Measurement with the ATLAS detector of multi-particle azimuthal correlations in $p+\text{Pb}$ collisions at $\sqrt{s_{\text{NN}}} = 5.02$ TeV

The ATLAS Collaboration

Abstract

In order to study further the long-range correlations (“ridge”) observed recently in $p+\text{Pb}$ collisions at $\sqrt{s_{\text{NN}}} = 5.02$ TeV, the second-order azimuthal anisotropy parameter of charged particles, v_2, has been measured with the cumulant method using the ATLAS detector at the LHC. In a data sample corresponding to an integrated luminosity of approximately 1 μb$^{-1}$, the parameter v_2 has been obtained using two- and four-particle cumulants over the pseudorapidity range $|\eta| < 2.5$. The results are presented as a function of transverse momentum and the event activity, defined in terms of the transverse energy summed over $3.1 < \eta < 4.9$ in the direction of the Pb beam. They show features characteristic of collective anisotropic flow, similar to that observed in Pb+Pb collisions. A comparison is made to results obtained using two-particle correlation methods, and to predictions from hydrodynamic models of $p+\text{Pb}$ collisions. Despite the small transverse spatial extent of the $p+\text{Pb}$ collision system, the large magnitude of v_2 and its similarity to hydrodynamic predictions provide additional evidence for the importance of final-state effects in $p+\text{Pb}$ reactions.
Measurement with the ATLAS detector of multi-particle azimuthal correlations in $p+Pb$ collisions at $\sqrt{s_{NN}} = 5.02$ TeV

The ATLAS Collaboration

Abstract

In order to study further the long-range correlations ("ridge") observed recently in $p+Pb$ collisions at $\sqrt{s_{NN}} = 5.02$ TeV, the second-order azimuthal anisotropy parameter of charged particles, v_2, has been measured with the cumulant method using the ATLAS detector at the LHC. In a data sample corresponding to an integrated luminosity of approximately 1μb$^{-1}$, the parameter v_2 has been obtained using two- and four-particle cumulants over the pseudorapidity range $|\eta| < 2.5$. The results are presented as a function of transverse momentum and the event activity, defined in terms of the transverse energy summed over $3.1 < \eta < 4.9$ in the direction of the Pb beam. They show features characteristic of collective anisotropic flow, similar to that observed in Pb+Pb collisions. A comparison is made to results obtained using two-particle correlation methods, and to predictions from hydrodynamic models of $p+Pb$ collisions. Despite the small transverse spatial extent of the $p+Pb$ collision system, the large magnitude of v_2 and its similarity to hydrodynamic predictions provide additional evidence for the importance of final-state effects in $p+Pb$ reactions.

1. Introduction

Recent observations of ridge-like structures in the two-particle correlation functions measured in proton-lead ($p+Pb$) collisions at 5.02 TeV [1-3] have led to differing theoretical explanations. These structures have been attributed either to mechanisms that emphasize initial-state effects, such as the saturation of parton distributions in the Pb-nucleus [4-7], or to final-state effects, such as jet-medium interactions [8], interactions induced by multiple partons [9-12], and collective anisotropic flow [13,18].

The collective flow of particles produced in nuclear collisions, which manifests itself as a significant anisotropy in the plane perpendicular to the beam direction, has been extensively studied in heavy-ion experiments at the LHC [19-24] and RHIC (for a review see Refs. [25, 26]). In $p+Pb$ collisions the small size of the produced system compared to the mean free path of the interacting constituents might have been expected to generate weaker collective flow, if any, compared to heavy-ion collisions.

However, two-particle correlation studies performed recently on data from $p+Pb$ collisions at $\sqrt{s_{NN}} = 5.02$ TeV revealed the presence of a "ridge", a structure extended in the relative pseudorapidity, $\Delta \eta$, while narrow in the relative azimuthal angle, $\Delta \phi$, on both the near-side ($\Delta \phi \sim 0$) [1] and away-side ($\Delta \phi \sim \pi$) [2, 3]. Furthermore, it was shown in Refs. [2, 3] that, after subtracting the component due to momentum conservation, the $\Delta \phi$ distribution in high-multiplicity interactions exhibits a predominately $\cos(2\Delta \phi)$ shape, resembling the elliptic flow modulation of the $\Delta \phi$ distributions in Pb+Pb collisions.

