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ABSTRACT

Spinal muscular atrophy (SMA) is characterized by motoneuron loss and muscle weakness. However, the struc-
tural and functional deficits that lead to the impairment of the neuromuscular system remain poorly defined. By
electron microscopy, we previously found that neuromuscular junctions (NMJs) and muscle fibres of the dia-
phragm are among the earliest affected structures in the severe mouse SMA model. Because of certain anatomical
features, i.e. its thinness and its innervation from the cervical segments of the spinal cord, the diaphragm is par-
ticularly suitable to characterize both central and peripheral events. Here we show by immunohistochemistry
that, at postnatal day 3, the cervical motoneurons of SMA mice receive less stimulatory synaptic inputs. More-
over, their mitochondria become less elongated which might represent an early stage of degeneration. The
NMJs of the diaphragm of SMA mice show a loss of synaptic vesicles and active zones. Moreover, the partly inner-
vated endplates lack S100 positive perisynaptic Schwann cells (PSCs). We also demonstrate the feasibility of
comparing the proteomic composition between diaphragm regions enriched and poor in NMJs. By this approach
we have identified two proteins that are significantly upregulated only in the NMJ-specific regions of SMA mice.
These are apoptosis inducing factor 1 (AIFM1), a mitochondrial flavoprotein that initiates apoptosis in a caspase-
independent pathway, and four and a half Lim domain protein 1 (FHL1), a regulator of skeletal muscle mass that

has been implicated in several myopathies.
© 2015 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Spinal muscular atrophy (SMA) is an autosomal recessive disorder
characterized by a degeneration of the alpha motoneurons in the ven-
tral horn of the spinal cord. In the human genome, the SMA determining
Survival Motor Neuron (SMN) gene exists in two forms, SMNT and its
paralogue SMN2 (Schmutz et al., 2004). Although these copies are near-
ly identical (Lefebvre et al., 1995), a critical difference at position +6 of
exon 7 (Lorson et al., 1999; Monani et al., 1999) results in alternatively
spliced mRNA transcripts from the SMN2 gene. These transcripts lack

Abbreviations: AIFM1, apoptosis inducing factor 1; ALS, Amyotropic Lateral Sclerosis;
BTX-Rho, rhodamine-conjugated a-bungarotoxin; ChAT, choline acetyltransferase; FHL1,
four and half lim domain 1; GlyT2, glycine transporter 2; Hsp60, heat shock protein 60;
IHC, immunohistochemistry; MN, motoneuron; NDUFA9, nicotinamide adenine dinucleo-
tide dehydrogenase (ubiquinone) 1, alpha subcomplex, 9; NM]J, neuromuscular junction;
PANTHER, Protein Analysis Through Evolutionary Relationships; PBS, phosphate buffered
saline; PFA, paraformaldehyde; PMSS, Protein Match Score Summation; PND, postnatal
day; PSC, perisynaptic Schwann cell; SMA, spinal muscular atrophy; SMN, Survival
Motor Neuron; SYP, synaptophysin; VAChT, vesicular acetylcholine transporter; VGAT, ve-
sicular GABA transporter; VGLUT1, vesicular glutamate transporter 1; wt, wild-type.
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exon 7 and encode a highly unstable, truncated protein (Cartegni
et al., 2006; Cartegni and Krainer, 2002; Kashima and Manley, 2003;
Lorson et al., 1999). Nevertheless, the SMN2 gene also produces low
levels of functional, full-length SMN mRNA and protein (Lorson and
Androphy, 2000). In 95% of human SMA cases, the SMNT gene is absent
(Burghes, 1997; Lefebvre et al., 1995) while in the remaining 5%,
it carries small deletions or mutations (Alias et al., 2009; Rodrigues
etal,, 1995). Hence, the primary cause of SMA is a low level of functional
SMN protein produced from the remaining SMN2 gene copy/copies.
The classical features of SMA include loss of motoneurons (MNs),
muscle atrophy and profound muscle weakness. In human SMA pa-
tients, the proximal muscles have been found to be more affected than
distal ones with intercostals and paraspinal muscles being more affect-
ed than the diaphragm, which is relatively spared (Crawford, 2003).
However, studies on mouse models have indicated that the diaphragm
is strongly affected (Kariya et al., 2008; Michaud et al.,, 2010; Voigt et al.,
2010), and a more focused analysis revealed similar changes in the dia-
phragm of 6 month old human SMA type I patients (Kariya et al., 2008).
For the severe mouse SMA model (Monani et al., 2000), we have pre-
viously found by transmission electron microscopy that the diaphragm
is one of the earliest affected muscles (Voigt et al., 2010, 2014). At post-
natal day 3 (PND3), this muscle shows a spectrum of neuromuscular
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junction (NM]) alterations ranging from normal appearance to severely
affected NM]Js. The most strongly affected NM]Js were characterized by
massive mitochondrial swellings in the axon terminals and muscle
fibres. Furthermore, the perisynaptic Schwann cells (PSCs) which are
the glial components of the NM]J and play an important role in the struc-
ture, function and maintenance of the NM] (Auld and Robitaille, 2003)
exhibited electron-translucent vacuole-like profiles and a darkly
contrasted cytoplasm (Voigt et al., 2010).

Less severe changes were observed in the intercostal muscles while
calf muscles, which were still relatively immature, showed no ultra-
structural changes. This correlation of pathology with the developmen-
tal stage of these three muscles suggested that, for SMA-related changes
to occur, the muscles have to reach a certain critical stage of develop-
mental maturity (Voigt et al., 2014).

Here, our goal has been to shed more light on the relatively poorly
understood pathogenic mechanisms that lead to these muscle defects.
The earliest affected muscle in the severe mouse SMA model, the
diaphragm, is very thin, and its NMJs are aligned in a band along the
phrenic nerve. These properties make it uniquely suitable for whole
mount immunohistochemistry and biochemical analyses of muscle
areas enriched in NMJs. Moreover, as the MNs innervating the dia-
phragm are located in the cervical region of the spinal cord and repre-
sent a large fraction of the MNs in this region, we were able to study
not only the SMA-related synaptic defects occurring in the diaphragm
but also the corresponding MN circuitry.

