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ABSTRACT  

The RNA binding proteins RBM binding motif protein 38 (RBM38) and DEAD END 1 (DND1) selectively 
stabilize mRNAs by attenuating RNAse activity or protecting them from micro(mi)RNA-mediated 
cleavage. Furthermore, both proteins can efficiently stabilize the mRNA of the cell cycle inhibitor 
p21CIP1. Since acute myeloid leukemia (AML) differentiation requires cell cycle arrest and RBM38 as 
well as DND1 have antiproliferative functions, we hypothesized that decreased RBM38 and DND1 
expression may contribute to the differentiation block seen in this disease. We first quantified 
RBM38 and DND1 mRNA expression in clinical AML patient samples and CD34+ progenitor cells and 
mature granulocytes from healthy donors. We found significantly lower RBM38 and DND1 mRNA 
levels in AML blasts and CD34+ progenitor cells as compared to mature neutrophils from healthy 
donors. Furthermore, the lowest expression of both RBM38 and DND1 mRNA correlated with t(8;21). 
In addition, neutrophil differentiation of CD34+ cells in vitro with G-CSF (granulocyte colony 
stimulating factor) resulted in a significant increase of RBM38 and DND1 mRNA levels. Similarly, 
neutrophil differentiation of NB4 acute promyelocytic leukemia (APL) cells was associated with a 
significant induction of RBM38 and DND1 expression. To address the function of RBM38 and DND1 in 
neutrophil differentiation, we generated two independent NB4_RBM38 as well as DND1 knockdown 
cell lines. Inhibition of both RBM38 and DND1 mRNA significantly attenuated NB4 differentiation and 
resulted in decreased p21CIP1 mRNA expression. Our results clearly indicate that expression of the 
RNA binding proteins RBM38 and DND1 is repressed in primary AML patients, that neutrophil 
differentiation is dependent on increased expression of both proteins, and that these proteins have a 
critical role in regulating p21CIP1 expression during APL differentiation.  

 

Highlights 

 RBM38 and DND1 expression is attenuated in primary AML patients 

 Normal and leukemic neutrophil differentiation induces RBM38 and DND1 expression 

 New function for the RNA binding proteins RBM38 and DND1 in APL differentiation 

 

Keywords: RBM38, DND1, acute myeloid leukemia, acute promyelocytic leukemia, neutrophil 
differentiation 

  



   
 

Abbreviations 

ABL1 - ABL proto-oncogene 1 

AML - Acute myeloid leukemia 

APL - Acute promyelocytic leukemia 

ATRA - all-trans retinoic acid  

CDKN1A - cyclin-dependent kinase inhibitor 1A 

DND1 - DEAD END 1 

FAB - French American British classification 

FBS - Fetal bovine serum 

G-CSF – granulocyte colony stimulating factor 

G-CSF-R – granulocyte colony stimulating factor receptor 

HMBS - hydroxymethylbilane synthase 

HOVON/SAKK - Dutch-Belgian Hematology-Oncology/Swiss Group for Clinical Cancer Research 
Cooperative Group 

MDM2 - MDM2 proto-oncogene 

mRNA – messenger RNA 

miRNA – micro RNA 

MWU – Mann-Whytney-U-test 

LATS2 - large tumor suppressor kinase 2 

Onco-miR – oncogenic micro RNA 

PML-RARa – onco-fusionprotein of promyelocytic leukemia gene and retinoic acid receptor-alpha 
(RARA) gene 

qPCR -  quantitative real-time polymerase chain reaction 

RBM38 - RBM binding motif protein 38 

RBP - RNA binding proteins 

RRM - RNA recognition motif 

RT-PCR - real-time polymerase chain reaction 

shRNA - Small hairpin RNA 

UTR - untranslated region 

WIG1 - wild-type p53-induced gene 1 

ZMAT3 - zinc finger, matrin-type 3 

https://en.wikipedia.org/wiki/Promyelocytic_leukemia_gene


   
 

1. Introduction 

Post-transcriptional gene expression is regulated by a variety of mechanisms including 

polyadenylation, RNA splicing, transport, stability and translation. RNA binding proteins (RBP) 

containing one or more RNA-binding motifs are involved in all of these processes.[1] For instance, the 