The final-state anisotropy is usually characterized by the coefficients, v_n, of a Fourier decomposition of the event-by-event azimuthal angle distribution of produced particles [25, 27]:

$$v_n = \langle \cos n(\phi - \Psi_n) \rangle,$$

where ϕ is the azimuthal angle of the particle, Ψ_n is the event-plane angle for the n-th harmonic, and the outer brackets denote an average over charged particles in an event. In non-central heavy-ion collisions, the large and dominating v_2 coefficient is associated mainly with the elliptic shape of the nuclear overlap, and Ψ_2 defines the direction which nominally points in the direction of the classical impact parameter. In practice, initial-state fluctuations can blur the relationship between Ψ_2 and...
the impact parameter direction in nucleus-nucleus collisions. In contrast, Ψ_2 in proton-nucleus would be unrelated to the impact parameter and determined by the initial-state fluctuations. In nucleus-nucleus collisions, the ν_2 coefficient in central collisions and the other ν_n coefficients in all collisions are related to various geometric configurations arising from fluctuations of the nucleon positions in the overlap region [28].

In this Letter, a direct measurement of the second-order anisotropy parameter, v_2, is presented for $p+Pb$ collisions at $\sqrt{s_{NN}} = 5.02$ TeV. The cumulant method [29, 32] is applied to derive v_2 using two- and four-particle cumulants. The cumulant method has been developed to characterize true multi-particle correlations related to the collective expansion of the system, while suppressing correlations from resonance decays, Bose–Einstein correlations and jet production. Emphasis is placed on the estimate of v_2, $v_2(4)$, obtained from the four-particle cumulants which are expected to be free from the effects of short-range two-particle correlations, e.g. from resonance decays, unlike the two-particle cumulants, used to estimate $v_2(2)$.

The measurements of multi-particle cumulants presented in this Letter should provide further constraints on the origin of long-range correlations observed in $p+Pb$ collisions.

2. Event and track selections

The $p+Pb$ data sample was collected during a short run in September 2012, when the LHC delivered $p+Pb$ collisions at the nucleon–nucleon centre-of-mass energy $\sqrt{s_{NN}} = 5.02$ TeV with the centre-of-mass frame shifted by -0.47 in rapidity relative to the nominal ATLAS coordinate frame[1]. The measurements were performed using the ATLAS detector [33]. The inner detector (ID) was used for measuring trajectories and momenta of charged particles for $|\eta| < 2.5$ with the silicon pixel detector and silicon microstrip detectors (SCT), and a transition radiation tracker, all placed in a 2 T axial magnetic field. For event triggering, two sets of Minimum Bias Trigger Scintillators (MBTS), located symmetrically in front of the endcap calorimeters, at $z = \pm 3.6$ m and covering the pseudorapidity range $2.1 < |\eta| < 3.9$, were used. The trigger used to select minimum-bias $p+Pb$ collisions requires a signal in at least two MBTS counters. This trigger is fully efficient for events with more than four reconstructed tracks with $p_T > 0.1$ GeV. The forward calorimeters (FCal), consisting of two symmetric systems with tungsten and copper absorbers and liquid argon as the active material, cover $3.1 < |\eta| < 4.9$ and are used to characterize the overall event activity.

The event selection follows the same requirements as used in the recent two-particle correlation analysis [3]. Events are required to have a reconstructed vertex with its z position within ± 150 mm of the nominal interaction point. Beam–gas and photonuclear interactions are suppressed by requiring at least one hit in a MBTS counter on each side of the interaction point and at most a 10 ns difference between times measured on the two sides to eliminate through-going particles. To eliminate multiple $p+Pb$ collisions (about 2% of collision events have more than one reconstructed vertex), the events with two reconstructed vertices that are separated in z by more than 15 mm are rejected. In addition, for the cumulant analysis presented here, it is required that the number of reconstructed tracks per event, passing the track selections as described below, is greater than three. With all the above selections, the analysed sample consists of about 1.9×10^6 events.

