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A NEW REPRESENTATION OF THE FIELD EQUATIONS OF

QUADRATIC METRIC�AFFINE GRAVITY

VEDAD PASIC1, ELVIS BARAKOVIC AND NERMIN OKICIC

Abstract. We deal with quadratic metric�a�ne gravity (QMAG), which is an alter-
native theory of gravity and present a new explicit representation of the �eld equa-
tions of this theory. In our previous work we found new explicit vacuum solutions of
QMAG, namely generalised pp-waves of parallel Ricci curvature with purely tensor
torsion. Here we do not make any assumptions on the properties of torsion and write
down our �eld equations accordingly. We present a review of research done thus far
by several authors in �nding new solutions of QMAG and di�erent approaches in
generalising pp-waves. We present two conjectures on the new types of solutions of
QMAG which the ansatz presented in this paper will hopefully enable us to prove.

1. Introduction

In 1905, Albert Einstein published his work on the theory of special relativity. Clas-

sical mechanics and classical electromagnetism provide models that are good represen-

tations of two sets of actual experiences. As Einstein noted in [5], it is not possible to

combine these into a single self�consistent model. The construction of the simplest pos-

sible self�consistent model by Einstein is the achievement of Einstein's theory of special

relativity. Special relativity gave a very satisfactory representation of the electromagnetic

interaction between charged particles, but the theory itself does not deal with gravita-

tional interaction.

General relativity is a theory of gravitation that was developed by Einstein between

1907 and 1915. Hermann Minkowski put Einstein's special relativity model into geo-

metrical terms, and it is widely believed that Einstein constructed his theory of general

relativity by experimenting with the generalisation of the geometric model.

Two problems with general relativity became apparent quite quickly. Einstein con-

sidered that what are recognised locally as inertial properties of local matter must be

determined by the properties of the rest of the universe. To what extent general relativ-

ity manages to do this is still unclear to this day, although Einstein's e�orts to discover

this extent founded the modern study of cosmology. The second problem of general

relativity was that, although electromagnetism pointed the way to general relativity, it
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is not included in the theory itself. As is evident from his remarks in [6], Einstein ex-

pected much more from general relativity than `just' the amalgamation of gravitation

and electromagnetism at the macroscopic level. He thought the theory should explain

the existence of elementary particles and should provide a treatment for nuclear forces.

He spent most of the second part of his life in pursuit of this aim, but with no real success.

There are a number of di�erent alternative theories of gravity that try to further

the completion of Einstein's theory of gravity. One such theory, propagated by Einstein

himself for some time, is metric�a�ne gravity, which is the theory employed by this

paper. Metric�a�ne gravity is a natural generalization of Einstein's general relativity,

which is based on a spacetime with a Riemannian metric g of Lorentzian signature. In

metric�a�ne gravity, we consider spacetime to be a connected real 4-manifoldM equipped

with a Lorentzian metric g and an a�ne connection �. The 10 independent components of

the symmetric metric tensor g�� and the 64 connection coe�cients ���� are the unknowns

of our theory, see [10] for more details.

De�nition 1.1. We call a spacetime fM; g;�g Riemannian if the connection is Levi�

Civita (i.e. ���� =
n

�
��

o
), and non�Riemannian otherwise.

The spacetime of metric�a�ne gravity reduces to that of general relativity provided

that the torsion (2.1) of the connection � vanishes and that the connection is metric

compatible (i.e. the covariant derivative of the metric g vanishes, rg � 0). In this case

the connection is uniquely determined by the metric (Levi�Civita connection) and the

same is true for the curvature. Consequently, the metric g is the only unknown quantity

of Einstein's equation. In contrast, the metric�a�ne approach does not involve any a

priori assumptions about the connection � and thus the metric g and the connection �

are viewed as two totally independent unknown quantities.

