A High Froude Number Time Domain Strip Theory
Applied to the Seakeeping of Semi-SWATHs

by

Damien S. Holloway

B.E.(Hons), University of Tasmania (1992)
B.Mus., University of Tasmania (1985)

Submitted in fulfilment of the requirements for the degree of

Doctor of Philosophy

at the

UNIVERSITY OF TASMANIA

November 1998
Statement of originality and authority of access

This thesis contains no material that has been accepted for a degree or diploma by the University of Tasmania or any other institution, and to the best of my knowledge and belief no material previously published or written by another person except where due acknowledgement is made in the text of the thesis.

This thesis may be made available for loan and limited copying in accordance with the Copyright Act 1968.

Damien Holloway
Abstract

In recent years there has been a rapid growth in the fast passenger ferry industry. Initially speed was the main selling point for designers, builders and operators, but as competition and choice have increased passengers are demanding better seakeeping performance. In addition designers and builders are starting to see the benefits of better seakeeping not only in terms of passenger comfort but in terms of structural strength and loading, allowing reduced structural weight and its many associated advantages. Two aspects of the seakeeping of fast ships are addressed in this thesis: response computation and the behaviour of semi-SWATH designs.

Motion and load prediction for the practising naval architect has traditionally been done using “strip theories”, usually one closely related to the well known theory of Salvesen, Tuck and Faltinsen. This is a low Froude number theory, and although it is still being used, often successfully, for fast ships there is no rational justification for its validity in these cases. As speeds are increasing it is becoming imperative that an equivalent analysis tool suitable for higher Froude numbers be developed. This thesis proposes such a theory, based on calculation of two dimensional hydrodynamic potentials in a fixed reference frame in place of the traditional moving one. This strip theory of necessity is a time domain theory, which also allows the possibility of introducing non-linearities, random sea input, and even slamming events (although only the first of these is discussed in any detail in the thesis). Validation has involved comparison with traditional theory and tank testing. Most notably pitch and coupling effects have shown improved predictions, but heave tends to be over predicted. The main candidates for explanation of this phenomenon are argued to be wake shedding, hull entry effects, steady-unsteady interactions and three-dimensionality.

The majority of fast ferries being built at present have very conventional hull forms below the calm waterline. These have poorer seakeeping than their slower equivalents because their natural frequencies are encountered in longer waves, and traditionally designers have relied on lifting surfaces to counteract the increased motions. As these vessels get faster this approach will become less viable in terms of forces involved and appendage drag penalty. The type of hull form that will reduce motion accelerations without too much sacrifice of drag is not obvious, and a family of semi-SWATHs has been investigated as a possible alternative hull form. The investigation shows that as speed is increased the advantages of SWATH like forms become much greater if the criterion is to reduce accelerations.
Acknowledgements

This project has been undertaken under the supervision of Prof Mike Davis, who has been a great source of help over the last few years. I have needed him especially to kept the bigger picture in my focus during times when I would otherwise have been preoccupied with often minor details.

I would like to thank my fellow PhD students, in particular Jason Roberts and Nigel Watson, for their brainstorming and companionship. Jason has also taught me the majority of what I know about computers, and assisted with some of the towing tank tests.

Also, Dr David Paget, from the mathematics department of this university, started me off on the right track with some integrals in the early stages of this project.

This research has been supported by the Australian Maritime Engineering Cooperative research Centre (AMECRC) in several ways, including the following:

- Financial support, initially in the form of a supplementary scholarship, and later as an employee.

- Construction of the two semi-SWATH models and provision of towing tank resources. In particular Gregor Macfarlane, manager of the towing tank, and his team, provided much assistance with the experimental part of this project.

- Prof. Lawry Doctors (University of New South Wales) and his computer program HYDROS provided the “traditional strip theory” results.

- Provision of seakeeping data for the AMECRC system series hull forms, used for comparison with the semi-SWATH hull forms, and for further benchmarking of the computer program BESTSEA.

In addition participation in AMECRC has fostered interaction with other researchers working in related fields within Australia.

Finally, thank you to my wife Rosemary, and sons Graham and Donald, for your patience and support.
Contents

1 Introduction 9

2 An overview of panel methods relevant to the development and testing of a time domain strip theory 12

2.1 Panel methods 12

2.1.1 Introduction 12

2.1.2 A derivation of the method 13

2.1.3 Further background and brief historical development 15

2.2 Mathematical formulation of the method 16

2.2.1 Setting up equations (linear boundary conditions) 16

2.2.2 Solving problems with non-linear boundary conditions 17

2.2.3 Boundary Conditions 19

2.3 Free surface problems 19

2.3.1 Free surface boundary conditions 20

2.3.2 Linearisation of the free surface boundary condition 21

2.3.3 Complex notation 22

2.3.4 Simple source (Dawson) method 22

2.3.5 Green function method 24

2.3.6 Choice of method 25

2.4 Interpretation of the free surface boundary conditions for particular two-dimensional problems 29

2.4.1 Steady state translation and moving reference frames 29

2.4.2 Steady state for periodically oscillating bodies 31

2.4.3 Arbitrary motion in a fixed reference frame 32

2.5 Calculation of pressures on the body surface in linearised problems 32

2.6 Solutions for particular two dimensional problems 36

2.6.1 Notation 36

2.6.2 Steady translation: Green function method 37

2.6.3 Steady translation: simple source method 39
2.6.4 Periodic oscillation: Green function method 42
2.6.5 Arbitrary motion in time domain: simple source method 45
2.6.6 Non-linear problems: arbitrary motion in the time domain . 49
2.6.7 Other panel methods 55

