
Original Article 1 
 2 

Engraftment of autologous bone marrow cells into the injured cranial cruciate ligament 3 
in dogs 4 
 5 

E. Linon, D. Spreng, U. Rytz, S. Forterre* 6 

Division of Small Animal Surgery and Orthopedics, Vetsuisse Faculty Bern, Department of 7 
Clinical Veterinary Medicine, University of Bern, Länggassstrasse 128, 3012 Bern, 8 
Switzerland 9 

 10 

*Corresponding author: Tel.: +41 31 631 2768 11 

E-mail address: simone.forterre@vetsuisse.unibe.ch (S. Forterre) 12 

  13 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Bern Open Repository and Information System (BORIS)

https://core.ac.uk/display/33081132?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:simone.forterre@vetsuisse.unibe.ch


Abstract 14 

Current research indicates that exogenous stem cells may accelerate reparative 15 

processes in joint disease. However, no previous studies have evaluated whether bone marrow 16 

cells (BMCs) target the injured cranial cruciate ligament (CCL) in dogs. The objective of this 17 

study was to investigate engraftment of BMCs following intra-articular injection in dogs with 18 

spontaneous CCL injury. Autologous PKH26-labeled BMCs were injected into the stifle joint 19 

of eight client-owned dogs with CCL rupture. The effects of PKH26 staining on cell viability 20 

and PKH26 fluorescence intensity were analyzed in vitro using a MTT assay and flow 21 

cytometry. Labelled BMCs in injured CCL tissue were identified using fluorescence 22 

microscopy of biopsies harvested 3 and 13 days after intra-articular BMC injection.  23 

 24 

The intensity of PKH26 fluorescence declines with cell division but was still 25 

detectable after 16 days. Labelling with PKH26 had no detectable effect on cell viability or 26 

proliferation. Only rare PKH26-positive cells were present in biopsies of the injured CCL in 27 

3/7 dogs and in synovial fluid in 1/7 dogs. No differences in transforming growth factor-β1, 28 

and interleukin-6 before and after BMC treatment were found and no clinical complications 29 

were noted during a 1 year follow-up period. In conclusion, BMCs were shown to engraft to 30 

the injured CCL in dogs when injected into the articular cavity. Intra-articular application of 31 

PKH26-labeled cultured mesenchymal stem cells is likely to result in higher numbers of 32 

engrafted cells that can be tracked using this method in a clinical setting. 33 

 34 

Keywords: Bone marrow cells; Cranial cruciate ligament; Dog; Mesenchymal stem cells, 35 
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Introduction 38 

The cranial cruciate ligament (CCL) is essential for stifle joint stability and its rupture 39 

leads to functional impairment, meniscal lesions and early onset of osteoarthritis (Arnoczky 40 

and Marshall, 1977; Korvick et al., 1994). In dogs, CCL injury is common and has been 41 

treated using a variety of different surgical techniques since 1952 (Paatsama, 1952), but no 42 

single treatment option has been shown to be clearly superior. The goals of most reported 43 

techniques are to alleviate pain, decrease instability and minimize osteoarthritis (OA) (Moore 44 

and Read, 1995), but residual lameness is frequent and OA is a common sequel (Elkins et al., 45 

1991; Innes et al., 2004; Rayward et al., 2004). The lack of ideal outcome following surgery 46 

has prompted interest in exploring new adjunctive treatment options, such as regenerative 47 

stem cell therapy. Knowledge of the benefits of these treatment strategies would be useful 48 

both for the treatment of spontaneous canine CCL injury and for investigations into 49 

degenerative anterior cruciate ligament (ACL) disease in humans using the dog as a model. 50 

 51 

Mesenchymal stem cell (MSC) therapy is a newly developing therapeutic approach in 52 

OA that has proven useful in cartilage repair in a variety of animal models (Black et al., 2007, 53 

2008; Chong et al., 2007; Guercio et al., 2012; Jorgensen and Noel, 2012; Khan et al., 2010; 54 

Kirkby and Lewis, 2012; Koga et al., 2008; Mokbel et al., 2011a, b; Murphy et al., 2003). 55 

