EPIDEMIOLOGY AND MANAGEMENT OF WALNUT BLIGHT IN TASMANIA

by

Michael David Lang

B Agr Sc (Hons)

School of Agricultural Science

Submitted in fulfilment of the requirements for the

Degree of Doctor of Philosophy

University of Tasmania March, 2012
This thesis contains no material which has been accepted for a degree or diploma by the University or any other institution, except by way of background information and duly acknowledged in the thesis, and to the best of my knowledge and belief no material previously published or written by another person except where due acknowledgment is made in the text of the thesis, nor does the thesis contain any material that infringes copyright.

This thesis may be made available for loan and limited copying and communication in accordance with the Copyright Act 1968.

The research associated with this thesis abides by the international and Australian codes on human and animal experimentation, the guidelines by the Australian Government's Office of the Gene Technology Regulator and the rulings of the Safety, Ethics and Institutional Biosafety Committees of the University.

Michael David Lang
University of Tasmania
March, 2012

Signed:

Date:
TABLE OF CONTENTS
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>TABLE OF CONTENTS</td>
<td>I</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>IX</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>XVI</td>
</tr>
<tr>
<td>LIST OF EQUATIONS</td>
<td>XXII</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td>XXV</td>
</tr>
<tr>
<td>ABBREVIATIONS</td>
<td>XXVII</td>
</tr>
<tr>
<td>1. ABSTRACT</td>
<td>1</td>
</tr>
<tr>
<td>2. INTRODUCTION</td>
<td>5</td>
</tr>
<tr>
<td>3. LITERATURE REVIEW</td>
<td>8</td>
</tr>
<tr>
<td>3.1 INTRODUCTION</td>
<td>9</td>
</tr>
<tr>
<td>3.2 CAUSAL ORGANISM</td>
<td>9</td>
</tr>
<tr>
<td>3.2.1 Nomenclature</td>
<td>9</td>
</tr>
<tr>
<td>3.2.2 Geographical distribution</td>
<td>10</td>
</tr>
<tr>
<td>3.2.3 Hosts and alternate-hosts of X. arboricola pv. juglandis</td>
<td>11</td>
</tr>
<tr>
<td>3.2.4 Disease symptoms on walnut</td>
<td>12</td>
</tr>
<tr>
<td>3.3. IDENTIFICATION OF X. ARBORICOLA PV. JUGLANDIS</td>
<td>13</td>
</tr>
<tr>
<td>3.3.1. Cell morphology</td>
<td>13</td>
</tr>
<tr>
<td>3.3.2 Colony morphology</td>
<td>14</td>
</tr>
<tr>
<td>3.3.3 Xanthomonadins</td>
<td>14</td>
</tr>
<tr>
<td>3.3.4 Starch hydrolysis</td>
<td>14</td>
</tr>
<tr>
<td>3.3.5 Quinate metabolism</td>
<td>15</td>
</tr>
<tr>
<td>3.3.6 Carbon utilisation</td>
<td>16</td>
</tr>
<tr>
<td>3.3.7 Nitrogen utilization</td>
<td>16</td>
</tr>
<tr>
<td>3.3.8 Fatty acids</td>
<td>17</td>
</tr>
<tr>
<td>3.3.9 Proteins</td>
<td>18</td>
</tr>
<tr>
<td>3.3.10 DNA restriction analysis</td>
<td>18</td>
</tr>
<tr>
<td>3.3.11 REP-PCR</td>
<td>19</td>
</tr>
<tr>
<td>3.3.12 AFLP-PCR</td>
<td>19</td>
</tr>
</tbody>
</table>
3.3.13 MLST .. 20

3.4 DISEASE DEVELOPMENT .. 20

3.4.1 The disease cycle .. 20
 3.4.1.1 Overwintering of the pathogen ... 20
 3.4.1.2 Inoculation ... 22
 3.4.1.3 Penetration ... 23
 3.4.1.4 Infection ... 24
 3.4.1.5 Dissemination ... 25

3.4.2 Factors that affect disease development .. 28
 3.4.2.1 Pathogen virulence .. 28
 3.4.2.2 Quantity of inoculum ... 29
 3.4.2.3 Host susceptibility .. 30
 3.4.2.4 Host morphology ... 31
 3.4.2.5 Rainfall and free moisture ... 32
 3.4.2.6 Temperature ... 32
 3.4.2.7 Relative humidity ... 33

3.4.3 Epidemic development .. 33
 3.4.3.1 Description of temporal development of disease ... 34
 3.4.3.2 Temporal progression of walnut blight ... 34

3.5 DISEASE MANAGEMENT ... 35

3.5.1 Copper and non-copper treatments .. 35
 3.5.2 Amendments to copper sprays .. 36
 3.5.3 Timing of copper-based sprays .. 36
 3.5.4 Biological methods ... 38

3.6 SUMMARY ... 38

4. GENERAL MATERIALS AND METHODS ... 40

4.1 TERMINOLOGY ... 41

4.2 STUDY SITES ... 41

4.3 ORCHARD PLANTINGS AND DESIGN .. 41

4.4 DEPICTION OF BUDBURST ... 42

4.5 DISEASE ASSESSMENTS .. 42

4.6 FRUIT SIZE ASSESSMENTS ... 43
5. CHARACTERISATION AND PATHOGENICITY OF XANTHOMONAS ARBORICOLA STRAINS ASSOCIATED WITH WALNUT BLIGHT45

5.1 INTRODUCTION ..46
5.2 EXPERIMENTAL PROCEDURE ..47
 5.2.1 Origin and storage of bacterial isolates ..47
 5.2.2 Phenotyping of bacterial isolates ..49
 5.2.3 Pathogenicity tests ..50
5.3 RESULTS ...51
 5.3.1 Isolate profiles ...51
 5.3.2 Pathogenicity tests ..54
5.4 DISCUSSION ..59

6. YIELD OF WALNUT FRUITS IS INVERSELY RELATED TO THE INCIDENCE OF WALNUT BLIGHT ON IMMATURE FRUITS OF VARIOUS SIZES ..63

