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TREE-COVER RATIO OF GRAPHS WITH ASYMPTOTIC

CONVERGENCE IDENTICAL TO THAT OF THE SECRETARY

PROBLEM

PAUL AUGUST WINTER 1 AND FADEKEMI JANET ADEWUSI

Abstract. In this paper, we introduce a ratio involving spanning trees and vertex
coverings, through a graph-theoretical gambling problem, involving the asymptotic
convergence of 1/e, identical to that of the secretary problem. This constant is the
probability of selecting the best applicant in the secretary problem, as well as the
radius of convergence of trees and convergent solutions to di�erential equations. We
adopt the spanning tree and vertex cover aspects of this ratio to de�ne the idea of
a tree-covering-ratio of graphs. We discuss the asymptotic convergence of this ratio
for classes of graphs, which may have application in ideal communication situations
involving spanning trees and vertex coverings of extreme networks, and introduce the
idea of a tree-cover area by integrating this tree-cover ratio.

1. Introduction

We shall use the graph theoretical notation of Harris and Hirst [7]; where our graphs
are simple and connected with order n and size m.

Spanning trees. The graph-theoretical concept of spanning trees can be found in many
real world applications, especially in social networking scenarios. For example, research
by Bearman, Moody and Stovel [4] involves work on sexual networks in an American high
school which suggest that sexual networks are characterized by long chains or "spanning
trees"; meaning that a large part of the school had sexual contact with each another.

Vertex cover. The importance of minimum vertex coverings of graphs occurs often in
real life applications involving extreme networks with a large number of nodes (see the
parameterized vertex cover problem in [3] and [6]).

Ratios. Ratios such as expanders, Raleigh quotient(see [8]), the central ratio of a graph
(see [1]) and eigen-pair ratio of classes of graphs (see [10]),independence and Hall ratios
(see [5]), have attracted interest.
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Spanning trees and vertex cover. In this paper, we combine the two ideas of spanning
trees and (minimum) vertex cover to introduce the idea of a tree-cover ratio of a graph
which arises from a graph-theoretical problem, derived from a hypothetical gambling
scenario, with its ratio converging to 1/e. This constant occurs in other convergent
problems such as: the secretary problem (where the best applicant is selected with the
probability 1/e(see [2]); the radius of convergent of trees(see [9]), and the convergence of
the solution of di�erential equation discussed below. The importance of large number of
vertices, which occurs in (extreme) networks, allowed for the investigation of asymptotic
convergence of this tree-cover ratio for di�erent classes of graphs. The idea of area is also
introduced which involves the Riemann integral of this cover tree-ratio.

1.1. A graph theoretical variation of the secretary problem- a gambling prob-

lem with social decision making. The following problems involve the convergence to
the constant 1/e.

The secretary problem. The policy for the secretary problem is a stopping rule. Under
it, the interviewer rejects the �rst (r−1) applicants (let applicantM be the best applicant
among these r−1 applicants), and then selects the �rst subsequent applicant that is better
than applicantM . It can be shown that the optimal strategy lies in this class of strategies.
For an arbitrary cuto� r, the probability that the best applicant is selected is:

(1.1) P (r) =
r − 1

n

n∑
i=r

1

i− 1
.

This sum is obtained by noting that if applicant i is the best applicant, then it is selected
if and only if the best applicant among the �rst i− 1 applicants (the second best overall)
is among the �rst r − 1 applicants that were rejected.

Hence, letting n → ∞, such that x can be written as

x = lim
n−→∞

(
r

n
).

By using t =
i

n
, such that dt =

1

t
di, the sum in (1.1) above can be approximated by

the integral

P (x) = x

∫ 1

x

1

t
dt .

This gives rise to the di�erential equation:

P ′(x) = −1− lnx .

By setting this derivative to zero and solving for x, the value tend to 1/e. Thus, the
optimal cuto� tend to 1/e as n increases, and the best applicant is selected with probability
1/e.

Radius of convergence. The constant 1/e is also associated with trees- it is the radius
of convergence of trees (see [3]).

Convergence of solution of di�erential equations. The di�erential equation
dP (x)

dx
= −1 − lnx, was used in the secretary problem to determine the convergent

solution of 1/e. This constant occurs as convergent solution to the following di�erential
equations.