RNA recognition motif (RRM) is the most important binding motif in eukaryotic cells.[2] Given the 

important function of RBPs in gene expression, it is not surprising that deregulated or mutated RBPs 

contribute to cancer progression.[3],[4],[5] Dysfunctional or mutated RBPs can cause increased 

expression of oncogenes or decreased expression of tumor suppressor genes such as the p53 family 

members.[6],[7] Recent studies demonstrated that RBPs can protect mRNAs by preventing 

micro(mi)RNA access to the 3'-UTR and thus protecting them from degradation.[8],[9] miRNAs are 

small non-coding single-stranded RNA molecules that regulate gene expression at a post-

transcriptional level by mRNA degradation, destabilization, or translational inhibition.[10] miRNAs 

control a variety of cellular and metabolic pathways including hematopoietic differentiation, e.g. 

miR-15a/144/451 regulate erythropoiesis and miR-223 is key to granulocytic 

differentiation.[11],[12],[13]  

AML is a heterogeneous leukemic disease affecting the myeloid lineage and characterized by a 

block of differentiation at different stages of myelopoeisis.[14] According to the French-American-

British (FAB) classification AML can be classified into eight subtypes based on their blast cell 

morphology. Acute promyelocytic leukemia (APL or FAB AML-M3 subtype), which is characterized by 

a chromosomal translocation involving the promyelocytic leukemia gene (PML) on chromosome 15 

and the retinoic acid receptor alpha (RARA) on chromosome 17, resulting in the expression of the 

oncogenic fusion protein PML-RARA. Among others, PML-RARA causes a block in differentiation 

which can be nevertheless resolved with pharmaceutical doses of all-trans retinoic acid (ATRA).[15] 

The oncogenic fusion protein AML1-ETO is result of a translocation involving the genes AML1 on 

chromosome 8 and ETO on chromosome 21 present in the AML-M2 subtype. AML1-ETO enhances 

stem cell maintenance and inhibits myeloid differentiation (as reviewed by Nimer et al).[16] Based on 

the fact that several miRNAs are key to successful myeloid differentiation, a general decrease in 

miRNA expression is associated with AML pathology.[17] Moreover, we recently published that 

several members of the miRNA processing machinery, particularly DICER1, are downregulated in 

primary AML.[18]  

Two RNA binding proteins, the RNA binding motif protein 38 (RBM38 also known as RNPC1) and 

the DEAD END 1 (DND1), have been linked to cellular differentiation. RBM38 is induced during late 

erythrocyte development where it mainly regulates alternative splicing. RBM38 knockout mice 



   
 

exhibit decreased erythropoiesis and other hematopoietic defects.[19],[20] Furthermore, RBM38 and 

DND1 can regulate miRNA activity at the level of miRNA-mRNA interactions by blocking miRNA 

access to their target mRNAs.[8],[21] Several studies identified RBM38 as a downstream effector of 

p53 family members that stabilizes the mRNA of the cell cycle inhibitor p21CIP1.[22] The stabilization 

of the p21CIP1 mRNA by RBM38 is at least in part caused by preventing access of miR-17/106b to the 

p21CIP1- 3'UTR.[8] Of interest for this study, p21CIP1 has been linked to retinoic acid-induced 

differentiation of AML cells.[23] In addition to p53 its relative p73 is also stabilized by RBM38.[24] 

Lastly, RBM38 is not the only RBP that is regulated by p53, e.g. transcription of the zinc finger, 

matrin-type 3 (ZMAT3 also known as WIG1) depends on p53.[25] 

Although RBM38 was originally identified as a potential oncogene, the majority of hepatocellular 

carcinoma and breast cancer published reports on RBM38 function point to a tumor suppressor 

role.[26],[27] RBM38 also contributes to the destabilization of the MDM2 mRNA, a gene promoting 

p53 degradation.[28] Interestingly, p73 contributes to myeloid differentiation by modulating p21CIP1, 

and RBM38 may contribute to this process by regulating p73 mRNA stability.[29],[30] Although 

limited information is available on the role of DND1 in tumors, DND1 mutations have been 

implicated in germ cell loss and testicular germ cell tumors.[31] This effect has been partially 

explained by inhibiting miRNA mediated cleavage of mRNAs bound by DND1.[9],[32] Furthermore, 

DND1 can block skin oncogenesis by preventing miR-21 binding to its targets.[33] Lastly, similarly to 

RBM38, DND1 can also protect p21CIP1 mRNA from degradation.[34] Thus, the published evidence 

supports a tumorsuppressive role for DND1 as well.  