6.1 INTRODUCTION ..64
6.2 EXPERIMENTAL PROCEDURE ..65
 6.2.1 Orchards and tree selection ...65
 6.2.2 Assessments ..65
 6.2.2.1 Disease incidence and severity ...65
 6.2.2.2 Fruit size ..65
 6.2.3 Data analyses ..66
 6.2.3.1 Effect of a walnut blight epidemic on crop yield66
 6.2.3.2 Relationship between disease incidence and severity66
 6.2.3.3 Disease progress model ...67
 6.2.3.4 Effect of disease incidence at various fruit sizes on crop yield 68
6.3 RESULTS ...69
 6.3.1 Description of walnut blight epidemics and fruit drop69
 6.3.2 Relationship between disease incidence and severity73
 6.3.3 Effect of walnut blight epidemics on crop yield74
 6.3.4 Disease progress model ..76
6.3.5 Effect of disease incidence at various fruit sizes on crop yield 78
6.4 DISCUSSION ... 82

7. COPPER-BASED SPRAYS TIMED STRATEGICALLY REDUCE THE INCIDENCE OF WALNUT BLIGHT AND INCREASE CROP YIELD AND ECONOMIC RETURN ... 86

7.1 INTRODUCTION .. 87
7.2 EXPERIMENTAL PROCEDURE ... 88
 7.2.1 Orchard ... 88
 7.2.2 Effect of copper sprays on disease incidence and crop yield 88
 7.2.3 Copper-based sprays ... 89
 7.2.4 Assessment of disease incidence ... 90
 7.2.5 Environmental sensors .. 90
 7.2.6 Data analysis and model development ... 90
 7.2.6.1 Gross and observed disease incidence .. 90
 7.2.6.2 Effect of copper sprays on disease incidence and crop yield 92
 7.2.6.3 Relationship between the number of copper-based sprays and crop yield ... 92
 7.2.6.4 Yield gain with regard to copper-based sprays and disease incidence 92
 7.2.6.5 Economic threshold for crop loss associated with walnut blight 93
7.3 RESULTS ... 93
 7.3.1 Gross and observed disease incidence ... 93
 7.3.2 Effect of copper sprays on disease incidence and crop yield 95
 7.3.3 Environmental factors and disease incidence ... 97
 7.3.4 Relationship between the number of copper sprays and crop yield 98
 7.3.5 Yield increase with regard to copper-based sprays and disease incidence 99
 7.3.6 Economic threshold for crop loss associated with walnut blight 101
7.4 DISCUSSION ... 105

8. RAINFALL IS THE PRINCIPAL ENVIRONMENTAL VARIABLE INVOLVED IN THE DEVELOPMENT OF WALNUT BLIGHT ON FRUITS ... 109

8.1 INTRODUCTION ... 110
Table of contents

8.2 EXPERIMENTAL PROCEDURE ... 111
8.2.1 Orchards, tree selection and disease assessment 111
8.2.2 Environmental sensors and variables ... 111
8.2.3 Data analyses ... 111

8.2.3.1 Temporal progression of disease .. 111
8.2.3.2 Relationship between disease increase and each environmental variable .. 112
8.3 RESULTS .. 113
8.3.1 Disease progression in relation to the weather 113
8.3.2 Modelling temporal disease progression 117
8.3.3 Relationship between PNB and each environmental variable 119
8.3.4 Relationship between fruit and fruit cluster disease incidence 126
8.4 DISCUSSION .. 128

9. DEVELOPMENT OF A RAINFALL-BASED PREDICTIVE MODEL FOR TIMING COPPER-BASED SPRAYS TO CONTROL WALNUT BLIGHT .. 131
9.1 INTRODUCTION ... 132
9.2 EXPERIMENTAL PROCEDURE .. 133

9.2.1 Model development ... 133
9.2.2 Model verification .. 135
9.2.3 Disease assessments and environmental sensors 136
9.2.4 Data analysis ... 136
9.3 RESULTS .. 137
9.3.1 Model development ... 137
9.3.2 Model verification .. 140

9.3.2.1 Temporal progression of disease incidence 140
9.3.2.2 Timing of copper-based sprays at Forth 142
9.3.2.3 Timing of copper-based sprays at Swansea 143
9.3.2.4 Predicted timing of copper-based sprays 145
9.3.3 Rainfall and moisture intensity ... 147
9.4 DISCUSSION .. 148

10. GENERAL DISCUSSION AND RECOMMENDATIONS FOR FURTHER RESEARCH ... 152
10.1 GENERAL DISCUSSION ... 153

10.1.1 Characterisation and pathogenicity of *Xanthomonas arboricola* strains associated with walnut blight ... 153

10.1.2 Yield of walnut fruits is inversely related to the incidence of walnut blight on immature fruits of various sizes .. 154

10.1.3 Copper-based sprays timed strategically reduce the incidence of walnut blight and increase crop yield and economic return .. 156

10.1.4 Rainfall is the principle environmental variable involved in the development of walnut blight on fruits .. 157

10.1.5 Development of a rainfall-based predictive model for timing copper-based sprays to control walnut blight .. 159

10.2 RECOMMENDATIONS FOR FURTHER RESEARCH ... 160

11. REFERENCES ... 164

APPENDICES .. 186

APPENDIX 1: PUBLICATIONS AND CONFERENCE PROCEEDINGS ... 187

APPENDIX 2: DISEASE SYMPTOMS ON WALNUT .. 189

A2:1 Symptoms on shoots .. 189

A2:2 Symptoms on buds ... 190

A2:3 Symptoms on leaves .. 190

A2:4 Symptoms on staminate (male) flowers and catkins ... 191

A2:5 Symptoms on pistillate (female) flowers and fruits .. 191

APPENDIX 3: SIMILARITY OF WALNUT BLIGHT SYMPTOMS TO OTHER DISEASES OR DISORDERS OF WALNUT ... 193

APPENDIX 4: WALNUT GROWING REGIONS IN TASMANIA ... 194

APPENDIX 5: STAGES OF BUD AND PISTILLATE FLOWER DEVELOPMENT .. 195

APPENDIX 6: DETERMINATION OF COLONY FORMING UNITS OF *X. arboricola* PV. *juglandis* IN BACTERIAL SUSPENSIONS ... 197
<table>
<thead>
<tr>
<th>Table of contents</th>
</tr>
</thead>
</table>

