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Summary

The ability of Geobacter species to transfer electrons
outside the cell enables them to play an important
role in a number of biogeochemical and bioenergy
processes. Gene deletion studies have implicated
periplasmic and outer-surface c-type cytochromes in
this extracellular electron transfer. However, even
when as many as five c-type cytochrome genes have
been deleted, some capacity for extracellular electron
transfer remains. In order to evaluate the role of
c-type cytochromes in extracellular electron transfer,
Geobacter sulfurreducens was grown in a low-iron
medium that included the iron chelator (2,2′-
bipyridine) to further sequester iron. Haem-staining
revealed that the cytochrome content of cells grown
in this manner was 15-fold lower than in cells exposed
to a standard iron-containing medium. The low
cytochrome abundance was confirmed by in situ
nanoparticle-enhanced Raman spectroscopy (NERS).
The cytochrome-depleted cells reduced fumarate
to succinate as well as the cytochrome-replete cells
do, but were unable to reduce Fe(III) citrate or to
exchange electrons with a graphite electrode.
These results demonstrate that c-type cytochromes
are essential for extracellular electron transfer
by G. sulfurreducens. The strategy for growing
cytochrome-depleted G. sulfurreducens will also

greatly aid future physiological studies of Geobacter
species and other microorganisms capable of
extracellular electron transfer.

Introduction

Geobacter sulfurreducens is an intensively studied micro-
organism that serves as a model system to investigate
extracellular electron transfer (EET) in bacteria (Lovley
et al., 2011). EET is the ability that certain bacteria have
for coupling the oxidation of cytoplasmic electron donors
with the reduction of insoluble electron acceptors located
outside the cell. EET is responsible for biogeochemical
processes such as the reduction of Fe-oxides and other
metals in soils and sediments (Lovley et al., 2004) and for
syntrophic electron transfer to methanogens (Rotaru
et al., 2014). EET is also behind practical applications in
the emergent field of electromicrobiology (Lovley et al.,
2011), where bacteria are directly involved in redox pro-
cesses with conductive materials (electrodes), which
serve as electron acceptors. Microbial electrochemical
technologies (MET) for harvesting energy from waste
(Logan and Rabaey, 2012) or from soil environments
(Domínguez-Garay et al., 2013), bioremediating polluted
sediments (Lovley et al., 2011; Rodrigo et al., 2014) or
biosensing (Dávila et al., 2011) are all based on an effec-
tive EET.

The unique ability of Geobacter to establish a direct
contact with an insoluble electron acceptor is due to the
presence of a vast network of cytochromes c that con-
nects the internal cytoplasm with the outermost environ-
ment of the cell (Morgado et al., 2012; Aklujkar et al.,
2013). There are about 100 putative c-type cytochrome
genes encoded in the genome of G. sulfurreducens
(Methé et al., 2003), most of which contain multiple haem
groups that can act as electron transfer mediators. Many
of these c-type cytochromes are exposed on the outer-
most membrane of the cell (Mehta et al., 2005; Ding et al.,
2006; Qian et al., 2007; Leang et al., 2010; Inoue et al.,
2011). Knock-out studies suggest that these c-type
cytochromes transfer electrons in vivo to a diversity of
natural extracelular electron acceptors, such as metals
and humic substances (Leang et al., 2003; 2005; Mehta
et al., 2005; Shelobolina et al., 2007; Voordeckers et al.,
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2010; Orellana et al., 2013). Single gene deletions of
c-type cytochromes in other iron-reducing bacteria like
Shewanella showed a similar response for reducing
extracellular electron acceptors like uranium (U(VI))
(Marshall et al., 2006). Furthermore, numerous studies
have demonstrated that c-type cytochromes directly par-
ticipate in the electrochemical communication with the
anode (Holmes et al., 2006; Nevin et al., 2009; Richter
et al., 2009; Busalmen et al., 2010; Esteve-Núñez et al.,
2011; Jain et al., 2011; Liu et al., 2011; Millo et al., 2011;
Strycharz et al., 2011).