Charged particle tracks are reconstructed in the ID using the standard algorithm optimized for $p+p$ minimum-bias measurements [34]. Tracks are required to have at least six hits in the SCT detector and at least one hit in the pixel detector. A hit in the first pixel layer is also required when the track crosses an active pixel module in that layer. Additional requirements are imposed on the transverse (d_0) and longitudinal ($z_0 \sin \theta$) impact parameters measured with respect to the primary vertex. These are: $|d_0|$ and $|z_0 \sin \theta|$ must be smaller than 1.5 mm and must satisfy $|d_0|/\sigma_{d_0} < 3$ and $|z_0 \sin \theta|/\sigma_z < 3$, where σ_{d_0} and σ_z are uncertainties on the transverse and longitudinal impact parameters, respectively, as obtained from the covariance matrix of

\[v_2 = \sin 2\phi \]
of Σ
E
charged hadrons is found to depend only weakly on the event multiplicity and on \(p_T \) for transverse momenta above 0.5 GeV. An efficiency of about 82% is observed at mid-rapidity, \(|\eta| < 1\), decreasing to about 68% at \(|\eta| > 2\). For low-\(p_T \) tracks, between 0.3 GeV and 0.5 GeV, the efficiency ranges from 74% at \(\eta = 0 \) to about 50% for \(|\eta| > 2\). The number of reconstructed charged particle tracks, not corrected for tracking efficiency, is denoted by \(N_{\text{rec}} \).

The analysis is performed in different intervals of \(\Sigma E_T^{\text{Pb}} \), the sum of transverse energy measured in the FCal with \(3.1 < \eta < 4.9 \) in the direction of the Pb beam with no correction for the difference in response to electrons and hadrons. The distribution of \(\Sigma E_T^{\text{Pb}} \) for events passing all selection criteria is shown in Fig. [F1]. These events are divided into six \(\Sigma E_T^{\text{Pb}} \) intervals to study the variation of \(v_2 \) with overall event activity, as indicated in Fig. [F1] and shown in Table [T1]. Event “activity” is characterized by \(\Sigma E_T^{\text{Pb}} \): the most active events are those with the largest \(\Sigma E_T^{\text{Pb}} \). The distribution of \(N_{\text{rec}} \) for each activity interval is shown in the lower plot of Fig. [F1].

3. Data analysis

The cumulant method involves the calculation of 2k-particle azimuthal correlations, \(\text{corr}_n\{2k\} \), and cumulants, \(c_n\{2k\} \), where \(k = 1, 2 \) for the analysis presented in this paper. The two- and four-particle correlations are defined as \(\text{corr}_n\{2\} = \langle e^{i n (\phi_1 - \phi_2)} \rangle \) and \(\text{corr}_n\{4\} = \langle e^{i n (\phi_1 + \phi_2 - \phi_3 - \phi_4)} \rangle \), respectively, where the angle brackets denote the average in a single event over all pairs and all combinations of four particles. After averaging over events, the two-particle cumulant is obtained as \(c_n\{2\} = \langle \text{corr}_n\{2\} \rangle \), and the four-particle cumulant \(c_n\{4\} = \langle \text{corr}_n\{4\} \rangle - 2 \cdot \langle \text{corr}_n\{2\} \rangle^2 \). Thus the effect of two-particle correlations is explicitly removed in the expression for \(c_n\{4\} \). Further details are given in Refs. [39-41].

Direct calculation of multi-particle correlations requires multiple passes over the particles in an event, and requires extensive computing time in high-multiplicity events. To mitigate this, it has been proposed in Ref. [42] to express multi-particle correlations in terms of the moments of the flow vector \(Q_n \), defined as \(Q_n = \sum_i e^{i n \phi_i} \), where the index \(n \) denotes the flow harmonic and the sum runs...
over all particles in an event. This analysis is restricted to the second harmonic coefficient, \(n = 2 \).

The method based on the flow-vector moments enables the calculation of multi-particle cumulants in a single pass over the full set of particles in each event.

The cumulant method involves two main steps [29, 30]. In the first step, the so-called “reference” flow harmonic coefficients are calculated using multi-particle cumulants for particles selected inclusively from a broad range in \(p_T \) and \(\eta \) as:

\[
v_2^{\text{ref}}(2) = \sqrt{c_2(2)}, \quad v_2^{\text{ref}}(4) = \sqrt{-c_2(4)},
\]

where \(v_2^{\text{ref}}(2) \) (\(v_2^{\text{ref}}(4) \)) denotes the reference estimate of the second-order anisotropy parameter obtained using two-particle, \(c_2(2) \) (four-particle, \(c_2(4) \)) cumulants.