APPENDIX 7: INTERPRETATION OF XANTHOCAST™ (ADASKAVEG ET AL., 2000) ... 198

APPENDIX 8: PARAMETERS OF NON-SIGNIFICANT REGRESSIONS FOR PERCENT NEW BLIGHT (PNB) PER DAY OF VINA AND FRANQUETTE FRUITS AS A FUNCTION OF ENVIRONMENTAL VARIABLES .. 199

APPENDIX 9: SEMI-SELECTIVE MEDIA FOR X. ARBORICOLA PV. JUGLANDIS .. 200
LIST OF TABLES
3. LITERATURE REVIEW..8

Table 3.1. The geographical distribution of walnut blight (CABI/EPPO, 2001).11

5. CHARACTERISATION AND PATHOGENICITY OF XANTHOMONAS ARBORICOLA STRAINS ASSOCIATED WITH WALNUT BLIGHT45

Table 5.1. Bacterial isolates collected from diseased walnut fruits, shoots and leaves of three cultivars from a commercial orchard at Forth, Tasmania. 47

Table 5.2. Bacterial isolates collected from diseased fruits of four cultivars from commercial orchards and from unknown cultivars from home gardens in different geographic regions within Tasmania. ... 48

Table 5.3. Reference isolates of plant pathogenic bacteria, from the New South Wales (NSW) Plant Pathology Herbarium, Orange, Australia (DAR), used in this study. ... 49

Table 5.4. Putative isolate group (A-E) for isolates listed in Table 5.1 and two X. arboricola pv. juglandis reference strains, according to colony growth and presence (+) or absence (−) of starch hydrolysis on brilliant cresyl blue starch (BS) and modified Tween (TB) media, and colony growth and colour and presence or absence of quinate metabolism on succinate quinate medium (SQ), after 4 and 7 days incubation (di) at 28°C. ... 53

Table 5.5. Putative identification of reference strains (Table 5.3) and bacterial isolates, collected in 2004 (Table 5.1), with GC-FAME (Analysis 1) and of reference strains and bacterial isolates, collected in 2004 and 2005 (Tables 5.1 and 5.2), with GC-FAME and multilocus sequence analysis (MLSA) (Analysis 2). 54

Table 5.6. Putative identification of isolates collected in 2005 (Table 5.2), strain VF3 (Table 5.1) and reference strains (Table 5.3) with GC-FAME and multilocus sequence analysis, and the number and mean diameter of lesions and/or water-soaking on the fruit surface ≥ 2 mm diameter, 14 days after pin-prick inoculations with 2.1–3.2 × 10⁷ cfu per ml on three-quarter size Franquette fruit. 57

Table 5.7. Putative identification of isolates collected in 2005 (Table 5.2), strain VF3 (Table 5.1) and reference strains (Table 5.3) with GC-FAME and multilocus sequence analysis, and the number and mean diameter of lesions and/or water-soaking on the fruit surface ≥ 2 mm diameter, 14 days after pin-prick inoculations
with 1.2×10^6 or 1.2×10^9 cfu per ml (Experiment 2) and $1.9 \times 2.9 \times 10^9$
cfu per ml (Experiment 3) on half size Franquette fruit.

6. YIELD OF WALNUT FRUITS IS INVERSELY RELATED TO THE
INCIDENCE OF WALNUT BLIGHT ON IMMATURE FRUITS OF
VARIOUS SIZES

Table 6.1. Mean percent gross disease incidence and severity at kernel maturity,
the mean standardised area under the disease progress curve (SAUDPC, percent
per day (%-day)) for gross disease incidence and severity, and the mean crop yield
(percentage of tagged fruit remaining at kernel maturity) for non-bactericide treated
Vina or Franquette fruits at 10 site-years.

Table 6.2. Parameters of simple linear regression of the standardised area under
the disease progress curve (SAUDPC) of gross disease incidence on log transformed
gross disease severity of non-bactericide treated Vina or Franquette fruits at 10 site-
years.

Table 6.3. Parameters of simple linear regressions of the standardised area under
the disease progress curve (SAUDPC) of gross disease incidence and log
transformed gross disease severity, or gross disease incidence and severity at kernel
maturity, on crop yield of non-bactericide treated Vina fruits in 2004–05, 2005–06
and 2006–07, and Franquette fruits in 2005–06 and 2006–07, and pooled Vina and
Franquette fruits, at Forth and Swansea.

Table 6.4. Parameters from regression of ln($K/(K-y_d)$) (from Eq. 6.1 where y_d
is gross disease incidence on non treated fruits) as a function of t_d (time in days from
budburst) for data from 10 site-years, with asymptotes that provided the best fit
($K=$optimum), and asymptotes equal to 1 ($K=1$, in parenthesis).

Table 6.5. Parameters from regression of the linearised form of the
monomolecular model, ln(1/(1–y_i) (from Eq. 6.2 where y_i is the size of non treated
Vina and Franquette fruits) as a function of t (time in days from budburst) for 10 site-
years. Regressions describing temporal fruit size all had P–values of < 0.0001. Also
presented is the maximum fruit diameter and the predicted number of days from
budburst for fruits to reach 25% (FS_{25}), 50% (FS_{50}), 75% (FS_{75}) and 100% (FS_{100})
maximum fruit diameter (from Eq. 6.3).
Table 6.6. Parameters from regression of the linearised form of the monomolecular model for predicted disease incidence at 25, 50, 75 and 100% fruit size as a function of crop yield (%) using data from six or four site-years for non-bactericide treated Vina or Franquette fruits, respectively. Each linear model is presented in Figure 6.5 and was used to derive the predicted change in crop yield per 1% increase in disease incidence and the predicted yield loss at the predicted value of 100% disease incidence.

Table 6.7. Analysis of variance comparing the slopes and intercepts of the linear regressions for Vina and Franquette for a particular fruit size from Table 6.6.

7. COPPER-BASED SPRAYS TIMED STRATEGICALLY REDUCE THE INCIDENCE OF WALNUT BLIGHT AND INCREASE CROP YIELD AND ECONOMIC RETURN

Table 7.1. Number of copper-based spray treatments, timed according to calendar (7 day interval), weather (model) and combined calendar and weather-based (calendar then model) spray regimes in 3 years at Forth.