The network of cytochromes in Geobacter can also
function as biocapacitor accepting electrons from acetate
metabolism (Esteve-Núñez et al., 2008) when extra-
cellular electron acceptors are not available (Esteve-
Núñez et al., 2008; Lovley, 2008). Indeed, the abundant
c-type cytochromes in current-producing biofilms (Liu
et al., 2011; Schrott et al., 2011) provide a capacitance
comparable with that of synthetic supercapacitors with low
self-discharge rates (Malvankar et al., 2012).

The synthesis of c-type cytochromes constitutes a
complex process in which iron must be incorporated to the
protoporphyrin ring to conform each haem group that
subsequently will be attached (Stevens et al., 2004). A
recent study has explored the iron stimulon, reporting how
24 different c-type cytochromes were slightly down-
regulated with decreasing iron levels (Embree et al.,
2014). Interestingly, strategies for promoting transposon
insertions in the cytochrome c maturation genes ccmC
and ccmF1 led to Shewanella oneidensis strains unable
to perform any kind of anaerobic respiration including the
donation of electrons to extracellular electron acceptors
like iron, or manganese or intracellular molecules like
fumarate or nitrate (Bouhenni et al., 2005).

Although iron is an abundant element in nature, its low
solubility forces microorganisms to develop regulatory
and transport mechanisms with the purpose of maintain-
ing the iron homeostasis. In G. sulfurreducens, two
systems belonging to the Feo family have been identified
to facilitate the transport of Fe(II) (Cartron et al., 2006). All
Feo genes as well as eleven genes encoding components
for heavy metal efflux pumps were found to be most
downregulated during iron-excess conditions (Embree
et al., 2014).

The most important system for regulating the iron
metabolism is the ferric-uptake regulator (Fur). Fur acts as
a transcriptional repressor, which, in response of the iron
availability, controls many genes related to iron acquisition
as well as redox-stress resistance, central metabolism
and energy production in G. sulfurreducens (O’Neil et al.,
2008; Embree et al., 2014). Along with Fur, an additional
transcriptional regulator called IdeR has been recently
suggested to have a role in iron homeostasis for
G. sulfurreducens (Embree et al., 2014).

In some bacteria, such as the Rhizobium genus
(Johnston et al., 2007), the Fur-like iron response regula-
tory protein (Irr) regulates the haem biosynthetic pathway
according to the iron availability. Under iron limitation
conditions, Irr reduces the haem synthesis in order to
avoid porphyrins accumulation that can be highly toxic (Qi
et al., 1999; Ishikawa et al., 2011). Although Irr has not
yet been found in Geobacter species, it is likely that
G. sulfurreducens has developed a system to limit the
synthesis of cytochromes under iron-limiting conditions
based on either Fur or IdeR regulators (Embree et al.,
2014).

In the present study, we demonstrate that limiting the
availability of iron to G. sulfurreducens resulted in a
decreased cytochrome abundance and a concomitant
loss of its capacity for EET while keeping the cell viability.

Results and discussion

High iron requirement for the optimal growth of
G. sulfurreducens

The standard freshwater medium for Geobacter growth
contains approximately 2 μM Fe as part of its trace
element cocktail (Lovley and Phillips, 1986). This concen-
tration has been reported to be sufficient to satisfy the Fe
requirement of the bacteria (Fukushima et al., 2012).
However, it might be expected that the synthesis of
the abundant cytochromes in Geobacter might impose
a need for additional iron. In order to evaluate this,
G. sulfurreducens was grown in chemostats under con-
tinuous culture conditions. Iron was supplied in the ferrous
form because the presence of ferric iron results in
transcriptional repression of the fumarate respiration
(Esteve-Núñez et al., 2004).

With 2 μM ferrous iron, typically used in G.
sulfurreducens medium, the steady-state acetate concen-
tration and the biomass concentrations stabilized at
1.5 mM and 42.6 mgprot/l respectively. Increasing the
ferrous iron concentration to 150 μM led to a reduction of
the residual concentration of acetate by a factor of
10 (150 μM). The biomass concentration increased to
51.7 mgprot/l culture (Fig. S1). Adding a pulse of ferrous
iron had a similar impact (Fig. S1).