The flow-vector method is easiest to apply when the detector acceptance is azimuthally uniform [32]. A correction for any azimuthal non-uniformity in the reconstruction of charged particle tracks is obtained from the data [25], based on an \(\eta \)-\(\phi \) map of all reconstructed tracks. For each small \((\delta \eta = 0.1, \delta \phi = 2 \pi/64)\) bin (labelled \(i \)), a weight is calculated as \(w_i(\eta, \phi) = \langle N(\delta \eta) \rangle / N_i(\delta \eta, \delta \phi) \), where \(\langle N(\delta \eta) \rangle \) is the event-averaged number of tracks in the \(\delta \eta \) slice to which this bin belongs, while \(N_i(\delta \eta, \delta \phi) \) is the number of tracks in an event within this bin. Using this weight forces the azimuthal angle distribution of reference particles to be uniform in \(\phi \), but it does not change the \(\eta \) distribution of reconstructed tracks. A weighted \(Q \)-vector is evaluated as \(Q_n = \sum_i w_i e^{i \delta \phi} \) [32]. From Eqs. (2) and (3) it is clear that the cumulant method can be used to estimate \(v_2 \) only when \(c_2(4) \) is negative and \(c_2(2) \) positive.

In the second step, the harmonic coefficients are determined as functions of \(p_T \) and \(\eta \), in bins in each variable (10 bins of equal width are used in \(\eta \) and 22 bins of varied width in \(p_T \)). These differential flow harmonics are calculated for “particles of interest” which fall into these small bins. First, the differential cumulants, \(d_2(2) \) and \(d_2(4) \), are obtained by correlating every particle of interest with one and three reference particles respectively. The differential second harmonic, \(v_2(2k)(p_T, \eta) \), where \(k = 1, 2 \), is then calculated with respect to the reference flow as derived in Refs. [29, 30]:

\[
v_2(2)(p_T, \eta) = \frac{d_2(2)}{v_2^{\text{ref}}(2)},
\]

The differential \(v_2 \) harmonic is then integrated over wider phase-space bins, with each small bin weighted by the appropriate charged particle multiplicity. This is obtained from the reconstructed multiplicity by applying \(\eta \)- and \(p_T \)-dependent efficiency factors, determined from Monte Carlo (MC) simulation as discussed in the previous section. Due to the small number of events in the data sample, the final results are integrated over the full acceptance in \(\eta \).

The two-particle (upper plot) and four-particle (lower plot) cumulants calculated using the reference flow particles as a function of \(\Sigma E_T^{\text{Pb}} \) for data (circles), the fully simulated HIJING events (open squares) and the large generator-level HIJING sample (filled squares). For clarity, the points for the fully simulated (generated) HIJING events are slightly shifted to the left (right).

Fig. 2 shows the two- and four-particle cumulants, averaged over events in each event-activity class defined in Table 1 as a function of \(\Sigma E_T^{\text{Pb}} \). It is observed that four-particle cumulants are negative only in a certain range of event activity. This restricts subsequent analysis to events with \(\Sigma E_T^{\text{Pb}} > 25 \text{ GeV} \), for which the four-particle cumulant in data is found to be less than zero by at least two standard deviations (statistical errors only). It
was also checked that for these events $c_2\{4\}$ is unchanged within errors for any high-multiplicity selection. For example, defining N_{20} as the value of N_{ch} such that 20% of events have $N_{ch} < N_{20}$ (i.e., N_{20} is the 20th percentile), then selecting $N_{ch} > N_{20}$ leaves $c_2\{4\}$ unchanged within errors. And for $\Sigma E_T^{\text{Pb}} > 25$ GeV this holds for any percentile selection.

Fig. 2 also shows the cumulants calculated for 50 million HIJING-generated events, using the true particle information only, as well as for one million fully simulated and reconstructed HIJING events, using the same methods as used for the data. The ΣE_T^{Pb} obtained from the HIJING sample is rescaled to match that measured in the data. It should be noted that the HIJING Monte Carlo model does not contain any collective flow, and the only correlations are those due to resonance decays, jet production and momentum conservation. The values of $c_2\{2\}$ for HIJING events are smaller than the values obtained from the data, and there is no significant difference between the HIJING results obtained at the generator (“truth”) level and at the reconstruction level. For $c_2\{4\}$, the HIJING events at $\Sigma E_T^{\text{Pb}} \sim 20$ GeV show a negative value comparable to the values seen in the data, indicating that correlations from jets or momentum conservation contribute significantly to $v_2\{4\}$ in events of low multiplicity. For $\Sigma E_T^{\text{Pb}} > 25$ GeV the generator-level HIJING sample’s values for $c_2\{4\}$ are also negative, but the magnitude is much smaller than in the data or in HIJING events with smaller ΣE_T^{Pb}. The size of the fully simulated HIJING event sample is too small to draw a definite conclusion about the sign or magnitude of $c_2\{4\}$.