Our results reveal several alterations that are likely to impair the
proper function of the diaphragm's motor units. For the MN cell bodies
in the spinal cord, an imbalance of synaptic inputs (reduced excitatory
and unchanged numbers of inhibitory synapses) and abnormal
appearing mitochondria represent early defects that occur prior to MN
death. Peripheral NMJs show a reduction of synaptic vesicles and active
zones as well as PSCs with weak S100 immunoreactivity. Moreover, a
proteomic analysis reveals changes that can be interpreted as compen-
satory reactions to these deficits and an onset of cell death mechanisms.
Together, these events may synergistically contribute to the dysfunction
of this important respiratory muscle.

2. Materials and methods
2.1. Mice

Smn™/~; SMN2*/* mice (Jackson labs strain name: FVB.Cg-Tg
(SMN2) 89 Ahmb Smn1™!™s4/j stock number: 005024) were main-
tained as heterozygote breeding pairs under standard IVC conditions in
the animal facility at the Insel hospital in Berne, Switzerland, complying
with legal requirements for animal husbandry. The mean survival of the
SMA-affected offspring (Smn™/—; SMN2*/*), under our breeding condi-
tions is 6.5 days. In some experiments we also used mice of the same
strain containing multiple copies (~5) of the U7-ESE-B gene that corrects
SMN?2 splicing and ameliorates the SMA phenotype (Meyer et al., 2009).

2.2. Immunohistochemistry

Immunohistochemistry (IHC) experiments of whole mount dia-
phragms were performed as previously described (Voigt et al., 2014).
For triple labelling experiments, mice were perfused with 4% PFA. In
order to facilitate better penetration of the antibodies, the samples
were incubated with the primary antibodies sequentially. The muscles
were flat mounted in Vectashield (Reacto labs).

Spinal cords were obtained as follows: animals at PND3 were anaes-
thetized on ice for 8 min for wt or 6 min for diseased mice (because of
their smaller body size). The animals were perfused with phosphate-
buffered saline (PBS), and the spinal cords were fixed in 10 ml of 4%
paraformaldehyde (PFA) overnight at 4 °C followed by placing them
in 30% sucrose (w/v). The cervical region was excised and embedded
in cryomolds using tissue tek optimal cutting temperature formulation

(Sakura Finetec, USA) and stored at —20 °C. The embedded spinal
cord segments were sectioned at 20 um thickness with a microtome.
Each section was 200 pm apart from the next, and 10 such sections
were collected on a Superfrost ultra plus slide (GroggChemie,
6310650). Every 6th slide was used for analysis. The slides were
completely air-dried for 4-5 h at room temperature, and sections
were fixed in 4% PFA for 10 min. After washes in PBS, the sections
were blocked in 3% BSA, 0.5% Triton in PBS for 1 h at 4 °C. For mito-
chondrial stainings, after PFA fixation, antigen retrieval was per-
formed according to standard procedures (citrate/heat method).
The incubations with primary antibodies were performed overnight
(or for three days for the mitochondrial analyses) at 4 °C, followed by
3 washes in PBS. Secondary antibodies were incubated for 3 h at
room temperature. After these incubations and 3 additional washes,
the slides were air dried and mounted in Vectashield. The primary
and secondary antibodies and direct probes used for these experi-
ments are listed in the Supplementary Table S1.

2.3. Imaging

The imaging was done with Leica SP5 or SP8 confocal microscopes
while using a 63 x oil objective. The same settings were used for wt
and disease samples. Z stacks were made at 0.5 um step size, and
maximum intensity projections were made with Image ] software.
The overlay between the two channels was assessed with the help
of Adobe Photoshop. For S100 [HC, after classifying en face endplates,
intensity measurements were made using Image ] software. For bas-
soon IHC, measurements of bassoon puncta were done with Imaris
software. For each genotype, a minimum of 50 endplates were
selected at random from the top, middle and bottom regions of the
diaphragm of two animals. For quantification of motoneuron synap-
ses, the specific synapses around a minimum of 80 motoneurons
from three animals per genotype were counted. Synapses located
within a perimeter of 100 um around a motoneuron were quantified
with the Imaris software. Mitochondrial imaging was done with a
Leica SP8 confocal microscope using a 100 x oil objective. Sphericity
and area were measured using Imaris software. The significance of
differences was assessed by using Mann-Whitney test, two tailed
(GraphPad Prism 5).

24. Global protein analysis

To identify new proteins at the NM]Js that could cause or contribute to
SMA pathology, mass spectrometry analysis was carried out. Samples
used were snap frozen diaphragm muscles isolated at PND3 from three
PBS-perfused mice of each genotype, i.e. wt, SMA disease and SMA mice
containing multiple copies of the U7-ESE-B therapeutic construct that
corrects the SMA phenotype (Meyer et al., 2009). To separate the
synaptic component of the muscle from its extra-synaptic counterpart,
the muscles were stained with tetramethylrhodamine-conjugated
a-bungarotoxin (Molecular Probes, T1175) diluted 1:500 in PBS
containing 1x Protease Inhibitor cocktail. Manual dissection was per-
formed under a fluorescent dissecting microscope (Olympus, SZX10 at
2x magnification). Protein extractions were performed using RIPA
buffer (50 mM Tris pH 8.0, 150 mM Nacl, 1% Nonidet P40, 0.1% SDS,
0.5% sodium deoxycholate), and samples were subjected to SDS-PAGE.
After Coomassie staining and destaining, the gel bands were cut with a
surgical blade (Grogg, number 22) into small cubes (~1 mm?), and not
more than six such cubes were placed in an Eppendorf tube containing
20% ethanol. If the samples were not submitted to the proteomics core fa-
cility on the same day, they were stored at 4 °C overnight.

2.5. Immunoblotting

To validate the candidates, Western blots were performed from the
proteins extracted from wt and SMA mice. Sample preparation and
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protein extraction remained exactly as explained above. The protein
samples were run on a 12% SDS polyacrylamide gel. The proteins
were transferred from the gel to a polyvinylidenefluoride (PVDF)
membrane (Roche) for 1.5 h at 135 mA by using a semi-dry blotting
system (Witec AG). The membranes were blocked for 1 h in a
blocking buffer containing 5% milk and then incubated overnight in
primary antibodies diluted in 5% milk PBS-Tween (PBS-T) at 4 °C.
After three washes with PBS-T, the secondary antibodies diluted in
5% milk PBS-T were incubated for 1 h at room temperature. The pri-
mary and secondary antibodies used for these experiments are listed
in the Supplementary Table S1. Horseradish peroxidase activity was
detected by enhanced chemiluminescence (Amersham ECL prime
Western blotting detection reagent kit, GE healthcare life sciences,
RPN 2232) according to the manufacturer's instructions. The signal
intensity was quantified using the Advanced Imager Data Analyser
software (AIDA, version 3.11.002), and the results were normalized
to those obtained for TFIIH.