(1) First Order Variable Separable with solution converging to 1/e.
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Theorem 1.1. The cuto� number 1/e of the secretary problem is also the con-
vergence of the solution of the following separable variable di�erential equations:

(i.)
dy

dx
= e−x; y(1) = 0

(ii.)
dy

dx
= −nxn−1y ; n ∈ R ; n ̸= 0 , y(1) = 0

Proof. (i.)
dy

dx
= e−x; y(1) = 0.

dy

dx
= e−x =⇒ y =

∫
e−xdx = −e−x + c = y(x);

=⇒ y(x) = −e−x + e−1 which converges to e−1.

(ii.)
dy

dx
= −nxn−1y ; n ∈ R ; n ̸= 0, y(1) = 0

dy

dx
= −nxn−1y =⇒ ln y = −xn + c =⇒ y = −e−xn

+ c;

y(1) = −e−1 + c = 0 =⇒ c = e−1 ;

=⇒ y = −e−xn

+ e−1 converges to e−1 .

�

(2) Integrating factor

Theorem 1.2. The constant e−1 is the convergent solution of the following dif-
ferential equation:

dy

dx
+

y

x2(e− 1/x)
= − 1

xn
;n > 1, n ∈ R; y(1) = (e− 1)−1

(
1− 1

n
+

e

n− 1

)
Proof. The integrating factor of this di�erential equation is

e

∫
dx

x2(e− 1
x

) = eln(e−
1
n ) = e− 1

n
,

Thus:

d

dx

[
y(e− 1

x
)
]
= − 1

xn
(e− 1

n
)

=⇒ y(x) =
e

(n− 1)xn−1
(e− 1

x
)−1 − 1

nxn
(e− 1

x
)−1 + c(e− 1

x
)−1

=⇒ y(1) = (e− 1)−1
(
1− 1

n
+

e

n− 1

)
=⇒ c = 1 and y(x) converges to e−1.

�

We now provide a graph theoretical variation of the secretary problem with convergent
ratio identical to the cut-o� number 1/e, and use it to motivate for the de�nition of a
tree-cover ratio of classes of graphs.
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1.2. Gambling problem with social decision making and guaranteed win.

We have n gamblers each coming to the casino with 1 million dollars each. We assume
these individuals do not know each other, and they agree to the conditions of the game
determined by the casino. The casino guarantees that a pair will leave with 2 million
dollars each, and selects 1 participant randomly, say ni.

This ni is given 2 million (so he/she has a total of 3 million dollars) by the casino and ni

must decide who to share the 3 million dollars with by social interaction with the other
n− 1 participants. This is done with exactly one spanning tree which he/she arbitrarily
selects. Only ni and the casino knows who has been selected. This participant must
decide who he/she "likes" the most through the spanning tree. The casino then selects,
randomly, an individual (other than ni) from the remaining n − 1 participants. This
individual, say nk, must decide, through communication involving all possible spanning
trees determined by the n− 1 participants, if he/she has been chosen by ni.

A correct guess, i.e a perfect match (in terms of the individual chosen by ni) means
both ni and nk walk away with 2 million dollars each and the game is over. If nk is
correct (in terms of not being chosen by ni), he keeps his million, remains in the game
but cannot play to win and is an inactive participant, and then the casino selects the next
participant. Otherwise, if nk is wrong (he believes he has been chosen by nk, but was not),
he loses a million and the casino then selects a next participant (with nk remaining as part
of the communication spanning trees but cannot be chosen again-an inactive participant).

The last case is when nk is wrong (he believes he has not been chosen when he has
been chosen by ni). In this case, since there must be a perfect match, the casino makes
the changes as per 7(iv) below.

Conditions:

(1) All n individuals are communicatively linked by edges of a complete graph, and
have not known each other before the game.

(2) Every individual can communicate with the others with a two way directed edge-
i.e we have a complete digraph, G, representing their connections.

(3) Individual ni is selected at random by the casino. This individual then interacts
with all the n−1 others by selecting any one of the possible spanning trees: either
directly to each of the individuals (a star graph= a spanning tree), connecting
from ni to the remaining n − 1 vertices. Or, for example, via all possible paths
to nj , i.e through discussing with the individuals along each path to nj .

