162.39 ± 14.69 μM) are very similar 
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(Figure 2A). However, although the plasma flavanol phase-II metabolites 

levels in healthy rats (128.91 ± 20.42 μM) and SHR (126.14 ± 12.34 μM) are 

also very similar, the plasma free flavanol monomer levels in SHR (2.6 ± 0.19 

μM) are higher than in healthy rats (1.94 ± 0.55 μM). Nevertheless, important 

differences are displayed at the level of individual metabolite concentrations 

in the plasma (Table 2). For instance, plasma gallic acid levels in SHR are 

approximately 10 times more concentrated than in healthy rats. Moreover, 

methyl-epicatechin-O-sulfate is more than 4 times more concentrated in SHR 

than in healthy rat plasma, whereas the sulfated metabolites were not 

quantified in the plasma of SHR, though their concentrations in Wistar rats 

ranged from 0.04 ± 0.00 and 0.19 ± 0.04 μM. 

Furthermore, significant differences were observed in plasma microbial 

metabolites, as their concentrations in SHR are much higher (33.65 ± 4.70  

μM) than in healthy rats (4.42 ± 0.37 μM). More specifically, this difference is 

observed for the conjugated microbial flavanol metabolites (Figure 2). In this 

case, the results showed quantitative differences between both health states 

and qualitative differences in the type of metabolites found in both groups of 

plasma (Table 3). Specifically, 3-(4-hydroxyphenyl)propionic acid, 3-O-

methylgallic acid, and hippuric acid were the metabolites with the highest 

differences in healthy and hypertensive rats, with all of them exhibiting an 

increase in SHR plasma. 

3.3. Aorta flavanol metabolites in healthy and spontaneously 

hypertensive rats 

Aorta metabolite concentrations were significantly decreased in the tissue of 

hypertensive rats, with 78.61 ± 23.17 nmol/g in healthy rats and 45.02 ± 5.50 

nmol/g in hypertensive rats (Figure 2B). Specifically, regarding the 

compounds being absorbed at the small intestine, a 2-fold decrease in 

phase-II metabolites was seen, decreasing from 71.72 ± 21.80 nmol/g to 

30.06 ± 1.04 nmol/g in healthy and hypertensive rats, respectively. Moreover, 

the forms that were directly absorbed and not metabolized also showed a 
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significant decrease between healthy and hypertensive states, from 5.6 ± 

1.35 to almost 0.96 ± 0.14 nmol/g, respectively. These changes arise as a 

result of decreased concentrations of catechins as unconjugated catechin, 

catechin-glucuronide and methyl-catechin-glucuronide in SHR aortas (Table 

2). Conversely, methyl-epicatechin glucuronidtechin and epicatechin 

metabolite concentrations in SHR aortas are very similar (16.28 ± 1.33 and 

13.78 ± 0.01 nmol/g, respectively), whereas in Wistar rats, catechin 

concentrations are much higher than epicatequin levels (58.48 ± 18.64 

nmol/g and 13.24 ± 3.16 nmol/g, respectively). 

The results showed increased microbial metabolite levels in the aortas of 

hypertensive rats (1.29 ± 0.03  nmol/g in healthy rats and 14.00 ± 4.32  

nmol/g in SHR), primarily with increased concentrations of non-conjugated 

microbial products (Figure 2B). Additionally, individual microbial metabolite 

concentrations were quantitatively and qualitatively different in both health 

states, as 3-phenylpropionic acid, 4-hydroxybenzoic acid, benzoic acid and 

hippuric acid concentrations were increased in aortas of hypertensive rats 

(Table 3).  

When the phase-II conjugated metabolites for both flavanols and microbial 

acids are compared with the non-conjugated compounds, the conjugated 

forms in aortas of hypertensive rats (34.71 ± 2.86 nmol/g) are less 

concentrated than in the aortas of healthy rats (72.31 ± 21.81 nmol/g). On the 

contrary, the non-conjugated forms in aortas of hypertensive rats (10.31 ± 

2.63 nmol/g) are slightly more concentrated than in the aortas of healthy rats 

(6.30 ± 1.33 nom/g).  