3. Results

3.1. Motoneurons of the cervical segments of severe SMA mice show an
imbalance of synaptic inputs and mitochondrial abnormalities

As we had previously shown that, on post-natal day 3 (PND3), the
diaphragm shows the strongest alterations in the severe SMA model
(Voigt et al., 2010, 2014), we now focused on identifying disease-
relevant alterations within the motoneurons that innervate this impor-
tant respiratory muscle. Thus, we specifically examined the cervical
segments of the spinal cord from which the diaphragm is innervated.
Neural circuits within the spinal cord play an important role in con-
trolling motor behaviour. In particular, MNs are known to receive
multiple inputs from primary Ia afferent fibres, Renshaw cells, Ia
inhibitory interneurons, serotoninergic axons and descending path-
ways (Cope, 2001). A balance between the excitatory and inhibitory
inputs is necessary for proper tonic firing of MNs. Disruptions in the
spinal circuitry have been implicated in ALS (Chang and Martin,
2009; Jiang et al., 2009; Schiitz, 2005) and a few studies have
shown a reduction in stimulatory/proprioceptive inputs in the
milder SMA A7 model (Ling et al., 2010; Mentis et al., 2011). We ex-
amined the excitatory glutamatergic inputs by using anti-vesicular
glutamate transporter 1 (VGLUT1) (Fig. 1A) and the inhibitory
glycinergic synapses using anti-gephyrin (specific for the post-syn-
aptic part of the inhibitory synapses) (Fig. 1B) and anti-glycine
transporter 2 (GlyT2) (Fig. 1C). Cholinergic MNs were identified
using anti-choline acetyl transferase (ChAT) (Fig. 1A-C). Upon sta-
tistical analysis, a signification reduction (~50%) in the average num-
ber of VGLUT1 positive, excitatory synapses onto MNs was observed
in the SMA disease mice on PND3 in comparison to the wt littermates
(Fig. 1D). With respect to the inhibitory synapses, no significant dif-
ference in the average number of gephyrin or GlyT2 synapses around
the MNs was seen between wt and disease mice (Fig. 1E and F,
respectively).

MNs have a high requirement for Ca?™ buffering and ATP and are
therefore heavily dependent on proper mitochondrial function (Baker
et al., 2011). Thus, the MN survival and function strongly depends on
the integrity and functionality of mitochondria. Furthermore, mitochon-
dria often undergo changes in morphology in response to environmen-
tal and cellular stressors (Barbour and Turner, 2014). Therefore, we
wanted to examine if the gross morphology of the mitochondria in
cervical MNs is altered in SMA mice. We used an antibody against
heat shock protein 60 (Hsp60) as a marker for the mitochondrial matrix
and anti-vesicular acetylcholine transporter (VAChT) to identify cholin-
ergic neurons in cervical spinal cord sections of wt and SMA disease
animals (Supplementary Fig. S1A). These analyses revealed that, in com-
parison to wt mice, SMA mice have mitochondria that appear more
condensed and round as opposed to the normal elongated shape. This

was further supported by quantifications of the sphericity and area of
each mitochondrion, in the sense that mitochondria of SMA disease
mice were significantly more spherical (i.e. rounder) (Supplementary
Fig. S1B) and displayed a smaller area (Supplementary Fig. S1C) than
those of wt mice. Such a transition in mitochondrial morphology is rem-
iniscent of that observed in COS-7 cells which had been induced to enter
apoptosis experimentally (Frank et al., 2001).

Taken together, these results reveal molecular/organellar changes in
the cervical MNs that precede gross morphological alterations or MN
loss. In particular, the imbalance between stimulatory and inhibitory
synaptic inputs is likely to affect MN function.

3.2. Axon terminals in the diaphragm muscle of SMA mice show reduced
synaptic vesicle coverage and active zone density

We have previously shown that a subset of the NM]Js of the
diaphragm of SMA mice show strong morphological changes at the
ultrastructure level on PND3 (Voigt et al., 2010) (see Introduction).
Moreover, 26% of the NMJs (presumably the same ones that show the
ultrastructural changes) were found to be partly innervated compared
to only 11% in wt animals (Voigt et al., 2014). To understand how this
affects the organization of the pre-synaptic components, we investigat-
ed the total endplate area covered by synaptic vesicles as well as the
active zone density. Synaptophysin (Fig. 2A) and bassoon (Fig. 2B and
C) were used as respective markers for these two parameters, and
post-synaptic acetylcholine receptors at the NM]Js were labelled with
rhodamine conjugated a-bungarotoxin (BTX-Rho). At PND3, there
was a significant reduction in the area occupied by the synaptic vesicles
in SMA animals in comparison to the wt littermates (Fig. 2D). In fact, the
total surface area covered by the synaptic vesicles was ~20% smaller in
SMA mice. Similarly, we also observed that the active zones were less
densely distributed in SMA mice compared to wt mice (Fig. 2B).
Quantitatively, both the active zone area (Fig. 2E) and density (Fig. 2F)
were significantly reduced. Together with the previously observed
ultrastructural changes and the partial innervation, our data indicates
that a substantial subset of the diaphragm NM]Js in PND3 SMA mice
are strongly impaired so that the changes are significant at the whole
population level.