The systematic uncertainties on $v_2\{2\}$ and $v_2\{4\}$ as a function of p_T and ΣE_T^{Pb} have been evaluated by varying several aspects of the analysis procedure. Azimuthal-angle sine terms in the Fourier expansion should be zero, but a non-zero contribution can arise due to detector biases. It was found that the magnitude of the sine terms relative to the cosine terms is negligible (below 1%) for $v_2\{2\}$ measured as a function of p_T, as well as for the p_T-integrated $v_2\{2\}$ and $v_2\{4\}$. In the case of the measurement of the p_T-dependent $v_2\{4\}$, the systematic uncertainty attributed to the residual sine terms varies between 6% and 14% in the different ΣE_T^{Pb} intervals. Uncertainties related to the tracking are obtained from the differences between the main results and those using tracking requirements modified to be either more or less restrictive. They are found to be negligible (below 0.2%) for $v_2\{2\}$. For the p_T-dependent $v_2\{4\}$ they give a contribution of less than 6% to the systematic uncertainty, and less than 1% for the p_T-integrated $v_2\{4\}$. In addition to varying the track quality requirements, an uncertainty on the p_T dependence of the efficiency corrections is also taken into account, and found to be below 1% for the $v_2\{2\}$ and $v_2\{4\}$ measurements. The correction of the azimuthal-angle uniformity is checked by comparing the results to those obtained with all weights, w_i, set equal to one. This change leads to small relative differences, below 1%, for the $v_2\{2\}$ measured as a function of p_T, as well as for the p_T-integrated $v_2\{2\}$ and $v_2\{4\}$. Up to 4% differences are observed in the p_T-dependent $v_2\{4\}$. All individual contributions to the systematic uncertainty are added in quadrature and quoted as the total systematic uncertainty. The total systematic uncertainties are below 1% for the $v_2\{2\}$ measurement. The $v_2\{4\}$ measurement precision is limited by large statistical errors, whereas the systematic uncertainties stay below 15% for $v_2\{4\}$(p_T) and below 2% for the p_T-integrated $v_2\{4\}$.

4. Results

Fig. 3 shows the transverse momentum dependence of $v_2\{2\}$ and $v_2\{4\}$ in four different classes of the event activity, selected according to ΣE_T^{Pb}. A significant second-order harmonic is observed. $v_2\{4\}$ is systematically smaller than $v_2\{2\}$, consistent with the suppression of non-flow effects in $v_2\{4\}$. This difference is most pronounced at high p_T and in collisions with low ΣE_T^{Pb} where jet-like correlations not diluted by the underlying event can contribute significantly. Thus, $v_2\{4\}$ appears to provide a more reliable estimate of the second-order anisotropy parameter of collective flow. As a function of transverse momentum the second-order harmonic, $v_2\{4\}$, increases with p_T up to $p_T \approx 2$ GeV. Large statistical errors preclude a definite conclusion about the p_T dependence of $v_2\{4\}$ at higher transverse momenta.

The shape and magnitude of the p_T-dependence of $v_2\{4\}$ is found to be similar to that observed in $p+\text{Pb}$ collisions using two-particle correlations [2, 3]. The second-order harmonic, v_2, can be extracted from two-particle azimuthal correlations using charged particle pairs with a large pseudorapidity gap to suppress the short-range correlations on the near-side ($\Delta \phi \sim 0$) [3, 22]. However, the two-particle correlation measured this way may still be
affected by the dijet correlations on the away-side
(Δφ ~ π), which can span a large range in Δη.
In Ref. [3], the away-side non-flow correlation is
estimated using the yield measured in the lowest
ΣE_T^Pb collisions and is then subtracted from the
higher ΣE_T^Pb collisions. The result of that study,
v_2(2PC), is shown in Fig. 3 for the four activity
intervals with largest ΣE_T^Pb, and compared to
v_2(4). Good agreement is observed between v_2(4)
and v_2(2PC) for collisions with ΣE_T^Pb > 55 GeV.
For ΣE_T^Pb < 55 GeV, the disagreement could be
due either to the subtraction procedure used to obtain
v_2(2PC) or to non-flow effects in v_2(4), or to
a combination.