Bone marrow-derived MSCs hold particular promise for tissue repair because of their ability 56 

to engraft into tissues and differentiate into the target tissue cell type, including fibroblasts, 57 

osteocytes, adipocytes, chondrocytes and myocytes (Chamberlain et al., 2007; Pittenger et al., 58 

1999). In recent studies, MSCs were found to accelerate healing of transected ligaments in 59 

animal models (Agung et al., 2006; Kanaya et al., 2007; Kim et al., 2011) and evidence 60 

suggests that fresh whole bone marrow cells (BMCs) may have superior effects compared to 61 

purified MSCs, presumably because of an additional benefit of hematopoietic stem cells (Oe 62 

 
 



et al., 2011). Indeed, injured rat ACLs treated with BMCs had more mature fibroblasts and 63 

tighter collagen bundles compared to those treated with MSCs, leading the authors to 64 

conclude that bone marrow (BM) transplantation is an effective treatment for ACL injury (Oe 65 

et al., 2011). To date, no studies have investigated the potential benefit of stem cell adjunctive 66 

treatment in dogs with experimental or spontaneous CCL injury. 67 

 68 

 The purpose of the present study was to assess the engraftment potential of autologous 69 

BMCs injected into the articular cavity in dogs with partial or complete CCL rupture and to 70 

determine whether PKH26 red fluorescent labelling is a safe and effective way to track canine 71 

BMCs.  72 

 73 

Material and methods 74 

Animals 75 

Client-owned dogs presented for surgical treatment of spontaneous partial or complete 76 

CCL rupture to the Division of Small Animal Surgery and Orthopaedics of the University of 77 

Berne were considered for inclusion in the study (see Appendix: Supplementary data for 78 

details). Informed client consent was obtained for each dog. Study inclusion criteria were 79 

diagnosis of partial or complete CCL rupture confirmed by arthroscopy and unremarkable 80 

results of routine haematological and serum biochemical analyses. Dogs were excluded if 81 

there was a recent history of illness other than pelvic limb lameness or if they had undergone 82 

previous intra-articular application of any substance or previous surgery on the affected limb. 83 

Dogs were screened using an orthopaedic examination with various parameters: lameness, 84 

functional disability, range of motion and pain on manipulation. For each parameter a score 85 

was recorded at first time of presentation and 3 month after surgery. The scores assigned were 86 

 
 



based on a 4-point scale, 0 (no/best) to 4 (worst) (For details see appendix: Supplementary 87 

material). 88 

 89 

All animal experiments were reviewed and approved by the Commission of Animal 90 

Experimentation of the Canton of Berne, Switzerland (BE42/12; date of approval, 30/4/2012).  91 

 92 

Isolation of bone marrow cells 93 

Bone marrow was harvested from the proximal humerus in each dog using a 13-G BM 94 

biopsy needle connected to a 10-mL syringe containing 2 mL of heparin solution (3,000 95 

U/mL). A total of 15 mL BM was aspirated and immediately injected into a transfer bag 96 

containing 7 mL citrate phosphate dextrose adenine solution. The BM aspirate was passed 97 

through a blood transfer filter set into a 20-mL syringe, and cells were separated by density 98 

gradient centrifugation at 445 g for 35 min. The interface with the nucleated cell fraction was 99 

transferred and washed twice in phosphate buffered saline (PBS) before counting and 100 

partitioning for PKH26 labelling, intra-articular injection, and cultivation (See Appendix: 101 

Supplementary material for details). 102 

 103 

Flow cytometric characterization of cells 104 

Freshly isolated cells and cultured cells were evaluated by flow cytometry for the 105 

specific MSC markers, CD90 (YKIX337.217, eBioscience) and CD44 (FAB5449A, R&D), 106 

and for the hematopoietic stem cell marker, CD45 (YKIX716.13, eBioscience). Data were 107 

analyzed using a flow cytometer (LSR II, BD Bioscience) and commercial software 108 

(FACSDiva, BD Bioscience). 109 

 110 
 
 



PKH26 labelling 111 

 Labelling of cell membranes was performed using the PKH26 Red Fluorescence Kit 112 

(Sigma-Aldrich) according to the manufacturer’s instructions. After staining, a portion of 113 