Based on the above-described link of RBM38 and DND1 to differentiation and their tumor 

suppressor functions, we investigated their role in AML pathology. We hypothesized that low RBM38 

and DND1 mRNA levels and their effector proteins may contribute to the differentiation block seen in 

AML.  

  



   
 

2. Material and methods 

2. 1. Primary patient samples and cell culture 

Primary AML patients samples from patients enrolled on HOVON/SAKK (Dutch-Belgian Hematology-

Oncology/Swiss Group for Clinical Cancer Research Cooperative Group) protocols -04, -04A, -29 and -

42 (available at www.hovon.nl) between 1987 and 2006 were provided by Dr. P.J.M. Valk and B. 

Löwenberg.[35],[36],[37] Patient data represent log2 expression levels and were normalized to the 

expression levels of the two house keeping genes HMBS and ABL. For better readability we multiplied 

the results by (-1) and excluded Ct values higher than 40 (ΔCt = 40- CtGENE-1 - (Mean CtHMBS and CtABL1) 

* (-1)).[38] The number of patient samples analyzed for RBM38 and DND1 mRNA expression is 

slightly different due to fact that in some patients the gene expression was below the detection limit 

of our assay (Additional file 1: Table S1). 

Human mobilized CD34+ cells were isolated from of healthy donors (City of Hope). The cells were 

then expanded for 8 days in IMDM supplemented with 10% Hyclone FBS (Thermo Fisher Scientific, 

Waltham, MA) 1% penicillin/streptomycin (P4333; Sigma-Aldrich), 100 ng/mL SCF, 50 ng/mL IL-3, 50 

ng/mL IL-6 (Peprotech) at a density of 1x106 cells/ml. Induction of differentiation was performed in 

IMDM Gibco, 10% Hyclone FBS, 1% P/S Corning, 50 ng/mL hG-CSF, Peprotech, 50 ng/mL hIL-6 

(Peprotech, Rocky Hill, NJ) at a density of 1x106 cells/ml for the indicated days. 

 

The APL cell lines NB4, its ATRA-resistant subclone NB4-R2 and HT93 were cultured in RPMI 1640 

(Sigma-Aldrich) supplemented with 10% FBS (S0615; Biochrom AG) and 1% penicillin/streptomycin 

(P4333; Sigma-Aldrich) in a humidified atmosphere containing 5% CO2 at 37oC. For neutrophil 

differentiation APL cells were seeded at a concentration of 0.2 million cells/ml and treated with 1µM 

all-trans-retinoic acid (ATRA; Sigma-Aldrich, Switzerland) for four to six days. Successful granulocyte 

differentiation was evaluated by increased CD11b surface marker (#21279114; Immunotools) or 

granulocyte colony-stimulating factor receptor (G-CSF-R) mRNA expression.  

 

2.2. Generation of RBM38 and DND1 knockdown cell lines 

pLKO.1 lentiviral vectors expressing small hairpin (sh) RNAs targeting RBM38 or DND1 (shRBM38_317 

NM_017495.4-317s21c1, shRBM38_1312 NM_017495.4-1312s1c1, shDND1_249 NM_194249.1-

249s1c1 and shDND1_1084 NM_194249.1-1084s1c1) non-targeting shRNA control (SHC002) vector 

were purchased from Sigma-Aldrich (Sigma, Switzerland). Puromycin served as an antibiotic 

resistance marker to enable a positive selection of the infected cells. Lentivirus production and the 

transduction on NB4 cells were performed as previously described.[39] 

http://www.hovon.nl/


   
 

2.3. TaqMan low-density arrays and real-time quantitative RT-PCR (qPCR) 

RNA isolation, RT-PCR low-density arrays as well as data analysis were performed as described 

previously.[40] TaqMan Gene Expression Arrays bought from Applied Biosystems® for HMBS, ABL1, 