(4) Once ni has found, through a spanning tree, the individual n∗ he wants to share
the money with, it is kept to this individual. The probability of �nding this
individual will be:

(1.2) P =
1

t(Kn)
=

1

nn−2

Where t(Kn) = nn−2 is the possible number of spanning trees of the complete
graph.
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(5) We now remove ni and work with the complete subgraph, H of G, induced by
the remaining n−1 active individuals (vertices, which is a covering set of G), and
select a n1

k (as a leader) randomly, such that each of the n− 1 individual in this
subgraph have interacted with ni through some spanning tree.

(6) This individual leader n1
k interacts with the remaining n − 2 vertices using all

possible spanning trees on the set of n − 1 vertices and decides if he has or has
not been chosen by ni (conforming or contradicting ni's choice).

(7) This individual n1
k must go through all possible spanning trees t(Kn−1) before

making a decision.

(i.) If n1
k decides through social interaction with others that he is chosen/not

chosen by ni and is correct ( a perfect match), the pair ni and n1
k walk away

with 2 million dollars each and the game ends.

(ii.) If n1
k is correct (a match) in the "ni has not chosen me" case, then the contes-

tant keeps his million and the casino selects the next participant other than
n1
k (n1

k cannot be chosen again but remains in the game as a communicator
or inactive participant or vertex).

(iii.) If n1
k is wrong (a non- match) by saying that he has been chosen, when in

fact he has not been chosen. He loses the million to the casino and the casino
proceed randomly to the next active vertex n2

k in the subgraph H, excluding
n1
k.

(iv.) If n1
k is wrong by saying that he has not been chosen by ni, when in fact he

has been chosen by ni, i.e. n1
k= n∗. If this is the last contestant, then the

casino declares a perfect match and the game ends. Otherwise, he keeps his
million and the casino swaps him with an arbitrary active participant nj

k (nj
k

becomes inactive but keeps his million), and the casino proceed randomly to
the next active vertex n2

k in the subgraph H (the participant now know that
he is n∗ so will eventually be a perfect matched with ni). The new leader n2

k

selected randomly by the casino, interacts with the other active individuals
in the same way n1

k did and decides if he is chosen or not by ni.

(v) The game stops when a perfect match is found. If no perfect match has been
found after n − 2 contestants in the set of n − 1 contestants, then the last
contestant allows for a perfect match by default.

For each of the n − 1 vertices in H, we have (n − 1)n−3 spanning trees, so that the
probability of arriving at a perfect match of ni with n∗ will be according to the theorem
below:

Theorem 1.3. The probability of arriving at a perfect match of ni with n∗ through
spanning trees in the gambling problem above is:

(1.3)
(n− 1

n

)n−2

=
|S|t(H(S))

t(Kn)
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Proof. This probability of a perfect match through the spanning trees is given as: (prob-
ability of selecting n∗) × (probability of n1

k in H having a perfect match with ni through
t(Kn−1) spanning trees OR n2

k having a perfect match with ni through t(Kn−1) spanning

trees OR . . . OR nn−1
k having a perfect match with ni through spanning trees).

Mathematically, this can be expressed as:

1

t(Kn)
× (n− 1)t(Kn−1) =

(n− 1)(n− 1)n−3

nn−2

=
(n− 1

n

)n−2

=
|S|t(H(S))

t(Kn)
,

where S is the number of vertices in the minimum vertex covering set of Kn and H(S) is
the subgraph induced by these vertices. �

Corollary 1.1. The probability ratio
(n− 1

n

)n−2

=
|S|t(H(S))

t(Kn)
of the gambling problem

converges to e−1. (Same is the probability of selecting the best applicant in the secretary
problem; the radius of convergence of the trees and the convergence of the solution of the
di�erential equations in Theorem 1.1 and Theorem 1.2.

Proof. Let

q =
(n− 1

n

)n−2

=⇒ lnq =
ln(1− 1

n )
1

n−2

As n → ∞, lnq → −1. Hence, q → e−1 as n → ∞. �

The ratio
|S|t(H(S))

t(Kn)
involving spanning trees and vertex cover, S, with its convergence

property, therefore provides the motivation for the de�nition of the tree-cover ratio and
asymptotes of classes of graphs presented below.

