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Abstract
Data from ten sources comprising 3,851 flocks were modelled to identify variation in levels

of mortality in laying hens. The predicted increase with age was curvilinear with significant

variation between the seven breed categories. Mortality was higher in loose housing sys-

tems than in cages and variable within system, confirming previous reports. Cumulative

mortality (CM) was higher in flocks with intact beaks (χ2 = 6.03; df 1; p = 0.014) than in

those with trimmed beaks. Most data were available for free-range systems (2,823 flocks),

where producer recorded CM at 60–80 weeks of age averaged 10% but with a range from

0% to 69.3%. Life cycle assessment showed that the main effect of increased levels of hen

mortality is to increase the relative contribution of breeding overheads, so increasing envi-

ronmental burdens per unit of production. Reducing CM to levels currently achieved by the

1st quartile could reduce flock greenhouse gas emissions by as much as 25%. Concurrently

this would enhance hen welfare and better meet the expectation of egg consumers. More

research to understand the genetic x environment interaction and detailed records of the

causes of mortality is required so that improved genotypes can be developed for different

systems and different breeds can be better managed within systems.

Introduction
Conventional cages have been outlawed in Europe since 2012 (EU Directive 1999/74/EC).
Although globally the prevalent system, the move away from keeping hens in conventional bat-
tery cages is extending beyond Europe to countries such as Australia, New Zealand, Canada
and the USA. This follows increasing recognition of the extreme spatial and behavioural
restriction these cages impose on hens, possibly offsetting their advantages in terms of hygiene
and reduced exposure to potential disease causing organisms [1, 2, 3]. Therefore, increasing
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numbers of laying hens are being kept in non-cage housing systems in large groups of several
thousand birds. Contrary to consumer expectation, however, surveys have frequently found
the mean levels of mortality to be both high and greater in these systems than in cage systems.
For example, one study found 6.9% mortality in 25 free-range flocks [4], whereas another [5]
reported a mean of 4.2 x and 2.0 x greater levels of mortality [birds found dead by 66–72 weeks
of age] in seven barn systems and seven free range systems respectively, compared with six fur-
nished cage systems. In New Zealand flocks, mean mortality rates to 63 weeks of 2.9% in fur-
nished cages, and 6.3% in free range systems were recorded [6]. In a larger survey [7] of UK
data from 1,486 flocks in 2009 we found that mortality rates by the end of lay in free-range
flocks (mean: 9.5%) were significantly greater than in flocks kept in cages (both furnished and
conventional; mean: 5.4%). These figures were based on producer records on the Food Chain
Information form completed a median of 7 days before slaughter, thus slightly underestimating
the final cumulative mortality on farm.

The furnished cage system was developed to enable the needs of laying hens for nesting,
perching and to some extent dustbathing behaviour [8] to be met whilst also retaining good
hygiene and small group sizes (e.g. in Sweden typically 8–10 birds [9]). As yet there is limited
published information evaluating the welfare of hens in larger colony sizes of 80 birds or more
per cage; moreover to several welfare organisations ‘a cage is a cage’ and pressure is mounting
to extend current bans on conventional cages to include furnished cages as well [10].

If increasing numbers of laying hens are to be kept in non-cage systems that frequently, if
not inherently, have higher levels of associated mortality then there are negative implications
not only for bird health and welfare but also for food security and sustainability resulting from
the reduced productive output of such flocks. These include fewer eggs produced per unit of
land and higher burdens on the environment per unit production. For example, higher green-
house gas and ammonia emissions, and cumulative energy use from free-range than caged sys-
tems were found in an analysis that used average industry mortality rate data and so could not
readily address the impacts of different mortality rates [11].

This paper therefore examines the impact of on-farm cumulative mortality (CM) using data
from European producer records for commercial flocks kept in different housing systems. The
analysis uses raw data from ten published and unpublished studies (approximately 45 million
laying hens). This study aims to improve the accuracy and reliability of estimates of levels of
mortality and to identify some associated risk factors. Using the variation between flocks, it
also predicts the consequences for food security and land use of depressed production associ-
ated with higher levels of mortality.

Materials and Methods

2.1. Mortality data
Cumulative mortality data were collated from nine different UK sources, and one source that
provided information from the Netherlands and Sweden (Table 1). Data sources were selected
for relevance and in particular the availability of raw data. Data were provided from previously
published scientific studies and unpublished sources such as farm assurance schemes.