RBM38 and DND1 preloaded on low-density arrays were Hs00203008_m1, Hs00377897_m1, 

Hs00250139_m1, and Hs00832091_s1. TaqMan gene expression assays for RBM38, DND1, p21CIP1 

and G-CSF-R used in a 96-well format were Hs00250139_m1, Hs00832091_s1, Hs00355782_m1 and 

Hs00167918_m1 (Applied Biosystems®), respectively. Specific primers and probes for HMBS and data 

analysis were used as described.[41] We calculated the n-fold mRNA induction upon ATRA-treatment 

using the ddCt method of relative quantification. All data are shown as mean ± the standard error of 

the mean (SEM) of at least three independent experiments. Nonparametric Mann-Whitney-U tests 

(MW.) were applied to compare the difference between two groups using the program GraphPad 

Prism 4 (Graph Pad Software, San Diego, CA). P-values <0.05 were considered to be statistically 

significant. 

 

2.4.  Western Blotting 

Whole cell extracts were prepared using Urea lysis buffer, supplemented with 25X proteinase-

inhibitors. Total protein was loaded on a 10% denaturing polyacrylamide gel. Blots were incubated 

with the primary antibodies in TBS 0.05% Tween-20/2% milk overnight at 4°C, incubated with 

secondary antibodies goat anti-rabbit IRDye 800CW and goat anti-mouse IRDye 680LT (LI-COR 

Biosciences, Lincoln, NE) at 1:5000 for 1 h at room temperature, and analyzed using the Odyssey 

infrared imaging system detection (LI-COR Biosciences). Primary antibodies used were anti-RBM38 

1:500, anti-p21 1:200 (Santa Cruz Biotechnology, CA), and anti-GAPDH 1:5000 (Millipore, Darmstadt, 

Germany).  

  



   
 

3. Results and Discussion 

3.1 RBM38 and DND1 mRNA expression levels are down-regulated in clinical AML samples 

In a first attempt to identify a potential role for RBM38 and DND1 in AML (molecular) pathogenesis, 

we quantified gene expression in a cohort of 98 M0-M4 clinical AML patient samples. As compared to 

granulocytes from healthy donors, RBM38 AML transcript levels were significantly decreased by 7-

fold in AML patients, by 4-fold in macrophages from healthy individuals and 10-fold in CD34+ cells. Of 

note, we also found a trend of lower RBM38 mRNA expression in CD34+ cells as compared to AML 

patient blast cells (Fig. 1, upper panel). Similarly, DND1 mRNA expression was significantly decreased 

in primary AML samples by 18-fold as compared to granulocytes and by 8-fold as compared to 

macrophages. Interestingly, DND1 expression in AML patient samples is significantly increased by 3-

fold as compared to CD34+ cells (Fig. 1, lower panel). Comparing the different AML translocations as 

well as complex and normal karyotype AML, we found that RBM38 is also significantly upregulated in 

normal karyotype AML samples as compared to the other subtypes. Moreover, cell samples from 

AML patients characterized by the expression of the AML-ETO fusion protein t(8;21), expressed 

significantly lower mRNA levels of both RBM38 and DND1 as compared to the other AML subtypes. 

Consistently, we found markedly lower RBM38 protein expression in t(8:21) positive Kasumi cell line 

as compared to  t(8:21)-negative HL60 and NB4 cell lines (Additional file 2: Figure S1). Of interest, we 

found that yet another RNA binding protein regulated by p53, the zinc finger, matrin-type 3 (ZMAT3) 

is significantly repressed in primary AML as compared to healthy granulocytes (Additional file 3: 

Figure S2a). 

Our findings indicate that RBM38 and DND1 expression associates with a mature neutrophil 

phenotype and that both RBPs are repressed in the presence of AML1-ETO. Low RBM38 expression in 

AML may also reflect a defective p53 pathway as RBM38 is a transcriptional target of p53.[22] 

Although NB4 and HT93 APL cells express a mutant p53, p73 may partially replace p53 activity during 

ATRA-mediated AML differentiation allowing for activation of RBM38 transcription.[30],[42]  

Together, AML1-ETO expression as well as impaired p53 family signaling in AML may provide a 

possible explanation for low RBP expression in particular AML subtypes. 

