Subtribe Pterostylidinae: A multidisciplinary approach to investigating and resolving taxonomic confusion

By

Jasmine Karla Janes
BSc (Hons)

This thesis is submitted in fulfilment of the requirements for the degree of Doctor of Philosophy
University of Tasmania
February 2010
~Declarations~

Statement of originality
I declare that this thesis contains no material which has been accepted for a degree or diploma by the University or any other institution, and to the best of my knowledge and belief no material previously published or written by another person except where due acknowledgement is made in the text of the thesis, nor does the thesis contain any material that infringes copyright.

Jasmine Karla Janes
2nd February 2010

Statement of authority of access
This thesis may be available for loan and limited copying in accordance with the *Copyright Act 1968*

Jasmine Karla Janes
2nd February 2010
Abstract

The distribution, niche-partitioning, taxonomy and population-level genetic variation of Tasmanian representatives of the subtribe Pterostylidinae were investigated. General ecological data were collected over a two year period to assess changes in the known distribution of *Pterostylis* species within Tasmania and identify previously unknown populations. Ecological characteristics relating to habitat were used to perform a series of canonical correspondence analyses (CCA) to effectively delimit each species’ ecological tolerances and niche hyperspace. A series of Bayesian and maximum parsimony phylogenetic reconstructions were conducted using DNA sequence data from the internal transcribed spacer (ITS) region of nuclear ribosomal DNA to elucidate generic and infrageneric relationships within the Pterostylidinae. Following from these results, the genetic variation within the Tasmanian members of the “longifolia” species complex was investigated using amplified fragment length polymorphism (AFLP) and polymerase chain reaction restriction fragment length polymorphism (PCR-RFLP).

Ecological survey data indicated that the distribution and abundance of *Pterostylis* species within Tasmania had changed significantly within the past 10 years, with different species apparently more or less common than previously thought. In addition to the number of populations located, the number of individuals within each population provided insight into the overall level of conservation status applicable to particular species and several recommendations for the management of these species were made. Niche partitioning based on habitat characteristics revealed differences in the ecological tolerances of *Pterostylis* species and effectively delimited many species along ecological gradients. Significant overlap in the fundamental niches of several morphologically similar species was identified, which suggested that some taxa within Pterostylidinae complexes had been incorrectly assigned to the level of species. This hypothesis was later confirmed through a phylogenetic and population genetic study.

Phylogenetic work using ITS sequence data confirmed that Pterostylidinae is embedded within the tribe Cranichideae. Furthermore, the reconstructions strongly supported a monotypic subtribe (Pterostylidinae) comprising the single genus *Pterostylis* R.Br *sensu lato*. The analysis found two strongly supported clades that correlated with the morphology of the lateral sepal position within the subtribe and, are herein, delimited as subgenera of *Pterostylis*. Several closely related species from
within species complexes had identical ITS sequences; together with the CCA data the results indicate the presence of over-splitting of the Pterostylidinae.

PCR-RFLP analysis of the chloroplast genome in the “longifolia” species complex revealed extremely low variation among species and no marker was found that could distinguish between the Tasmanian representatives of this complex. Further work at the population level using AFLP markers indicated high levels of polymorphism within the complex but, again, could not delimit the four “longifolia” species. Instead, population structure analysis revealed geographic separation of “longifolia” populations irrespective of species. The information from these investigations is essential for taxonomic resolution within the subtribe Pterostylidinae and has clear implications for _Pterostylis_ conservation and management.
~Acknowledgements~

Foremost I would like to thank my supervisors, Associate Professor René Vaillancourt and Dr Dorothy Steane, who provided me with guidance, support, encouragement and advice. Orchids are troublesome and I was initially inept in molecular methods, but they took me on and nurtured me anyway. Thank you.

Dr Mark Hovenden and Dr Greg Jordan provided significant statistical and theoretical advice for the ecological aspects within this thesis.

Dr Gay MacKinnon tutored me in the arts of AFLP and lab organisation. For this I am eternally grateful. I still insist on making an index for each lab book.

Dr Rod Peakall and Daniel Ebert (Australian National University) were particularly generous, supplying numerous primers and technical advice.

I would like to thank Dr Marco Duretto (Tasmanian Herbarium) for accepting all of my voucher material and processing it in due course.

Dr Wendy Potts, Dr Justine Shaw, Matthew Larcombe and all the other people working within the Tasmanian Threatened Species Section (DPIPE) supplied me with the relevant scientific permits and access to their database. I am very grateful that they added my site data to this database and I hope that it is useful in the future.