The CM data were collected from 3,851 flocks between 2005 and 2012, at a range of ages
(mean: 65.3 w, range: 16–208 w) and flock sizes (mean: 11,742, range: 6–172,500). Data came
from seven breed categories: Columbian Black Tail; Hyline Brown; ISAWarren; Lohmann
Brown; Shaver Brown; Other (commercial breeds which were not represented in large enough
numbers to be included separately); and Traditional breeds. Henceforth these breeds are repre-
sented by randomly assigned codes A-G (n = 160; 1,239; 856; 78; 312; 211; and 594, respec-
tively), unrelated to the order in which they are listed above. Six housing systems provided
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data: two in which the birds were confined in small groups within either conventional (battery)
cages or furnished (colony) cages with 447 and 51 flocks respectively, and four loose-housed
systems where birds within the flock could move around freely. The loose-housed systems
included aviary, barn, free range and free range aviary (n = 31; 168; 2998; 125, respectively).
Aviary denotes a house where the birds have access to several levels, or tiers, with litter pro-
vided at ground level; feed, water, perches and nests are provided on one or more of the other
levels. Barn (also called single-tier) is a house with no access to the outdoors where the birds
have litter at ground level and other resources on a raised, slatted area. Free range housing sys-
tems include static houses similar to barn housing but with low-level hatches called popholes
that give access to the range (a field which may contain trees and other shelter) during daylight
hours, and they also include smaller houses which can be moved but which also give access to
the range during daylight. A separate category of ‘free-range aviary’ was chosen for aviary
housing with range access, as the popholes are less visible and accessible to hens in multi-tier
systems. Organic flocks legally have to have access to free-range and in general are kept in
mobile or barn housing but aviary is possible; their feed and pasture have to be managed organ-
ically. More information on housing systems can be found at www.laywel.eu.

Data also came from beak trimmed and intact beak flocks (n = 801 and 228, respectively),
and organic and non-organic flocks (n = 349 and 2,477, respectively). Data were missing for
some variables within studies, and not all studies provided information on all variables, there-
fore analyses of some variables came from a smaller number of data sets.

The data are hierarchical: one of the studies included multiple data points from the same
flock, and eight studies included data from more than one flock on the same farm. Data were
examined in considerable detail and, where possible (e.g. where farms and flocks were named
and/or numbered), each flock and each farm was given a unique identifier. However, this

Table 1. Summary of the studies fromwhich cumulative mortality data were obtained and used for this analysis.

Study Source Reference Details No. of
observations

Est. no. of
flocks

Est. no.
of farms

1 FAI Farms,
Oxford, UK

Unpublished data UK farms supplying McDonalds (2008–12) 970 970 342

2 University of
Bristol

Unpublished data from
study by [12]

Data from 11 FC and 12 FR flocks studied during
transport to slaughter (2009–11)

23 23 16

3 Welfare
Quality1

Unpublished data The Netherlands and Sweden (2006–11) 119 119 119

4 University of
Bristol

Sherwin et al [5] A comparison of four different housing systems for
laying hens

26 26 15

5 University of
Bristol

Unpublished UFAW
Summer studentship

Study examining time course of rates of mortality in
free-range flocks

70 70 18

6 University of
Bristol

Lambton et al [13] A study of the efficacy of management strategies
designed to reduce injurious pecking in free
range laying hens.

133 133 57

7 University of
Bristol

Unpublished data from
RSPCA study

A study of range use in free range laying hens 36 36 21

8 University of
Bristol

Nicol et al [14] Experimental evaluation of the effects of stocking
density and flock size in aviary systems on hen
behaviour

36 36 1

9 Food Standards
Agency

Raw data used in [7] UK national data from 5 slaughter plants during
2009

1,501 1,501 770

10 AssureWel1 unpublished Data collected by assurance scheme assessors at
different ages in the UK

937 650 650

Total 3,851 3,564 2,009

doi:10.1371/journal.pone.0146394.t001
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information was not clearly labelled in all studies, thus the number of farms and flocks are in
some cases an estimate (Table 1). The hierarchical structure may not be perfect, as it is likely
that some of the farms were visited in more than one study, there being a finite number in the
UK, however each study would have used a different flock, thus reducing the possibility of
duplication.