PKH26-BMCs was resuspended in PBS at a concentration of 1 × 107 cells/mL for intra-114 

articular injection. In addition, stained cells were suspended in complete medium for 115 

evaluation of dye cytotoxicity, growth characteristics and fluorescence intensity. 116 

 117 

Evaluation of PKH26 cytotoxicity 118 

The effect of PKH26 labelling on cell viability was tested using a colorimetric MTT 119 

assay. For this, MSCs from the second passage were stained with PKH26 dye at 2 × 10-120 

6M/106 cells and 4 × 10-6M/106 cells. The assay was conducted in replicate with MSCs from 121 

four dogs as described elsewhere (Waldherr et al., 2012). Cell viability in each well, measured 122 

as the optical density (OD), was calculated as follows: 100 × (OD of sample well – OD of 123 

blank well)/(OD of control well – OD of blank well). Mean values of repeated measurements 124 

were used for analysis. 125 

 126 

Population doubling time 127 

Growth characteristics of MSCs at the first and second passages unstained and stained 128 

with PKH26 (2 × 10-6 M and 4 × 10-6 M) from six dogs were investigated. The MSCs were 129 

seeded into a 24-well plate at a density of 2.1 × 103 cells/cm2. After a recovery time of 48 h, 130 

three wells were detached daily for a period of 8 days and cell numbers were counted in a 131 

hemocytometer. The population doubling time was computed using an online calculator1. 132 

1 See: http://www.doubling-time.com/compute.php (accessed 15 August 2014) 
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 133 

 134 

PKH26 fluorescence intensity 135 

Fluorescence intensity was assessed in freshly isolated BMCs and MSCs during cell 136 

proliferation over 16 days as described in detail in the Appendix: Supplementary material.  137 

 138 

In vivo experimental protocol 139 

The experimental schedule is summarized in Fig. 1. On day 0, dogs presenting with 140 

signs of CCL injury were clinically examined. BM was harvested and pre-operative 141 

radiographs were performed under general anaesthesia. BMCs were isolated and labelled with 142 

PKH26 (final concentration: 2 × 10-6 M PKH26 and 1 × 107 cells/mL) within 3 h of 143 

harvesting. Synovial fluid was first aspirated and a total of 1 × 107 PKH26-labeled BMCs 144 

diluted in 1 mL PBS was injected immediately afterwards through the same needle under 145 

aseptic conditions. An aliquot of remaining BMCs was used for microbiological quality 146 

control. The dogs were then presented again for stifle arthroscopy and tibial plateau levelling 147 

osteotomy (TPLO) either 13 days (Group 1) or 3 days (Group 2) following intra-articular 148 

BMC injection. Prior to arthroscopy, synovial fluid was again collected. 149 

 150 

Tissue collection 151 

During arthroscopy immediately prior to surgical treatment by TPLO, the gross 152 

appearance of the stifle joint was evaluated and biopsies of the damaged CCL and synovial 153 

membrane were excised. Synovial membrane was harvested craniomedially and 154 

craniolaterally to the optic port that was located lateral to the patellar ligament halfway 155 

between patella and tibial tuberosity. Tissues were snap frozen on dry ice in O.C.T. 156 
 
 



compound (Tissue-Tek). Each block was cut into 5 µm sections at 10 µm intervals and placed 157 

on specimen slides. Sections were stored at -80 °C pending fluorescence microscopy. 158 

 159 

Fluorescence microscopy of harvested samples 160 

Slides were examined for PKH26 fluorescence using a confocal laser scanning 161 

fluorescence microscope (FluoView FV1000, Olympus) after counterstaining with TOTO-3 162 

iodide (Life Technologies). Sections were defined as positive if a clear cell structure with 163 

spindle-shaped fibroblast-like morphology was detected showing at least partial red 164 

fluorescence in the membrane and far red fluorescence of the nucleus. Synovial fluid samples 165 

were examined for PKH26 fluorescence after centrifugation in a 96-well plate. 166 