De�nition 1.1. Let t(G) be the number of spanning trees of a connected graph of order
n. Let S be a set of vertices of a minimum vertex cover of G, and H the subgraph of G
induced by S. We consider only the two cases (i) either H(S) is connected or (ii) H(S)
consist of n isolated vertices. In case (ii), t(H(S)) is de�ned as t(H(S)) = 1 .

Then the ratio:

tc(G)s =
|S|t(H(S))

t(G)

is the tree-cover ratio of G with respect to S.

Note: If H(S) is disconnected, and does not just consists of |S| isolated vertices, then
a spanning forest may be considered involving the components of H(S), but such cases
are not considered in this paper.

De�nition 1.2. The importance of graphs with a large number of vertices is well known,
If ξ is a class of graph and

tc(G)s =
|S|t(H(S))

t(G)
= f(n)
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for each G ∈ ξ, where n is the size of G, then the horizontal asymptote of f(n) is de�ned
by:

Asyp(ξ)s = lim
n→∞

f(n)

This asymptote is called the tree-cover asymptote of ξ, which is an indication of
the behaviour of the tree cover ratio when the graph has a large number of vertices, such
as in extreme networks.

1.3. An Ideal communication problem and tree-cover asymptote. In [9], the
communication problem is to select a minimal set of placed sensor devices in a service
area so that the entire service area is accessible by the minimal set of sensors. Finding
the minimal set of sensors is modeled as a vertex-cover problem, where the vertex-cover
set facilitates the communications between the sensors. The tree-cover asymptote may
therefore have application where communication is involved in networks with a large
number of vertices, i.e. in extreme networks.

If H(S), in the tree-cover de�nition, is connected, and M represents the vertices of
G not in S, then each vertex of M is connected directly by an edge (an out-edge) to
a vertex of H(S) which is part of a spanning tree. Thus, the ease of communication
between vertices of H(S) and M through the out edges, involving spanning trees, may be
represented by this tree-cover ratio- the "ideal" case, involving large number of vertices,
being when this tree-cover asymptotic ratio of 1/e is the smallest (and positive)- which
we believe in the case of complete graphs.

2. Examples of tree-cover ratios and asymptotes

2.1. Complete graph. Let Kn be a complete graph on n vertices. Then, a minimum
covering set of Kn is any subset of n − 1 vertices of Kn, and since t(Kn) = nn−2 ;
t(Kn−1) = (n− 1)n−3, we have the tree-over ratio of Kn to be:

tc(Kn)s =
|S|t(Kn−1)

t(Kn)
= f(n)

=
(n− 1)(n− 1)n−3

nn−2

=
(n− 1

n

)n−2

.

Hence, the tree-cover asymptote for the complete graph is given as:

Asyp(Kn)s = lim
n→∞

(n− 1

n

)n−2

= e−1 .

2.2. Cycles. The cycle, Cn on n vertices has t(Cn) = n number of spanning trees, and if
n is even, a minimum vertex cover, S, will be the n/2 vertices of the disconnected graph
induced by every alternate vertex of the cycle, so that t(H(S)) = 1 and |S| = n/2 . Thus,

tc(Cn)s =
(n/2).1

n
=

1

2
,
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so that:

Asyp(Cn)s =
1

2
.

2.3. Complete split-bipartite graph. LetKn/2,n/2 be a complete split-bipartite graph

on n vertices. Then, t(Kn/2,n/2) =
(n
2

)n−2

is its number of spanning trees, and either

partite set can be taken as a minimum vertex cover which yields t(H(S)) = 1, so that:

tc(Kn/2,n/2)s =
n

2(n/2)n−2
=

( 2

n

)n−3

,

and

Asyp(Kn/2,n/2)s = lim
n→∞

( 2

n

)n−3

= 0 .

2.4. Paths. Let Pn be a path on an even number of vertices. A minimum vertex cover,
S consists of alternate vertices of Pn starting with the �rst vertex of the path. Since

|S| = n

2
, t(H(S)) = 1, and t(Pn) = 1, we have:

tc(Pn)s(even) =
|S|t(H(S))

t(Pn)
=

n

2
,

so that

Asyp(Pn)(even) = ∞ .

