The Impact of Focused Transthoracic Echocardiography in Non-cardiac Anaesthesia and Surgery

by

David Jeffrey Canty

M.B.B.S (Hons) F.A.N.Z.C.A. PGDipEcho

Faculty of Medicine

Submitted in fulfilment of the requirements for the Degree of DOCTOR OF PHILOSOPHY

University of Tasmania November 2012
To Susan, Byron and Zara,
without their understanding and support,
this journey would not have been made.
"A new idea is first condemned as ridiculous and then dismissed as trivial, until finally, it becomes what everybody knows"

Swami Vivekananda

19th century Indian saint, philosopher
Abstract

Transthoracic echocardiography (TTE), usually performed by cardiologists, is increasingly used by physicians at the patient’s bedside. Focused TTE is an abbreviated study used as part of clinical assessment to improve diagnostic accuracy and aid clinical decision-making in real-time. Cardiac disease is a leading cause of perioperative mortality, which may be contributed to by poor preoperative cardiac assessment. The hypothesis is that focused TTE influences cardiovascular diagnosis and management by anaesthetists.

An audit of focused TTE revealed changes to anaesthetist’s management plans in 53% of 87 patients undergoing emergency surgery (75%), elective surgery (56%) and preoperative assessment clinic assessment (22%). TTE helped guide preoperative cardiology referral, anaesthetic technique, invasive monitoring and postoperative disposition. TTE was possible in 10 out of 24 patients with intraoperative haemodynamic instability, avoiding need for transoesophageal echocardiography and associated risk of oesophageal injury.

I conducted prospective observational studies of 100 patients attending the preoperative assessment clinic for elective surgery; and 99 patients requiring emergency surgery. In patients with clinically suspected cardiac disease or age ≥65 years, the anaesthetist’s management plan was compared before and after TTE performed by an independent anaesthetist.

In elective surgery, the TTE findings triaged patients to those with significant cardiac pathology leading to a step-up in care (20%), and those without, leading to a step-down in care (34%). Management was also altered in asymptomatic patients aged over 65 years (step-up in 10%, step-down in 15%). An overall reduction in hospital resource use (cardiology referral, invasive monitoring and intensive care) and improved efficiency (less delays and hospital visits) resulted.

In emergency surgery, TTE revealed significant cardiac pathology in 75%, altering preoperative assessment in 67% leading to a higher step-up (36%) than step-down (8%) in treatment. Haemodynamic treatment changes (such as fluids and invasive monitoring) were more common (30%) than changes to surgical workflow and postoperative intensive care (14%). In a retrospective cohort sub-analysis, the mortality of 64 hip fracture patients who received preoperative TTE was compared to a randomised retrospective control group with similar risk factors. Mortality was lower in the TTE group over the 30 days (4.7% v 15.2%, p=0.047) and 12 months after surgery (17.1% versus 33.3%, p=0.031). Hazard of death over 12 months was reduced after adjustment for known risk factors (hazard ratio 0.41, 95% CI 0.2 to 0.85, p=0.016).

In surgical patients at increased risk of cardiac disease, preoperative focused TTE by anaesthetists frequently changed management decisions and may reduce mortality.
Declaration

This is to certify that

This thesis comprises only original work completed by the author for the degree Doctor of Philosophy at the University of Tasmania.

1. This thesis contains no material which has been accepted for a degree or diploma by the University or any other institution, except by way of background information and duly acknowledged in the thesis, and to the best of my knowledge and belief no material previously published or written by another person except where due acknowledgement is made in the text of the thesis, nor does the thesis contain any material that infringes copyright.

2. This thesis may be made available for loan and limited copying and communication in accordance with the Copyright Act 1968.

3. The research associated with this thesis abides by the international and Australian codes on human and animal experimentation, the guidelines by the Australian Government's Office of the Gene Technology Regulator and the rulings of the Safety, Ethics and Institutional Biosafety Committees of the University.

4. The thesis is less than 100,000 words in length, exclusive of tables, figure legends, bibliographies and appendices.

Dr. David Canty (candidate) Date
Statement of co-authorship

The following people and institutions contributed to the publication of work undertaken as part of this thesis:

Dr David Canty, School of Medicine, University of Tasmania

Professor Colin Royse, Department of Pharmacology, University of Melbourne

Professor David Kilpatrick, Department of Medicine, University of Tasmania

Professor Alistair Royse, Department of Surgery, University of Melbourne

Dr. Leigh Bowman, Department of Cardiology, The Royal Hobart Hospital

Dr. Andrea Bowyer, Department of Anaesthesia and Pain Management, The Royal Melbourne Hospital

A/Professor John Faris, Freemantle School of Medicine, University of Notre Dame

A/Professor Michael Veltnam, Department of Anaesthesia and Pain Management, Joondalup Hospital

Dr. Darsim Haji, Department of Emergency Medicine, Frankston Hospital

Paper 1 Located in chapter 2

Candidate was the primary author (75%) and with author 2 (25%) contributed to the idea, its formalisation and development.