4. Discussion 

The regular consumption of flavonoids has been associated with health-

promoting effects in several diseases (Crozier, Jaganath, & Clifford, 2009; 

Rasmussen, Frederiksen, Struntze Krogholm, & Poulsen, 2005). 

Nevertheless, beneficial health properties of flavonoids, and in particular 

flavanols, are mainly attributed to the compounds derived from their 



RESULTS 

268 

metabolism (Del Rio et al., 2013), as the molecular forms that reach the 

peripheral circulation and tissues are different from those present in foods 

due to changes that occur to these molecules during metabolism (Guerrero et 

al., 2013; Kroon et al., 2004; Margalef et al., 2015b; Margalef, Guerrero, et 

al., 2014). However, several conditions can interfere with flavanol metabolism 

(D’Archivio et al., 2007). Overall health status has been described as one 

host-related factor affecting the metabolism, bioavailability and bioactivity of 

flavanols (D’Archivio et al., 2007).  

Grape seed flavanols showed an anti-hypertensive effect in SHR that was not 

reproduced in healthy Wistar rats. Thus, flavanols exhibited a selective anti-

hypertensive effect specific to the hypertension condition. These results are 

in agreement with those previously reported by our group that showed an 

important anti-hypertensive effect of grape seed (M. Quiñones et al., 2013) 

and cocoa flavanols (Cienfuegos-Jovellanos et al., 2009) in SHR prior to 

unappreciable BP variations in the normotensive standardized model of SHR, 

the Wystar Kyoto animal model (WKY). Therefore, the obtained results 

corroborated that health status affects the bioactivity of flavanols. 

Despite the differences found in flavanol bioactivity between both health 

statuses, the main flavanol metabolites and the total plasma polyphenolic 

concentrations showed similar values in healthy and hypertensive rats. 

These results are in agreement with the fact that essential hypertension is a 

located pathology that can hardly influence the metabolism of flavanols in 

terms of total plasma bioavailability. However, when results were analyzed 

individually, significant differences in plasma were shown between both 

health statues. In fact, unconjugated flavanols showed higher concentrations 

in SHR than in healthy rats, primarily due to an increase in plasma gallic acid 

concentrations in hypertensive rats. However, the most important plasma 

bioavailability difference between healthy and hypertensive rats was in 

microbial metabolism that seemed to be significantly over-activated in SHR. 

Nevertheless, these findings agree with the fact that high BP has been 

recently associated with gut microbiota dysbiosis, both in animal and human 
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hypertension (Yang et al., 2015). In addition, microbial metabolism over-

activation is also in agreement with the high plasma gallic acid levels 

quantified in SHR rats compared to healthy rats because it has been 

described that the galloilated moiety is cleaved by the gut microbiota 

(Margalef et al., 2015a; Selma, Espín, & Tomás-Barberán, 2009). Flavanol 

monomers and their respective gallic acid residues can be released in the 

colon and cross the colonocytes to reach the liver and become conjugated by 

phase-II enzymes producing 3-O-methylgallic acid, which interestingly has 

also been found to be significantly increased in the plasma of hypertensive 

animals.  

The anti-hypertensive effect of grape seed flavanols in SHR is an 

endothelium-dependent effect mainly mediated by changes in endothelium-

derived factors such as nitric oxide and prostacyclin (Mar; Quiñones et al., 

2014). Therefore, it would seem plausible that the endothelium of SHR 

presents higher concentrations of flavanol metabolites than that from healthy 

animals. However, our results showed lower flavanol endothelial levels in 

SHR compared to healthy rats. Nevertheless, it is well known that the highest 

concentrations of flavanols are not always the most effective in decreasing 

BP (Cienfuegos-Jovellanos et al., 2009; Pons et al., 2015; M Quiñones, 

Miguel, Muguerza, & Aleixandre, 2011; M. Quiñones et al., 2013). This fact 

can be explained by the pro-oxidant effects and excessive production of 

reactive oxygen species instead of the antioxidant properties caused by high 

doses of flavanols described previously (Azam, Hadi, Khan, & Hadi, 2004; 