3 Two dimensional time domain panel method: development and testing 56
3.1 Introduction ... 56
3.2 Elementary source function 57
3.3 Integration and differentiation of the elementary source function 59
3.3.1 Complex potential .. 59
3.3.2 Time derivative of the complex potential 61
3.3.3 Complex velocity .. 62
3.3.4 Summary of equations 63
3.4 Evaluation of convolution integrands 63
3.4.1 Preliminary accuracy considerations 64
3.4.2 Algorithms ... 65
3.4.3 Choice of algorithm 74
3.5 Numerical implementation 77
3.6 Validation and comparisons 78
3.6.1 The validation process 79
3.6.2 Translatory motion 81
3.6.3 Oscillatory motion 93
3.6.4 Transient motion of surface piercing bodies 102
3.6.5 Conclusions ... 109

4 Derivation and Implementation of a Time Domain Strip Theory for Pitch and Heave 110
4.1 Introduction ... 110
4.1.1 Physical interpretation of the new theory 110
4.1.2 Strip theory assumptions 112
4.2 Conventional strip theory (frequency domain) 118
4.3 Other strip theories 125
4.3.1 Overview ... 125
4.3.2 Limitations of standard strip theory 126
4.3.3 Newman’s unified theory [73] 130
4.3.4 The forward-speed theory of Yeung and Kim [100] [102] 133
4.3.5 Yeung and Kim’s comprehensive first order theory [102] 133
4.3.6 High speed theory of Faltinsen and Zhao [26] [29] 135
4.3.7 Newman’s simplified 3D theory [74] 137
4.4 A new high speed time domain strip theory .. 138
 4.4.1 Introduction .. 138
 4.4.2 Calculation of forces .. 140
4.5 Incorporation of panel methods into the time domain strip theory 141
 4.5.1 Interpolation of new panel coordinates for each section 142
 4.5.2 Wave information .. 145
 4.5.3 Panel method boundary conditions and hydrodynamic force 146
 4.5.4 Hydrostatic and Froude-Krylov forces 151
4.6 Integration of the equations of motion .. 152
 4.6.1 Development of an algorithm .. 152
 4.6.2 Validation of the algorithm .. 158
5 Towing tank testing .. 165
 5.1 Design of models ... 165
 5.1.1 Model design objectives .. 165
 5.1.2 Reference hull .. 169
 5.1.3 Models ... 169
 5.2 Towing tank set-up .. 173
 5.3 Testing programme ... 174
 5.3.1 Tests conducted ... 174
 5.3.2 Conventional hull form results 177
 5.4 Problems encountered in testing .. 178
 5.4.1 Finite depth effects .. 178
 5.4.2 Wave reflection ... 180
 5.4.3 Random waves ... 181
 5.5 Post processing of tank data .. 182
6 Results and discussion .. 186
 6.1 SWATH investigation ... 186
 6.1.1 Introduction ... 186
 6.1.2 A simplified model .. 187
 6.2 Experimental results ... 196
 6.2.1 SWATH models ... 196
 6.2.2 Conventional hull: AMECRC systematic series towing tank tests 201
 6.3 Preliminary validation of numerical methods 202
 6.3.1 BESTSEA tests ... 202
 6.3.2 BESTSEA: hull discretisation and method of calculating forces 208
 6.3.3 Implementation of Salvesen, Tuck and Faltinsen [84] theory 210
 6.4 Numerical results ... 211
6.4.1 General comments .. 211
6.4.2 Comparison with experimental results 212
6.5 Discussion of approximations made in *BESTSEA* 215
 6.5.1 Flow circulation .. 217
 6.5.2 Direct viscous effects .. 219
 6.5.3 Hull entry effects .. 221
 6.5.4 Unspecified non-linear effects 223
 6.5.5 Three-dimensional wave effects 224
 6.5.6 Side wall and bottom effects 225
 6.5.7 Summary ... 225

7 Conclusions ... 247
 7.1 SWATHs .. 247
 7.2 *BESTSEA* .. 248
 7.2.1 Present status .. 248
 7.2.2 Future development of *BESTSEA* 249
 7.3 Innovations in computational methods 250
 7.3.1 Time domain panel method 250
 7.3.2 Stability of integration of the equations of motions 250
 7.3.3 Simplified model for visualisation of seakeeping properties .. 251