 167 

Synovial fluid analyses 168 

Because of a possible effect of BMCs on cytokine production and immune cell 169 

attraction, synovial fluid obtained before and after intra-articular BM injection was examined 170 

cytologically, and transforming growth factor (TGF)-β1 and interleukin (IL)-6 were 171 

quantified using a commercial ELISA (canine TGF-ß1, IL-6 Quantikine ELISA Kit, R&D) 172 

according to the manufacturer´s protocol. 173 

 174 

Follow-up examinations 175 

Dogs were discharged from hospital 1 day after surgery with a soft-padded bandage on 176 

the operated leg for 3 days and administered carprofen (Rimadyl, Pfizer, 4 mg/kg PO once 177 

daily for 7 days). Owners were instructed to restrict activity initially to leash walks, followed 178 

by a gradual increase in activity. Dogs were re-examined 14 days and 3 months after surgery. 179 

The same clinician carried out both initial and follow-up orthopaedic and clinical 180 
 
 



examinations. In addition, a final follow-up inquiry with the owners was performed by 181 

telephone 12 months after surgery. Complications, including infection, pain or worsening of 182 

articular function were recorded during follow-up examinations. 183 

 184 

Statistical analyses 185 

For each donor and experimental condition at least triplicate samples were used for 186 

each assessment unless otherwise stated. Statistical analysis was performed with NCSS 2007 187 

software. Differences in population doubling time, TGF-ß1 and IL-6 were evaluated using a 188 

paired samples t-test after testing for normality. A P–value of <0.05 was considered as 189 

significant. 190 

 191 

Results 192 

Animals 193 

Eight cases were initially included, but one was subsequently excluded because it was 194 

not presented for arthroscopy as scheduled. Four dogs underwent arthroscopy 13 days after 195 

injection. Because of a low rate of detected PKH26 positive cells the interval between BMC 196 

transplantation and tissue harvesting was shortened, therefore the second group of three dogs 197 

went to surgery 3 days after injection (Fig. 1). 198 

 199 

Isolation, cultivation and flow cytometric characterization of cells 200 

The mean value of nucleated cell fraction recovered after BM aspiration (eight dogs) 201 

and density gradient centrifugation was 23.0 × 107 cells (range, 0.35-33.2 × 107 cells). Freshly 202 

isolated BMCs stained largely positive for CD45 with only a small proportion (<1%) of cells 203 

 
 



negative for CD45 and double positive for CD44 and CD90. Cultured cells were adherent 204 

within 2 to 3 days showing spindle-shaped fibroblast-like morphology generating 205 

subsequently colony-forming units. After 8 to 15 days in culture, colonies became confluent 206 

and were passaged for the first time. Primary cultured cells (second and fifth passages) 207 

stained on average 92% ± 5% positive for CD44, 45% ± 3% double positive for CD44 and 208 

CD90, and 100% negative for CD45 on flow cytometry, confirming phenotype consistent 209 

with MSCs in most cells. Lack of expression of CD45 on cultured cells indicated that cells of 210 

haematopoietic origin had been excluded during cell culture. 211 

 212 

Evaluation of PKH26 cytotoxicity 213 

The colorimetric MTT assay performed on MSCs from the 2nd passage in four dogs 214 

revealed that the mean relative number of viable MSCs 24 h after PKH26 staining compared 215 

to unstained MSCs was 93.4% ± 3.5% at 2 x 10-6 M and 98.6% ± 9.2% at 5 x 10-6 M PKH26. 216 

 217 

Population doubling time 218 

Mean population doubling time of unlabelled MSCs and PKH26-labeled MSCs from 6 219 

dogs was 146.7 ± 63.5 h (range, 44.5-238.0 h) and 107.2 ± 37.5 h (range, 43.0-173.0 h), 220 

respectively. No significant difference was found between these population doubling times by 221 

using a paired samples t-test (P = 0.43). 222 

 223 

PKH26 fluorescence intensity 224 

Labelled BMCs plated in culture dishes attached efficiently and showed uniformly 225 

distributed red fluorescence on microscopy. The labelling rate of BMCs assessed by flow 226 

cytometry was 97.3 ± 3.3% and labelling intensity decreased to 67.5 ± 8.3% at the end of the 227 
 
 



16-day observation period. The labelling rates of second passage MSCs assessed by flow 228 

cytometry on days 0 and 16 were 94.0 ± 2.1% and 15.1 ± 4.6%, respectively, with a mean 229 

number of cell divisions after 16 days of 8 ± 3. 230 

 231 

Fluorescent microscopy of harvested samples 232 

Fluorescence microscopy of control CCL tissue co-cultivated with PKH26-labelled 233 