3.2 RBM38 and DND1 expression is significantly induced during neutrophil differentiation and 

knocking down either of these genes interferes with APL differentiation 

Since RBM38 and DND1 mRNA expression was lower in AML patient samples than in healthy, mature 

granulocytes, we asked if these two genes are involved in neutrophil differentiation, specifically of 

the APL cell lines NB4 and HT93. These two cell lines can be differentiated in vitro towards 

neutrophil-like cells by treating them with ATRA. After 6 days of treatment, we observed a 9-fold 



   
 

induction of RBM38 message, and a marked upregulation of RBM38 protein expression (Figs., 2a-b). 

Consistently, we found an 8-fold upregulation of RBM38 message in HT93 APL cells upon ATRA 

treatment (Fig. 2c). Similarly, although to a lesser extend, DND1 mRNA expression levels were 

significantly induced 2.5-fold in NB4 and HT93 APL cells in response to ATRA-treatment for 6 days 

(Figs. 2d-e). Importantly, the induction of RBM38 and DND1 is not due to unspecific ATRA toxicity 

since their expression was not induced in the ATRA-resistant control cell line NB4-R2 (Figs. 2a and d, 

right panels).  

To further confirm our findings, we analyzed RBM38 and DND1 mRNA expression during G-CSF 

mediated neutrophil differentiation of primary CD34+ progenitor cells in vitro. Both genes were 

significantly upregulated at 3 and 6 days of G-CSF treatment compared to day 0 of treatment (Fig. 2f).  

Next, we aimed at investigating if RBM38 and DND1 are necessary for successful neutrophil 

differentiation. To address this question, we generated two independent NB4 RBM38 and DND1 

knockdown cell lines using lentiviral vectors expressing shRNAs targeting RBM38 (shRBM38_317 and 

shRBM38_1312) or DND1 (shDND1_249 and shDND1_1084), respectively. To exclude non-specific 

effects caused either by the viral infection itself or the puromycin selection treatment, we used 

scrambled shRNA (SHC002) transduced NB4 cells as a control. RBM38 knock-down efficiency was 

measured by qPCR after 6 days of ATRA treatment, and showed 75% and 70% downregulation for 

shRBM38_317 and shRBM38_1312, respectively (Fig 3a, upper panel). Lower RBM38 mRNA 

expression was paralleled by markedly decreased RBM38 protein levels (Fig. 3a, lower panel). 

Knocking down RBM38 resulted in impaired neutrophil differentiation of the NB4 cells as evidenced 

by significantly reduced expression of the differentiation markers G-CSF-R and CD11b, up to 50 and 

40%, respectively (Figs. 3b-c). DND1 mRNA knockdown experiments paralleled the RBM28 findings, 

with a knockdown efficiency after 6 days of ATRA treatment was 68% and 64% for NB4 shDND1_249 

and shDND1_1084 cells, respectively (Fig. 4a). Both DND1 knockdown lines displayed significantly 

lower CD11b surface (reduced by 32% and 39%, respectively) as well as G-CSF-R mRNA expression 

(reduced by 66% and 87%, respectively) (Fig. 4b-c).  

Our data clearly show that RBM38 and DND1 expression is significantly induced upon neutrophil 

differentiation of an APL cell line, as well as in CD34+ cells. Furthermore, both RNA binding proteins 

function in APL differentiation, since knocking down either RBM38 or DND1 diminishes ATRA-induced 

neutrophil differentiation.  

3.3 p21CIP1 (CDKN1A) and LATS2 mRNA levels are significantly decreased in RBM38 and DND1 NB4 

knockdown cells 



   
 

Based on reports of enlarged mRNA stability by RBM38 and DND1 binding of cell cycle regulators, 

which identified the cell cycle regulator p21CIP1 mRNA as an mRNA protected by RBM38[32],[28] and 