These results suggest that the iron availability limits the
growth in typical G. sulfurreducens-growing medium. The
higher assimilation of acetate in the presence of iron
could be explained by the lower Ks obtained in
chemostats with Fe(III) rather than with fumarate as Ter-
minal Electron Acceptor (TEA), which leads to a higher
affinity for acetate (Esteve-Núñez et al., 2005) when the
iron supply is abundant.

When cultured with 2 μM ferrous iron, G.
sulfurreducens cells contain 1.9 × 10−6 ng iron/cell. This
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order of magnitude is higher than the average iron content
of other bacteria such as E. coli (10−8 to 10−7 ng/cell, as
derived by Andrews et al., 2003). Escherichia coli is prob-
ably the best bacteria studied in terms of microbial iron
assimilation (McHugh et al., 2003; Kumar and Shimizu,
2011), and it is usually used as a reference model.
Escherichia coli and G. sulfurreducens were cultured
both under fumarate-respiring conditions in freshwater
medium supplemented with 55Fe to quantify the iron
content incorporated to the biomass. The detection of
radioactivity in the samples showed a higher content
(threefold) of 55Fe in G. sulfurreducens cells as compared
with E. coli (Fig. S2).

The iron content in the cells was also analysed by
inductively coupled plasma mass spectrometry and led to
results consistent with the radiotracer measurements,
approximately 1008 ppm of iron for G. sulfurreducens and
approximately 297 ppm for E. coli. One reason for the
difference in iron content between G. sulfurreducens and
E. coli is that the G. sulfurreducens genome encodes
more than 100 c-type cytochromes, whereas only five
genes encoding cytochromes are present in E. coli
(Grove et al., 1996; Reid et al., 2001). Many of
the G. sulfurreducens cytochromes are constitutively
expressed, regardless of the culture conditions (Ding
et al., 2006), including during growth in the absence of
extracellular electron acceptor, e.g. under fumarate-
reducing conditions (Holmes et al., 2006; Esteve-Núñez
et al., 2008). There is remarkably little conservation of
c-type cytochromes genes across the six Geobacter
species whose genomes have been sequenced. This sug-
gests that there has not been evolutionary pressure to
maintain specific structures that might promote interac-

tions of the cytochromes with the electron acceptors
(Lovley, 2008). However, there has been evolutionary
pressure for the Geobacter species to maintain an abun-
dance of haem. The energetic investment that Geobacter
species make in the c-type cytochrome production could
be very adaptive in providing an electron storage capacity
that permits electron transfer in the temporary absence of
Fe(III) oxides (Esteve-Núñez et al., 2008; Lovley, 2008).
The hypothesis of the cytochrome network acting
as capacitor, where multi-haem could store charge
(Esteve-Núñez et al., 2008; Schrott et al., 2011; Robuschi
et al., 2013), may be the key to understand this
biosynthetic pathway. The electron-storage capacity of
the cytochrome network would be useful in the absence of
an electron acceptor while conferring Geobacter the
ability to satisfy maintenance energy requirements to
develop motility and search for the nearest available elec-
tron acceptor (Childers et al., 2002).

Haem− Geobacter cells

The high requirement of G. sulfurreducens for iron
suggests that it might be possible to limit the cyto-
chrome production by limiting the iron availability. In order
to further lower the iron availability, the iron non-
supplemented medium was amended with bypiridine, an
iron chelator. The iron content of cells grown in this
manner was 15-fold less (1.2 ng × 10−7/cell) than in cells
grown in a typical iron-containing medium (Fig. 1A). Haem
staining of whole-cell lysate proteins separated with
SDS-PAGE demonstrated that the cytochrome content of
cells grown in the low-iron medium was much lower than
in cells grown in standard iron-containing medium

Fig. 1. Analysis of Geobacter sulfurreducens cultured under iron-sufficient conditions (haem+) and iron-deficient conditions in presence of the
iron chelator bypiridine (haem−). (A) Total cellular iron content analysed by inductively coupled plasma mass spectrometry (ICP-MS); haem+

(black) and haem− (grey) cells of G. sulfurreducens. (B) Photo of the haem+ and the haem− batch cultures of G. sulfurreducens. The analysis
of the SDS-PAGE for the protein fraction of both the haem+ and the haem− Geobacter cells after the haem staining (C) and Comassie
staining (D).
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(Fig. 1B–C). The cultures grown in the low-iron medium
were much less red than cells grown in typical iron-
containing medium (Fig. 1D).