Paper 2 Located in chapter 3

Candidate was the primary author (70%) and with author 2 (20%) and 5 (5%) contributed to the idea, its formalisation and development. Candidate performed all data collection which was reviewed by author 4 (5%). Author 3 (5%) contributed to the manuscript.

Paper 3 Located in chapter 4

Candidate was the primary author (70%) and with author 2 (15%) and 5 (10%) contributed to the idea, its formalisation and development. Candidate performed most of the data collection which was contributed to by author 2 and 5. Authors 3 and 4 (5%) contributed to the manuscript.
Paper 4 Located in chapter 5

Candidate was the primary author (70%) and with author 2 (15%) and 5 (5%) contributed to the idea, its formalisation and development. Candidate supervised the data collection by research nurses and author 4 (5%). Author 3 (5%) contributed to the manuscript.

Paper 5 Located in chapter 1 and 6

Author 1 (35%) and candidate (35%) equal primary authors who contributed to the idea, its formalisation and development. Authors 3 (10%), 4 (5%), 5 (5%) and 6 (5%) contributed to the manuscript.

We the undersigned agree with the above stated “proportion of work undertaken” for each of the above published (or submitted) peer-reviewed manuscripts contributing to this thesis:

Signed: _______________ _______________ _______________

Prof Colin Royse Prof David Kilpatrick Prof James Vickers
Supervisor Supervisor Head of School
School of Medicine School of Medicine School of Medicine
University of Melbourne University of Tasmania University of Tasmania

Date:____________________ __________________ __________________

Prof Colin Royse Prof David Kilpatrick Prof James Vickers
Supervisor Supervisor Head of School
School of Medicine School of Medicine School of Medicine
University of Melbourne University of Tasmania University of Tasmania
Acknowledgements

Professor Colin Royse provided the vision, guidance and support for this research program and he continues to be a remarkable role-model and I am honoured to work with him and his team. Professor Alistair Royse provided considerable support from design to print, was the information technology expert and also performed echocardiography. Professor David Kilpatrick provided valuable insight from a cardiologist’s point of view and provided guidance and administrative support as a supervisor from The University of Tasmania. I also was inspired and encouraged by other original members of the Ultrasound Education Group including A/Prof John Faris and A/Prof Michael Velmans. Dr Darsim Haji, a fellow candidate, provided valuable assistance, comradeship and good company.

I am grateful for the assistance of a number of staff at the Royal Melbourne and Royal Hobart hospitals, including the Directors of Anaesthesia; Dr Stephen Reid, Dr Haydn Perndt and A/Prof Daryl Williams, and the research nurses who performed screening and recruitment of subjects and data collection and entry: Mrs Zelda Williams, Ms Jenny Pang, Ms Susan Kelly, Mr Rodney Jansen, Ms Penelope Turner and Ms Teresa Grabek. I also thank the anaesthetists who assisted in performing echocardiographic studies: Dr. David Andrews, Dr. Paul Soeding and Dr. Andrew MacCormick. Statistical advice was given by Dr. Sandy Clarke from The University of Melbourne.

This PhD candidature was funded by a scholarship grant provided by Australasian and New Zealand College of Anaesthetists. Additional funding was provided by The University of Melbourne (Department of Pharmacology).

I am indebted to both my parents for setting me on track and providing inspiration and support.
TABLE OF CONTENTS

ABSTRACT .. IV

DECLARATION ... V

STATEMENT OF CO-AUTHORSHIP ... VI

ACKNOWLEDGEMENTS .. VIII

Table of Contents .. IX

Table of Figures .. XI

List of Tables .. XII

Abbreviations .. XIII

Preface .. XIV

CHAPTER 1

Introduction and Literature Review ... 15

1.1. Introduction .. 16

1.2. Ultrasound for Non-Cardiologists—Where Did it Start? 17

1.3. The Role of Technology in the Evolution of Ultrasound Use 19

1.4. The Expertise Pyramid ... 21

1.4.1. Ultrasound in Intensive Care ... 24

1.4.2. Ultrasound in Anaesthesia .. 24

1.5. Is Ultrasound Effective? .. 27

1.5.1. Transoesophageal Echocardiography .. 27

1.5.2. Transthoracic Echocardiography ... 33

1.5.3. Lung Ultrasound .. 37

1.5.4. Ultrasound-Guided Vascular Access .. 38

1.5.5. Ultrasound-Guided Regional Anaesthesia 38

1.5.6. Goal-Focused TTE: ... 39

1.6. Aims and Objectives of this Work ... 43

1.6.1. Audit of Anaesthetist-Performed Echocardiography 44

1.6.2. Preoperative Assessment Clinic ... 45

1.6.3. Emergency Surgery .. 47

1.6.4. Outcome after Hip Fracture Surgery ... 48

CHAPTER 2

Audit of Anaesthetist Performed Echocardiography 49

2.1. Introduction .. 50

2.2. Methods .. 51

2.3. Results .. 52

2.3.1. Preoperative Assessment Clinic ... 58

2.3.2. TTE Before Anaesthesia and Surgery .. 58

2.3.3. Under Anaesthesia and During Surgery ... 59

2.3.4. Postoperative Studies ... 59

2.4. Discussion .. 60