Multilevel models were generated using Stata 12.0 (StataCorp LP, Texas, USA) to reflect the
hierarchical structure of the dataset: multiple visits to flocks within farms within studies. The
response variable, CM, was square root transformed. All models included the time of year at
which the CM data were collected: date was sine and cosine (sin(2�pi�(x/365)) and cos(2�pi�

(x/365)), where x is the number of days on a given date since 1st Jan 2005 (the first year for
which we have data); i.e. on 2nd Jan 2005 x = 1, 25th Jan 2005 x = 24 etc.) transformed to
account for the cyclical nature of annual patterns [15]. Both the sine and cosine transformed
variables were included in all models to allow more flexibility in the curves generated. The
explanatory variables: age; flock size; house type; breed; beak trim and organic status were each
entered individually into the model to produce bivariable models (controlled for time of year
as described above). Variables significant in bivariable models were then entered together into
a multivariable model; any non-significant variables (p>0.05) were removed and the model
was re-run. Thus a final model was produced with only significant variables.

Two-way interaction effects were examined where there was sufficient data to model each
interaction category (i.e. not all house type / breed combinations were represented in the data)
and where the interaction was considered to be of biological interest.

Sensitivity analysis was carried out to examine the effect of removing outlying data points,
thus the analyses were repeated separately including only flocks of�500 birds, only flocks
�100 weeks of age, and only flocks with CM�40%.

2.2. Environmental impacts
The environmental impacts of mortalities were calculated using Life Cycle assessment (LCA).
This is a systematic method for accounting for the resources used and emissions released to the
environment in the production of goods [16]. It was applied using a development of the sys-
tems-LCA model [11], which was derived from previous work [17]. The LCA was limited to
free range non-organic production and used information from breed B, for which there was
the greatest number of flocks (n = 1,239) in the CM dataset.

The systems-LCA model quantifies all the inputs needed to produce the functional unit of 1
kg of potentially marketable eggs. Weight (rather than number) is used to allow for the differ-
ent weights of eggs produced by breeds, systems and over a production cycle. The inputs
include feed, water, direct energy (for heating, lighting, ventilation etc.) and pullets. Pullet pro-
duction is quantified through three generations, so that the complete industry is represented.
The principal output is potentially marketable eggs, which omits those not laid in proper nest
boxes in loose-housed systems. In addition, end of lay hens can contribute to the meat supply
chain. Manure is usually managed as a soil conditioner and the balance of fertiliser value and
management effort is calculated in a separate manure module, based on [18].

Environmental burdens are quantified in terms of emissions and resource use. Emissions
are calculated as point source or diffuse processes and individual emissions are commonly
aggregated into potentials for causing harm using factors taken from the University of Leiden
database [19]. The ones reported here are for greenhouse gas emissions (GHGE), quantified as
global warming potential (GWP) as CO2 equivalents (CO2e), which uses the 2007 IPCC GWP
factors [20], acidification potential as SO2 equivalents and eutrophication potential as phos-
phate equivalents. Pesticide use (from arable operations) is quantified as dose-ha.
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Resources are quantified as cumulative energy demand, in which all energy sources are
traced back to primary energy in the ground, e.g. oil, uranium, and all extraction, refining and
delivery overheads are included. Disparate inputs, e.g. diesel and building materials are quanti-
fied on unified scale of abiotic resource use using the antimony (Sb) scale [19]. Abiotic
resources are non-biological and often non-renewable. Land occupation includes the main
term of land used for crop production, together with housing and ranging land for the birds
themselves.

2.2.1 Anticipated environmental impacts of mortalities. At least one pullet must be
reared for each laying hen entering a commercial laying flock and this is typically supported by
three generations of breeder flocks. Pullet production can be regarded as a necessary overhead
of producing eggs. In a laying flock, dead hens are not normally replaced, hence the inputs of
electricity (e.g. lighting and ventilation) will increase per bird as the laying cycle progresses.
Dead hens must be removed and managed in accordance with animal by-products regulations.
This could be by on-site incineration, centralised incineration or rendering. Egg production,
feed consumption and manure production stop at the point of death, and productivity may
have been reduced prior to death.

If a flock had zero mortality, a maximum number of eggs would be produced per pullet
reared to the point of lay. With higher mortalities (as in normal commercial practice), a smaller
number of eggs are produced per pullet reared. Hence, from the life-cycle perspective, the pro-
portion of the total burdens per egg produced that are attributable to pullet production goes up
with CM.