Cotelle, 2001; Lahouel et al., 2007; Procházková, Bousova, & Wilhelmová, 

2011). Decreased flavanol levels in aortas of SHR occurs primarily as a result 

of decreased catechin metabolites, which can be attributed to disrupted 

active transport driven by endothelial flavonoid transporters, such as bilirubin 

translocase, which has been revealed as a specific flavonoid transported in 

the endothelium (Maestro et al., 2010). Methyl-epicatechin glucuronide was 

the only compound found in the aorta that could be considered an exception 

to this decreased endothelial absorption, as it showed slightly elevated 
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concentrations in aortas of hypertensive rats. This result could be due to 

active transport driven by specific endothelial flavonoid transporters (Maestro 

et al., 2010) or also to the increased specificity of COMT in the endothelium, 

which has been reported to exhibit higher activity in aortas of hypertensive 

rats (Trajkov, Berkowitz, & Spector, 1974). Indeed, although the amount of (–

)-epicatechin and its metabolites in aortas of SHR and healthy rats are 

similar, the proportion of (–)-epicatechin and its metabolites compared to the 

catechins increases significantly in aortas of hypertensive rats. This result is 

considered especially relevant because (–)-epicatechin is the monomeric 

flavanol that possesses better known anti-hypertensive properties (Ellinger, 

Reusch, Stehle, & Helfrich, 2012; Gómez-Guzmán et al., 2012). 

Nevertheless, our results showed similar final concentrations of total catechin 

and epicatechin forms in aortas of SHR and healthy rats. Therefore, based 

on these results, similar roles of catechin and epicatechin forms toward the 

anti-hypertensive effect of GSPE should not be ruled out. In fact, the BP 

lowering effect of catechin, similar to epicatechin, has recently been reported 

by our group (Quiñones et al., 2015).  

Similar to the results reported in plasma, important differences in microbial 

metabolites between both health statuses were found in the aorta, with 

higher concentrations of these metabolites in hypertensive rats than in 

healthy rats. In addition, qualitative differences in compound type detected in 

this tissue were also observed, with most cases of the microbial metabolite 

uptake by hypertensive rat aortas being significantly higher. This result can 

be attributed to over-activation of microbial metabolism previously mentioned. 

In addition, disruption of tight junctions in the endothelium or a different 

morphology of the endothelial gap junctions (Hüttner, Costabella, De 

Chastonay, & Gabbiani, 1982) that allows these small compounds to cross 

the endothelial barrier in hypertensive rats should not be ruled out. Because 

the most significant plasma and aorta bioavailability differences between 

healthy and genetically hypertensive rats were attributed mainly to the 

microbial metabolism, which seemed to be significantly over-activated in 
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SHR, it would seem plausible that these metabolites could also be involved in 

the flavanol anti-hypertensive effect. As far as we know, this is the first time 

that microbial flavanol metabolites have been related to the compound’s anti-

hypertensive effect. 

This study demonstrates that a health status of essential hypertension 

extensively affects the levels and bioactivity of flavanols in the aorta as one 

of the main dysfunctional tissues. The flavanol forms present in the aorta of 

hypertensive rats are those forms most likely responsible for the anti-

hypertensive effects of these compounds, including the flavanol microbial 

colonic metabolites. Therefore, to assess the real mechanisms involved in 

flavanols’ health benefits, a study of metabolism during this concrete 

pathological condition is necessary. 
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Figure legends 

Figure 1. Blood pressure decrements at 6 h after the ingestion of 375 mg/kg 

of a grape seed polyphenol extract in healthy and spontaneously 
hypertensive rats (SHR) rats. 

Figure 2. Plasma and aorta distribution of total non-conjugated flavanols 
(i.e., no metabolized compounds and no conjugated microbial metabolites) 
and conjugated flavanol compounds (i.e., phase-II metabolites and 
conjugated microbial metabolites), quantified by HPLC-MS/MS in plasma (A) 
and aorta (B) of healthy rats (n=6) and spontaneously hypertensive rats 
(SHR) (n=6) at 6 h after the ingestion of 375 mg/kg of a grape seed 
polyphenol extract (GSPE). 
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Table 1. Main phenolic compounds (flavanols and phenolic acids) 1"

of the grape seed polyphenol extract (GSPE) used in this study, 2"

analysed by HPLC-MS/MS. 3"

Compound Concentration (mg/g) 