Table 7.2. Summary statistics of the standardised area under the disease progress curve (SAUDPC, percent per-day (%-day)) of observed and gross disease incidence on non-treated Vina fruits in 2004–05, 2005–06 and 2006–07 at Forth.

Table 7.3. Model of best fit for describing temporal progression of gross disease incidence on non-treated Vina fruits, in 3 years at Forth.

Table 7.4. Mean percent of Vina fruits with blight at half fruit size and crop yield after single and multiple copper-based sprays, timed according to a calendar regime and/or Xanthocast™ (Adaskaveg et al., 2000) at Forth. Initial sprays were applied at budburst (Day 0), or 7 or 14 days after budburst (Days 7 and 14 respectively), and then at 7 day intervals for up to 35, 56 and 49 days after budburst in 2004–05, 2005–06 and 2006–07.

Table 7.5. Cumulative daily rainfall for 3 years, and Xanthocast™ scores for 2 years in the specified periods from budburst (Day 0) to 70 days after budburst at Forth.

Table 7.6. Parameters and statistics of the linear equations fitting the mean percent crop yield with single and multiple copper-based sprays, applied from 5% terminal budburst, in 3 years at Forth.
Table 7.7. Mean percent disease incidence on half size Vina fruits (Blight) and crop yield (Yield) with non-treatment and after single and multiple copper-based sprays, and increase in crop yield (Yield increase) with various numbers of copper-based sprays from budburst to half fruit size in 2 years at Forth. .. 100

Table 7.8. Parameters from analysis of variance (ANOVA) and multiple regression of the change in yield of harvestable nuts due to treatment (YI, Eq. 7.5), in cultivar Vina at Forth in 2004–05 and 2005–06. ... 100

Table 7.9. Predicted yields of non-treated Vina fruits with disease incidence from 0.5 to 100% at half fruit size (non-treated yield), the predicted yield gain above non-treated yield, predicted yield with copper-based spray (%), gross gain (kg/ha) and net gain (AUD/ha) of Vina nuts with one copper-based spray (copper-spray) applied at budburst at Forth. .. 103

8. RAINFALL IS THE PRINCIPAL ENVIRONMENTAL VARIABLE INVOLVED IN THE DEVELOPMENT OF WALNUT BLIGHT ON FRUITS ... 109

Table 8.1. Summary of rainfall and temperature data at Forth and Swansea from budburst to 85 days after budburst in Vina and Franquette for the years cited. Weather data recorded were cumulated daily rainfall and days with ≥ 0.2 mm rainfall, and the mean, minimum and maximum daily temperature. 116

Table 8.2. Model of best fit for describing temporal progression of walnut blight incidence and the predicted number of days from budburst to reach 50% disease incidence (inc.) in Vina and Franquette at 10 site-years. ... 118

Table 8.3. Weighted mean absolute rate (WMAR) of increase in walnut blight on non-copper treated Vina and Franquette fruits at Forth and Swansea, and Vina and Franquette in the years specified.. 119

Table 8.4. Count and percent frequency (in parenthesis) of various P values from linear regressions between percent new blighted (PNB) fruit per day and environmental variables cumulated for intervals of 1–8, 5–12, 9–16,… 25–32 adjusted-calendar-days prior to disease assessment for10 site-years. .. 120

Table 8.5. Regression parameters for percent new blight per day (PNB) of Vina and Franquette fruits, and pooled Vina and Franquette fruits, as a function of
environmental variables cumulated from 17 to 24 adjusted-calendar-days ($T_{\text{min}} = 1^\circ C$, $T_{\text{max}} = 35^\circ C$) prior to disease assessments for nine site-years.

Table 8.6. Pearson product moment correlations between $+1$ and -1, and the P value of the statistical significance of the estimated correlations (in parenthesis), between each pair of variables of pooled Vina and Franquette data for nine site-years.

Table 8.7. Summary of regressions between percent disease incidence of fruits and clusters, between 39 and 46 days after budburst, or approximately 10 mm fruit size, and harvest at 10 site-years.

9. DEVELOPMENT OF A RAINFALL-BASED PREDICTIVE MODEL FOR TIMING COPPER-BASED SPRAYS TO CONTROL WALNUT BLIGHT

Table 9.1. Number of copper-based spray treatments, timed according to calendar, weather (model) and combined calendar and weather-based (calendar then model) spray regimes at Forth and Swansea.

Table 9.2. Critical risk value (CRV) for predicting the need for crop protection ($0 = \text{not required (no)}, 1 = \text{required (yes)}$), at economic injury level's (EIL) of 0.5, 0.75 and 1.0%, and the observed need for crop protection (Spray needed), for each 7 day interval from budburst, based on epidemics defined by monomolecular and linear models ($2004−05$ and $2006−07$) and logistic and Gompertz models ($2005−06$) at Forth and Swansea in each of 3 years.

Table 9.3. The numbers of true positive (TP), false positive (FP), false negative (FN) and true negative (TN) predictions at economic injury levels of 0.5, 0.75, and 1.0% incidence at Forth and Swansea in 2004−05, 2005−06 and 2006−07.

Table 9.4. The true positive proportion (TPP), false positive proportion (FPP), false negative proportion (FNP), true negative proportion (TNP) and percent overall accuracy of TPP and TNP predictions at economic injury levels of 0.5, 0.75 and 1.0% incidence at Forth and Swansea in 2004−05, 2005−06 and 2006−07.