2.2.2. LCAModel development. In [11], the systems-LCA model used average industry
values of egg number, average egg weight and CM for the analysis. With the focus in the cur-
rent paper on CM, it was important to establish the effects of the timing of mortalities, because
egg weights and productivity change with time and thus affect resource use, e.g. feed and elec-
tricity, and emissions during the production cycle. Some development was therefore made,
using the CM data in this paper, to the systems-LCA model of [11] to ensure that changes over
time were accurately quantified. This involved using the breed management guide to obtain
the expected feed intake, egg production, hen liveweight and cumulative mortality range during
the production phase for breed B in free range systems to 72 weeks. The details available
allowed the effects the timing and magnitude of mortality to be determined by changing
parameter values in the model. The mortality rates predicted by the LCA model were consis-
tent with the separate analysis of the CM data (2.1), but not identical. The LCA results thus
represent typical performance of a common strain housed in a free-range system.

2.2.3. Data sources. Details of the egg production and feed characteristics of the breed (B)
predominant in the CM dataset were taken from the breeder’s website and disaggregated to
derive daily feed and water needs and egg outputs such that mortality could be analysed inde-
pendently. This industry data source was in addition to the industry-derived data in [11], e.g.
the cumulative mortalities of pullets and breeder hens used here were 3.5% and 7% respec-
tively. Using this expected performance data meant that the shape of the CM curve was main-
tained irrespective of the actual final CM value at 72 weeks. As noted above this may have led
to minor differences between this and the final model analysing CM in 2.1.

Breed average egg production data were only available for up to 72 weeks so the LCA was
not projected after this, even though some CM data were available for older flocks. Incineration
data were taken from the Ecoinvent 2 database [21].

2.2.4. Allocation. The partition of resources between eggs and hen body weight was on
the basis of retained body protein and egg protein as used by [22, 23].

2.2.5. Sensitivity analysis. A sensitivity analysis was conducted to compare the effect of
changing key variables on the environmental impacts. The effects of different levels of
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mortality during lay were also assessed along with other main variables associated with egg
production: egg yield, feed consumption, on-farm energy use and mortality in pullet rearing.
Each variable was changed independently both up and down by 10% in 5% increments to
check for linearity. Some additional changes were included to demonstrate relative magnitudes.
These were conducted with 10% mortality as the baseline and responses were in proportion to
the baseline values of 10% (which was the mean CM of FR flocks at 72 w in the dataset analysed
in this paper).

Results

3.1. Mortality analysis
The overall mean cumulative mortality (CM) was 7.89% (standard deviation 7.07) and ranged
between 0 and 69.3% (Fig 1).

The bivariable associations between CM and each of the explanatory variables are shown in
Table 2. All variables show highly significant associations with CM, which increased with age;
decreased with flock size; was highest in flocks of intact beaked birds and organic flocks; and
varied with both housing system and breed.

In the final model, which explained 84.9% of the variation in the dataset, and included
3,132 data points (from 2,848 flocks, on 1,649 farms, from six studies), CM increased with
age in a quadratic relationship (χ2 = 459.9; df 2; p<0.001) and varied with: time of year (Fig 2;

Fig 1. Box plots for mortality in each housing system between 60 and 80 weeks of age using the full
data set from 10 studies (3,851 flocks).

doi:10.1371/journal.pone.0146394.g001
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χ2 = 23.5; df 2; p<0.001); breed p<0.001; (Fig 3; χ2 = 103.2; df 6); and housing system (χ2 =
62.9; df 4; p<0.001;). This model excluded data from studies three, four, six and eight, due to
missing data fields in those studies. Thus this principal model included only UK data.

The model produced predictions for cumulative mortality, which was highest in free range
flocks and lowest in flocks housed in conventional cages. Predicted mean CM for a free range
flock at 72 weeks of age varied seasonally and was lowest for a flock reaching that age in early
March at 8.4%, and highest for a flock reaching 72 w in early September, at 9.8%. Using predic-
tions based on the predominant breed in the dataset, for 1st July, predicted mean CM in a free
range flock was 3.9%, 7.4% and 9.3% at 40, 60 and 72 weeks of age. In comparison, for a flock
housed in a conventional cage system, the corresponding mean CM were 1.7%, 4.2% and 5.7%,
respectively.

There was some evidence for an association between CM and beak trim status; CM was
higher in flocks with intact beaks (χ2 = 3.84; df 1; p = 0.050), when beak trim status was
included in the final model, described above. At 40 weeks of age the most common intact beak

Table 2. Bivariable models of CMwith each predictor variable.