The dependence on the collision activity of the
second-order harmonic, integrated over 0.3 < p_T <
5 GeV, is shown in Fig. 4. The large magnitude of v_2(2) compared to v_2(4) suggests a
substantial contamination from non-flow correlations.
The value of v_2(4) is approximately 0.06, with lit-
tle dependence on the overall event activity for
ΣE_T^Pb > 25 GeV. The extracted values of v_2(4)
are also compared to the v_2(2PC) values obtained
from two-particle correlations. Good agreement is
observed at large ΣE_T^Pb, while at lower ΣE_T^Pb the
v_2(2PC) is smaller than v_2(4), which may be due
to different sensitivity of the two methods to non-
flow contributions that become more important in
low ΣE_T^Pb collisions. Although v_2(4) is constructed
to suppress local two-particle correlations, it may
still include true multi-particle correlations from
jets, which should account for a larger fraction of
the correlated particle production in the events with
the lowest ΣE_T^Pb. If the HIJING results, shown in
Fig. 4 were used to correct the measured cumulants
for this non-flow contribution, the extracted v_2(4)
would be decreased by at most 10% for v_2(4) shown
in Fig. 4. However, this correction is not applied to
the final results.

It is notable that the trend of the p_T dependence of both v_2(4) and v_2(2PC) in p+Pb col-
lisions resembles that observed for v_2 measured
with the event-plane method in Pb+Pb collisions

![Fig. 3: The second-order harmonic calculated with the two-particle (circles) and four-particle (stars) cumulants as a function of transverse momentum in four different activity intervals. Bars denote statistical errors; systematic uncertainties are shown as shaded bands. The v_2 derived from the Fourier decomposition of two-particle correlations [3] is shown by squares.](image1)

![Fig. 4: The second-order harmonic, v_2, integrated over p_T and η, calculated with two- and four-particle cumulants (circles and stars, respectively), as a function of ΣE_T^Pb. Systematic uncertainties are shown as shaded bands. Also shown is v_2(2PC) (squares) and predictions from the hydrodynamic model [15] (triangles) for the same selection of charged particles as in the data.](image2)
at $\sqrt{s_{NN}} = 2.76$ TeV [21][22], although with a magnitude between that observed in the most central and peripheral Pb+Pb collisions. While the trend is found to be nearly independent of the Pb+Pb collision geometry, the magnitude in Pb+Pb events depends on the initial shape of the colliding system, and has been modelled for $p_T < 2$ GeV using viscous hydrodynamics [39][41].

Harmonic flow coefficients in $p+Pb$ collisions at $\sqrt{s_{NN}} = 5.02$ TeV have also been predicted using viscous hydrodynamics, with similar initial conditions as the Pb+Pb calculations [18]. The predicted magnitude of the second-order harmonic v_2 is compared to the measured v_2 in $p+Pb$ collisions [18]. The predictions of a hydrodynamic calculation for $p+Pb$ is also found with the predictions of a hydrodynamic model for Pb+Pb calculations [18]. The pre-

6. Acknowledgements

We thank CERN for the very successful operation of the LHC, as well as the support staff from our institutions without whom ATLAS could not be operated efficiently.