Table 9.5. Summary of linear regression statistics used in evaluation of the linear, exponential, monomolecular, logistic and Gompertz growth models for appropriateness for describing progress of walnut blight incidence and the weighted mean absolute rate (WMAR) of disease increase on non-treated Vina fruits at Forth and Swansea in 2008-09.
Table 9.6. Mean standardised area under the disease progress curve (SAUDPC) and mean percentage harvestable fruits (Crop yield) after treatment with copper between budburst and half fruit size at Forth in 2008-09. Initial treatments were applied from budburst (day 0) and timed according to commercial (Commercial), calendar and/or a rainfall-based model (model).. 142

Table 9.7. Mean standardised area under the disease progress curve (SAUDPC) and mean percentage harvestable nuts (yield) after treatment with copper between budburst and half fruit size at Swansea in 2008-09. Initial treatments were applied from budburst (day 0) and timed according to commercial (Commercial), calendar and/or a rainfall-based disease model (model).. 144

Table 9.8. Weekly rainfall and moisture intensity (MI) cumulated from budburst (day 0) to 10 weeks after budburst (day 70) at Forth and Swansea in 2008-09. ... 148

APPENDIX 8: PARAMETERS OF NON-SIGNIFICANT REGRESSIONS FOR PERCENT NEW BLIGHT (PNB) PER DAY OF VINA AND FRANQUETTE FRUITS AS A FUNCTION OF ENVIRONMENTAL VARIABLES .. 199

Table A8.1: Regression parameters for percent new blight per day (PNB) of Vina and Franquette fruits as a function of environmental variables cumulated 17 to 24 adjusted-calendar-days (Tmin = 1°C Tmax = 35°C) prior to disease assessments for nine site-years... 199
LIST OF FIGURES
5. CHARACTERISATION AND PATHOGENICITY OF XANTHOMONAS ARBORICOLA STRAINS ASSOCIATED WITH WALNUT BLIGHT45

Fig. 5.1. Development of water soaking and black coloured lesion (left), localised dried black lesions without water-soaking (centre) and dried localised damage (right), 14 days after wound inoculation of half size Franquette fruits with putative Xanthomonas arboricola pv. juglandis (US 23, left), a reference X. arboricola pv. pruni strain (DAR 41287, centre) and sterilized distilled water (right)..........................55

6. YIELD OF WALNUT FRUITS IS INVERSELY RELATED TO THE INCIDENCE OF WALNUT BLIGHT ON IMMATURE FRUITS OF VARIOUS SIZES...63

Fig. 6.1. Temporal progression of gross (closed symbols) and observed (open symbols) disease incidence and severity on non-bactericide treated Vina fruits at Forth (top left and right) and Swansea (bottom left and right) in 2004–05 (squares), 2005–06 (triangles) and 2006–07 (diamonds). Budburst occurred on the 18-Oct-04, 19-Oct-05 and 5-Oct-06 at Forth, and the 8-Oct-04, 8-Oct-05 and 25-Sep-06 at Swansea...71

Fig. 6.2. Temporal progression of gross (closed symbols) and observed (open symbols) disease incidence and severity on non-treated Franquette fruits at Forth (top left and right) and Swansea (bottom left and right) in 2005–06 (triangles) and 2006–07 (diamonds). Budburst occurred on the 8-Nov-05 and 1-Nov-06 at Forth, and the 25-Oct-05 and 17-Oct-06 at Swansea. ...72

Fig. 6.3. Relationship between the standardised area under the disease progress curve (SAUDPC) of gross disease incidence and log transformed gross disease severity, of non-bactericide treated Vina (squares) and Franquette (triangles) fruits, for three and two years respectively, at Forth (closed symbols) and Swansea (open symbols). Each data point represents the mean of six replicates. Summary statistics and model parameters of regression are provided in Table 6.2. ...73

Fig. 6.4. Relationship between crop yield and the standardized area under the disease progress curve (SAUDPC) of gross disease incidence (left) and SAUDPC of log transformed gross disease severity (right) on non-bactericide treated fruits of Vina (closed symbols) and Franquette (open symbols) for 10 site-years. Model parameters are listed in Table 6.3. ...76
Fig. 6.5. Relationship between crop yield and predicted disease incidence in Vina (left; solid symbols) and Franquette (right; open symbols) at 25% (square symbol, solid line), 50% (diamond symbol, dashed line), 75% (triangle symbol, dotted line) and 100% (circle symbol, dashed and dotted line) fruit size using data for 10 site-years. Model parameters are listed in Table 6.6. 81

Fig. 6.6. Relationship between crop yield and predicted disease incidences at 75% fruit size on non-bactericide treated Vina (solid symbols) and Franquette (open symbols) fruits using data from 10 site-years. 82

7. COPPER-BASED SPRAYS TIMED STRATEGICALLY REDUCE THE INCIDENCE OF WALNUT BLIGHT AND INCREASE CROP YIELD AND ECONOMIC RETURN 86

Fig. 7.1. Temporal progression of gross (closed symbols) and observed (open symbols) disease incidence on non-treated Vina fruits at Forth in 2004–05 (squares), 2005–06 (triangles) and 2006–07 (diamonds). Budburst occurred on the 18-Oct-04, 19-Oct-05 and 5-Oct-06. Fig. 7.1 is reproduced, in part, from Fig 6.1 (Section 6.3.1). 94

Fig. 7.2. Rainfall (mm) and Xanthocast™ score (Spray score) per day, for predicting the timing of copper sprays, from budburst (Day 0) to 70 days after budburst in 2005–06 (top) and 2006–07 (bottom) at Forth. Budburst occurred on the 19-Oct-05 and 5-Oct-06. The dashed line represents a threshold of 5 for the Xanthocast™ score. Clear block arrows represent copper-based sprays timed according to Xanthocast™. Solid block arrows represent sprays timed according to a 7 day calendar regime. 98

Fig. 7.3. Mean percent crop yield and number of copper-based sprays, applied from 5% terminal budburst, in 2004–05 (left) and 2005–06 (right) at Forth. Data points represent the mean of 4 and 6 replicates in 2004–05 and 2005–06 respectively. Summary statistics and model parameters of regressions are provided in Table 7.5. 99

Fig. 7.4. Estimated response surface of the mean increase in crop yield with copper-based sprays applied from budburst and mean percent disease incidence at half fruit size at Forth in 2004–05 and 2005–06. 101
Fig. 7.5. Predicted yields for disease incidences at half fruit size of 10% (dash and double dots), 25% (dash and single dots), 50% (dots) and 100% (dash), after 1 to 10 copper-based sprays applied to Vina between budburst and half fruit size. ...

Fig. 7.6. Predicted increase in crop income for in-shell walnuts at various disease incidences, and control costs for walnut blight, with single and multiple copper-based sprays at Forth. (Left) Predicted increase in crop income with disease incidence of 0.5% (dashes), 5% (dots) and 10% (dash and dots) at half fruit size and control costs per copper application from budburst (solid line); (Right) Predicted increase in crop income with disease incidence of 25% (dash and dots), 50% (dots) and 100% (dash) at half fruit size and control costs per copper application from budburst (solid line). Models and assumptions for estimating crop incomes and control costs are provided in Table 7.9.