Variable n χ2 df p Number of

Studies Farms Flocks

Time of year 3,534 22.7 2 <0.001 6 1,815 3,247

Age (quadratic) 3,758 468.1 2 <0.001 10 1,982 3,473

Flock size (quadratic) 3,765 27.3 1 <0.001 9 1,985 3,479

Housing system 3,820 87.8 5 <0.001 10 1,998 3,534

Breed 3,450 104.9 6 <0.001 9 1,840 3,163

Beak trim status 1,029 34.5 1 <0.001 4 660 781

Organic status 2,826 14.5 1 <0.001 9 1,638 2,450

doi:10.1371/journal.pone.0146394.t002

Fig 2. Predicted CM for a free range flock reaching 72 weeks at different times of year (modelled from
2,848 flocks, on 1,649 farms, from six studies).

doi:10.1371/journal.pone.0146394.g002

High Mortality in Laying Hens Affects Sustainability

PLOS ONE | DOI:10.1371/journal.pone.0146394 January 6, 2016 7 / 15



breed in this dataset, kept in a free range system had a predicted mean CM in intact beak flocks
of 3.20% vs. 2.52% in beak trimmed flocks: the figures for 70 w of age are predicted at 8.30%
and 7.17% respectively. This model explained 91.6% of the variation in the dataset; however,
information on beak trim status was only available for 851 of the 3,132 observations in the
principal model. Consequently the principal model (above) is presented without beak trim sta-
tus. Nonetheless, breed remained a significant predictor in a model with beak trim status (χ2 =
18.2; df 6; p = 0.006), while housing system retained a slight association (χ2 = 4.04; df 2;
p = 0.133). Beak trim information was only available for barn, free range and free range aviary
systems, and these two variables were heavily confounded, with 204 of the 206 observations
from intact beaked flocks also coming from free range systems (including both organic and
non-organic).

There was limited evidence for an effect of organic status. When the housing system variable
was expanded to include free range organic and free range aviary organic (that is seven catego-
ries, as opposed to the five explored by the housing system variable in the principal model)
pairwise comparisons did not suggest that there was a significant difference in CM between
free range and free range organic flocks. As there was only one free range organic aviary flock a
robust comparison was not possible for this category.

One sensitivity analysis was conducted by running the principal final model again with all
flocks of<500 birds excluded from the model. This model contained 3,070 data points, and
the relationships between the variables remained the same. A second sensitivity analysis was
conducted by running the final model again with all flocks of>100 weeks of age excluded from
the model. This model contained 3,118 data points, and again, the relationships between the
variables were unchanged. Finally, in a model based on 3,115 data points, which excluded all
data points where CM was>40%, all relationships remained unchanged. When all of the
above conditions were applied at once, 3,051 data points remained, and all relationships were
unchanged.

Fig 3. Shows the predicted change in mortality over the lifetime of a flock for each breed (or genotype
group) represented in the dataset. Predictions were generated assuming a date of 1st July 2012 for a free
range housing system.

doi:10.1371/journal.pone.0146394.g003
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3.2. Environmental impacts
The general effect of increasing levels of mortality at 72 weeks is to increase all environmental
impacts, with the examples of cumulative energy demand (CED) and greenhouse gas emissions
(GHGE) shown in Fig 4. Impacts increase non-linearly, with an ever increasing slope, from a
hypothetical base of zero mortality by about 7% at the 1st quartile (5%), 12% at the median
(8.1%), 15% at 10% CM (the mean value for free range hens between 60–80 weeks of age), 20%
at the 3rd quartile (13%) and 45% at 25% CM (upper adjacent value).

Similar relationships applied to all other impact categories, i.e. acidification potential, eutro-
phication potential, abiotic resource use, pesticide use and land occupation, which could be
described by quadratic relationships, although these were close to linear up to 20% CM
(Table 3).

Fig 4. Effects of increasing levels of cumulative mortality at 72 weeks on cumulative energy demand
(CED) and greenhouse gas emissions (GHGE) for free range egg production. Levels of up to 30% are
modelled. The vertical gridlines show values for the 1st quartile, median, 3rd quartile and upper adjacent
value associated with the mean CM of 10%.

doi:10.1371/journal.pone.0146394.g004

Table 3. Relationships between cumulative mortality (CM) and environmental burdens for free range egg production. The functional unit is 1 kg col-
lected eggs.

CM,
%

CED,
MJ

GHGE
kg CO2e

Eutroph-ication
potential, g PO4

3- Eqv.
Acidification potential,
g SO2 Eqv.

Pesticide use,
dose-ha * 10−3

Abiotic resource
use, g Sb Eqv.

