TECTONIC EVOLUTION OF THE AILAOSHAN FOLD BELT IN SOUTHWESTERN YUNNAN, CHINA

by

Chun Kit Lai
B.Sc., M.Phil. (University of Hong Kong)

Submitted in fulfilment of the requirements for the degree of
Doctor of Philosophy

University of Tasmania
Hobart

November, 2012
STATEMENT

This thesis contains the results of research done at CODES, the School of Earth Sciences, University of Tasmania, Hobart, Tasmania, Australia between 2009 and 2012.

This thesis contains no material which has been accepted for the award of any other higher degree of graduate diploma in any tertiary institution and to the best of the author's knowledge and belief. This thesis contains no material previously published or written by another person, except where due references is made in the text of the thesis.

This thesis may be made available for loan and limited copying in accordance with the Copyright Act 1968.

Chun Kit Lai

November, 2012

CODES Centre of Excellence in Ore Deposits
Department of Geology
School of Earth Sciences
University of Tasmania
Hobart, Tasmania, Australia
ABSTRACT

The Ailaoshan Fold Belt represents an important component of the geologically complex South China–Indochina suture zone. The fold belt is made up of the Eastern Ailaoshan (EAL) High-Grade Metamorphic Belt, the Paleozoic Central Ailaoshan (CAL) Melange, and the Carboniferous–Triassic Western Ailaoshan (WAL) volcanic belts. This thesis presents a new, better constrained tectono–magmatic evolution model for the Ailaoshan Fold Belt based on a detailed compilation of existing Chinese literature, complemented by extensive new sampling, as well as geochronological (U–Pb zircon and U–Th/Pb monazite), and whole rock and mineral geochemical data.

Contrasting with most published literature, magmatic rocks within the Paleozoic CAL Melange have been found to record two episodes of continental rifting and/or volcanic passive margin development, one Late Devonian–Early Carboniferous, the other Late Permian. There is no preserved record of the oceanic crust of the ocean basin which opened as a result of the Late Devonian–Early Carboniferous rifting episode, and the other magmatic suite recorded in the CAL is the earliest Mid–Triassic syn–collisional granitic magmatism. The WAL volcanic belts, in contrast, include fault–bounded slices of rocks formed during a Late Carboniferous–earliest Mid–Permian continental rift magmatism, a Mid Permian arc/backarc basin magmatism, a Late Permian syn–collisional granitic magmatism and an Early Triassic post–collisional magmatism. Magmatism/metamorphism in the EAL High–Grade Metamorphic Belt has been determined to have occurred during Neoproterozoic, Mid– to Late–Triassic and Cenozoic events, with protoliths originating from various magmatic– and sedimentary rocks in the Ailaoshan–western South China region.
A new regional tectonic model based on the newly compiled data suggests that diachronous continental rift magmatism, leading to volcanic passive margin formation and break up, occurred in the CAL and WAL during, respectively, Silurian–Late Devonian/Early Carboniferous (ca. 430–400 Ma and ca. 370–325 Ma) and Late Carboniferous/Early Permian–earliest Mid–Permian (ca. 300–270 Ma), before which these terranes were attached to the western South China margin in Eastern Gondwana. The volcanic passive margin development and the subsequent seafloor spreading opened the Ailaoshan–Song Ma Paleotethys branch, also known as the Ailaoshan–Song Ma Ocean.

Ridge push associated with WAL continental rifting may have facilitated the west–vergent subduction of the Ailaoshan–Song Ma Ocean beneath eastern Indochina since Early Permian (ca. 280 Ma), producing the Truong Son arc magmatism in Vietnam. In the WAL, in contrast, Mid Permian (ca. 265 Ma) arc/backarc basin magmatism may have only been active for a limited time before the WAL arc collided with and was accreted onto eastern Indochina during late Mid–Permian to Late Permian. This arc–continent collision has been accompanied by extensive Late Permian WAL–Truong Son syn–collisional granitic magmatism (ca. 260–250 Ma) and followed by Early Triassic WAL post–collisional magmatism (ca. 250–245 Ma). Coevally (ca. 260 Ma), the Emeishan Large Igneous Province located in the western South China Block, and may have extended to the CAL–Jinshajiang–Song Da regions.