Scanning electron microscopy (SEM) revealed no dif-
ference in cell morphology between cells grown with
limited iron concentration versus the standard culture
medium, indicating that the cells do not suffer from any
major morphological damage due to the absence of the
cytochrome network (Fig. S3).

The growth rate of G. sulfurreducens declined from
0.050 h−1 to 0.035 h−1 when iron limited the growth. In
contrast, the rates of fumarate reduction per cell in haem+

(2.0 × 10−10 mmol/h cell) and haem− (1.9 × 10−10 mmol/h
cell) growing cells were similar demonstrating that this key
central metabolism reaction was not affected by the
absence of cytochromes. This is consistent with the fact
that fumarate is reduced at the inner membrane by a
membrane-bound fumarate reductase/succinate dehy-
drogenase that does not involve cytochromes (Butler
et al., 2006). These results demonstrate that the low-iron
culture conditions provide enough iron for cells to perform
central metabolism reactions and assure viable cells.

Cytochromes c were shown for the first time to release
electron in vivo on electrodes in spectroelectrochemical
studies of the outermost membrane of Geobacter cells
upon reduction on a gold electrode (Busalmen et al.,
2008b). Since then, a number of techniques involving
infrared (Busalmen et al., 2010; Esteve-Núñez et al.,
2011) and Raman spectroscopy (Millo et al., 2011; Virdis
et al., 2012; Kuzume et al., 2013; Robuschi et al., 2013)
were applied successfully to explore the surface of the
bacteria. In order to analyse the outermost membrane of
the haem− cells, we used in this study a nanoparticle-
enhanced Raman spectroscopy (NERS), a powerful tech-
nique that can detect and further provide structure

information of haem, which are vicinal to the coinage
metal nanoparticle surface. For the NERS measurement
in this work, Ag nanoparticles, which act as optical anten-
nas to enhance the Raman response, were deposited
onto a submonolayer of bacteria. A SEM/Energy Disper-
sive X-ray analysis revealed that the Ag nanoparticles
located vicinal to the bacterial cells are sufficiently close to
enhance the Raman signals of the outermost domains
(Kuzume et al., 2013). Figure 2A displays a nanoparticle
enhanced Raman (NER) spectrum of G. sulfurreducens
cells mixed with Ag nanoparticles in a Ar atmosphere. We
observed (Table S1) only the haem-related bands (ν10, ν2,
ν11, ν3, ν29 and ν4) that are known to have a large Raman
scattering cross-section due to a significant resonance
effect with the 532 nm laser excitation line (Eng et al.,
1996; Oellerich et al., 2002; Biju et al., 2007; Yeo et al.,
2008). The key haem-related bands as found in the NER
spectra are summarized and assigned in Table S1.
Figure 2B shows a typical NER spectrum of the haem−

G. sulfurreducens cells. No specific Raman signals from
haem-related domains were found, which represents a
direct proof of the absence of haem groups in the haem−

sample prepared in this work. The four signals between
1400 and 1600 cm−1 can be assigned to the amino acid
adenine (Papadopoulou and Bell, 2010) and to citrate-
stabilized Ag NanoParticle (NP) (Kuzume et al., 2013),
that not related to haem domains.