3.3. PSCs capping the partly innervated NMJs of SMA mice show reduced
S$100 immunoreactivity

Our previously published electron microscopy analyses of the dia-
phragm NMJs at PND3 had revealed electron translucent vacuole-like
profiles in the cytoplasm of the PSCs in SMA mice (Voigt et al., 2010).
Here, we wanted to investigate this phenomenon with an established
Schwann cell marker. For this purpose, we performed a triple labelling
of the PND3 diaphragm NM]Js. The motor endplates were stained with
«a-bungarotoxin (Fig. 3A and B, blue), and nerve terminals were labelled
with neurofilament antibody (green). Anti-S100 antibody (red) was
used to visualize PSCs. The endplates were classified as fully (white ar-
rows in Fig. 3A and B) or partly innervated (yellow arrows) based on the
arborization of the nerve terminal. The proportions of partly innervated
NM]Js were similar to the previously reported ones (Voigt et al., 2014)
(i.e.26% and 11% for SMA and wt animals, respectively). Separate visu-
alizations of the three analysed markers are shown for selected NMJs in
Fig. 3C-F. Note that the partly innervated endplate of an SMA mouse
shows no detectable S100 staining (Fig. 3F), whereas fully innervated
endplates of wt and SMA mice as well as a partly innervated one from
a wt mouse are positive for S100 (Fig. 3C-E). Importantly, the intensity
of S100 staining is significantly reduced for the entire population of
partly innervated endplates in SMA mice compared to wt littermates
(Fig. 3H). In contrast, no significant changes in the S100 intensity
were seen between the fully innervated endplates of SMA and wt
mice (Fig. 3G). The implications of this reduced S100 staining will be
elaborated in the Discussion section.
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Fig. 1. Imbalance of synaptic inputs onto cervical motoneurons of SMA mice. (A) Cervical spinal cord segments were immunolabelled with anti-ChAT as a marker to identify cholinergic
neurons (green) and anti-VGLUT1 (red) to study excitatory glutamatergic synapses in wt and disease mice. Inhibitory glycinergic synapses were examined using (B) anti-gephyrin (red)
and (C) anti-GlyT2 (red). MNs were identified as in A. (D) A significant reduction in the average number of excitatory synapses was seen in the MNs of disease mice in comparison to the wt
littermates. (E, F) With respect to the inhibitory synapses, no significant difference was observed. Perimeter around MNs kept at 100 um (n = at least 80 MNs from 3 mice per genotype,

Mann Whitney two-tailed test, **P = 0.005). Scale bars (A and B) 5 um.

3.4. Global analysis of proteins from synaptic areas of SMA mouse
diaphragm reveals extensive changes in mitochondrial proteins and
additional regulatory molecules

To gain more insight into the molecular events occurring in our sys-
tem, we tried to identify proteins that are specifically altered in their ex-
pression at the NM]Js and might hence cause or contribute to SMA
pathology. As the isolation of NM]Js by laser capture microdissection
was unlikely to yield proteins in sufficient quantity and quality for

proteomic analysis (P. Odermatt and D.S., unpublished observation),
we had to use a different approach. The fact that the diaphragm is
very thin and that the NM]Js are aligned in a narrow band along the
phrenic nerve (Fig. 4A) allowed us to dissect regions highly enriched
in NMJs manually under a fluorescent dissecting microscope after stain-
ing with BTX-Rho. To validate this type of synaptic enrichment, Western
blots were probed with anti-synaptophysin antibody. This revealed that
synaptophysin expression is almost exclusively detectable in the synap-
tic and not in the extra-synaptic fraction (Fig. 4B). Protein samples from
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Fig. 2. Pre-synaptic defects in the diaphragm muscle of SMA mice at PND3. (A) NMJs of wt and SMA mice were labelled by immunofluorescence for synaptophysin (SYP, green) and
endplates were labelled using bungarotoxin (BTX, red). (B) Active zones were identified by immunostaining for bassoon (green), and endplates were labelled as in A. Wt NM]Js had com-
pact, densely distributed active zones as opposed to the disease NM]Js, in which the active zones were sparse. (C) The bassoon puncta are represented as volumized spots using the Imaris
software. (D) A significant reduction in the area occupied by the synaptic vesicles over the endplates was seen in the SMA mice (n = at least 50 NMJs per genotype, 2 mice each, Mann
Whitney two-tailed test, ***P < 0.0001). (E) The area of the bassoon positive spots was calculated and normalized to the total number of endplates. Significant reduction was seen in the
SMA mice (n = at least 50 NMJs per genotype, 2 mice each, Mann Whitney two-tailed test, ***P = 0.0002). (F) The active zone density was also significantly reduced in SMA mice (n = at
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the synaptic and extra-synaptic regions of the diaphragm of three SMA
disease, wt and SMA/U7 mice were then digested into peptides and
analysed by nano LC-MS/MS with a LC gradient and searched with
Easyprot and or MaxQuant/Andromeda against a non-redundant data-
base. After elimination of likely contaminants (human keratins, bovine
serum components) and proteins detected infrequently and not in all
three genotypes of the analysed diaphragm section, we obtained data
for 416 and 450 proteins from the synaptic and extra-synaptic fractions,
respectively (Table 1). The original data from this proteomic analysis are
available as a Supplementary File S2 (Excel format) at the journal
website..

To evaluate these candidate proteins, the fold change in Protein
Match Score Summation (PMSS; an indicator of protein abundance)
was calculated, normalized to the PMSS value of actin in the same
sample, and groups of proteins showing a greater than 2-fold or a
1.5- to 2-fold increase or decrease between the corresponding SMA
and wt samples were formed. The numbers of proteins falling into
these different groups are listed in Table 1. Notably, despite the fact that
314 proteins were present in both the synaptic and extra-synaptic sam-
ples of wt animals, the groups of up- and down-regulated proteins from
the two diaphragm regions contained only 42 identical proteins of
which 10 and 11 were similarly up- or down-regulated in both regions
(resulting in 21 convergent changes altogether). The other 21 proteins
showed an up-regulation in one and a down-regulation in the other sam-
ple. Moreover, synaptophysin-like protein 2 (SYPL2) was the protein

most highly enriched in the synaptic fraction of wt mice compared to
the corresponding extra-synaptic sample (3.9-fold). Even though we
had detected synaptophysin by Western blot (Fig. 4B), it was not
present in our lists of proteins identified by MS. A list of all proteins
enriched at least 1.5 fold in the synaptic sample is shown in Supplemen-
tary Table S2.

The average PMSS values (relative to actin) across the entire protein
libraries showed only very minor changes between the three mouse ge-
notypes (Fig. 4C; where the actin-normalized wt value is always set as
1). In contrast, the average values of the different selected groups
showed the expected greater than 2- or 1.5-fold increases and decreases
in the SMA samples. Interestingly, for most of the groups, the samples of
the SMA/U7 mice had PMSS values between those of the wt and SMA
genotypes, indicating a partial rescue of the changes.