Several dedicated people assisted me in the field and laboratory. James Marthick (aka The Extractinator) spent many hours grinding samples for DNA extraction and became a proficient orchid spotter – he also suggested several alternative titles for this thesis! Louise Ryall saw more of Tasmania in one year than many Tasmanians see in their lives and I am pleased to say that I introduced her to her first leech. Hans and Annie Wapstra, and their son Mark provided a wealth of information!! The Wapstras freely shared their knowledge of orchid habitat, locations and enthusiasts; without this information I might still be crawling around in the bush somewhere in the northeast of Tasmania. Peter Norris, from the Department of Defence Fort Direction property, enthusiastically organised for me to collect specimens and happily assisted. Allegra Biggs-Dale allowed me to tour her Bruny Island property for sample collection and was most accommodating.
Thanks to my family, friends and office buddies – you all helped to keep me mentally stable by providing copious amounts of alcohol and humour to dull the pain (and senses!!).

Last but not least, a very big thank you to my partner Drew who put up with my many moments of elation, despair, bewilderment and frustration throughout the past four years. You were always there to tell me “Well, that’s scientists for you”.

This research was funded by a Discovery grant (DPO557260) from the Australian Research Council, an Australian Postgraduate Award to the lead author and research funding from the Australian Systematic Botany Society (Hansjörg Eichler Scientific Research Fund).
Very little orchid research has been conducted within Tasmania and it is only within the last 10 years that orchids have become the focus of many studies within Australia. As a result of the paucity of orchid related studies, particularly within Tasmania, there were many more questions being asked than could possibly be incorporated into this thesis. The greenhoods (subtribe Pterostylidinae) were chosen for several reasons. Greenhoods are a taxonomically difficult group with a high degree of endemism and presence in Tasmania. The group also comprises a large portion of threatened orchid species within Tasmania. But perhaps most important from a thesis perspective, greenhoods, as a group, display a relatively staggered flowering pattern. This pattern of flowering made it possible to plan seasonal field trips in which particular species were targeted for collection and enabled the collection of the majority of Pterostylis species occurring in Tasmania.

This thesis has been structured in such a way that each chapter relates to a specific topic. “Chapter One: An introduction to the Orchidaceae” introduces orchidology and its history – what makes orchidology so fascinating and so complex. The subtribe Pterostylidinae and the Tasmanian greenhood species are introduced in Chapter One. A portion of this chapter, namely the history of orchidology, was published in The Orchadian in 2006.

“Chapter Two: Occurrence and conservation status of Tasmanian Pterostylis” provides a comprehensive account of the current greenhood distribution and abundance within Tasmania. This chapter also provides several recommendations for the conservation management of Tasmanian greenhood populations and was published in the Tasmanian Naturalist in 2008.

“Chapter Three: Habitat requirements of Pterostylis” details the ecological requirements of several Pterostylis species within Tasmania. Extensive canonical correspondence analyses were performed to identify the fundamental niches of several species according to the most informative ecological gradients. The results from Chapter Three are currently being written up as a paper for submission to an appropriate peer-reviewed journal.

“Chapter Four: A re-evaluation of Pterostylidinae genera” reconstructs phylogenetic trees of representative Pterostylis species from ITS sequence data. From this chapter,
a new, informative classification is proposed that accurately accounts for the morphological and evolutionary variation within the subtribe. The results from Chapter Four have resulted in two papers: one that is identical in structure and content to Chapter Four that is currently under review for the peer-reviewed journal *Molecular Phylogenetics and Evolution*, whilst the second is a formal taxonomic classification that is currently being prepared for submission to *Taxon*.

“Chapter Five: Population genetic structure in the Tasmanian *Pterostylis longifolia* complex” investigates the level of genetic variation and structure within the four Tasmanian representatives. This chapter made use of the DNA profiling techniques AFLP (genomic DNA) and RFLP (chloroplast DNA) to discriminate between very closely related taxa. Results from Chapter Four will be formatted in accordance with submission requirements of a suitable peer-reviewed journal at a later date.

“Chapter Six: Towards an understanding of the Tasmanian Pterostylidinae” provides a general discussion and review of the results presented in the preceding chapters. A large section of this chapter is dedicated to recommending areas of future research in order to gain a more thorough understanding of the evolutionary processes at work within the Pterostylidinae.

“References” provides a full reference list of the citations from each chapter. This chapter is followed by Appendix I which details the genetic distance pairwise matrix between populations referred to in Chapter Five.
~Publications arising from this thesis~