BMCs revealed adhesion and migration of BMCs based on numerous red fluorescent cells 234 

located superficially and within the tissue (Fig. 2; positive control). Tissue of CCL and 235 

synovial membrane were obtained from seven dogs after BMCs transplantation. A total of 236 

280 sections (40 sections per dog) of CCL and synovial membrane were examined for PKH26 237 

fluorescence. Positive cells were only detected in eight slides from three dogs of which one 238 

were sampled 3 days after BMC injection and two were sampled 13 days after BMC injection 239 

(Fig. 3). Positive cells were located within the organized CCL tissue and arranged 240 

predominantly as single cells and occasionally in groups. However, the numbers of positive 241 

cells was extremely small with no more than 10 per section. The intensity of PKH26-positive 242 

cells was clearly less in these samples than in ex vivo CCL samples co-cultured with PKH26-243 

labeled BMCs. A single synovial sample (harvested on day 3) showed PKH26 positive cells. 244 

 245 

Synovial fluid analyses 246 

Cytological examination of synovial fluid taken both prior to BMC injection and prior 247 

to arthroscopy exhibited less than 5% neutrophils. No significant difference was found in 248 

TGF-ß1 (P = 0.21) and IL-6 (P = 0.29) concentrations between samples harvested prior to and 249 

those harvested after BMCs treatment using a paired samples t-test (Fig. 4). 250 

 251 

 
 



Clinical assessment and follow-up of study dogs 252 

Pre-operative arthroscopy of BMC-treated dogs revealed no gross changes in the stifle 253 

joint other than those generally observed in dogs assessed for partial or complete CCL 254 

rupture. Bacteriological cultures of the remaining portion of injected BMC preparations 255 

revealed no growth in all samples. 256 

 257 

Follow-up examination performed 3 months after surgery revealed mild lameness and 258 

swelling of the knee joint in one dog. The other dogs showed improvement of lameness, 259 

function, and pain on manipulation (see Appendix: Supplementary material). Four dogs had 260 

improved scores when testing the range of motion but withdrew the affected leg at full range 261 

manipulation. A final inquiry was performed in all dogs 12 months after surgery. Normal 262 

activity was reported by all owners during these inquires. The owners of three dogs indicated 263 

slight stiffness in the morning. No complications associated with the intra-articular injection 264 

of the PKH26-labeled BMCs were observed in any of the dogs. 265 

 266 

Discussion 267 

Several previous studies have investigated the effects of intra-articular stem cell 268 

application on cartilage in dogs with OA (Black et al., 2007, 2008; Guercio et al., 2012; 269 

Mokbel et al., 2011a). However, most previous reports have focused on clinical outcome. 270 

This study evaluated engraftment of fluorescent-labelled BMCs into injured ligaments when 271 

applied into the articular cavity in dogs with spontaneous CCL injury. The decision to use 272 

BMCs instead of MSCs was based on ease of processing, making the procedure practical for 273 

future use in a clinical setting, as well as the potential additional benefit of BMCs based on 274 

studies in a rat model (Oe et al., 2011).  275 

 
 



 276 

Several pre-conditions of harvested cells were tested in order to ensure that the 277 

selected study design was applicable regarding dye and cells. Separated BMCs of the eight 278 

dogs comprise haematopoetic stem cells showing CD45+ which were the main fraction with 279 

around 99% and a very small part of mesenchymal stem cells which showed a phenotype of 280 

CD45- CD44+ and CD90+. These findings are in accordance with the findings of Alvarez-281 

Viejo et al. (2013).  282 

 283 

Following cultivation, cells were replaced by a homologous layer of adherent cells 284 

expressing putative surface specific antigens, such as CD44+ and CD90+ as markers for 285 

MSCs and lacking the haematopoetic stem cell marker CD45. They presented MSC 286 

characteristics as reported in other studies (Csaki et al., 2007; Kisiel et al., 2012). Lack of 287 

expression of CD45+ on cultured MSCs indicated that cells of haematopoietic origin had been 288 

excluded during the cell culture process. Cell numbers recovered following gradient 289 

centrifugation varied between samples, but were largely similar to those previously reported 290 

in dogs (Nishida et al., 2012; Sato et al., 2011). Likewise, in vitro growth potential varied 291 

between dogs, demonstrated by the wide range in population doubling time. These results are 292 

consistent with previously published data for humans and may reflect patient variability 293 