Gallic acid 31.07 ± 0.08 

Protocatechuic acid 1.34 ± 0.02 

Vanillic acid 0.77 ± 0.04 

PA dimer B2 33.24 ± 1.39 

PA dimer B11  88.80 ± 3.46 

PA dimer B31 46.09 ± 2.07 

Catechin 121.32 ± 3.41 

Epicatechin 93.44 ± 4.27 

Dimer gallate1 8.86 ± 0.14 

Epicatechin gallate 21.24 ± 1.08 

Epigallocatechin gallate 0.03 ± 0.00 

Epigallocatechin2 0.27 ± 0.03 

PA trimer1 4.90 ± 0.47 

PA tetramer1 0.05 ± 0.01 

Abbreviations: PA (proanthocyanidin) 4"

The results are expressed on a wet basis as the mean ± SD (n=3).  5"

The results are expressed as mg of phenolic compound/g of GSPE 6"
1 Quantified using the calibration curve of proanthocyanidin B2. 7"
2 Quantified using the calibration curve of epigallocatechin gallte. 8"
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Figure 2. 
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IV. GENERAL DISCUSSION 
Polyphenols are recognized by the body as xenobiotics, and in the small 
intestine and the liver they are subjected to phase-II detoxification enzymes, 
which convert them into their methylated, sulfated and glucuronidated 
derivatives 1,2. Polymeric forms, unable to be absorbed at this level, reach the 
colon where they are subjected to microbial biotransformations 3,4. The 
changes occurring during metabolism make the circulating forms of flavanols 
that reach the peripheral tissues, and hence the bioactive forms of flavanols, 
to be different from those present in foods 5. On the other hand, metabolism 
of xenobiotics depends on several factors, such as intestinal enzyme activity, 
intestinal transit time, colonic microbiota, pathologies, genetics, and 
physiological conditions, among others 6. In addition, other factors, such as 
ingested flavanol quantity or the duration of the polyphenol intake may also 
influence the metabolism of these compounds. Therefore, in light of these 
differences the objective of this thesis was to elucidate whether flavanols 
metabolism, bioavailability and tissue distribution were affected by different 
external and internal factors also influencing the bioactivities of these 
compounds. For this, different quantities of grape seed flavanols were 
administered during different times to rats under different conditions and the 
flavanol metabolites in plasma and tissues were quantified by HPLC-MS/MS.  

Flavanol compounds are found primarily in grapes, beans, nuts, cocoa, tea 
and wine 7,8. Grape seeds are a by-product of the grape/wine industry, but 
they are one of the richest sources of flavanols 9. Flavanols from grape seed 
were selected because this source contains important amounts of all the 

types of flavanols, including gallated forms 10. In addition, health beneficial 
effects of the grape seed flavanol rich extract used in this thesis have been 
extensively investigated 11–17. In fact, our research group has demonstrated 
that GSPE exhibits antioxidant capacity 18, improves lipid metabolism 19, 
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limits adipogenesis 20, exhibits antihypertensive properties 10, acts as an 
insulin-mimetic agent 21, and reduces inflammation 16. 

Although the phase-II metabolism of flavanols was very well described 2,22–24, 
there was an important need of information of how flavanols are metabolized 
in rat colon by the gut microbiota, as only in vitro studies were performed to 
elucidate the specific metabolic pathway occurring in there 25–28. In order to 
completely understand the metabolism of flavanols we firstly needed to 
determine the colonic microbial metabolic pathway of flavanols in rats. 
However, there were no validated chromatographic methodologies for the 
analysis of flavanol-derived microbial metabolites in biological samples. 
Hence, a methodology was set up to develop and validate a rapid, simple 
and highly sensitive analytical method using HPLC-ESI-MS/MS for the 
determination of a large number of compounds derived from colonic 
metabolism of flavanols in plasma [Manuscript 1]. A total of 16 commercial 
standards were used to measure 30 different phenolic compounds present at 
low concentration levels (μM). In addition, a 30% reduction of plasma 
volume, which is an important limitation for the analysis of biological samples, 
especially for small study subjects such as rats or mice, was achieved. As a 
result, the developed method can be readily applied to determine the flavanol 
metabolites, including the colonic metabolites that are most likely responsible 
for many biological effects of poorly absorbed flavanols, and it could also be 
easily adjusted to be used in other hosts. 