Land occup-
ation, m2.yr

0 17.3 3.11 54.9 20.3 2.05 13.5 4.44

5 18.5 3.32 58.2 21.5 2.17 14.5 4.71

10 19.8 3.56 61.9 22.9 2.31 15.6 5.03

15 21.4 3.83 66.2 24.4 2.47 16.9 5.39

20 23.1 4.13 70.9 26.2 2.64 18.4 5.78

25 25.0 4.46 76.1 28.1 2.83 20.0 6.22

doi:10.1371/journal.pone.0146394.t003
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With average CM of 10%, the proportion of CED contributing to pullet production is 17%.
As CM increases, the flock produces fewer eggs and hence the proportion of resources going
into pullet rearing increases (up to 20% at the upper adjacent value of CM). More pullets are
needed per se as well as relatively, and the feed needed by hens to produce the same quantity of
eggs also goes up. Further, inputs of physical resources, such as electricity, increase per unit egg
production. The total feed weight in, per unit egg weight out (the whole system feed conversion
ratio) increases from 2.9 at a theoretical zero mortality to 4.1 at 25% CM (Table 4) and electric-
ity consumption goes up from 0.19 to 0.31 kWh per kg eggs.

3.2.1. National scale implications. Using the CM values predicted by the models dis-
cussed above, the effects of changes in CM in free range flocks on environmental burdens were
investigated. The greenhouse gas emissions (GHGE) of the UK’s free range flock (44% of pro-
duction) are about 930 kt CO2e per annum with current average mortality of 10%. The addi-
tional environmental cost of these current average levels of mortality in free range systems is
therefore 100 kt CO2e per annum, i.e. if zero mortality was possible up to 72 weeks. This rises
by a further 35 kt CO2e at 13% CM (3rd quartile) and at 25% CM (upper adjacent value)
becomes 330 kt CO2e above zero CM. Such high mortalities are fortunately not commonplace,
but our data show that they do occur (Fig 1) and the analyses presented indicate the potential
scale of the effect of very poor management, housing or bio-security. The potential for reducing
GHGE in the current average flock is a maximum reduction of 12%, but the target of zero mor-
tality is unrealistic (Table 5). A potentially more achievable reduction in CM from the current
mean to the current 1st quartile would reduce total emissions on those farms by 6%. Greater
impact might, however, be derived from the poorer performers reducing their mortalities to
the current average. Reducing CM from the 3rd quartile to the 1st quartile would reduce GHGE
by 9%. In the extreme case of farms operating at the upper adjacent value (25% CM), reducing
mortalities to the lower quartile would reduce GHGE by 25%.

Table 4. Effect of cumulative mortality (CM) on whole system feed conversion efficiency (including breeding overheads and the production
phase) and on typical electricity use.

CM, % Whole system feed conversion ratio, (kg feed/kg eggs) Electricity, kWh/kg eggs Meaning of the CM value used

0 2.9 0.19

5 3.1 0.21 1st Quartile

8 3.2 0.21 Median

10 3.3 0.22 Mean

13 3.4 0.23 3rd Quartile

25 4.1 0.31 Upper Adjacent Value

60 7.8 0.70 Maximum value in data

doi:10.1371/journal.pone.0146394.t004

Table 5. Baseline environmental burdens (i.e. for FR hens up to 72 weeks with CM at 10%) and the change (absolute and percentage) in these bur-
dens if all mortalities in breeder hens, pullets and laying hens are eliminated.

CED,
MJ kg-1

GHGE, kg
CO2e kg-1

Eutrophication
potential, g PO4

3- Eqv.
kg-1

Acidification
potential, g SO2

Eqv. kg-1

Pest-icides
used, Milli-
dose-ha kg-1

Abiotic
resource use, g
Sb Eqv. kg-1

Land
occupation, m2

yr-1 kg-1

Baseline value 17.3 3.11 20 55 2.1 13 4.45

Value if all
mortalities are
eliminated

19.8 3.53 23 62 2.3 15 5.01

% change in burden
if all mortalities
are eliminated

12% 12% 11% 11% 11% 13% 11%

doi:10.1371/journal.pone.0146394.t005
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3.2.2. Sensitivity analysis. In all cases except egg yield, the responses of environmental
burdens to 10% increases in feed intake, hen mortality, on-farm energy, pullet mortality and
breeder mortality were linear, i.e. with the positive and negative changes being of equal magni-
tude. Egg yield was close to linearity with the response to an increase in yield of 10% having
94% of the magnitude of a decrease by 10%. The model is most sensitive to egg yield, followed
by feed intake (Table 6) and indicates that egg yield has a uniform effect across all burdens.
The effects of hen mortality are an order of magnitude lower than egg yield, with on-farm
energy similar for cumulative energy demand and greenhouse gas emissions, but much lower
for other impacts. Egg yield is correlated with both mortality and feed intake. The impact of
pullet and breeder hen mortality was another order of magnitude lower than hen mortality.