8. RAINFALL IS THE PRINCIPAL ENVIRONMENTAL VARIABLE INVOLVED IN THE DEVELOPMENT OF WALNUT BLIGHT ON FRUITS

Fig. 8.1. Progression of disease incidence on non-treated Vina (left) and Franquette (right) fruits at Forth (open symbols) and Swansea (closed symbols) in 2004–05 (squares), 2005–06 (triangles) and 2006–07 (diamonds). Budburst occurred in Vina on the 18-Oct-04, 19-Oct-05 and 5-Oct-06 at Forth and the 8-Oct-04, 8-Oct-05 and 25-Sep-06 at Swansea, and in Franquette on the 8-Nov-05 and 1-Nov-06 at Forth and the 25-Oct-05 and 17-Oct-06 at Swansea. Fig. 8.1 is reproduced, in part, from Figs. 6.1 and 6.2 (Section 6.3.1).

Fig. 8.2. Estimated rate of change in disease incidence, or the percent new blight (PNB) per day, on non-treated Vina (left) and Franquette (right) fruits at Forth (open symbols) and Swansea (closed symbols) in 2004–05 (squares), 2005–06 (triangles) and 2006–07 (diamonds).

Fig. 8.3. Mean percent new blight (PNB) per day on Vina (open symbols) and Franquette (closed symbols) fruits as a function of the moisture intensity (mm rainfall/h of surface wetness during and after rainfall), rainfall (mm) and days with ≥ 0.2 mm rainfall, cumulated from 17 to 24 adjusted-calendar-days prior to PNB for 10 site-years. Linear models represent pooled Vina and Franquette data for nine-site years, after removal of Vina data from Swansea in 2005–06 (crosses). Model parameters are listed in Table 8.5.
Fig. 8.4. Mean percent new blight (PNB) per day on Vina (open symbols) and Franquette (closed symbols) fruits as a function of the minimum temperature (°C), cumulated from 17 to 24 adjusted-calendar-days prior to PNB for 10 site-years. Linear model represents pooled Vina and Franquette data for nine-site years, after removal of Vina data from Swansea in 2005–06 (crosses). Model parameters are listed in Table 8.5.

9. DEVELOPMENT OF A RAINFALL-BASED PREDICTIVE MODEL FOR TIMING COPPER-BASED SPRAYS TO CONTROL WALNUT BLIGHT...

Fig. 9.1. Mean percentage disease incidence in non-treated Vina fruits from budburst at Forth (triangles) and Swansea (squares) in 2008-09. Budburst occurred on the 10-Oct-08 and 18-Oct-08 at Swansea and Forth respectively.

Fig. 9.2. Mean percentage disease incidence from budburst to kernel maturity in non-treated Vina fruits (cross with dashed line) and in Vina fruits with copper applied according to the model only (cross with solid line), commercial (dash with solid line), weekly (closed symbols) and weekly and model (open symbols) spray regimes, at Forth in 2008-09. Treatments from budburst according to weekly spray regimes were applied a total of two (square) and four (circles) times, with or without subsequent sprays applied according to the model. Budburst occurred on the 18-Oct-08.

Fig. 9.3. Mean percentage disease incidence from budburst to kernel maturity in non-treated Vina fruits at Swansea in 2008-09. The six lines in a group with the lowest disease incidences represent the commercial spray regime and treatments that utilized the rainfall-based model. The five lines in a group with the highest disease incidences represent non-treated fruits and weekly budburst sprays only. Budburst occurred on the 10-Oct-08.

Fig. 9.4. Moisture intensity per day (mm/h, bars), and critical risk value (CRV) per day (diamonds), for predicting the timing of copper-based sprays from budburst (Day 0) to 70 days after budburst at Forth in 2008-09. The dashed line represents the CRV threshold of 100. Solid block arrows represent sprays timed according to a 7 day calendar regime. Clear block arrows represent sprays timed according to the CRV. Sprays were not re-applied until 7 days after the previous sprays were applied (open diamonds), irrespective of whether the CRV threshold of 100 was exceeded or not.
Fig. 9.5. Moisture intensity per day (mm/h, bars), and critical risk value (CRV) per day (diamonds), for predicting the timing of copper-based sprays from budburst (Day 0) to 70 days after budburst at Swansea in 2008-09. The dashed line represents the CRV threshold of 100. Clear block arrows represent sprays timed according to the CRV. Sprays were not re-applied until 7 days after sprays were applied (open diamond), irrespective of whether the CRV threshold of 100 was exceeded or not.

APPENDIX 4: WALNUT GROWING REGIONS IN TASMANIA 194

Fig. A4.1. Location of the major walnut growing regions in Tasmania, Australia.

APPENDIX 5: STAGES OF BUD AND PISTILLATE FLOWER DEVELOPMENT .. 195

Fig. A5.1. Phenological stages of walnut buds and pistillate flowers, from Af to Ff (adapted from Germain et al. 1999). .. 195

Fig. A5.2. Phenological stages of walnut pistillate flowers, from Ff1 to Gf (adapted from Germain et al. 1999) .. 196
LIST OF EQUATIONS
6. YIELD OF WALNUT FRUITS IS INVERSELY RELATED TO THE INCIDENCE OF WALNUT BLIGHT ON IMMATURE FRUITS OF VARIOUS SIZES..63

 Equation 6.1. Predicted disease incidence at any time during an epidemic........67
 Equation 6.2. Predicted size of fruits at any time during fruit development68
 Equation 6.3. Predicted time in days from budburst for fruits to attain 0.25, 0.50,
 0.75 and 1.0 proportion of final fruit size ..68
 Equation 6.4. Predicted disease incidences at 0.25, 0.50, 0.75 and 1.0 proportion
 of final fruit size ..68
 Equation 6.5. Predicted crop yield of Vina at 50% disease incidence and final
 fruit size ...78
 Equation 6.6. Predicted crop yield of Vina and Franquette at 75% disease
 incidence and final fruit size ...81