Then, the flavanol colonic metabolites quantification along time was 
performed in rat plasma after grape seed flavanol ingestion. In addition, a 
potential colonic flavanol biotransformation pathway in rats was also 
proposed. The results indicated that non-metabolised flavanols have peak 

plasma concentrations 2 h after GSPE administration, whereas the colonic 
metabolites appeared in plasma at later times, indicating their gradual colonic 
biotransformation as valerolactone > phenylpropionic acids ≈ phenylacetic 
acids > benzoic acids [Manuscript 2]. Hence, this study showed how 
flavanols were biotransformed by gut bacteria in rats over time, which would 
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facilitate the identification of potential bioactive compounds for particular 
health effects. 

Once both phase-II and microbial flavanol metabolites were able to be 
analysed in rat plasma, external factors as the quantity and duration of the 
flavanol intake were studied to assess their influence on the dietary flavanol 
metabolism, as well as on their bioactivities. Regarding to the quantity of 
flavanols ingested, initially an in vitro-in vivo model to use flavanol 
physiologically appropriate forms was set out [Manuscript 3]. In this study, 
the in vitro lipid homeostatic effect of flavanol metabolites was assessed 
using flavanol-administered rat semi-purified sera. Results showed a 
decrease in lipid synthesis and excretion in HepG2 cells, placing the use of 
semi-purified serum rich in flavanol metabolites as in vivo bioactive 
compounds suitable to be used in in vitro studies. As soon as the semi-
purified sera compounds were confirmed as a good model to study the 
bioactivity of physiological forms of flavanols, the effect of appropriate 
amounts of flavanols intake on flavanol metabolism, bioavailability, tissue 
distribution and bioactivity was started to be performed. Firstly a dose-
response study using this in vivo - in vitro model was carried out to clarify 
whether different concentrations of ingested flavanol were differently 
absorbed and metabolized in rats, and if the obtained semi-purified 
metabolites could differently modulate the lipid homeostasis in HepG2 cells 
[Manuscript 4]. Results showed that up to a dose of 375 mg/Kg of GSPE 
flavanols, were absorbed and metabolized in a dose-response manner, but at 
1000 mg/Kg, the system becomes saturated. Interestingly, the lipid lowering 
effect of the flavanol metabolites present in the semi-purified sera was not 
dependent on the metabolite concentration, showing effectiveness at very 

low amounts of ingested flavanols. Finally, the distribution of flavanols 
throughout the body depending on the quantity of ingested flavanols was also 
evaluated through an in vivo study where phase-II and microbial flavanol 
metabolites were quantified in rat tissues after an acute intake of different 
amounts of flavanols [Manuscript 5]. It could be stated that the tissue 
distribution of flavanols was also affected by the quantity of flavanols 
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ingested, showing also a clear metabolic saturation as in the previous studies 
(up 375 mg/Kg). Also, a specific distribution of the metabolic products in the 

studied tissues was evidenced, highlighting the presence of free and 
methylated flavanols in the white adipose tissue and the brain, respectively. 
Therefore, the fact that flavanols are conjugated and distributed differently 
throughout the body when the intake of flavanols is varied, may involve a 
difference in their biological effects in the target tissue because different 
physiological bioactive forms are generated. On the other hand, the ingestion 
length as an external factor affecting the flavanol metabolism, bioavailability, 
tissue distribution and accumulation was also studied [Manuscript 6]. This 
study showed that flavanols did not accumulate in rat tissues after a long-
term daily orally intake in rats. Paradoxically, the detected metabolites in 
tissues after long-term intake would be the bioavailable forms from the last 
intake, which would indicate that the protective and preventive health effects 
of flavanols may be not due to an accumulative response of all of the flavanol 
ingestions but because of cyclic acute responses. !
The influences of age, gender and health conditions of the host as internal 
factors able to modify the metabolism, bioavailability, tissue distribution and 
bioactivity of flavanols were evaluated. Results indicated that ageing resulted 
in a slower metabolic profile, a reduced small-intestine flavanol absorption, 
and phase-II metabolism of flavanols after the flavanol intake [Manuscript 
7]. In addition, according to the observed decreased absorption, and 
metabolism at the level of the small intestine, an increased microbial 
metabolism activity was also stated in ageing. Therefore, it was 
demonstrated that ageing influence differently in metabolism, and plasma 
bioavailability of flavanols. Age-related changes in renal clearance, phase-II 