Continued subduction of the Ailaoshan–Song Ma Ocean remnants may have eventually led to the South China–Indochina continent–continent collision, commenced during Late Permian–Early Triassic in central Vietnam and propagated
northward to the CAL–Song Ma (northwestern Vietnam) region during earliest Mid–Triassic to Late Triassic (ca. 230–200 Ma). This may have produced the major regional unconformity recorded across SE Asia, together with the syn– and post–collisional CAL and EAL magmatism/metamorphism.
ACKNOWLEDGEMENTS

I owe my deepest gratitude to my supervisors, Prof. Anthony Crawford and Dr. Sebastien Meffre for their ceaseless guidance and encouragement throughout these three years. My heartfelt gratitude goes also to Assoc. Prof. Khin Zaw for his valuable funding and support for this project (as part of the Southeast Asia Ore Deposit Project).

Field work would not have been possible without the facilitation of Prof. Xieyan Song (State Key Laboratory of Ore Deposit Geochemistry in Guiyang), Prof. Chuandong Xue (Kunming University of Science and Technology), Prof. Yuping Liu (State Key Laboratory of Ore Deposit Geochemistry in Guiyang) and Mr. Yizhao Wang. I am very grateful for valuable advice and discussions with Prof. Meifu Zhou (University of Hong Kong), Dr. Jacqueline Halpin, Assoc. Prof. Ron F. Berry, together with my good friends Mr. Takayuki Manaka, Dr. Abhisit Salam, Dr. Huayong Chen, Dr. Lejun Zhang and Mr. Jianxiang Guan. I extend thanks and appreciation to the staff, and all my friends at CODES.

I am also very much indebted to Dr. Karsten Goemann, Phil Robinson, Sarah Gilbert, Katie McGoldrick and Dr. Ian Little for their generous laboratory support and advice.

I sincerely thank my family back in Hong Kong, for their spiritual support and understanding for my long absence. Finally and most importantly, I am indebted to my beloved wife Die-Yu Jin, for all her love and care throughout these years.
TABLE OF CONTENTS

CHAPTER ONE INTRODUCTION ... 1
1.1 Purpose and Scope of Study .. 1
1.2 Objectives ... 3
 1.2.1 Tectonic Evolution of the Ailaoshan Fold Belt ... 3
 1.2.2 SE Asia Connection of the Ailaoshan Fold Belt ... 4
 1.2.3 Tectonic Relationships with the western South China Block 4
1.3 Methodology .. 6

CHAPTER TWO REGIONAL AND AILAOSHAN GEOLOGY 7
2.1 Introduction .. 7
2.2 Regional Geology ... 8
2.3 Geology of the Ailaoshan Fold Belt ... 14
 2.3.1 Introduction—Location, Structure and General Stratigraphy 14
 2.3.2 Eastern Ailaoshan (EAL) High-Grade Metamorphic Belt 24
 2.3.3 Early Paleozoic Metasediments and Panjiazhai Metabasalts 28
 2.3.4 Paleozoic Central Ailaoshan (CAL) Melange 36
 2.3.5 Late Carboniferous–Triassic Western Ailaoshan (WAL) Volcanic Belts 39
 2.3.6 Current Tectonic Models ... 42

CHAPTER THREE SILURIAN–EARLY DEVONIAN AILAOSHAN MAGMATISM AND SEDIMENTARY PROVENANCE 45
3.1 Introduction, Aims and Methodology ... 45
 3.1.1 Introduction ... 45
 3.1.2 Aims and Methodology ... 46
3.2 Field Geology and Petrography ... 48
3.3 Geochronology .. 54
3.4 Geochemistry ... 58
 3.4.1 Panjiazhai Metabasalt ... 58
 3.4.2 Silurian–Early Devonian Metasediments .. 62
3.5 Discussion: Ages, Tectonic Settings and Regional Correlations 65
 3.5.1 Panjiazhai Metabasalt ... 65
 3.5.2 Silurian–Early Devonian Ailaoshan Sediments 67
3.6 Summary ... 75

CHAPTER FOUR PALEOZOIC CENTRAL AILAOSHAN MELANGE 76
4.1 Introduction, Aims and Methodology .. 76
 4.1.1 Introduction ... 76
 4.1.2 Aims and Methodology .. 77
4.2 Field Geology and Petrography .. 79
CHAPTER FOUR