DND1[9],[34], as well as the described role of p21CIP1 in ATRA-induced differentiation of APL cells[43], 

we asked if inhibiting RBM38 or DND1 expression affects p21CIP1 mRNA levels during neutrophil 

differentiation. Therefore, we measured p21CIP1 message in control and ATRA-treated NB4 RBM38 

and DND1 knockdown cells. p21CIP1 mRNA levels were significantly decreased in both knockdown cell 

lines under control conditions and upon ATRA treatment (Figs. 5a-b). These findings provide insights 

as to how inhibiting RBM38 or DND1 attenuates APL differentiation as it has been shown that 

reduced p21CIP1 expression is results in reduced differentiation.[23] Moreover, previous studies 

indicated that a loss of p21CIP1 facilitates AML1-ETO-induced leukemogenesis.[44] In line with this 

study, the particularly low RBM38 and DND1 expression in this AML subtype may contribute to 

decreased p21CIP1 stability. However, the effects RBM38 and possibly DND1 of blocking ATRA-

mediated neutrophil differentiation are most likely not solely based on reduced p21CIP1 stability. 

Another previously described RBM38 binding RNA, the serine/threonine kinase LATS2 might be an 

interesting candidate as well. LATS2 is a member of the Hippo signaling pathway that is of outmost 

importance during development and early reports associated this pathway with hematopoiesis.[45] 

Consistently, we found that similar to p21CIP1 also LATS2 mRNA expression is significantly decreased 

in NB4 RBM38 knockdown cells upon ATRA treatment (Additional file 3: Figure S2b). Thus, decreased 

LATS2 expression due to reduced RBM38 levels may also contribute to an immature myeloid 

phenotype. In line, significantly lower LATS2 mRNA expression was measured in AML patient samples 

as compared to mature neutrophils (Additional file 3: Figure S2c).  

3.4 Conclusions 

Although microRNAs are globally down-regulated in AML[46], specific oncogenic miRNAs such as 

miR-9[47] and miR-17 family members[48] are often found highly expressed in AML. Induction of 

RBM38 and DND1 during neutrophil differentiation may antagonize the activity of these oncomiRs by 

protecting mRNAs, including p21CIP1 that are important for myeloid differentiation. Our data strongly 

suggest a novel function for the RNA binding proteins RBM38 and DND1 in AML differentiation 

possibly providing novel targets in AML therapy. In general, the role of RNA binding proteins during 

hematopoiesis and leukemic progression warrants further studies. 
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Figure Legends  

Fig1. Significantly decreased RBM38 and DND1 mRNA expression in AML patient samples. qPCR 

analysis of RBM38 (upper panel) and DND1 (lower panel) in primary AML patient samples (FAB M0-

M4), granulocytes (G) as well as macrophages (M) from healthy donors, and CD34+ progenitor cells. 

Data represent log2 expression levels and were normalized to the expression levels of the 

housekeeping genes HMBS and ABL1. For better readability we multiplied the results by (-1) and 

excluded Ct values higher than 40 (ΔCt = 40- CtWIPI-1 - (Mean CtHMBS and CtABL1) * (-1)).  Patient 

characteristics are shown in Supplementary Table 1. Mann-Whitney-U-test (MWU): *p<0.05. 

**p<0.01, *** p<0.001, ns: not significant. 

Fig. 2. Induction of RBM38 and DND1 expression during neutrophil differentiation of APL and CD34+ 

progenitor cells. a NB4 and NB4-R2 ATRA-resistant cells were differentiated with 1µM ATRA for four 

days. RBM38 mRNA levels were quantified by qPCR and values were normalized to HMBS. Results are 

given as n-fold changes compared to untreated control cells. b NB4 and NB4-R2 cells were treated as 

in a. RBM38 protein levels were determined by Western blotting. The housekeeping gene GAPDH 

was used as a loading control. c HT93 APL cells were treated as in a. RBM38 mRNA expression levels 

were quantified and analyzed as in a. d DND1 mRNA expression levels of NB4 and NB4-R2 cells 

differentiated and analyzed as in a. e DND1 mRNA expression levels of HT93 cells treated and 

analyzed as in a. f CD34+ progenitor cells were differentiated towards granulocytes in vitro using G-

CSF for 3 and 6 days, respectively. RBM38 (left panel) and DND1 (right panel) mRNA expression levels 

were quantified by qPCR. Values were normalized to HMBS and compared to day 0 of G-CSF 

treatment. MWU: *P<0.05, ns: not significant. 