7. COPPER-BASED SPRAYS TIMED STRATEGICALLY REDUCE THE INCIDENCE OF WALNUT BLIGHT AND INCREASE CROP YIELD AND ECONOMIC RETURN..86

 Equation 7.1. Linearized form of the exponential model for analysis of disease
 progress data ..91
 Equation 7.2. Linearized form of the monomolecular model for analysis of disease
 progress data ..91
 Equation 7.3. Linearized form of the logistic model for analysis of disease
 progress data ..91
 Equation 7.4. Linearized form of the Gompertz model for analysis of disease
 progress data ..91
 Equation 7.5. Predicted crop yield increase as a function of percent disease
 incidence on fruits at half size and the number of copper-based sprays applied
 from budburst to half fruit size ...99

8. RAINFALL IS THE PRINCIPAL ENVIRONMENTAL VARIABLE INVOLVED IN THE DEVELOPMENT OF WALNUT BLIGHT ON FRUITS

...109
Equation 8.1. Rate of change of percent new fruits per day with blight symptoms from one disease assessment to the next .. 112

Equation 8.2. Rate of change of percent new fruits per day with blight symptoms as a function on moisture intensity.. 125

9. DEVELOPMENT OF A RAINFALL-BASED PREDICTIVE MODEL FOR TIMING COPPER-BASED SPRAYS TO CONTROL WALNUT BLIGHT..131

Equation 9.1. Calculation of the critical risk value for predicting the need for crop protection.. 133

Equation 9.2. Calculation of the proportion of true positive predictions (cases) for applying crop protection .. 134

Equation 9.3. Calculation of the proportion of true negative predictions (controls) for applying crop protection.. 134

Equation 9.4. Calculation of the proportion of false positive predictions for applying crop protection .. 134

Equation 9.5. Calculation of the proportion of false negative predictions for applying crop protection .. 134

Equation 9.6. Calculation of the overall accuracy of applying, or not applying crop protection .. 134

Equation 9.7. Calculation of the adjusted critical risk value for predicting the need for applying crop protection .. 135

APPENDIX 6: DETERMINATION OF COLONY FORMING UNITS OF X. ARBORICOLA PV. JUGLANDIS IN BACTERIAL SUSPENSIONS.............197

Equation A6.1. Calculation of predicted colony forming units of X. arboricola pv. juglandis per ml of bacterial suspension at an absorbance of 620 nm............. 197
I would firstly like to express my sincere gratitude to Kathy Evans for her guidance and assistance throughout this project.

A special thank you to Mostyn and Gaye Veith and to Leigh Titmus of Walnuts Australia for their permission in allowing trials to be conducted in their orchards.

My sincere thanks to Walnuts Australia staff, namely Rodney ‘Kouj’ Jones, Julie Sulcz and Dum Mhlanga, and to my former colleagues at Agronico Pty Ltd, namely Julian Shaw, James Hills, James Kirkham, Mark McGee, Odin Franssen, Britta Matthews, Patrick Lyons, Stuart McKay and Robyn Tait for their assistance in conducting and maintaining field trials.

I am extremely grateful for the support and advice provided by Steve Sibbett from the University of California, who was always more than generous with sharing his extensive expertise and knowledge on all walnut related topics. I would also like to thank Sarah Pethybridge of Botanical Resources Australia, Jason Scott of the Tasmanian Institute of Agriculture and Henry Ngugi of the Pennsylvania State University for their advice.

I would like to acknowledge my indebtedness to Walnuts Australia, Tasmanian Institute of Agriculture, Agronico Pty. Ltd. and Horticulture Australia Limited for their financial support.

My greatest thanks, however, are reserved to my wife Julie Siebert, who has not only provided counsel and support during the PhD, but also assisted with a myriad of tasks associated with this project and concomitant work related programmes.
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AFLP</td>
<td>Amplified fragment length polymorphism</td>
</tr>
<tr>
<td>ANOVA</td>
<td>Analysis of variance</td>
</tr>
<tr>
<td>AUDPC</td>
<td>Area under the disease progress curve</td>
</tr>
<tr>
<td>BOX</td>
<td>BOX elements</td>
</tr>
<tr>
<td>BS</td>
<td>Brilliant cresyl blue starch medium</td>
</tr>
<tr>
<td>cfu</td>
<td>Colony forming unit</td>
</tr>
<tr>
<td>CHEF</td>
<td>Contour-clamped homogenous electric field electrophoresis</td>
</tr>
<tr>
<td>CRV</td>
<td>Critical risk value</td>
</tr>
<tr>
<td>DNA</td>
<td>Deoxyribonucleic acid</td>
</tr>
<tr>
<td>EBDC</td>
<td>Ethylene-bisdithiocarbamate</td>
</tr>
<tr>
<td>EIL</td>
<td>Economic injury level</td>
</tr>
<tr>
<td>ERIC</td>
<td>Enterobacterial repetitive intergenic consensus</td>
</tr>
<tr>
<td>FN</td>
<td>False negative</td>
</tr>
<tr>
<td>FNP</td>
<td>False negative proportion</td>
</tr>
<tr>
<td>FP</td>
<td>False positive</td>
</tr>
<tr>
<td>FPP</td>
<td>False positive proportion</td>
</tr>
<tr>
<td>GC-FAME</td>
<td>Gas chromatography-fatty acid methyl ester</td>
</tr>
<tr>
<td>GYCA</td>
<td>Glucose-yeast extract-calcium carbonate</td>
</tr>
<tr>
<td>MI</td>
<td>Moisture intensity</td>
</tr>
<tr>
<td>MLSA</td>
<td>Multilocus sequence analysis</td>
</tr>
<tr>
<td>NA</td>
<td>Nutrient agar</td>
</tr>
<tr>
<td>PCR</td>
<td>Polymerase chain reaction</td>
</tr>
<tr>
<td>PNB</td>
<td>Percent new blight</td>
</tr>
<tr>
<td>PTB</td>
<td>Packing tissue brown</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Description</td>
</tr>
<tr>
<td>--------------</td>
<td>-------------</td>
</tr>
<tr>
<td>pv.</td>
<td>Pathovar</td>
</tr>
<tr>
<td>pvs.</td>
<td>Pathovars</td>
</tr>
<tr>
<td>REP</td>
<td>Repetitive extragenic palindromic</td>
</tr>
<tr>
<td>RH</td>
<td>Relative humidity</td>
</tr>
<tr>
<td>RNA</td>
<td>Ribonucleic acid</td>
</tr>
<tr>
<td>SAUDPC</td>
<td>Standardised area under the disease progress curve</td>
</tr>
<tr>
<td>SDS-PAGE</td>
<td>Sodium dodecyl sulfate polyacrylamide gel electrophoresis</td>
</tr>
<tr>
<td>SDW</td>
<td>Sterile distilled water</td>
</tr>
<tr>
<td>SQ</td>
<td>Succinate quinate medium</td>
</tr>
<tr>
<td>TB</td>
<td>Modified Tween medium</td>
</tr>
<tr>
<td>TP</td>
<td>True positive</td>
</tr>
<tr>
<td>TPP</td>
<td>True positive proportion</td>
</tr>
<tr>
<td>TN</td>
<td>True negative</td>
</tr>
<tr>
<td>TNP</td>
<td>True negative proportion</td>
</tr>
<tr>
<td>WMAR</td>
<td>Weighted mean absolute rate</td>
</tr>
<tr>
<td>YDC</td>
<td>Yeast dextrose calcium carbonate agar</td>
</tr>
</tbody>
</table>
ABSTRACT
Walnut blight, caused by the bacterium *Xanthomonas arboricola* pv. *juglandis*, is a major factor limiting walnut production worldwide. Knowledge of disease epidemiology in Tasmania was developed as a basis for designing an improved crop protection strategy. The aims of this project were to verify *X. arboricola* pv. *juglandis* as the causal organism of walnut blight, establish the impact of natural infections on crop yield, determine the critical environmental factors associated with the temporal development of walnut blight, and to refine current crop protection using identified weather factors to time copper-based biocides, in Tasmania.