The molecular functions of the 170 proteins that had shown more
than 1.5-fold changes (up or down) in the synaptic samples of SMA an-
imals compared to wt were then analysed with the PANTHER software
(Protein Analysis Through Evolutionary Relationships). The most
important group of altered proteins (43.2%) are catalytic (mostly mito-
chondrial) proteins playing an important role in the respiratory electron
transport chain, or in mitochondrial transport, proteolysis, oxidative
phosphorylation, protein acetylation or apoptosis (Table 2). This is par-
ticularly interesting, considering that we had observed massive mito-
chondrial degenerations in axon terminals and sub-synaptic muscle
fibres in our previous electron microscopic analyses (Voigt et al., 2010,
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of the nerve terminal. (C, D, E) At completely innervated endplates of wt and SMA mice and also at a partly innervated endplate of a wt mouse, a S100 positive PSC can be seen capping the
NMJs. (F) However, a partly innervated end plate of an SMA mouse shows no detectable S100 staining of PSC. (G) Quantification of the mean S100 intensity reveals no significant difference
for PSCs capping fully innervated endplates in wt and SMA mice (n = at least 50 NM]Js per genotype, 2 mice each, Mann Whitney two-tailed test, P = 0.05). (H) However, there is a sig-
nificant reduction in the mean S100 intensity for PSCs capping party innervated endplates in SMA mice in comparison to wt littermates (n = at least 50 NMJs per genotype, 2 mice each,

Mann Whitney two-tailed test, *P = 0.01). Scale bars (A and B) 10 pm, (C, E, D and F) 5 um.

2014). When only the up-regulated proteins were considered, this func-
tional group even amounted to 56.8%. The other important subsets of
proteins have binding activity (mostly transcription and translation fac-
tors or cytoskeletal components) and structural molecule activity
(Table 2). The sample is very significantly enriched in the following
PANTHER GO-Slim biological processes: generation of precursor metab-
olites and energy (P = 1.79 x 10~ '2), oxidative phosphorylation (P =
433 x 107 '?) and respiratory electron transport chain (P =
9.04 x 1079).

For an initial validation of these proteomics results, we selected two
mitochondrial proteins, i.e. apoptosis inducing factor 1 (AIFM1) and nic-
otinamide adenine dinucleotide dehydrogenase (ubiquinone) 1 alpha
subcomplex, 9 (NDUFA9), and one regulatory protein implicated in
several myopathies, four and half lim domain 1. Besides their biological
interest, these proteins had shown a range of up-regulation in the
synaptic region of SMA animals compared to the controls (Fig. 5A).
Moreover, all of them showed only minimal changes in the extra-
synaptic part (Fig. 5A), suggesting that their up-regulation was specific
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Fig. 4. Identification of alterations in the synaptic proteome of the diaphragm muscle.
(A) Schematic representation of the diaphragm muscle immunolabelled using BTX-Rho.
Due to pre-patterning, the NM]Js are aligned as a central band along the muscle. The
dashed line approximates how the synaptic and extra-synaptic regions of the muscle
were separated under a fluorescent dissecting microscope. (B) Western blots of the pro-
teins extracted from synaptic and extra-synaptic regions of three SMA carrier mice
(Smn*/~; SMN2*/*) revealed that synaptophysin (SYP) was specifically enriched in
the synapse-specific region. TFIIH was used as a loading control. (C) Average PMSS
values (a proxy for protein abundance in a proteomic sample) of complete synaptic
and extra-synaptic protein libraries and of selected subgroups showing the indicated
up- and down-regulations of PMSS values. Note that the increases or decreases
caused by the SMA genotype are in most graphs partly compensated in SMA/U7
mice that contain the U7-ESE-B therapeutic construct which partly corrects the
SMA phenotype (Meyer et al., 2009).

to the NM]J. These candidates were validated by Western blotting
(Fig. 5B), and statistical analyses revealed that indeed AIFM1 and FHL1
are significantly up-regulated (1.8- and 3-fold, respectively) in the
synaptic regions of SMA mouse diaphragms (Fig. 5C). The third candi-
date, NDUFA9, also showed a higher level of expression in the SMA
synapse-specific region, but this was not statistically significant
(Fig. 5C). We also noticed that FHL1 appeared to be slightly reduced in
the extra-synaptic samples. FHL1 and AIFM1 were additionally analysed
by Western blotting in samples from the cervical region of the spinal
cord (Supplementary Fig. S2). Both proteins could be detected, but
neither of them showed any difference between WT and SMA mice.
This underlines that the difference we have observed is specific for the
NM]J-enriched part of the diaphragm.

Table 1

Summary of proteomic analysis.
Protein numbers: Synaptic Extra-synaptic Overlap
>2x up 53 35 2
>2x down 30 52 4
1.5-2x up 59 47 2
1.5-2x down 28 45 4
Sum 170 179 21°
Total identified® 416 450 314

@ After elimination of likely contaminants and proteins detected at low levels and not in
all three samples.
" Only convergent changes considered.

4. Discussion

Even though SMA has been studied quite extensively, and motoneu-
rons which innervate the skeletal muscles are obviously responsible for
the most severe symptoms (Crawford, 2003), it is still not clear which
processes are primarily responsible for the malfunctioning of the neuro-
muscular system. An initial idea that a particular fibre type could be
preferentially susceptible to SMA (Murray et al., 2008) was recently
challenged (Ling et al., 2012; Thomson et al., 2012). Even in the most se-
vere mouse SMA models, it appears that motoneurons and NM]s are
formed normally and that the SMA-dependent alterations are primarily
of a degenerative nature (McGovern et al., 2008; Murray et al., 2008,
2010b; Voigt et al., 2010). Moreover, morphological defects in the pe-
riphery, in particular at the NMJs, have been found to precede any
overt changes in motoneurons (Dachs et al., 2011; Murray et al., 2008,
2010b; Voigt et al., 2010).

To characterize processes involved in the emergence of SMA, we
have analysed several aspects of the neuromuscular system specifically
for the diaphragm of severe SMA mice at PND3. The choice of this
particular system was governed by several considerations. First, the
diaphragm is an important respiratory muscle that is also relevant for
SMA, at least in severe mouse models (Michaud et al., 2010; Voigt
et al.,, 2010, 2014). We also note that degenerative changes of the
diaphragm have been described in 6 months old human SMA type I
patients (Kariya et al., 2008). Additionally, the diaphragm is one of the
earliest affected muscles in the severe SMA mouse model and shows a
spectrum of NMJ abnormalities. Moreover, its thinness and the align-
ment of NMJs along a narrow band accompanying the phrenic nerve
render the diaphragm particularly suited for the types of analyses
performed here. Last but not least, the phrenic nerve originates in the
central cervical segments of the spinal cord and thus represents a
major fraction of the cervical motoneuron population. These features
have enabled us to study both central and peripheral aspects of motor
units affected in SMA by immuno-histochemical and proteomics
techniques. To our knowledge, this is the first time that such a compre-
hensive analysis has been performed for this disease-relevant muscle.
This approach opens the view on possible connections between patho-
logical events occurring in the spinal cord and the corresponding
muscle.