enzymatic activities and gut microbial profile were pointed out as potential 
responsible of the different flavanol metabolism and plasma bioavailability 
over the time in ageing. To study the gender as an individual internal factor 
affecting the metabolism, bioavailability and distribution of flavanols, another 
study was set out, comparing the flavanol metabolites content in plasma and 
tissues of male and female rats at different times after the flavanols intake 
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[Manuscript 8]. In this study, results also demonstrated that the metabolism 
and distribution of flavanols throughout the bodies of rats is influenced by 

sex. Specifically, results showed that flavanols and their metabolites were 
widely distributed in tissues at 1, 2 and 4 h after ingestion of grape seed 
flavanols in both genders, but important quantitative gender differences in 
plasma (female had more flavanol metabolites than male rats) and in brain 
(male have more flavanol metabolites than female rats) were observed. 
Moreover, gender differences in the distribution and type of flavanols 
metabolites in liver and in brain were also observed between rats of different 
genders. Specifically, male rats present brain specificity for methylated 
metabolites and female rats for dimeric PA. These differences were most 
probably due to inherent physiological differences between genders, such as 
total body water, differences in phase-II enzyme activities in target tissues 
(i.e., in liver and in brain), and differences in tissue specificities. However, in 
white adipose tissue, there were no differences in either the quantity or the 
quality of the flavanols metabolites between male and female rats. Therefore, 
the observed differences in the flavanol metabolism, bioavailability and tissue 
distribution may differentially influence the physiological bioactivities of these 
compounds depending on the internal factors as the age or gender in healthy 
animals.  

Finally, the health status as the last internal factor affecting the metabolism, 
bioavailability, tissue distribution, and hence the bioactivity of dietary 
flavanols was studied. For this, non-healthy animals were used in the 
different studies. Firstly, a kinetic study of plasma flavanol metabolism and 
bioavailability under a pathological status of MeS induced by the diet was 
assessed [Manuscript 9]. Results showed that MeS pathology significantly 

influenced the metabolism, and plasma bioavailability of flavanols leading to 
a 2 h delay of the time of plasma maximum bioavailability. Moreover, a higher 
phase-II glucuronidated bioavailability was observed, indicating a clear over-
activation of these specific phase-II enzymes in a MeS disease. In addition, 
the results also showed a higher absorption of monomeric flavanols and 
small phenolic acids at the level of the small intestine, indicating that 
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enterocyte permeability could be compromised in obesity. On the contrary, a 
lower absorption of flavanol dimers was showed, suggesting different 

transport mechanisms for these compounds. Interestingly, a significant 
reduction of the microbial metabolism was also observed in MeS rats respect 
to healthy rats. These facts would show that animals with MeS presented a 
strong disruption in all over the gastrointestinal tract, including the microbiota. 
Secondly, a last study was performed in order to evaluate the relationships of 
flavanol bioactivities with their plasma and aorta levels in a genetically 
associated pathology. Specifically a model of SHR was used [Manuscript 
10]. The obtained results showed flavanol antihypertensive bioactivity in SHR 
but not in healthy rats. Demonstrating that, as our group previously reported, 
dietary flavanols decreased blood pressure in a hypertensive state 10. The 
most important plasma and aorta flavanol differences between healthy and 
genetically hypertensive rats were referred to the microbial metabolism, 
which seemed to be significantly over-activated in the SHR, and that makes 
plausible the fact that theses metabolites would be involved in this effect. 
Nevertheless, plasma flavanol compounds were not decreased in SHR 
respect to Wistar animals, indicating that, differently as in the study related to 
the MeS [Manuscript 9], in this pathological state a disruption in the 
gastrointestinal tract cannot be observed. But, when results were analysed 
individually, significant differences in plasma were evidenced between both 
health statues. The most important plasma bioavailability difference between 
healthy and hypertensive rats was referred to the microbial metabolism that 
seemed to be significantly over-activated in SHR. Nevertheless, these finding 
agree with the fact that high blood pressure has been recently associated 
with gut microbiota dysbiosis, both in animal and human hypertension 29.  