Studies of the pathogenicity and growth on semi-selective media of up to 37 bacterial isolates from Tasmania demonstrated that *X. arboricola* pv. *juglandis* is the cause of walnut blight in commercial walnut orchards and home gardens. Determining the pathogenicity of *X. arboricola* pv. *juglandis* on Franquette fruit required inoculating half full-size diameter fruit with 10⁹ cfu/ml. Pathogenic isolates metabolized quinate and hydrolysed starch; they were identified as *X. arboricola* by MLSA and GC-FAME and named *X. arboricola* pv. *juglandis* based on the host and pathovar concept of taxonomy.

Walnut blight can lead to the premature drop of fruits in Tasmania. The incidence and severity of disease on fruits, and subsequent reduction in crop yield, were similar for cultivars Vina and Franquette. There was a strong inverse relationship between crop yield and the standardised area under the disease progress curve (SAUDPC) for incidence and SAUDPC for severity for 10 site-years. The monomolecular model with K = 1 described temporal disease incidence (R^2 values from 88 to 99%) and temporal fruit size (R^2 values from 96 to 99%) for the 10 site-years, and allowed crop yield to be predicted according to disease incidence at various fruit sizes. It was predicted that nearly two fruit dropped prematurely for every fruit that was diseased when fruit were 25% full-size diameter. The rate of fruit loss at 50% fruit size, or larger, was approximately half of that at 25% fruit size. Some diseased fruits were predicted to remain on trees until harvest when infected at larger fruit sizes.

A formulation of copper hydroxide and mancozeb, Mankocide® DF, applied between budburst and half fruit size, reduced disease incidence and increased crop yield in
two of three site-years. Disease incidence at Forth in 2004–05 was adequately controlled with two or more copper-based sprays, applied at budburst and 7 days after budburst, with a corresponding crop yield of 77% in comparison to 50% yield with non-treatment. In 2005–06 at Forth, crop yield was predicted to increase linearly by 2% with every spray, when nine sprays were applied at 7 day intervals. However, in a year with low disease incidence i.e., less than 11% incidence irrespective of treatment, no significant relationship between the number of spray applications and crop yield occurred. As such, with disease incidences of 10% or less at half fruit size, multiple sprays are predicted to reduce economic gain as the cost of spraying outweighs the return from increased yield.

The development of walnut blight differed markedly between years in Tasmania. In 2005–06, the wettest year of the study, nearly 100% of Vina and Franquette fruits developed disease, and disease progression was best described by the logistic or Gompertz models (R^2 values from 88 to 98%). In contrast, the linear and monomolecular models best described disease progression in 2004–05 and 2006–07, the two drier years of the study (R^2 values from 93 to 99%). Daily moisture intensity was defined as the total daily rainfall divided by duration of surface wetness; this variable, when cumulated for the period 17 to 24 adjusted-calendar-days ($T_{min}=1^\circ C; T_{max}=35^\circ C$) before a disease assessment, accounted for 83% of the variance in the percentage of fruits developing symptoms of walnut blight between assessments. Daily rainfall, days with rainfall and minimum temperature were also significantly related to disease development of fruits. In half of the epidemics studied, disease incidence of individual fruits within fruit clusters increased exponentially relative to the increase in disease incidence of fruit clusters. It is postulated that bacterial masses emerging from substomatal cavities may be transported in rain splash and serve as secondary inoculums to adjacent fruit within a cluster.

A rain-intensity-based model was developed for predicting the optimum time to apply copper-based sprays. Mankocide® DF, timed according to the model, provided similar control of walnut blight with the same or fewer numbers of sprays than those timed by commercial operations at Forth and Swansea in 2008–09. At Forth, nearly
Abstract

100% disease incidence was observed on non-treated fruits, and five or more sprays were required to significantly reduce the rate of disease progression. With two budburst sprays only, 93% of fruits were diseased near harvest; in comparison, less than 40% of fruits had blight lesions when sprays were timed according to the rain-intensity model only, combined weekly (two or four sprays from budburst) and model regimens, and a commercial weekly spray schedule (eight sprays from budburst). At Swansea, a near 60% of non-treated fruits were diseased at harvest; however, the rain-intensity model provided the same level of disease control as a weekly-based spray regime i.e., less than 20% disease incidence at harvest, even though up to three less sprays were applied. These results support the continued development and validation of the rainfall-intensity-based model for timing crop protection sprays in Tasmania.