4.2 Introduction .. 79
4.2.2 Ultramafic Rocks .. 82
4.2.3 Gabbro, Dolerite, Plagiogranite, Basalt and Granites 85

4.3 Geochronology ... 89

4.4 Geochemistry .. 90

- 4.4.1 Whole Rock Geochemistry .. 95
- 4.4.2 Mineral Geochemistry .. 97

4.5 Discussion: Ages, Tectonic Settings and Regional Correlations 108

- 4.5.1 Late Devonian–Early Carboniferous Volcanic Passive Margin Magmatism 108
- 4.5.2 Late Permian Continental Rift Mafic Magmatism ... 113
- 4.5.3 Earliest Mid–Triassic Syn-collisional Granitoids ... 115

4.6 Summary .. 120

CHAPTER FIVE

5.1 Introduction, Aims and Methodology ... 122

- 5.1.1 Introduction .. 122
- 5.1.2 Aims and Methodology ... 123

5.2 Field Geology .. 125

- 5.2.1 Late Carboniferous(?)–Earliest Mid–Permian WAL Magmatism 126
- 5.2.2 Mid–Permian WAL Mafic Magmatism ... 127
- 5.2.3 Late Permian WAL Granitoids .. 128
- 5.2.4 Early Triassic WAL Mafic Magmatism ... 129
- 5.2.5 Early Triassic WAL Rhyolites .. 130

5.3 Geochronology .. 152

5.4 Whole Rock Geochemistry .. 161

- 5.4.1 Introduction ... 161
- 5.4.2 Late Carboniferous(?)–Earliest Mid–Permian WAL Magmatism 162
- 5.4.3 Mid Permian WAL Magmatism .. 163
- 5.4.4 Late Permian WAL Granitic Magmatism ... 164
- 5.4.5 Early Triassic WAL Magmatism .. 165
- 5.4.6 Late Permian–Triassic WAL Sandstone .. 166

5.5 Pb–Isotope Geochemistry .. 186

5.6 Discussion: Ages, Tectonic Settings and Regional Correlations 188

- 5.6.1 Introduction ... 188
- 5.6.2 Late Carboniferous(?)–Earliest Mid–Permian WAL Continental Rift Magmatism ... 189
5.6.3 Mid Permian Arc-backarc Basin Magmatism .. 192
5.6.4 Late Permian Syn-collisional Granitic Magmatism 194
5.6.5 Early Triassic Post-collisional Magmatism .. 195
5.6.6 Late Pennian-Triassic WAL Sediments ... 197

5.7 Summary ... 203

CHAPTER SIX EASTERN AILAOSHAN HIGH-GRADe METAMORPHIC BELT ... 204

6.1 Introduction, Aims and Methodology .. 204
6.1.1 Introduction ... 204
6.1.2 Aims and Methodology ... 205

6.2 Field Geology and Petrography .. 206
6.2.1 Felsic Metamorphic Rocks ... 207
6.2.2 Intermediate-Mafic Metamorphic Rocks ... 211
6.2.3 Metagranites ... 216

6.3 Geochronology .. 219
6.3.1 Yuanjiang–Yangdoujie Schist .. 219
6.3.2 Gneiss .. 222
6.3.3 Yuanjiang Quartz–feldspar–two mica–garnet Schist 224
6.3.4 Hornblende Metagabbro .. 225
6.3.5 Metagranites ... 227

6.4 Whole Rock Geochemistry .. 231
6.5 Pb–Isotope Geochemistry .. 235

6.6 Discussion .. 237
6.6.1 Protoliths Types, Tectonic Origins and Regional Correlations 237
6.6.2 Geological Evolution of the EAL High-Grade Metamorphic Belt 242

6.7 Summary ... 244

CHAPTER SEVEN TECTONIC EVOLUTION OF THE AILAOSHAN FOLD BELT AND ITS REGIONAL CORRELATION ... 245

7.1 Introduction .. 245

7.2 Towards a New Tectonic Model ... 248
7.2.1 Silurian–Early Devonian (ca. 430–400 Ma) .. 248
7.2.2 Late Devonian–Early Carboniferous (ca. 370–325 Ma) 249
7.2.3 Late Carboniferous–earliest Mid–Permian (ca. 300–270 Ma) 251
7.2.4 Mid–to Late–Permian (ca. 270–250 Ma) ... 253
7.2.5 Early Triassic (ca. 250–245 Ma) ... 255
7.2.6 Mid–to Late–Triassic (ca. 245–200 Ma) .. 256

REFERENCES ... 266