Index to acronyms

<table>
<thead>
<tr>
<th>Acronym</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AFLP</td>
<td>Amplified Fragment Length Polymorphism</td>
</tr>
<tr>
<td>AGL</td>
<td>alpine grassland</td>
</tr>
<tr>
<td>AMOVA</td>
<td>Analysis of Molecular Variance</td>
</tr>
<tr>
<td>BL</td>
<td>branch length</td>
</tr>
<tr>
<td>BP</td>
<td>bootstrap support</td>
</tr>
<tr>
<td>C</td>
<td>Central Plateau area in Tasmania</td>
</tr>
<tr>
<td>CAL</td>
<td>Callitris forest</td>
</tr>
<tr>
<td>CCA</td>
<td>canonical correspondence analysis</td>
</tr>
<tr>
<td>CH</td>
<td>coastal heath</td>
</tr>
<tr>
<td>CI</td>
<td>consistency index</td>
</tr>
<tr>
<td>cpDNA</td>
<td>chloroplast genome</td>
</tr>
<tr>
<td>CR</td>
<td>critically endangered under EPBCA</td>
</tr>
<tr>
<td>DCA</td>
<td>detrended correspondence analysis</td>
</tr>
<tr>
<td>DNA</td>
<td>deoxyribonucleic acid</td>
</tr>
<tr>
<td>DPIW</td>
<td>Department of Primary Industries and Water, Tasmania</td>
</tr>
<tr>
<td>DS</td>
<td>dry sclerophyll forest</td>
</tr>
<tr>
<td>DS-CH</td>
<td>dry sclerophyll forest with coastal heath aspects</td>
</tr>
<tr>
<td>DS-S</td>
<td>dry sclerophyll forest with sedgeland understorey</td>
</tr>
<tr>
<td>e</td>
<td>endangered under TTSPA</td>
</tr>
<tr>
<td>EN</td>
<td>endangered under EPBCA</td>
</tr>
<tr>
<td>EPBCA</td>
<td>Environmental Protection and Biodiversity Conservation Act 1999</td>
</tr>
<tr>
<td>f</td>
<td>inbreeding coefficient, analogous to F_{is} (Holsinger and Lewis 2005)</td>
</tr>
<tr>
<td>FI</td>
<td>Flinders Island</td>
</tr>
<tr>
<td>F_{ST}</td>
<td>level of genetic differentiation among populations</td>
</tr>
<tr>
<td>GL</td>
<td>grassland</td>
</tr>
<tr>
<td>GPS</td>
<td>Global Positioning System</td>
</tr>
<tr>
<td>HO</td>
<td>Hobart Herbarium, Tasmania</td>
</tr>
<tr>
<td>ITS</td>
<td>internal transcribed spacer of nuclear ribosomal DNA</td>
</tr>
<tr>
<td>IUCN</td>
<td>International Union for the Conservation of Nature</td>
</tr>
<tr>
<td>K</td>
<td>number of clusters in genetic population (Chen et al. 2007)</td>
</tr>
<tr>
<td>KI</td>
<td>King Island</td>
</tr>
<tr>
<td>MP</td>
<td>maximum parsimony</td>
</tr>
<tr>
<td>nDNA</td>
<td>nuclear genome</td>
</tr>
<tr>
<td>NE</td>
<td>northeast</td>
</tr>
</tbody>
</table>
NJ Neighbour Joining Tree
NP national park
NVA Natural Values Atlas, DPIW database
NW northwest
PCoA Principle Coordinates Analysis
PCR polymerase chain reaction
PP posterior probability
r rare under TTSPA
RI retention index
RFLP Restriction Fragment Length Polymorphism
SE southeast
TTS tea tree scrub
TTSPA Tasmanian Threatened Species Protection Act 1995
v vulnerable under TTSPA
VU vulnerable under EPBCA
WL-S wetland with sedgeland
WS wet sclerophyll forest
x extinct under TTSPA
\(\Theta^H \) level of genetic differentiation among populations, analogous to \(F_{ST} \) (Holsinger and Lewis 2005)
~Contents~

Declarations ... i
Abstract.. ii
Acknowledgements ... iv
Preface ... vi
Publications arising from this thesis ... viii
Index to acronyms.. ix

Chapter One: An Introduction to the Orchidaceae .. 1
 Introduction ... 1
 Orchid characters ... 2
 A history of orchidology ... 3
 Orchid germination .. 4
 Orchid pollination .. 6
 Orchid taxonomy .. 8
 Orchids and DNA based taxonomy .. 10
 An introduction to the Pterostylidinae ... 11
 Pterostylidinae genera ... 14
 An introduction to the Tasmanian greenhoods ... 15
 Thesis aims .. 17

Chapter Two: Occurrence and conservation status of Tasmanian Pterostylis 18
 Introduction .. 18
 Materials and Methods .. 20
 Study area .. 20
 Nomenclature ... 22
 Study species and environmental variables .. 22
 Results .. 24
 Pterostylis species sites and abundances ... 24
 Other orchid species sites and abundances ... 31
 Unoccupied Pterostylis sites ... 37
 Discussion .. 39
 The status of Pterostylis species in Tasmania .. 39
 Pterostylis species recommended for status upgrading 40
 Pterostylis species recommended for status downgrading 41
 Recommendations for Pterostylis conservation and management 42
Some are incredibly beautiful - almost magical. [A Cattleya orchid] … only blooms when it is motivated. I’ve had it for 10 years now. Sometimes I wonder why I keep it. I’ve forgotten what it looks like so I’ll just wait and see when it does decide to bloom.

- Elenor Mis on orchids