For a path on an odd number of vertices, the number of vertices in H(S), where S consists

of alternative vertices of Pn starting with the second vertex of the path will be
n− 1

2
, so

that:

tc(Pn)s(odd) =
|S|t(H(S))

t(Pn)
=

n− 1

2
,

such that:

Asyp(Pn) = ∞ .

2.5. Wheel graph. The wheel graph, Wn, on an odd number of vertices n, has a cycle
of even length with each vertex joined to a center. The number of spanning trees of this

wheel is t(Wn) =
(

3+
√
5

2

)n

+
(

3−
√
5

2

)n

− 2 and the minimum vertex cover, S will involve

alternate vertices of the even cycle and the center vertex.
Thus, t′(H(S)) = 1 and:

tc(Wn)s(odd) =
|S|t(H(S))

t(Wn)

=
n(

3+
√
5

2

)n

+
(

3−
√
5

2

)n

− 2

≈ n

2( 32 )
n
( for n large) ,

so that:

Asyp(Wn)s(odd) = 0
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2.6. Ladder graph. The ladder graph, Ln/2,n/2 on an even number of vertices, has

t(Ln/2,n/2) =
(2 +

√
3)

n
2 − (2−

√
3)

n
2

√
3

and t(H(S)) = 1, where S is taken as follows; let

P and P ′ be the two paths, each having n/2 vertices, of the ladder, with edges between
matched vertices of the two paths. By taking S as the set of alternating vertices on P
and P ′, where the �rst vertex of P is selected and the second vertex P ′ is selected so that
S will have n/2 vertices. Then we have:

tc(Ln/2,n/2)s =
|S|t(H(S))

t(Ln/2,n/2)

=
n
√
3

2(2 +
√
3)n − 2(2−

√
3)n

.

Since (2 +
√
3)n dominates (2−

√
3)n for large n, we have:

f(n) =
n
√
3

2(2 +
√
3)n − 2(2−

√
3)n

≈ n
√
3

2(2 +
√
3)n

,

so that:
Asyp(Ln/2,n/2)s = 0 .

2.7. Star graph of rays of length 1. Let Sn,1 be the star graph on n vertices with
n− 1 rays of length 1. Then its center is its minimum covering set so that:

tc(Sn−1)s =
|S|t(H(S))

t(Sn,1)
,

hence:
Asyp(Sn,1)s = 1 .

2.8. Star graph with k rays of length 2. Let Sn,k(2) be the star graph on n vertices
with k rays of length 2, so that n = 2k+1(odd). The set S of vertices, a distance 1 from

the center form the minimum covering of this graph so that |S| = n− 1

2
and t(H(S)) = 1,

so that:

tc(Sn,k(2))s =
|S|t(H(S))

t(Sn,k(2))
=

n− 1

2
,

and
Asyp(Sn,k(2))s = ∞ .

2.9. Sun graph. Take a cycle on n/2 vertices and attached an end vertex to each vertex
of the cycle to form the sun graph, SNn on n vertices. Since t(SNn) = n and S consists
of all the vertices of the cycle so that t(H(S)) = n. Hence:

tc(SNn)s =
|S|t(H(S))

t(Sn,k(2))

=
n.n

n
= n ,

so that:
Asyp(SNn)s = ∞ .



56 P.A.WINTER AND F. J. ADEWUSI

Theorem 2.1. The tree-cover ratios and tree-cover asymptotes of the following graphs
are:

tc(Kn)s =
(n− 1

n

)n−2

and Asyp(Kn)s = e−1 ;

tc(Cn)s =
1

2
and Asyp(Cn)s =

1

2
;

tc(Kn/2,n/2)s =
( 2

n

)n−3

and Asyp(Kn/2,n/2)s = 0 ;

tc(Pn)s(even) =
n

2
; T (Pn)s(odd) =

n− 1

2
and Asyp(Kn)s = ∞ ;

tc(Wn)s =
n

( 3+
√
5

2 )n + ( 3−
√
5

2 )n − 2
and Asyp(Wn)s = 0 ;

tc(Ln/2,n/2)s =
n
√
3

(2 +
√
3)n − (2−

√
3)n

and Asyp(Ln/2,n/2)s = 0 ;

tc(Sn,1)s = 1 and Asyp(Sn,1)s = 1 ;
tc(Sn,k(2))s = n− 1 and Asyp(Sn,k(2))s = ∞ ;
tc(SNn)s = n and Asyp(SNn)s = ∞ .