In quadratic metric�a�ne gravity (QMAG), we de�ne our action as

(1.1) S :=

Z
q(R)

where q is an O(1; 3)�invariant quadratic form on curvature R. Independent variation

of the metric g and the connection � produces Euler�Lagrange equations which we will

write symbolically as

@S=@g := 0(1.2)

@S=@� := 0:(1.3)

Our objective is the study of the combined system of �eld equations (1.2), (1.3). This is

a system of 10+64 real nonlinear partial di�erential equations with 10+64 real unknowns.

The quadratic form q(R) has 16 R2 terms with 16 real coupling constants, and it can be

represented as

(1.4) q(R) = b1R
2 + b�1R

2
�

+

3X
l;m=1

b6lm(A(l);A(m)) +

2X
l;m=1

b9lm(S(l);S(m)) +

2X
l;m=1

b�9lm(S
(l)
� ;S

(m)
� )

+ b10(R
(10); R(10))YM + b30(R

(30); R(30))YM
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with some real constants b1, b
�

1, b6lm = b6ml, b9lm = b9ml, b
�

9lm = b�9ml, b10, b30. Here R,

R�, A
(l), S(l), S

(l)
� , R(10), R(30) are tensors representing the irreducible pieces of curvature

and the inner products (�; �) and (�; �)YM are de�ned by

(K;L) := K�� L
�� ; (R;Q)YM := R�

��� Q
�
�
�� :

Detailed description of the irreducible pieces of curvature and quadratic forms on curva-

ture can be found in [20, 32, 35]. Our motivation comes from the Yang�Mills theory. The

Yang�Mills action for the a�ne connection is a special case of (1.1) with

q(R) := R�
���R

� ��
� :(1.5)

The motivation for choosing a model of gravity which is purely quadratic in curvature

is explained in detail in Section 1 of [35], Chapter 1 of [20] and Section 1 of [22]. The

idea of using a purely quadratic action in General Relativity goes back to Hermann Weyl

[37], where he argued that the most natural gravitational action should be quadratic

in curvature and involve all possible invariant quadratic combinations of curvature. In

short, by choosing a purely quadratic curvature Lagrangian we are hoping to describe

phenomena whose characteristic wavelength is su�ciently small and curvature su�ciently

large. One can get more information and form an idea on the historical development of

the quadratic metric�a�ne theory of gravity in e.g. [4, 7, 8, 12, 14, 19, 20, 22, 24, 29, 30,

31, 35, 36, 38].

2. Notation

Our notation follows [13, 21, 22, 23, 32, 35]. We denote local coordinates by x� where

� = 0; 1; 2; 3, and write @� := @=@x�:We de�ne the covariant derivative of a vector �eld as

r�v
� = @�v

�+����v
� : The Christo�el symbol is

�
�

��

�
=

1

2
g��(@�g��+@�g���@�g��):

We de�ne torsion as

(2.1) T�
�� = ���� � ����

and contortion as

(2.2) K�
�� =

1

2

�
T�

�� + T �
� � + T �

� �

�
:

Torsion and contortion are also related as

(2.3) T �
�� = K�

�� �K�
�� :

The irreducible pieces of torsion are, following [32],

(2.4) T (1) = T � T (2) � T (3); T (2)
��� = g��v� � g��v�; T (3) = �w;

where

(2.5) v� =
1

3
T �

�� ; w� =
1

6

p
jdet gjT���"���� :

The pieces T (1); T (2) i T (3) are called tensor torsion, trace torsion, and axial torsion re-

spectively. Substituting formulae (2.4) into formula (2.2), and formula (2.3) into formulae
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(2.5) we obtain the irreducible decomposition of contortion:

(2.6) K(1) = K �K(2) �K(3); K(2)
��� = g��v� � g��v�; K(3) =

1

2
� w;

where v� =
1

3
K�

�� ; w� =
1

3

p
jdet gjK���"���� : The irreducible pieces of torsion (2.4)

and contortion (2.6) are related as T (i)
��� = K(i)

��� (i = 1; 2); T (3)
��� = 2K(3)