However, as aorta flavanols were reduced in SHR comparing to those 
healthy counterparts, a disruption of the active transport driven by some 
endothelial flavonoid transporters 30 could be related. The higher aorta levels 
of some phenolic acids in SHR comparing to healthy rats could be due to a 
potential disruption of tight junctions in the endothelium, or the different 
morphology of the endothelial gap junctions that has been demonstrated in 
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essential hypertension 31, leading these small phenolic compounds to cross 
the endothelial barrier in hypertensive rats. In addition, similarly to the results 

reported in plasma, important differences in microbial metabolites between 
both health statuses were found in aorta, showing higher concentrations of 
these metabolites in hypertensive rats than in healthy rats. And thus, a health 
status of hypertension, as a located disease, affects the levels and bioactivity 
of flavanols in the dysfunctional related tissues, like aorta. The flavanols 
forms present in aorta of hypertensive rats are those flavanols forms most 
probably responsible of the antihypertensive effects of these compounds 
including flavanol microbial colonic metabolites since these forms are those 
which present the major aorta qualitative and quantitative differences 
between healthy and hypertensive rats. 

Therefore, these studies demonstrated how a pathological state influences 
significantly the metabolism and plasma bioavailability of flavanols, leading to 
differences in flavanols bioactivity.  In summary, in order to assess the real 
mechanisms involved into the flavanol health benefits, the study of the 
flavanol metabolism at the concrete physiopathological condition should be 
started to be established in order to assess the plasma bioavailable 
metabolites that will reach the target tissues, and exert the bioactive function.  
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V. CONCLUSIONS 
 
1. Flavanols are biotransformed to small phenolic acids by rat gut 

bacteria enzymes indicating in plasma their gradual colonic 
biotransformation as valerolactone, following phenylpropionic and 
phenylacetic acids and finally benzoic acids.  

2. Flavanol metabolites exert in vitro bioactivity by modulating lipid 
homeostasis in HepG2 cells 

3. Different flavanol ingested amounts present different 
metabolism, bioavailability, tissue distribution and bioactivity in 
rats 

- Flavanol metabolism is saturated up to 375 mg/kg 
- Increased amounts of flavanols are not necessary related with 

effectiveness 

- Flavanol metabolites distribution is tissue specific, being free 
flavanols mostly found in adipose tissue and methylated flavanols 
in brain 

4. Flavanols do not accumulate in rat after a long-term daily orally 
intake 

5. Ageing influence differently the flavanols metabolism, and 
plasma bioavailability 

- Elderly rats present a slower flavanol metabolic profile, reduced 
first-pass flavanol absorption and phase-II metabolism and an over-
activated microbial flavanol catabolism. 

6. Gender significantly influences the metabolism, plasma 
bioavailability and tissue distribution of flavanols in rats 

- Female rats have increased plasma bioavailability of flavanol 
metabolites along time, decreased liver bioavailability of flavanol 
metabolites and faster flavanol clearance in adipose tissue. 

- Female rats present brain specificity for dimeric PAs and male rats 
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for methylated metabolites. 
 

7. Health status significantly influence flavanol metabolism, 
bioavailability, tissue distribution, and bioactivity 

- Rats affected by metabolic syndrome present a delay in the flavanol 
maximum bioavailability, increased levels of Gallic acid and flavanol 
monomeric forms but decreased concentrations of flavanol dimeric 
forms in plasma. 

- Flavanol microbial metabolism is altered by metabolic syndrome 
induced by cafeteria diet and essential hypertension. While it is 
disrupted in rats affected by metabolic syndrome, this is over-
activated in essential hypertension. 

- Essential hypertension affects extensively aorta flavanol levels and 
their bioactivity, highlighting microbial metabolites as those forms 
which present the major aorta qualitative and quantitative 
differences between healthy and hypertensive rats. 

- In order to assess the flavanol health benefits, the study of the 
metabolism at the concrete pathological condition is needed. 
 

The ingested amount of flavanols and the age, gender and health 

status of the host affect the metabolism, bioavailability, tissue 

distribution and therefore the bioactivity of these compounds. 

Paradoxically the consumption length does not contribute to the 

flavanol tissue accumulation.   
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