Conjecture 2.1. The non-zero tree-cover asymptote of classes of graphs takes on the
smallest value of e−1 for complete graphs, i.e. if Asyp(ξ)s ̸= 0, then

Asyp(ξ)s ∈ [
1

e
,∞] .

The following theorem may help in proving the conjecture 2.1:

Theorem 2.2. Suppose ξ is a class of graphs for which:

t(G)s =
|S|t(H(S))

t(G)
=

(n− k)(n− k)n−p−1

nn−p

for which G ∈ ξ, p ∈ N, k > 1, and p > 2.
That is, the number of spanning trees of G is nn−p and G has a (minimum) vertex

cover S with n− k vertices and spanning trees (n− k)n−p−1. Then, Asyp(ξ) =
1

e
1
k

>
1

e
.

Proof. Let q =
(

n−k
n

)n−p

. Then,

q =
(n− k

n

)n−p

=⇒ ln q =
ln(1− k

n )
1

n−p

.

As n → ∞,

ln p =
−(n− p)2

(1− k
n )(kn

2)
≈ −n2

kn2
= −1

k

=⇒ q → e−
1
k as n → ∞ .

Since, k > 1, ⇒ 1

k
< 1; thus, e

1
k < e ⇒ 1

e
1
k

>
1

e
, proving the theorem. �
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3. Tree-cover area of classes of graphs

We introduce another dimension by integrating this tree-cover ratio.

De�nition 3.1. If ξ is a class of graphs and tc(G)s =
|S|t(H(S))

t(G)
= f(n) for each G ∈ ξ,

where n is the order of G, and m is the size, then the tree-cover area of ξ is de�ned as:

Ar(ξn) =
2m

n

∫
f(n)dn.

for min p de�ned, given that Ar(ξp) = 0.

Here,
2m

n
represents the average degree of the graph G, and the integral part as the

tree-cover height, h(G) of the graph.

3.1. Examples of tree-cover areas of classes of graphs.

Example 3.1. Cycle, Cn .

If Cn is a cycle on an even number of vertices, then tc(Cn) =
1

2
, so that the tree-cover

height of cycles, h(Cn), is

∫
1

2
. Hence, the tree-cover area of cycles, Ar(Cn) is given as:

Ar(Cn) =
2n

n

∫
1

2
dn = 2(

n

2
+ c);

f(3) = 0 =⇒ c = −3

2
,

hence:

Ar(Cn) = n− 3 .

Example 3.2. Paths, Pn .

If Pn is a path on an even number of vertices, then tc(Pn) =
n

2
, so that

Ar(Pn) =
2n− 2

n

∫
n

2
dn =

n− 1

n
(
n2

2
+ c) ,

f(2) = 0 =⇒ c = −2 ,

hence,

Ar(Pn) =
n− 1

n

(
n2

2
− 2

)
; (n even) .

If Pn is a path on an odd number of vertices, then:

Ar(Pn) =
n− 1

n

(
n2

2
− n+ c

)
; (n odd) ,

but,

Ar(P2) = 0 =⇒ c = 0 ,

hence:

Ar(Pn) =
n− 1

n

(
n2

2
− n

)
; (n odd) .
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n = 2 to: h(Kn) Ar(Kn)

2 0.0000 0.0000

3 0.7932 1.5864

4 1.4004 4.2012

5 1.9352 7.7408

6 2.4373 12.1860

Table 1. Tree-cover area of complete graphs

Example 3.3. Star graphs with rays of length 1, Sn,1 .

Ar(Sn,1) =
2n− 2

n

∫
dn =

2n− 2

n
(n+ c) ;

Ar(S1,1) = 0 =⇒ c = −2 ;

Ar(Sn,1) =
2(n− 1)(n− 2)

n
.

Example 3.4. Star graphs with k rays of length 2, S1,k(2) .

Ar(Sn,k(2)) =
2n− 2

n

∫
(
n

2
− 1

2
)dn =

2n− 2

n
(
n2

4
− n

2
+ c) ;

Ar(S1,k(2)) = 0 =⇒ c = −3

4
;

Ar(S1,k(2)) =
2n− 2

n
(
n2

4
− n

2
− 3

4
) .