Our previous ultrastructural investigations (Voigt et al., 2010, 2014)
had allowed us to distinguish three subpopulations of diaphragm NM]s
with respect to SMA pathology. Besides normal looking NM]s,
there were weakly and strongly affected ones. The more weakly
affected NMJs showed small vacuole-like inclusions and a more darkly
contrasted cytoplasm in PSCs but no obvious changes in the axon termi-
nals and muscle fibres. In addition to these changes in PSCs, the more
strongly affected NM]Js also had massively swollen mitochondria in
the axon terminals and the underlying muscle fibre areas. At PND3,
these three NM] phenotypes were present in roughly equal numbers.
Moreover, we detected that 26% of the NMJs, presumably representing
the more strongly affected group, showed a partial denervation (Voigt
et al,, 2014). This was accompanied by a significant increase in pre-
and post-synaptic defects such as neurofilament accumulation, improp-
er nerve terminal branching, and reduced acetylcholine receptor area.

The fact that the numbers and overall morphology of motoneuron
cell bodies are normal at PND3 in the severe mouse SMA model
(Monani et al., 2000) does not exclude that the motoneurons could be
impaired. To analyse if this is the case, we have studied two important
functional aspects, i.e. the balance of excitatory to inhibitory synaptic in-
puts and the morphology of mitochondria. A balance of synaptic inputs
onto the motoneurons is crucial for their tonic firing and activity.
Excitotoxicity caused by a gain of excitatory signalling has been impli-
cated in the death of motoneurons in ALS (Chang and Martin, 2009;
Jiang et al., 2009; Schiitz, 2005). In this study, we observed no changes
in the number of inhibitory GlyT2 synapses or in the post-synaptic
part of inhibitory synapses by analysing gephyrin. However, we
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Table 2
Molecular function analysis of proteins up- or down-regulated in diaphragm synaptic region of SMA compared to wt animals at PND3.

GO molecular function Hits % of hits Comment

Catalytic activity (GO:0003824) 41 43.2 Metabolic (mostly mitochondrial)

Binding (G0O:0005488) 23 242 Nucleic acid, protein (cytoskeleton)

Structural molecule activity (GO:0005198) 17 17.9 Cytoskeleton, ribosome

Enzyme regulator activity (G0:0030234) 5 53 Myosins

Receptor activity (GO:0004872) 4 4.2

Transporter activity (GO:0005215) 3 3.2

Antioxidant activity (GO:0016209) 2 2.1

Total 95 100

Analysis of the 170 proteins that showed at least a 1.5-fold up- or down-regulation in synaptic region. The analysis was performed online at http://www.pantherdb.org/(last accessed

30.06.2015). Note that not all proteins were identified by the software.

detected a drastic (~50%) reduction in the number of excitatory vesicu-
lar glutamate transporter 1 (VGLUT1) synapses in the cervical region of
the spinal cord of the severe SMA mice (Fig. 1). Previous studies on lum-
bar spinal cord segments of A7 SMA mice have also demonstrated a re-
duction in VGLUT1 synapses (Ling et al., 2010; Mentis et al., 2011) as
well as a reduced response to proprioceptive input signals (Mentis
et al, 2011). Reduced VGLUT1 synapses were also seen in a mouse
model with selective reduction of SMN in motoneurons (Park et al.,
2010). Furthermore, a disruption of motor circuit activity due to defec-
tive synaptic inputs onto motoneurons has been shown in a Drosophila
model of SMA (Imlach et al., 2012). Last but not least, there is also evi-
dence for a degeneration of sensory axons in SMA type I patients

(Anagnostou et al., 2005; Rudnik-Schoneborn et al., 2003), suggesting
that the situation regarding stimulatory inputs may be similar as in
mouse models. One reason for this phenomenon could be a retarded
growth of sensory axon terminals (shorter neurites and smaller growth
cones) as has been demonstrated in an in vitro study of isolated sensory
neurons from E14 SMA severe embryos (Jablonka et al., 2006).
Regarding inhibitory synapses, we could only identify one previous
study. In the already mentioned analysis of A7 SMA mice, Ling, Ko and
coworkers also analysed vesicular GABA transporter (VGAT) synapses
and found no significant changes (Ling et al., 2010). We have not
analysed VGAT activity because of a report that such synapses may
switch from excitatory to inhibitory activity in young mice (Ben-Ari
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Fig. 5. Validation of mass spectrometry candidates. (A) Relative PMSS values from MS analysis. After normalization of the original values to that of actin in the same sample, the wt value
has always been set as 1. The selected candidates are AIFM1, apoptosis inducing factor 1; NDUFA9, NADH dehydrogenase [ubiquinone] 1 alpha subcomplex subunit 9; FHL1, four and half
lim domain 1. (B) Validation by Western blots. Proteins were extracted from the synaptic and extra-synaptic regions of the diaphragm muscle of three SMA disease and wt mice at PND3.
Anti-TFIIH was used as a loading control, and synaptophysin was used to test for the enrichment of the synaptic regions. (C) Quantitative analysis of Western blot signals. The blots were
performed in biological triplicates, and signal intensity (in arbitrary units) was quantified and normalized to TFIIH. The graph shows the ratios of the signals from SMA mice to those of wt
mice for the synaptic and extra-synaptic regions. Statistical analysis revealed that AIFM1 and FHL1 were significantly up-regulated in the synaptic-specific regions of SMA mice (P = 0.0098
and 0.013, respectively, unpaired two-tailed Student T-test). In contrast, NDUFAJ9, although it had a higher level of expression in the SMA synapse-specific region, this was not statistically

significant. Error bars represent standard deviations.
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etal., 2007). However, as we have analysed GlyT2/gephyrin synapses, it
appears that inhibitory inputs are normal in motoneurons from SMA
mice, but that the stimulatory and inhibitory inputs are not properly
balanced.