���: We

de�ne curvature as R�
��� := @��

�
�� � @��

�
�� + �����

�
�� � �����

�
��; Ricci curvature

as Ric�� = R�
��� , scalar curvature as R = Ric�� and trace-free Ricci curvature as

Ric = Ric� 1
4Rg:We denote Weyl curvature byW which is understood as the irreducible

piece of curvature de�ned by conditions R���� = R����, "
����R���� = 0 and Ric = 0:

We employ the standard convention of raising and lowering tensor indices by means of the

metric tensor. We de�ne the action of the Hodge star on a rank q antisymmetric tensor

as (�Q)�q+1:::�4 := (q!)�1
p
jdet gj Q�1:::�q"�1:::�4 ; where " is the totally antisymmetric

quantity, "0123 := +1. When we apply the Hodge star to curvature we have a choice

between acting either on the �rst or the second pair of indices, so we introduce two

di�erent Hodge stars: the left Hodge star (�R)���� :=
1

2

p
jdet gj R�0�0

�� "�0�0�� and

the right Hodge star (R�)���� :=
1

2

p
jdet gj R��

�0�0

"�0�0�� : Given a scalar function

f : M ! R we write for brevity

Z
f :=

Z
f
p
jdetgjdx0dx1dx2dx3; detg := det(g��):

3. Explicit representation of the field equations

We write down explicitly our �eld equations (1.2), (1.3) under the following assump-

tions:

(i) our spacetime is metric compatible;

(ii) curvature has symmetries R���� = R���� and "����R���� = 0;

(iii) scalar curvature is zero.

The main result of this paper is the following.

Theorem 3.1. Under the assumptions (i)-(iii) the �eld equations (1.2) and (1.3)

become

d1W
����Ric�� + d3

�
Ric��Ric �

� �
1

4
g��Ric��Ric

��

�
= 0(3.1)
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d6r�Ric�� � d7r�Ric��(3.2)

+ d6

�
Ric �

� (K��� �K���) +
1

2
g��W

��
�� (K

�
�� �K

�
�� ) +

1

2
g��Ric

�
� K�

��

+g��Ric
�

� K
�
�� �K

�
��Ric�� +

1

2
g��Ric

�
� (K

�
�� �K

�
�� )

�

� d7

�
Ric

�
� (K��� �K���) +

1

2
g��W

��
�� (K

�
�� �K

�
�� ) +

1

2
g��Ric

�
� K

�
��

�g��Ric
�

� K
�
�� �K

�
��Ric�� +

1

2
g��Ric

�
� (K

�
�� �K

�
�� )

�

+ b10

�
g��W

��
�� (K

�
�� �K

�
�� ) + g��W

��
�� (K

�
�� �K

�
�� )

+g��Ric
�

� (K
�
�� �K

�
�� ) + g��Ric

�
� (K

�
�� �K

�
�� )

+g��Ric
�

� K
�
�� � g��Ric

�
� K

�
�� +Ric��K

�
�� �Ric��K

�
��

�

+ 2b10

�
W

�
��� (K

�
�� �K

�
�� ) +W

�
��� (K

�
�� �K�

�� )

�W
��
��K��� �W

�
���K

�
��

�
= 0;

where

d1 = b912 � b922 + b10; d3 = b922 � b911;

d6 = b912 � b911 + b10; d7 = b912 � b922 + b10;

the b's being coe�cients de�ned in [20, 23].

Remark 3.1. Note that, by de�nition, we have the curvature symmetry R���� =

�R����, and the symmetry R���� = �R���� is a consequence of metric compatibility.