Discussion
The final model of CM based on 3,132 data points from 2,848 flocks, on 1,649 farms, showed
that the rate of mortality increased with age. This is consistent with the performance standards
in breeder manuals, which all show increases in the rate of CM with time. The predicted pat-
terns of mortality shown in Fig 3 suggests that a more rapid increase in CM over time occurs
after about 30–35 weeks of age. The fitted model had a quadratic shape, with a slight tendency
to flatten when approaching 100 weeks. This represents whole flock mortality rather than the
liveability of an individual bird. It is highly likely that the flocks which are kept up to 100 weeks
are those in which mortalities are successfully minimised such that they are economically via-
ble. Flocks with very high CM are more likely to be depopulated after a shorter period, e.g. at
about 60 weeks. It is also notable that our data are much sparser between 80 and 100 weeks of
age; consequently predictions at this extreme should be interpreted with caution.

Consistent with other surveys and reviews [3–7, 11, 24], we also found that CM differed
between housing system, with free range systems predicted to have the highest mortality and
conventional cage systems the lowest. There was evidence that CM differed between breeds of
hen as was also found by [25]. Sensitivity analyses suggest that the results of this model are
robust, since they are not affected by the removal of outliers. Performance standards in breeder
manuals similarly show inter-breed variation, with a tendency towards lower mortalities in
caged than in free range systems.

Where studies have not found statistically significant differences in the levels of mortality
between housing systems this may be due to insufficient power of the dataset. For example a
recent comparison of 9 cage flocks with 8 flocks housed in barns in Canada found a consistent
trend at all ages for lower mortality in cages than barns but this did not reach statistical signifi-
cance [26]. A systematic review [25] relied on comparing mean levels of CM in conventional
cages with those in aviaries for each study, and further averaged this variable to an unweighted

Table 6. Sensitivity analysis of the LCAmodel showing response (% change) in environmental burdens to an increase in input variables by 10%.

Variable increased by 10% Response to 10% increase

CED GHGE EP AP Pest ARU Land

Egg yield -7.8% -7.8% -7.8% -7.8% -7.8% -7.8% -7.8%

Feed intake 5.2% 6.0% 8.3% 8.1% 8.4% 3.3% 7.3%

Hen mortality (i.e. to 11%) 1.3% 1.3% 1.2% 1.2% 1.2% 1.4% 1.2%

On-farm energy 1.1% 0.38% 0.00% 0.10% 0.00% 0.58% 0.00%

Pullet mortality 0.01% 0.01% 0.00% 0.01% 0.01% 0.01% 0.01 %

Breeder mortality 0.01% 0.01% 0.01% 0.01% 0.01% 0.01% 0.01%

doi:10.1371/journal.pone.0146394.t006
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mean over 4 weeks that might not therefore have reflected flock variability and the rate of
increase of CM with age.

Interestingly, CM showed a significant association with time of year. When CM in 72 week
old flocks was modelled for various times of year it was lowest in early March and highest in
early September. A 72 week old flock will have been housed for a little over a year, assuming
flocks are transferred from rear to lay at around 16 weeks of age. Thus a flock which reaches 72
weeks in early March will have been housed in early February of the preceding year, and a flock
reaching 72 weeks of age in early September, will have been housed in early August the preced-
ing year. We did not find any interaction between time of year and housing system, thus this
seasonal effect appears to be uniform across housing systems. It may be that, regardless of
housing system, flocks which arrive in their laying house in early spring experience warmer
temperatures during their peak laying period, meaning that the birds are under less physiologi-
cal stress, since they require less energy to keep warm.

There was some evidence that CM was reduced in beak trimmed flocks kept in free range
housing systems (the only housing system for which a number of beak trimmed and intact
beak flocks were represented). Predicted means for breed B suggest that, for example, levels of
CMmay be 27% higher in an intact beak flock at 40 weeks of age. Beak trimming is used as a
means to reduce the damage inflicted from injurious pecking, which has been associated with
increased mortality [27–29], so this difference is not unexpected. There was no robust evidence
for a difference in CM between organic and non-organic free-range flocks.