The second aspect of motoneuron cell bodies which we found to be
altered is the shape of mitochondria (Supplementary Fig. S1). The
rounding which we observed could be an early sign of an apoptotic pro-
cess. Even though this change is more subtle than the ones occurring in
the pre- and post-synaptic compartments of the diaphragm's NMJs
(Voigt et al., 2010), it suggests that the metabolism of the motoneurons
may be disturbed. In the future, this phenomenon may be studied by
electron microscopy or by using functionally relevant IHC probes. How-
ever, it is interesting to note that changes in mitochondrial morphology
have previously been shown to affect mitochondrial physiology and im-
pact cellular viability (Rintoul and Reynolds, 2010; Su et al., 2010).
Moreover, mitochondrial dysfunction appears to be a common feature
of many neurodegenerative disorders like ALS (Mattiazzi et al., 2002),
Alzheimer's disease (Mecocci et al., 1994) and Huntington's disease
(Quintanilla and Johnson, 2009).

At the level of diaphragm NM]Js, we have analysed the neurotrans-
mitter vesicles and active zones of axon terminals. Active zones are
the areas of neurotransmitter release in the presynaptic membrane.
Our results indicate that both the synaptic vesicle density and the num-
bers and areas of active zones are reduced in SMA mice compared to wt
littermates (Fig. 2). As these changes were significant for the whole
diaphragm NM] population, they must either be particularly strong
in the severely affected NM]Js as defined by EM, or they must also
occur in morphologically less affected NM]Js. In any case, these re-
sults are suggestive of a significant impairment in synaptic transmis-
sion. This is also supported by recent studies in other mouse SMA
models. In particular, Benito et al. observed a similar decrease in syn-
aptic vesicle and active zone clustering which was accompanied by a
reduction of the readily releasable and recycling pool of synaptic ves-
icles in the transversus abdominis muscle of the A7 SMA mice
(Torres-Benito et al., 2011). Other studies revealed an abnormal syn-
aptic transmission (Kong et al., 2009) and an alteration of intracellu-
lar calcium homeostasis (Ruiz et al., 2010) in NM]Js of A7 SMA mice. A
significant decrease in calcium-dependent neurotransmitter release
was also later reported for the A2G mouse SMA model (Ruiz and
Tabares, 2014).

The importance of non-neuronal cells for the pathogenesis of
SMA has become increasingly recognized over the past few years
(Hamilton and Gillingwater, 2013). Defects in myelinating Schwann
cells (Hunter et al., 2013; Murray et al., 2010a) as well as perineurial
Schwann cells and perineurial fibroblasts (Voigt et al., 2010) have
been described in SMA mouse models. These changes might affect the
survival or functions of the axon, its terminal branches or even the mo-
toneuron as a whole. Another type of glial cell that is more specifically
relevant for the maintenance of a functional NM]J is the terminal or
perisynaptic Schwann cell (PSC) (Auld and Robitaille, 2003; Feng and
Ko, 2007). Our ultrastructural analyses of NMJs in the severe SMA
model were the first to demonstrate morphological changes associated
with these cells (Voigt et al., 2010, 2014). The vacuole-like inclusions in
the PSC cytoplasm observed in these studies in fact appeared to precede
other morphologic changes such as the swelling of mitochondria in the
axon terminals and muscle fibres. Here, we have analysed the staining
of PSCs with an antibody against the Schwann cell marker S100
(Fig. 3). This was significantly reduced for the partly innervated NM]Js
in SMA mice, and some NM]Js even showed no detectable S100 staining
at all, which contrasts with our EM analyses that revealed cells covering
the axon terminals, even in the most strongly affected NM]Js (Voigt et al.,
2010, 2014). This indicates that the vacuolized cells that can be seen to
cover the affected NMJs by EM must either be PSCs that have lost their
Schwann cell identity or completely different cells that have replaced
the PSCs. The first of these possibilities appears more likely and would
imply that the PSCs dedifferentiate or transdifferentiate into another

cell type in SMA-affected muscles or that the loss of S100 staining is
an early symptom of an apoptotic process.

Whichever is the case, the changes occurring in PSCs are highly
relevant for the maintenance and function of the corresponding NM]Js.
PSCs are important components of the NM]J, capable of modulating syn-
aptic activity and contributing to synapse remodelling (Feng and Ko,
2007). They also promote synaptogenesis during development (Feng
and Ko, 2008) or in the renervation after a nerve injury (Reynolds and
Woolf, 1992; Son et al., 1996). A complex network of signalling interac-
tions between PSCs, axon terminals and muscle fibres (which is still not
fully understood) ensures that all three cellular components of a NM]
can fulfil their different roles (Feng and Ko, 2007). It would be interest-
ing to know whether and how these signalling interactions are altered
in SMA. This might also reveal new potential targets for a treatment of
SMA.

Since our initial observation that PSCs are affected in severe SMA
mice (Voigt et al., 2010), other studies have found a reduction of PSCs
associated with the NM]Js of the sternomastoid and soleus muscle of
SMNA7 mice at PND13 (Lee et al., 2011) and the LAL-r muscle at
PND21 of Smn?®~ mice (Murray et al., 2013). Moreover, PSCs seem
to play a role in other neuromuscular disorders. An earlier study
showed that a mouse mutant defective in the SCN8A gene that en-
codes the Nav1.6 voltage-gated sodium channel has a motor
endplate disease phenotype and shows a reduced S100 staining at
NM]s (Musarella et al., 2006). In humans, mutations of the SCN8A
gene have been found in patients with cognitive disorders, some-
times associated with ataxia (Trudeau et al., 2006). More important
for human motoneuron diseases, a dysfunction of PSCs has recently
been implicated in a slowly progressive model of Amyotropic Lateral
Sclerosis (ALS) (Arbour et al., 2015).

Differential proteomic studies provide a rapid and powerful insight
into gene expression changes. However, for diseases of the neuromus-
cular system, it is important to use enriched preparations of the relevant
structures. With respect to SMA, Wishart and coworkers have recently
analysed the proteomic composition of biochemically isolated synapto-
some preparations from the hippocampus of newborn SMA mice
(Wishart et al.,, 2014) and from Schwann cells isolated from peripheral
nerves (Aghamaleky Sarvestany et al.,, 2014). This led to the identifica-
tion of the ubiquitin-like modifier activating enzyme 1 (UBA1) as a
widely perturbed gene product that controls 3-catenin signalling and
nerve myelination. However, in muscle tissue, the NMJs are usually dis-
persed and difficult if not impossible to isolate. Consequently, only one
study has so far looked at the proteomic composition of an entire mus-
cle of SMA mice (Mutsaers et al., 2011).

