A Stand-Alone Hybrid Power System with Energy Storage

Abu Mohammad Osman Haruni
B.Sc. (BUET), M.ScEng. (University of Tasmania)

A thesis submitted for the fulfilment of the degree of Doctor of Philosophy

Centre of Renewable Energy and Power Systems (CREPS)
School of Engineering
University of Tasmania
January 2013
Abstract

Small-scale hybrid stand-alone power systems are becoming popular alternatives in remote and island areas where grid connection is not economically or technically viable. Harnessing the abundant supply of wind and solar energy can play an important role in ensuring an environmentally friendly and clean energy generation for remote and isolated communities. However, renewable energy sources are intermittent in nature, and as a result, power generation from renewable energy sources often may not necessarily match the load demand. Therefore, energy storage is required to ensure reliable power supply.

Hybrid power systems with renewable sources can provide efficiency, reliability and security, while reducing operational costs. However, the main challenge of hybrid power system applications is satisfying the load demand under constraints. Therefore, proper control and coordination of each energy generation unit is vital. It is also important to ensure robustness of the energy management system to avoid system black-outs when power from the renewable energy sources is not adequate to support all loads.

This thesis proposes a novel operation and control strategy for a hybrid power system for a stand-alone operation. The proposed hybrid system consists of a wind turbine, a fuel cell, an electrolyzer, a battery storage unit and a set of loads. The overall control strategy is based on a two-level structure. The top level is the energy management and power regulation system. The main objective of this system is to ensure a proper control and coordination of the system. It also controls load scheduling during wind variability under inadequate energy storage to avoid system black-outs. Depending on wind and load conditions, this system generates reference dynamic operating points to low level individual sub-systems. Based on these operating points, the local controllers manage the wind turbine, fuel cell, electrolyzer and battery storage units. The local controller of wind turbine extracts the reference power from the varying wind by regulating the rotor speed. The fuel cell is controlled by using a hydrogen regulator and boost converter, and the electrolyzer via a buck-converter. A bi-directional dc-dc converter is employed to control charging and discharging of the
battery storage system. The proposed control system is implemented with MATLAB Simpower software and tested for various wind and load conditions. Results are presented and discussed.
Authorship

The work continued in this thesis has not been published or previously submitted for a degree at this or any other educational institution. To the best of my knowledge, this thesis contains no material previously published or written by another person except where due reference is made.

Signed………………..
Acknowledgements

Firstly, I would like to express my deepest and sincerest gratitude to the Almighty, the most compassionate and merciful who guides me in the most appropriate way towards the completion of my research.

I would like to express my sincere gratitude to my primary supervisor Prof. Michael Negnevitsky, University of Tasmania for his valuable advice and help. I would also like to thank all the academic stuff and postgraduate students of the School of Engineering, University of Tasmania, for providing a healthy and helpful academic environment.

I would like to express my deepest gratitude to all of my family members and relatives. Finally, I would like to thank the Graduate Research Unit of the University of Tasmania for providing support.
List of publications

Refereed journal publications

- Gargoom, AMM and Haruni, AMO and Haque, ME and Negnevitsky, M, ‘Smooth synchronisation and power sharing schemes for high penetration wind diesel hybrid remote area power systems’, *Australian Journal of Electrical & Electronics Engineering*, 8 (1) pp. 75-84.

Refereed conferences publication

- Haruni, AMO and Gargoom, AMM and Haque, ME and Negnevitsky, M, ‘Dynamic Operation and Control of a Hybrid Wind-Diesel Stand Alone Power