Proof. The LHS of equations (3.1) and (3.2) are respectively the components of tensors

A and B from the formula

�S =

Z
(2A���g�� + 2B

��
���

�
��):

Here �g and �� are the independent variations of the metric and the connection, and �S

is the resulting variation of the action. In deriving explicit formulae for tensors A and

B we simpli�ed our calculations by adopting the following argument. Formula for the

quadratic form (1.4) can be, under the assumptions (i)� (iii), rewritten as

q(R) =

2X
l;m=1

b9lm(S(l);S(m)) + b10(R
(10); R(10))YM + : : :

=

2X
l;m=1

b9lm(Ric(l);Ric(m)) + b10(R
(10); R(10))YM + : : : ;



38 V. PASIC, E. BARAKOVIC AND N. OKICIC

where by � � � we denote terms which do not contribute to �S when we start our variation

using the assumptions (i)�(iii). In accordance with the convention of [35], put

P� :=
1

2
(Ric(1) �Ric(2));

P+ :=
1

2
(Ric(1) +Ric(2)) =

1

2
(Ric(1) +Ric(2)):

Note that in a metric compatible spacetime Ric(2) = �Ric(1), hence P+ = 0 and P� =

Ric. Our quadratic form can now be rewritten as

q(R) = b10(R
(10); R(10))YM + (b911 � 2b912 + b922)(P�; P�)(3.3)

+ 2(b911 � b922)(P�; P+) + : : : :

We also provide another version of this formula which is in accordance with the notation

of [32], where most of these terms were studied in detail. The equation (3.3) can be

rewritten as

(3.4) q(R) = c1(R
(1); R(1))YM + c3(R

(3); R(3))YM + 2(b911 � b922)(P�; P+) + : : :

where

(3.5) c1 = �
1

2
(b911 � 2b912 + b922); c3 = b10;

and the R(j)s are the irreducible pieces of curvature labeled in accordance with [32].

Variation with respect to the connection. The variation of
R
(R(j); R(j))YM was

computed in [32]:

(3.6)

Z
(R(j); R(j))YM = 4

Z �
(�YMR(j))�(��)�

�

where

(�YMR)
�
:=

1p
jdetgj

(@� + [�� ; � ])
�p

jdet gjR��
�

is the Yang� Mills divergence where we hide the Lie algebra indices of curvature by using

matrix notation

(3.7) [��; R�� ]
�

�
= ����R

�
��� �R�

����
�
��:

In our case, because of assumptions (i)�(iii), the curvature has only two irreducible pieces,

namely R(1) i R(3) =W, which can be written as

R(1)
���� =

1

2
(g��Ric�� � g��Ric�� � g��Ric�� + g��Ric��) ;

R(3)
���� = R���� �R(1)

���� :

with the other R(j)s being zero. Substituting these expressions into (3.6) we get

�

Z
(R(1); R(1))YM = 2

Z
(�����)

h
r�Ric�� �r�Ric�� + g��r�Ric

�
�(3.8)

� g��r�Ric
�

� +Ric �
� (K��� �K��� ) +Ric

�
� (K��� �K��� )

+g��K
�
��Ric

�
� �K

�
��Ric�� +K

�
��Ric�� � g��K

�
��Ric

�
�

i
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and

(3.9) �

Z
(R(3); R(3))YM =4

Z
(�����)(r�W

�
��� �K���W

��
�� �K

�
��W

�
��� ):

Further,

�

Z
(P�; P+) = �

1

2

Z
(�����)

�
r�Ric�� +r�Ric�� � g��r�Ric

�
�(3.10)

�g��r�Ric
�

� +Ric �
� (K��� �K��� ) +Ric

�
� (K��� �K��� )

+K
�
�� (g��Ric

�
� + g��Ric

�
� )�K

�
��Ric�� �K

�
��Ric��

i
:

Combining formulae (3.4), (3.5), (3.8)�(3.10), we arrive at the explicit form of the �eld

equation (3.2):

d06r�Ric�� � d07r�Ric��+(3.11)

d06

�
�g��r�Ric

�
�

+Ric �
� (K��� �K���) + g��K

�
��Ric

�
� �K

�
��Ric��

�
�

d07

�
�g��r�Ric

�
�

+Ric
�

� (K��� �K���) + g��K
�
��Ric

�
� �K

�
��Ric��

�
+

2b10

�
r�W

�
��� �K���W

��
�� +K

�
��W

�
���

�
= 0;

where

d06 = b912 � b911; d07 = b912 � b922:

Let us use the Bianchi identity for curvature

(@� + [��; �])R�� + (@� + [�� ; �])R�� + (@� + [��; �])R�� = 0;

where we hide the Lie algebra indices of curvature by using formula (3.7). Using our

assumptions (i)�(iii) and making one contraction of indices, we get

r�Ric�� �r�Ric�� + g��r�Ric
�
� � g��r�Ric

�
�+(3.12)

Ric��(g��K
�
�� � g��K

�
��) +Ric��(K��� �K���)+

Ric��(K��� �K���) +Ric��(K
�
�� �K�

��) +Ric��(K
�
�� �K�

��)+

2 (r�W
�
��� +W�

���(K
�
�� �K�

��) +W�
���(K

�
�� �K�

��)) = 0:

Another contraction in (3.12) yields

(3.13) r�Ric
�
� = �

1

2
Ric��K

�
�� �

1

2
Ric��(K

�
�� �K

�
�� )�

1

2
W��

��(K
�
�� �K�

��):

Substitution of (3.13) into (3.12) gives

r�W
�
��� =W�

���(K
�
�� �K�

��) +W�
���(K

�
�� �K�

��)(3.14)

+
1

4
(K�

�� �K�
��)(g��W

��
�� � g��W

��
��)

+
1

2
[r�Ric�� �r�Ric�� +Ric��(K��� �K���)

+Ric��(K��� �K���) +Ric��(K
�
�� �K�

��) +Ric��(K
�
�� �K�

��)]

+
1

4
Ric��(g��K

�
�� � g��K

�
��) +

1

4
(K

�
�� �K

�
�� )(g��Ric

�
� � g��Ric

�
�):
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Formulae (3.13) and (3.14) allow us to exclude the terms with r�Ric
�

� , r�Ric
�

� i

r�W
�
��� from equation (3.11), reducing the latter to (3.2).

Variation with respect to the metric. The �eld equation (3.1) is identical to the

one in the Riemannian case as given in [35], only with the scalar curvature being zero,

which is not surprising as the assumptions on the torsion do not in�uence the form of

the equation. Here we present brie�y the derivation of equation (3.1). A lengthy but

straightforward calculation shows that

�

Z �
R(1); R(1)

�
YM

= �2

Z
W����Ric���g�� :(3.15)

�

Z �
R(3); R(3)

�
YM

= �2

Z
W����Ric���g�� :(3.16)

Further,

�

Z
(P�; P+) =

Z
(Ric; �P+) =

1

2

Z
(Ric; �Ric) +

1

2

Z
(Ric; �Ric(2)) =(3.17)

�
1

4

Z �
4Ric��Ric �

� + 2W����Ric�� � g��Ric��Ric
��
�
�g�� :

Combining formulae (3.4) - (3.17) we arrive at the explicit form of the �eld equation

(3.1).

This ends the proof of Theorem 3.1. �

Remark 3.2. If we assume that torsion is purely tensor, in addition to our assump-

tions (i)-(iii), the �eld equations (3.1), (3.2) reduce to those presented in [20, 23],

with the correction presented in Appendix C of [22].

Remark 3.3. If we assume that the torsion is purely axial, in addition to our

assumptions (i)-(iii), the �eld equations (3.1), (3.2) reduce to

d1W
����Ric�� + d3

�
Ric��Ric �

� �
1

4
g��Ric��Ric

��

�
= 0;(3.18)

d6 (r�Ric�� +Ric �
� T���)� d7

�
r�Ric�� +Ric

�
� T���

�
(3.19)

+2b10

�
W

�
���T

�
�� +W

�
���T

�
�� �

1

2
W

��
��T���

�
= 0:

where the d's are the same as given in Theorem 3.1 and the b's are the same as

given in [20, 23].