Example 3.5. Sun graph, SNn .

Ar(SNn) = 2

∫
ndn = 2(

n2

2
+ c) ;

Ar(SN6) = 0 =⇒ c = −18 ;

Ar(SNn) = n2 − 36 .

For the following examples, we approximate the tree-cover heights and areas in tables
1 and 2.

Example 3.6. Complete graph, Kn .

Ar(Kn) = (n− 1)

∫ (n− 1

n

)n−2

dn .

Using trapezoid rule, we get the tree-cover area for cases n = 3, 4, 5, 6, where the height is
found by starting from n = 2 in table 1.

Example 3.7. Complete split-bipartite graph, Kn/2,n/2 .

Ar(Kn/2,n/2) =
n

2

∫ ( 2

n

)n−3

dn .

By using the Trapezium rule to obtain the tree-cover height and area for n = 2 to n =
2, 4, 6, 8 in table 2.
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n=2 to: h(Kn) Ar(Kn)

2 0.0000 0.0000

4 1.8323 3.6646

6 2.2260 6.6780

8 2.4700 9.8800

Table 2. Tree-cover area of complete split-bipartite graphs

n = 6 h(ξ) Ar(ξ)

Cn 1.5000 3.0000

Pn 16.0000 13.3333

Sn,1 4.0000 6.6667

SNn 0.0000 0.0000

Kn 2.4372 12.1860

Kn/2,n/2 2.2.2260 6.6780

Table 3. Tree-cover heights and areas for classes of graphs

3.2. Which class of graph has the largest tree-cover area? The star graphs with
k rays of length 2 are not de�ned for n even, but for n = 5, the tree-cover area of the
complete graph is larger than the tree-cover area of the star graph. Comparing all tree-
cover areas up to n = 6, we see that the complete graph has the largest area for regular
graphs.

4. Conclusion: Known and New Results

4.1. Combining spanning trees and vertex coverings. In this paper, we combined
the concepts of spanning trees, t(G), and vertex cover, S of a graph, G, to introduce a
new concept of a tree-cover ratio of G, where H(S) is the subgraph of G induced by S:

|S|t(H(S))

t(G)
.

This ratio was motivated by the fact that the general tree-cover ratio for complete graphs,

as a function of order n of such graphs is,

(
1− 1

n

)n−2

, and has an asymptotic convergence

of e−1, which is identical to the probability of choosing the best applicant selected in the
secretary problem. This resulted in the consideration of the asymptotic convergence of the
tree-cover ratio of the classes of graphs. We introduced the integration of the tree-cover
ratio which allowed for the idea of tree-cover areas of classes of graphs.

We propose that the tree-cover asymptote of complete graphs is the smallest amongst
all such possible positive tree-cover asymptotes of classes of graphs, and that the tree-
cover area of complete graphs dominates all other tree-cover areas of classes of regular
graphs.
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Future research may involve considering the tree-cover ratio of the complement of
classes of graphs discussed here. We could have considered the reciprocal of the tree-
cover ratio, i.e.

[tc(G)s]
−1 =

t(G)

|S|t(H(S))
.

For example, the reciprocal of the tree-cover ratio of complete graphs would have the
asymptotic convergence of e, while paths on an even number of vertices would have a
reciprocal tree-cover ratio asymptote of 0,(which is the same as the tree-cover asymptote
of complete split-bipartite graph), and reciprocal tree-cover area of

2n− 2

n

∫
2

n
dn =

2(n− 1)

n
(2 lnn+ c) .

4.2. Known and new results: ratios, asymptotes and areas. For the complete
graph on n vertices, the following are known results:

(1) The vertex expansion ratio which has asymptote 1(see [8]).
(2) The Hall ratio which converges to in�nity (see [5]).
(3) The eigen-ratio which converges to −1 (see [10]).
(4) The central radius ratio which has asymptote 1 (see [1]).

For complete graphs on n vertices, the following are the new results presented in this
paper.

Tree cover ratio, tc(Kn) is
(n− 1

n

)n−2

, which converges to e−1, and the tree-cover

area, Ar(Kn) = (n− 1)

∫ (n− 1

n

)n−2

.
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