(Bertolo et al., 2013), age-related replicative senescence (Mareschi et al., 2006; Zhou et al., 294 

2008), as well as variation in individual MSC differentiation potency (Ding et al., 2013). 295 

 296 

The ability to track cells is undoubtedly necessary to evaluate the potential of cell 297 

migration and new tissue transformation after in vivo transplantation. Differentiation between 298 

graft and host cells after transplantation requires a method that labels cells of interest and 299 

identifies them after harvesting at a later time. Previous studies used BMCs or MSCs 300 
 
 



expressing green fluorescent protein (GFP) injected into the injured stifle joints of dogs 301 

(Mokbel et al., 2011a), donkeys (Mokbel et al., 2011b) and goats (Murphy et al., 2003), as 302 

well as GFP transgenic animals (Oe et al., 2011). An advantage of using GFP is its potential 303 

use in long-term studies as daughter cells adopt GFP gene expression and, with it, 304 

fluorescence is multiplied after several cell divisions. However, use of GFP requires a gene 305 

transfer agent, such as a virus that is non-integrating or, preferably from a biosafety point of 306 

view, a non-viral vector. These, however, are limited by the requirement of large cell 307 

numbers, high levels of cell death and low transfection efficiency (Bakhshandeh et al., 2012).  308 

 309 

The transformation procedures for GFP labelling are time consuming, making its use 310 

impractical for implantation of autologous freshly isolated cells. Given this and some ethical 311 

considerations as to potential adverse effects of GFP-modified cells, its use was considered 312 

inappropriate for cell tracking in client-owned dogs. Instead, we used PKH26 red fluorescent 313 

dye, a lipophilic cell membrane stain that has previously been used for tracking of a variety of 314 

different cell types (Wisenberg et al., 2009). Data in the present study showed that cell 315 

viability and population doubling time of MSCs in culture was not significantly affected by 316 

PKH26 staining, corroborating findings of a previously reported study in which no effect on 317 

cell growth or proliferation was observed (Shao-Fang et al., 2011). Furthermore, we 318 

demonstrated that PKH26 labelling was highly effective and fluorescence was strong in 319 

BMCs co-cultured with CCL tissue for 16 days. However, progressive loss of fluorescence 320 

was observed in cultured MSCs over the same time frame. These findings suggest that BMCs 321 

attached to tissue ex vivo do not proliferate as quickly as in monolayers due to their incipient 322 

phenotype differentiation prior to replication. 323 

 324 

 
 



The findings of the present study, using the dog as a model of spontaneous CCL 325 

rupture, confirm previous observations in rats with transected ACL, showing that BMCs 326 

injected into the articular cavity engraft to the injured site of the ACL (Oe et al., 2011). In 327 

rats, GFP-transduced cells were found to be present in high numbers in the transected 328 

ligaments and seemed to be involved in appreciable neoligamental tissue transformation after 329 

4 weeks. However, we were only able to detect a very small number of PKH26 positive cells 330 

in a few CCL biopsies in 3/7 dogs. This may be due to the very low numbers of MSCs, 331 

estimated as 1 MSC per 104 mononuclear cells, which can differentiate into tissue in the 332 

transplanted BM as well as a low survival rate after in vivo transplantation (Pittenger et al., 333 

1999; Wexler and Donaldson, 2003). 334 

 335 

Currently, no data are available with regard to the numbers of cells that can be safely 336 

transplanted into articular cavities in the dog. In previous studies, numbers of injected cells 337 

varied between 1.4 and 5 × 106 MSCs in different articular cavities in dogs (Black et al., 2007, 338 

2008; Guercio et al., 2012; Mokbel et al., 2011a) and 1 × 107 MSCs were injected into goat 339 

articular cavity without adverse effects (Murphy et al., 2003). Based on this empirical data, 340 

we injected 1 × 107 BMCs in the hope of achieving sufficient numbers of MSCs without 341 

untoward effects. Larger numbers of BMCs may result in higher numbers of engrafted MSCs, 342 

but further studies are needed to assess the safety and efficiency of larger transplants in dogs.  343 