EET assays

Gene deletion studies have implicated a number of c-type
cytochromes in EET, but even when multiple cytochrome
genes are deleted in the same strain, some EET capability
remains (Voordeckers et al., 2010; Orellana et al., 2013).
However, the number of cytochrome genes that can be
deleted in a single strain is limited. To determine if the lack
of cytochromes associated with the growth in a low-iron
medium could completely remove the capacity for EET,
cells growing with fumarate as electron acceptor were
pulsed with 10 mM Fe(III) citrate. No Fe(III) was reduced
(Fig. 3), and the rate of fumarate reduction to succinate
(1.9 × 10−10 mmol/h per cell) was unaltered. In contrast,
when Fe(III) was added to cells growing in a medium with
the standard iron content, Fe(III) was rapidly reduced
(5 × 10−10 mmol/h per cell) and the fumarate reduction
was inhibited.

Another EET process, where cytochromes have
been reported to participate, is the electrode reduction
in MET. By using electrochemical approaches, such
as cyclic voltammetry (Busalmen et al., 2008a), the
bioelectrochemical response for the extracellular electron
transport was monitored. Geobacter sulfurreducens was
resuspended in phosphate buffer in the presence of an
electron donor, but in the absence of a soluble electron

Fig. 2. In-situ nanoparticle-enhanced Raman (NER) spectra of (A)
haem+ G. sulfurreducens and (B) haem− G. sulfurreducens, both
mixed with Ag nanoparticles. The Raman scattering was enhanced
by the plasmonic Ag nanoparticles by several orders of magnitude
allowing the selective probing of the vibrational signature of
cytochromes.
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acceptor. Consequently, when G. sulfurreducens cells
were incubated in a three-electrode cell, just the electrode
could act as TEA. A typical voltammogram shows two
redox peaks with current maxima at 0.2 and −0.2 V versus
Ag/AgCl (Busalmen et al., 2008a; Fricke et al., 2008;
Richter et al., 2008), which represents the corresponding
oxidation and reduction processes respectively. In con-
trast to the wild type, G. sulfurreducens haem− cells did
not display any redox peak demonstrating that the pres-
ence of cytochromes is required for performing a sufficient
redox communication with an exocellular electron accep-
tor, such as a polarized electrode (Fig. 4). The absence of
additional current peaks confirms that the cytochrome-
related redox reactions comprise the major active com-
pound in Geobacter redox activity on polarized electrodes
in Bioelectrochemical systems (BES). This conclusion is
confirmed by recent findings of several groups (Busalmen
et al., 2008b; Millo et al., 2011; Kuzume et al., 2013).

Conclusions

These results demonstrate dramatic impact of available
iron on the growth and activity of G. sulfurreducens.
Adjusting laboratory media to provide a higher iron con-
centration than that Geobacter species experience in a
natural environment may promote important applications,
such as MET that rely on optimized extracellular electron
exchange.

Alternatively, making iron less available yielded cells
unable to produce haem groups and studies with these
cells confirmed the key role of the vast cytochrome
network in EET. Our bioelectrochemical results confirm
that cytochromes are essential for direct electron transfer
to electrodes. Although we have focused on getting haem−

cells, our methodology allows controlling the level of

cytochrome production by varying the doses of the
chelator. In consequence, we could generate Geobacter
cells with different levels of haem content in contrast with
previous strategies performed in bacteria for erasing
all c-type cytochromes through transposon insertions
that led to unviable cells under anaerobic conditions
(Bouhenni et al., 2005). Furthermore, we believe that
haem− cells reported in this work will also be relevant for
other researchers targeting investigations on the physiol-
ogy of Geobacter under EET-free background conditions.
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Fig. S1. Residual acetate concentration under acetate-
limiting conditions with (A) a culture growing in a standard
freshwater medium (orange line), (B) growing in Fe(II)-
supplemented freshwater medium (blue line), and (C)
growing in a standard freshwater medium, but spiked with
Fe(II) as indicated by the arrow (purple line).
Fig. S2. 55Fe-content of a filtered cell suspension of (A) E. coli
and (B) Geobacter sulfurreducens.
Fig. S3. SEM images of heme+ G. sulfurreducens (A) and
heme− G. sulfurreducens (B).
Table S1. Assignment and frequencies (cm−1) of the
heme-related bands of G. sulfurreducens (Fig. 2A) in the
NER spectrum.
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