Fig. 3. Knocking down RBM38 significantly impairs APL differentiation. NB4 cells stably expressing 

shRNAs targeting RBM38 (shRBM38_317 and shRBM38_1312) or a non-targeting shRNA (SHC002) 

were treated with 1µM ATRA for four days. a RBM38 knockdown efficiency of control and RBM38 

knockdown NB4 cells upon ATRA treatment was determined by qPCR (upper panel) and western 

blotting (lower panel). Analysis as in 2a and b. b, c Neutrophil differentiation of NB4 SHC002 control 

and RBM38 knockdown NB4 cells was assessed by granulocyte colony stimulating factor receptor (G-

CSF-R) qPCR (b) and CD11b FACS analysis (c). MWU: *p<0.05. **p<0.01. 

Fig. 4. Knocking down DND1 significantly impairs APL differentiation. NB4 cells stably expressing 

shRNAs targeting DND1 (shDND1_249 and shDND1_1084) or a non-targeting shRNA (SHC002) were 

treated with 1µM ATRA for four days. a DND1 knockdown efficiency of control and DND1 knockdown 

NB4 cells upon ATRA treatment was determined by qPCR. Analysis as in 2a. b, c Neutrophil 



   
 

differentiation of NB4 SHC002 control and DND1 knockdown NB4 cells was assessed as in 3b and c. 

MWU: *p<0.05. **p<0.01 , ***P<0.001. 

Fig. 5. Knocking down RBM38 or DND1 decreases p21CIP1 mRNA stability. a, b NB4 SHC002 control 

and RBM38 (shRBM38_317) as well as DND1 (shDND1_1084) knockdown cells were treated for 6 

days with 1M ATRA. p21CIP1 mRNA levels were measured by qPCR and analyzed as in 2a.  

 

Supplementary Figure 1 

RBM38 Western blotting analysis of AML1-ETO positive Kasumi compared to AML-ETO negative NB4  

and HL60 cells. GAPDH was used as loading control.  

Supplementary Figure 2 

Reduced ZMAT3 and LATS2 mRNA expression in AML patient samples and decreased LATS2 

expression in RBM38 knockdown NB4 cells. a qPCR analysis of ZMAT3 in primary AML patient 

samples (FAB M0-M4), granulocytes (G) as well as macrophages (M) from healthy donors. Data 

represent log2 expression levels and were normalized to the expression levels of the housekeeping 

genes HMBS and ABL1. b LATS2 mRNA expression levels were measured by qPCR in NB4 RBM38 

knockdown (shRBM38_317) and SHC002 control cells upon treatment for 6 days with 1M ATRA.. c 

qPCR analysis of LATS2 in primary samples analyzed as described in a.  MWU: **p<0.01, *** p<0.001, 

ns: not significant. 
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Supplementary Table 1. AML patients characteristics from the HOVON/SAKK cohort.  
 
RBM38 

  Patient characteristics FAB classification Cytogenetics 

Cohort Variables Age (y) 
Sex 

(female/male) 
Total M0 M1 M2 M3 M4 ND t(8;21) inv (16) t(15;17) CK NK Others ND 

HOVON/ 
SAKK 

Range 15-74 - -              

Mean/median 
or % 

43.2/43 
(mean/median) 

43.1/43 100 4.1 16.3 32.7 19.4 26.6 0 20.4 17.3 20.4 23.5 18.4 0 0 

No. of patients  58/40 98 4 16 32 19 27 0 20 17 20 23 18 0 0 

 
DND1 

  Patient characteristics FAB classification Cytogenetics 

Cohort Variables Age (y) 
Sex 

(female/male) 
Total M0 M1 M2 M3 M4 ND t(8;21) inv (16) t(15;17) CK NK Others ND 

HOVON/ 
SAKK 

Range 15-74 - -              

Mean/median 
or % 

43.2/43 
(mean/median) 

43.1/43 100 4.1 16.5 33.0 18.6 27.8 0 20.6 17.5 20.6 23.5 18.6 0 0 

No. of patients  57/40 97 4 16 32 18 27 0 20 17 20 22 18 0 0 

 
FAB, French-American-British; CK, complex karyotype; NK, normal karyotype; others, up to two chromosomal aberrations (deletions or aneuploidies) in 
the absence of t(8;21), inv(16)/t(16;16), t(15;17), or t(9;11); ND, not determined. 
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