Remark 3.4. An e�ective technique for writing down the �eld equations explicitly

can be found in [9, 10]. Namely, according to formulae (142), (143) of [9], our

system of �eld equations reads

e�cV � (e�cR�
 ^

@V

@R�

) = 0;(3.20)

D
@V

@R�
�

= 0:(3.21)

Here the notation is anholonomic, V := �q(R) is the Lagrangian, e� is the frame and

D is the covariant exterior di�erential, c is the interior product and the exterior

product is ^. Equation (3.21) is the explicit form of equation (1.3), but equations
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(3.20) and (1.2) are somewhat di�erent: the di�erence is that (3.20) is the result

of variation with respect to the frame rather than the metric. It is known, however,

that the systems (1.2), (1.3) and (3.20), (3.21) are equivalent.

4. Discussion

A comprehensive study of equations (1.2), (1.3) was done only relatively recently.

Vassiliev [35] solved the problem of existence and uniqueness for Riemannian solutions

(see De�nition 1.1). He showed that the Riemannian solutions of the equations (1.2), (1.3)

are Einstein spaces, pp-waves with parallel Ricci curvature and Riemannian spacetimes

which have zero scalar curvature and are locally a product of Einstein 2�manifolds.

Furthermore, in the same paper [35] Vassiliev showed that the above spacetimes are

the only Riemannian solutions of the system of �eld equations (1.2), (1.3). It is also

interesting that before [35] it had not been noticed that pp-waves were solutions of the

problem, although they were well known spacetimes in theoretical physics. Because of

the uniqueness result we can now only establish new non-Riemannian solutions of the

system (1.2), (1.3).

In [35] Vassiliev also presented one non-Riemannian solution of the system (1.2), (1.3)

and it was a torsion wave solution with explicitly given torsion. For the Yang�Mills

case (1.5) this torsion wave solution was �rst obtained by Singh and Gri�ths: see last

paragraph of Section 5 in [28] and the same solution was later independently rediscovered

by King and Vassiliev in [13]. It should be pointed out that the torsion wave solution of

King and Vassiliev is a highly specialised version of the solution obtained by Singh and

Gri�ths [28], which is a solution of algebraic type III, where the Riemannian spacetime

is a Kundt plane-fronted gravitational wave and the torsion is purely tensor. Vassiliev's

contribution in [35] was to show that these spacetimes satisfy equations (1.2), (1.3) in

the most general case of the purely quadratic action (1.1). This work of Vassiliev went

on to conclude that this torsion wave was a non-Riemannian analogue of a pp-wave,

whence came the motivation for generalising the notion of a classical Riemannian pp-

wave to spacetimes with torsion in such a way as to incorporate the non-Riemannian

torsion-wave solution into the construction.

PP-waves are well known spacetimes in general relativity, �rst discovered by Brinkmann

[3] in 1923, and subsequently rediscovered by several authors, for example Peres [25] in

1959. We de�ne a pp-wave as a Riemannian spacetime which admits a nonvanishing par-

allel spinor �eld, or equivalently as a Riemannian spacetime whose metric can be written

locally in the form ds2 = 2dx0 dx3� (dx1)2� (dx2)2+ f(x1; x2; x3) (dx3)2 in some local

coordinates (x0; x1; x2; x3). In our previous work [20, 21, 22, 23], where a detailed descrip-

tion of pp-waves can be found, we presented results which were new (non-Riemannian)

explicit vacuum solutions of the system of our �eld equations (1.2), (1.3), namely gener-

alised pp-waves with torsion. This generalisation was done by employing the pp-metric

and giving an explicit torsion, identical to the torsion-wave obtained by Vassiliev in [35].