Importantly, although the mean CM for free range flocks is higher, there was also more vari-
ability in CM for this housing system; in the 579 free range flocks for which we had data at 72
weeks of age the lower quartile of CM ranged from 0.6% to 5.0% while the upper quartile ran-
ged from 11.6% to 53.3% (Fig 1). This suggests that with good management there is consider-
able scope for most free range flocks to achieve lower levels of mortality, more comparable to
those found in cage systems. There is a need for more research to understand the effects of
housing system, genetics and management on mortality. Specifically, it would be of interest to
determine the causes of mortality in different housing systems and which differences between
genotypes are associated with the various risks for mortality. It is possible, for example, that
some breeds are more susceptible to disease or climate stress, whereas others are more suscepti-
ble to injurious pecking. Furthermore it is important that we understand the interaction
between genetics and the environment, with the possibility that breeds can be developed for
different systems and also be better managed within systems. Whilst flocks housed in cage sys-
tems generally achieve low mortalities similar to the best loose-housed flocks, there are higher
costs associated with equipment (steel cages) and fan ventilation that may offset this, together
with the compromises of reduced behavioural repertoire and bird choice of environment. In
characterising and comparing housing systems for laying hens, the EU Laywel project [2] rec-
ognised that no one system was ideal in every aspect; without considering the environmental
impacts that have emerged in recent years as of importance. Indeed, a recent review highlighted
the need for further research to evaluate the environmental impacts of all housing systems,
while at the same time recognising the effects within systems of design, operation and manage-
ment on actual emissions and the ‘environmental footprint’ [30].

This study has not addressed the economic effects of varying mortality but a comparative
economic assessment of three housing systems [31] found that the higher costs of egg produc-
tion in a loose-housed (aviary) system compared with conventional cage and enriched cage sys-
tems were in part due to increased levels of mortality and reduced productivity; moreover it
was more expensive to rear pullets in the enriched barns appropriate for aviary or free-range
production than in cages. The environmental effects we were able to predict from the data
available are most probably an underestimate. Flocks with high mortality are likely to have
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underlying high morbidity and hence yield depression in both conspecifics and the casualties
before they die. This alone would increase the inputs of resources such as feed (particularly in
birds with feather loss) during periods of reduced egg production, as birds will still need feed to
support their basal metabolic needs and possibly fight infections. Hence, the balance of
resources used (and emissions generated) would further increase environmental impacts per
unit output. Our estimations of high levels of mortality on sustainability are model-based. The
LCA model was developed using industry average data, which does not necessarily reflect all
aspects of the performance of high CM flocks. There is scope for a more rigorous evaluation by
recording the activity data (e.g. feed and energy use and productivity) on farms with high CM
to validate the assumptions in the systems-LCA model. A combined study to determine causes
of CM and measuring the effects of improved management would be valuable. Such a study
should also include economic analysis to address sustainability more fully.

High levels of mortality are unsustainable and unethical. It has been argued [32] that poor
liveability of a flock not only suggests bird health problems but also a poor welfare state in mor-
bid birds. The principal causes in free-range laying hens are disease, predation, injurious peck-
ing and smothering [24, 32]; they are affected by many risk factors, not all of which are well
understood. They are all complex issues that are difficult to manage, and reducing them
requires a multi-faceted approach. There is potentially scope to further select bird genotype in
order to reduce levels of mortality in loose-housed systems. As shown in Fig 3, our model pre-
dicts up to a two-fold difference between genotypes in flock mortality at 100 weeks of age; this
is the lifespan for which breeding companies are currently selecting, due to economic pressure
to maintain birds in productive lay for longer [33]. Among several other possible approaches
to reducing the levels of mortality are refinements in housing design (e.g. [24]).

The level of mortality in a flock is, therefore, a useful quantitative indicator not only of bird
welfare (and thereby of consumer expectation) but also impacts other aspects of sustainability
such as the environmental footprint and economic viability of the production system. Hence,
as we have indicated in this paper, reducing levels of premature mortality is likely to have mul-
tiple benefits.

Conclusions
High levels of mortality reduce the sustainability of egg production (for example reducing the
levels in free-range systems to those currently achieved by the best quartile could reduce
GHGE by up to 25% and save resources such as land, feed and fuel). Concurrently this would
enhance hen welfare and better meet the expectation of egg consumers. The indication that
there may be genetic risk factors associated with susceptibility to mortality in free range sys-
tems in particular, highlights the need for more research to understand the genetic x environ-
ment interaction. More detailed records of the causes of mortality are also required so that
improved genotypes can be developed for different systems and different breeds can be better
managed within systems.
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