Table of Content

Figures.. xi
Tables.. xvi
Abbreviation .. vii

Introduction.. 1

Chapter 1: Stand-Alone Hybrid Power System... 11
 1.1 Overview of Hybrid Power System... 11
 1.2 Structure of Hybrid System .. 13
 1.2.1 DC-Coupled Systems ... 13
 1.2.2 AC-Coupled Systems ... 14
 1.2.3 Hybrid-Coupled Systems .. 15
 1.3 Wind Energy Conversion System .. 16
 1.3.1 DFIG based WECS ... 17
 1.3.2 SCIG based WECS ... 18
 1.3.3 SG based WECS ... 19
 1.3.4 PMSG based WECS .. 20
 1.3.5 Multibrid Concept (PMSG with Single Gear-box) 21
 1.4 Energy Storage System .. 22
 1.4.1 Electrochemical Energy Storage .. 24
 1.4.2 Mechanical Energy Storage .. 27
 1.4.3 Electro-magnetic Storage ... 29
 1.4.4 Hydrogen Energy Storage .. 30
 1.5 Control Strategy and Energy Management ... 31
 1.5.1 Control structure of hybrid power system .. 31
 1.6 Challenges for the Fully Renewable Energy based Hybrid Power System ..

Conclusion.. 36

Chapter 2: Wind Energy Conversion System Modelling and Control............... 37
 2.1 Variable Speed Wind Turbine Model.. 37
Chapter 3: Energy Storage and Inverter System Control

3.1 Overview of Energy Storage System

3.2 Battery System Modelling and Control

3.2.1 Battery System Modelling

3.2.2 Battery System Control

3.2.3 Simulation of Battery Controller

3.3 Hydrogen Storage System Modelling and Control Systems

3.3.1 Fuel cell Modelling and Control

3.3.2 Simulation of Fuel Cell Controller

3.3.3 Electrolyzer Modelling and Control

3.3.4 Simulation of Electrolyzer Controller

3.3.5 Compressor and tank model

3.4 Inverter Control

3.4.1 Simulation of Load Side Inverter

Conclusion

Chapter 4: Diesel Generator Modelling and Control

4.1 Mathematical Model of Diesel Generator

4.1.1 Diesel Engine and Governor System Model

4.1.2 Excitation System Model

4.1.3 Performance of Diesel Generator Model

4.2 Modelling of Dual-Fuel Engine with Hydrogen

4.2.1 Experimental Setup

4.2.2 Adaptive Neuro-Fuzzy Inference Systems
4.2.3 Input/Output of the ANFIS ... 112
4.2.4 Structure of the ANFIS ... 112
4.2.5 Case Studies and Model Verification .. 114
4.3 Diesel Generator Synchronization and Power Sharing 116
4.3.1 Simulation of Power Sharing of Diesel Generator 117

Conclusion ... 119

Chapter 5: System Control and Coordination ... 120
5.1 Configuration of Proposed Hybrid Power System 120
5.2 Proposed System Parameters ... 122
5.3 Overall Control, Coordination and Management Scheme 124
5.3.1 Energy Management and Power Regulation System 124
5.4 Performance Evaluation of EMPRS ... 131
5.4.1 Performance of the Local Controllers under Different Wind and Loading
Conditions ... 131
5.4.2 Load Management of the System under Low Wind Conditions 138

Conclusion ... 141

Chapter 6: Application of the Proposed Stand-Alone Power Supply System: Case
Studies ... 143
6.1 Variables Considered for Case Studies .. 143
6.1.1 Wind Profile ... 143
6.1.2 Load Profile ... 145
6.1.3 Battery Management ... 147
6.1.4 Hydrogen Storage Management ... 147
6.1.5 Diesel Generator Power Management ... 147
6.2 System Sizing .. 147
6.3 Case Study - Low Wind Conditions During Busy Easter Period 148
6.3.1 Case A – System Performance under High Hydrogen and High Battery
Storage ... 149
6.3.2 Case B – System Performance under High Hydrogen and Low Battery
Storage ... 151
6.3.3 Case C – System Performance under Low Hydrogen and High Battery Storage ... 153
6.3.4 Case D – System Performance under Medium Hydrogen and Medium Battery Storage .. 155
6.3.5 Case E – System Performance under Low Hydrogen and Low Battery Storage (Emergency operation conditions) 157
Conclusion ... 159
Conclusions ... 160
List of References .. 163