The fact that the two solutions, one Riemannian and the other non-Riemannian, `add up'

is extremely non-trivial, as the system we are observing is highly non-linear. We further

explored the properties and characteristics of these generalised pp-waves, showing that
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they are indeed solutions of the system of our �eld equations (1.2), (1.3), by writing the

�eld equations explicitly, like in this paper, but with the additional assumption of torsion

being purely tensor, which simpli�es matters substantially. Our analysis of vacuum solu-

tions of QMAG showed that classical pp-spaces of parallel Ricci curvature should not be

viewed on their own, but that they are in fact a particular (degenerate) representative of

a wider class of solutions, namely, generalised pp-spaces of parallel Ricci curvature. The

latter appear to admit a sensible physical interpretation, which we explored in detail in

[22] where we gave a comparison with the classical model describing the interaction of

gravitational and massless neutrino �elds, namely Einstein�Weyl theory, constructed pp-

wave type solutions of this theory and pointed out that generalised pp-waves of parallel

Ricci curvature are very similar to pp-wave type solutions of the Einstein�Weyl model.

Therefore we proposed that our generalised pp-waves of parallel Ricci curvature repre-

sent a metric-a�ne (i.e. conformally invariant) model for a massless particle, namely

the massless neutrino. The main di�erence in using our metric�a�ne model is that

Einstein�Maxwell and Einstein�Weyl theories contain the gravitational constant which

dictates a particular relationship between the strengths of the �elds in question, whereas

our model is conformally invariant and the amplitudes of the two curvatures (i.e. torsion

generated and metric generated curvatures) are totally independent.

The main idea of the current paper is to empower us to �nd new pp-wave type non-

Riemannian solutions with arbitrary (as opposed to purely tensor) torsion. Note that the

assumptions (i)-(iii) used to derive our equations are automatically satis�ed by pp-waves

and their generalisation, so we are justi�ed in using them.

The observation that one can construct vacuum solutions of QMAG in terms of pp-

waves is a recent development. The fact that classical pp-waves of parallel Ricci curvature

are solutions was �rst pointed out in [33, 34, 35]. There are a number of publications

in which authors suggested various generalisations of the concept of a classical pp-wave.

These generalisations were performed within the Riemannian setting and usually involved

the incorporation of a constant non-zero scalar curvature; see [17] and extensive further

references therein. Our construction in [20, 21, 22, 23] generalised the concept of a classical

pp-wave in a di�erent direction: we added torsion while retaining zero scalar curvature.

Note that we keep this assumption in the current paper.

A powerful method which in the past has been used for the construction of vacuum

solutions of QMAG is the so-called double duality ansatz [1, 2, 14, 15, 32, 35]. For

certain types of quadratic actions the following is known to be true: if the spacetime is

metric compatible and curvature is irreducible (i.e. all irreducible pieces except one are

identically zero) then this spacetime is a solution of (1.2), (1.3). This fact is referred to

as the double duality ansatz because the proof is based on the use of the double duality

transform R 7! �R� (this idea is due to Mielke [14]) and because the above conditions

imply �R� = �R. However, solutions presented in [20, 21, 22, 23] and the ones we hope

arise from our current work do not �t into the double duality scheme. This is due to

reasons that can be found explained in detail in [20, 23]. These solutions are similar to

those of Singh and Gri�ths [28]. The main di�erences are as follows:

� The solutions in [28] satisfy the condition fRicg = 0 whereas our solutions satisfy

the weaker condition frgfRicg = 0.
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� The solutions in [28] were obtained for the Yang�Mills case (1.5) whereas we deal

with a general O(1; 3)-invariant quadratic form q with 16 coupling constants.

One interesting generalisation of the concept of a pp-wave was presented by Obukhov in

[18]. Obukhov's motivation comes from his previous work [17] which is the Riemannian

case. In fact, the ansatz for the metric and the coframe of [18] is exactly the same as

in the Riemannian case. However, the connection extends the Levi-Civita connection is

such a way that torsion and nonmetricity (rg 6= 0) are present, and are determined by

this extension of the connection. Obukhov studies the same general quadratic Lagrangian

with 16 terms, and the result of [18] does not belong to the triplet ansatz, see [11, 16].