 344 

Furthermore, a limitation in the evaluation of tissue samples in our study was the 345 

inability to obtain full-thickness biopsies in clinical patients. The small size of biopsies may 346 

therefore have led to some false negative results. Finally, in contrast to GFP expression, the 347 

fluorescence of PKH26 labelling decreases with cell division. The numbers of cells and time 348 

point at which labelled cells are assessed is therefore crucial for cell tracking. However, we 349 
 
 



did not find a significantly greater number of PKH26 positive biopsies harvested 3 days 350 

compared to those harvested 13 days after intra-articular BM injection. 351 

 352 

Previous findings of enhanced ACL healing were associated with increased TGF-ß1 353 

concentrations in synovial fluid and ACL material in rats treated with intra-articular BMCs 354 

(Oe et al., 2011). Secretion of TGF-ß1 is directly influenced by the transplanted cells (Kuroda 355 

et al., 2000). TGFb1 plays an anabolic role in the healing of ligaments by accelerating 356 

proteoglycan synthesis and cell proliferation. However, the concentrations of TGF-ß1 357 

measured prior to and after intra-articular BMC treatment in dogs in the present study were 358 

not significantly different. Moreover, a possible inflammatory response after cell 359 

transplantation was tested by analysing IL-6. IL-6 produced by several cell types functions to 360 

increase the number of inflammatory cells in synovial tissue and its production is stimulated 361 

by IL-1 and/or TNF (Venn et al., 1993). Our results revealed no inflammatory response after 362 

BMC injection. IL-6 levels were no different prior to and after transplantation. For the 363 

interpretation of the data, however, it should be noted that our results are based on a small 364 

sample size.  365 

 366 

Conclusions 367 

Fresh BMCs injected into the articular cavity in dogs with spontaneous CCL injury 368 

can engraft in the injured CCL, but were only rarely detected using this procedure. The low 369 

recovery of transplanted cells implies that application of MSCs may be more useful for cell 370 

tracking after PKH26 labelling in a clinical setting. Overall, BMC transplantation into the 371 

stifle joint was well tolerated and showed no undesirable clinical effects on dogs followed for 372 

up to 1 year. The clinical procedure was found to be practical and safe, but a decrease in 373 

fluorescence with cell division renders the method inadequate for cellular tracking. 374 
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Figure legends 559 

Fig. 1. Timetable of the study design. Group 1 underwent the long procedure, group 2 the 560 

shortened procedure. TPLO, Tibia plateau levelling osteotomy.  561 

 562 

Fig. 2. Fluorescence photomicrographs of control tissues showing PKH26 positive (red) and 563 

TOTO-3 positive (grey) cells (B, D); A and C are corresponding photomicrographs merged 564 

with tissue. Control samples were made from tissues of CCL obtained from dogs undergoing 565 

surgical treatment for CCL disease without intra-articular BM injection. Positive control 566 

tissues were made by co-cultivation of tissue with PKH26-labeled BMCs at a density of 1 × 567 

106cells/cm2 in 12-well plates containing complete medium, harvested after 8 (C, D) and 16 568 

(A, B) days and processed in an identical manner as study samples. Labelled cells were 569 

associated with the surface (C, D) and were also integrated within the CCL explant (A, B). 570 

Magnification: × 100. 571 

 572 

Fig. 3. Fluorescence photomicrographs showing PKH26 positive (red) and TOTO-3 positive 573 

(grey) cells (B, D); merged with tissue (A, C). In vivo specimens of torn CCLs from two dogs 574 

at day 13 after transplantation of PKH26-labelled autologous BMCs. Labelled cells were 575 

detected within the CCLs. Magnification: × 100. 576 

 577 

Fig. 4. Scatter blot of concentrations of TGF-ß1 and IL-6 in synovial fluid sampled prior to 578 

and post BMC transplantation in seven dogs. Samples of synovial fluid were collected from 579 

all dogs on day 0 before BMC transplantation, additionally from dogs of group 1 (plotting 580 

symbol: circle, black) on day 13 and of group 2 (plotting symbol: triangle, grey) at day 3 after 581 

BMC transplantation. A median smooth line of the seven dogs is presented. 582 
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