In our case, we have exploited the fact that the diaphragm is very
thin and that the NM]Js are aligned in a band along the muscle to per-
form a proteomic study of synapse-specific and extra-synaptic regions.
The achieved enrichment is considerable, considering the Western
blot data for SYP and the proteomics result for the related protein
SYPL2. The method can probably still be improved and scaled up to
allow for an even deeper exploration of the NMJ proteome. Thus, a sys-
tems biology study of the diaphragm could be interesting well beyond
its relevance for SMA.

An important outcome of our analysis is that over 40% of the differ-
entially expressed proteins in the synaptic regions of SMA mouse dia-
phragms have catalytic activity and play an important role in the
mitochondrial respiratory chain. This finding is interesting as we have
previously observed by electron microscopy a massive mitochondrial
swelling and degeneration in the axon terminals and sub-synaptic mus-
cle fibre areas of the most severely affected NMJs (Voigt et al., 2010).
However, we have to state that mitochondrial components are also
highly represented in the extra-synaptic proteins and in the group of
synaptic proteins that show little or no changes in expression. This
most likely reflects the fact that muscle is generally rich in mitochon-
dria. Nevertheless, the proportion of mitochondrial components is par-
ticularly high in the differentially expressed proteins from the synaptic
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fractions and among these predominantly in the up-regulated group.
This trend towards up-regulation of these components is somewhat
surprising. Based on the massive degeneration of mitochondria visual-
ized by EM, we would have expected a reduction rather than an up-
regulation of mitochondrial proteins. Indeed, a recent study identified
reductions in a number of mitochondrial markers in muscle tissues
from human SMA type I and type II patients (Ripolone et al., 2015).
The difference could be that these tissues came from patients at an ad-
vanced stage of the disease whereas the mouse diaphragm samples
which we analysed only began to develop disease symptoms. The up-
regulation observed in our proteomic approach might represent an
adaptive response to disease-associated stress. In agreement with this
idea, a compensatory increase in mitochondrial activity has recently
been described in a cell culture SMN depletion model (Acsadi et al.,
2009). At a certain point, however, the stressor thresholds might
increase to levels which negatively impact mitochondrial integrity,
eventually leading to their degeneration.

Two of the changes in protein abundance that we could validate con-
cern regulatory proteins (FHL1 and AIFM1). Both were upregulated in
the NM]J-enriched samples of SMA mice compared to wt littermates
(Fig. 4), but showed no changes in the extrasynaptic region of the dia-
phragm (Fig. 4) or in cervical spinal cord (Supplementary Fig. S2). For
technical reasons, we have not yet been able to identify in which cells
of the synapse-enriched area the expression of these proteins is
changed. However, based on their known biology (see next para-
graphs), the increase of FHL1 is likely to occur mostly in muscle fibres
and that of AIFM1 predominantly in motoneurons.

The four and a half lim domain protein 1 (FHL1) is enriched in
skeletal muscle where it is an important regulator of muscle mass, and
several lines of evidence suggest a correlation between FHL1 and
muscular hypertrophy (Cowling et al., 2008; Loughna et al., 2000). In
this sense, its up-regulation could be part of a compensatory mecha-
nism of muscle remodelling to cope with the loss of functionality caused
by the disease. Interestingly, the presence of atrophic and hypertrophic
fibres has been reported in SMA patients (Buchthal and Olsen, 1970;
Emery, 1971; Millino et al., 2009). Moreover, FHL1 has recently been
identified as a therapeutic target for Duchenne Muscular Dystrophy
(D'Arcy et al.,, 2014) and its loss induces a pronounced skeletal myopa-
thy (Domenighetti et al., 2014).

The other validated upregulated protein is apoptosis inducing factor
1 (AIFM1), a mitochondrial inner membrane flavoprotein which has
arole in controlling apoptosis in a caspase-independent pathway
(Joza et al., 2001; Kroemer et al., 2007). In vertebrates, most of the
cell death occurs via a pathway that involves mitochondrial mem-
brane permeabilization. Upon the initiation of apoptosis, AIFM1
gets translocated to the nucleus, where it causes chromatin conden-
sation and fragmentation of DNA. AIFM1 mutations have been asso-
ciated with neurological and neurodegenerative conditions such as
an X-linked Charcot-Marie-Tooth disease (CMTX4) with axonal
sensorimotor neuropathy (Rinaldi et al., 2012), Alzheimer's disease
(Lee et al., 2012) or a severe infantile motor neuron disease (Diodato
etal,, 2015). This highlights the importance of normal AIFM1 expression
in motoneurons. Thus, the up-regulation of AIFM1 in the synaptic re-
gions of the diaphragm of SMA mice that we have observed might be
a response from burdened motoneurons.

An important question is how all the events highlighted in this study
are related to each other and which cells are most important for trigger-
ing the disease. A motor unit is composed of a motoneuron, the muscle
fibre(s) it innervates and the PSCs sitting at its NMJs. Additionally, the
motoneuron receives inputs from afferent dorsal root neurons as well
as from other neurons in the spinal cord and in higher brain centres.
The data presented here indicate that an early reduction in VGLUT1
inputs might be an important contributor to motoneuron damage.
Similarly, at the periphery, the early changes affecting PSCs may be a
cause of the degenerative events that impair NM]J function. Whether
the PSCs degenerate independently because of intrinsic low SMN levels

or whether they react to subtle initial changes in the motoneurons is an
open question. Similarly, the neurons that provide excitatory inputs to
the alpha-motoneurons might be primary sensors of low SMN levels
or, since most of them are proprioceptive neurons, they could be part
of a feedback loop that aggravates the motoneuron's functionality. It is
also not clear which events, those occurring in MN cell bodies or those
occurring at the NM]s are occurring first and if there is a cause—effect
relationship between them. Either the events in NM]Js (axon terminals
and PSCs) are the primary effect of the disease, and the reduction in
excitatory inputs on MNs is due to some feed-back mechanism, or the
central defect in excitatory inputs ultimately induces the peripheral
defects. To answer these questions conclusively will be very difficult,
even if the events are studied at earlier time points. Importantly, our
data indicate that, at the stage that we have analysed, degenerative
events have begun to affect the motor units both centrally and in the

periphery.
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