Obukhov's gravitational wave solutions have only two non-trivial pieces of curvature.

However, unlike in our setting, the two non-zero pieces of curvature in [18] are equivalent

to the pieces of curvature coming from the 10-dimensional R(10) and the 30-dimensional

R(30) irreducible curvature subspaces. Hence the main di�erences between our work and

Obukhov's generalisation of [18] are the following:

� In Obukhov's plane-fronted waves not only are the torsion waves present, but the

non-metricity has a non-trivial wave behaviour as well. As we are only looking at

metric�compatible spacetimes, nonmetricity cannot appear in our construction.

� The second (R(30)) irreducible piece of curvature cannot appear in our ansatz, as

this piece of curvature is zero for metric-compatible spacetimes.

� Obukhov's gravitational wave solutions provide a minimal generalisation of the

pseudoinstanton, see [32], in the sense that nonmetricity does not vanish and that

curvature has two non-zero pieces.

In relation to our goal of �nding new solutions of QMAG, the two papers of Singh [26, 27]

are of special interest to us. Singh constructs solutions for the Yang�Mills case (1.5) with

purely axial and purely trace torsion respectively and unlike the solution of [28], fRicg is

not assumed to be zero. It is obvious that these solutions di�er from the ones presented

in [23], as the torsion there is assumed to be purely tensor and the torsion wave produced

curvature is purely Weyl, i.e. fRicg = 0. It would however be of interest to us to

see whether this construction of Singh's can be expanded to our most general O(1; 3)-

invariant quadratic form q with 16 coupling constants. In [26] Singh presents solutions

of the �eld equations (1.2), (1.3) for the Yang�Mills case (1.5) for a purely axial torsion.

The make a class of solutions that cannot be obtained using the double duality ansatz, see

[1, 2, 14, 15, 32, 35]. In fact, Singh uses the `spin coe�cient technique' from his previous

work with Gri�ths [28] in constructing the new solutions. In view of the fact that the

previous purely tensor solutions in [28] were shown to also be the solutions in the most

general case (1.4), we expect that this is also true in the purely axial case. Therefore,

similarly to our previously found purely tensor torsion waves, we suggest the following

Conjecture 4.1. There exist purely axial torsion waves which are solutions of the

�eld equations (1.2), (1.3).

We should point out that the explicit forms (3.1), (3.2) of our �elds equations (1.2),

(1.3) given in Section 3 were obtained without any a priori assumptions on torsion. Hence,

under the assumption of purely axial torsion, the �eld equations would be substantially

simpli�ed, as given in equations (3.18), (3.19) in Remark 3.3.
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Following the reasoning behind the generalised pp-waves of [23] that were shown to be

solutions of the �eld equations (1.2), (1.3), where we `combined' the pp-metric and the

purely tensor torsion waves to obtain a new class of solutions for QMAG, we hope to be

able to do the same with purely axial torsion waves. Therefore, we suggest the following

Conjecture 4.2. There exists a class of spacetimes equipped with the pp-metric and

explicitly given purely axial torsion of parallel Ricci curvature that satis�es the �eld

equations (1.2), (1.3).

Similarly, in [27] Singh presents solutions of the �eld equations (1.2), (1.3) for the

Yang�Mills case (1.5) for a purely trace torsion. At this point we are still not sure

whether these torsion waves can also be used to create new generalised pp-wave solutions

of QMAG, but we hope to be able to answer this question as well, together with proving

the two conjectures above, which would accomplish the main purpose of the current

article � to make it simpler for researchers to �nd and con�rm new solutions of metric�

a�ne gravity. The next step would then be to give a physical interpretation of these

new solutions by comparing them to existing Riemannian solutions, like it was done in

[22] for purely tensor torsion generalised pp-waves, which would represent a very valuable

scienti�c contribution in the �eld of alternative theories of gravity.
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