We acknowledge the support of ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWF and FWF, Austria; ANAS, Azerbaijan; SSTC, Belarus; CNPq and FAPESP, Brazil; NSERC, NRC and CFI, Canada; CERN; CONICYT, Chile; CAS, MOST and NSFC, China; COLCIENCIAS, Colombia; MSMT CR, MPO CR and VSC CR, Czech Republic; DNRF, DNSRC and Lundbeck Foundation, Denmark; EPLANET, ERC and NSRF, European Union; IN2P3-CNRS, CEA-DSM/IRFU, France; GNSF, Georgia; BMBF, DFG, HGF, MPG and AvH Foundation, Germany; GSRT and NSRF, Greece; ISF, MINERVA, GIF, DIP and Benoziyo Center, Israel; INFN, Italy; MEXT and JSPS, Japan; CNRST, Morocco; FOM and NWO, Netherlands; BRF and RCN, Norway; MNiSW, Poland; MOST and NSFC, China; COLCIENCIAS, Columbia; MES of Russia and ROSATOM, Russian Federation; JINR; MSTD, Serbia; MSSR, Slovakia; ARRS and MVZT, Slovenia; DST/NRF, South Africa; MICINN, Spain; SRC and Wallenberg Foundation, Sweden; SER, SNSF and Cantons of Bern and Geneva, Switzerland; NSC, Taiwan; TAEK, Turkey; STFC, the Royal Society and Leverhulme Trust, United Kingdom; DOE and NSF, United States of America.

The crucial computing support from all WLCG partners is acknowledged gratefully, in particular from CERN and the ATLAS Tier-1 facilities at TRIUMF (Canada), NDGF (Denmark, Norway, Sweden), CC-IN2P3 (France), KIT/GridKA (Germany), INFN-CNAF (Italy), NL-T1 (Netherlands), PIC (Spain), ASGC (Taiwan), RAL (UK) and BNL (USA) and in the Tier-2 facilities worldwide.

References

The ATLAS Collaboration

G. Aad148, T. Abajyan21, B. Abbott111, J. Abdallah12, S. Abdelkhalek115, A.A. Abdelalim49,
O. Abdirabbi11, R. Aben105, B. Abi12, M. Abolins29, O.S. Abo-Zeid158, H. Abramowicz153, H. Abreu136,
Y. Abulaiti104a,146b, B.S. Acharya146a,164a, B. Ackermann146a, L. Adamczyk38a, D.L. Adams29, T.N. Adye56, J. Adelman176,
S. Adomeit98, T. Adye14, S. Aefsky42, J.A. Aguilar-Saavedra124b, M. Agustoni17, S.P. Ahlen47,
F. Aihes88, A. Ahmed148, M. Ahsan41, G. Aielli133a,133b, T.P.A. Akeros79, G. Akimoto155,
A.V. Akimov74, M.A. Alan70, J. Albert169, S. Albrand155, M. Aleksa96, I.N. Aleksandrov64,
F. Alessandria89a, C. Alexa20a, G. Alexander153b, G. Alexandre49, T. Alexopoulos101, M. Alhroob164a,164c,
M. Aliev16, G. Alimonti89a, J. Alison41, B.M.M. Allbrooke108, J.L. Allison71, P.P. Allport173,
S.E. Allwood-Spicer53, J. Almond102a,102b, R. Alon172, A. Alonso36, F. Alonso70,
A. Altheimer45, B. Alvarez Gonzalez28, M.G. Alviggii102a,102b, K. Amako65, Y. Amarah Cutillo24a,
C. Ameling23, V.V. Ammosov128a, S.P. Amor Dos Santos124a, A. Amorim124a,c, S. Amoroso48,
N. Anam153, C. Anastopoulos90, L.S. Ancu17, N. Andari30, T. Andeen35, C.F. Andrews58c, G. Anders58a,
K.J. Anderson31, A. Andreaez99a,99b, V. Andreaez58a, X.S. Anduaga70, S. Angelidisakis9, P. Anger43,
A. Angerami30, V. Angenhenidli30, A. Anisenkov107, N. Anjos124a, A. Anzov74, A. Antonik9,
M. Antonelli17, A. Antonio96, J. Antos144b, F. Amilli132a, M. Aoki101, L. Aperis118d, P. Apollinari96,
E. Ari19a, M. Arik19a, A.J. Armbruster97, O. Arnaez191, V. Arnaez80a, A. Artamonov95, G. Artoni132a,132b,
D. Arutinov21, S. Asai155, N. Asahi19, S. Atwood28, B. Asman146a,146b, L. Asquith6, K. Assmann25,
R. Astolos144a, A. Astbury169, M. Atkinson165, B. Auerbach6, E. Auger115, K. Augsten126,
M. Aroussian145a, G. Avolio30, D. Axen19, G. Azuelos93a, Y. Azuma145a, M.A. Baak25,
G. Bacceglini19c, C. Bacci134a,134b, A.M. Bach3, H. Bachauou136, K. Bachas15, M. Backes49,
M. Backhaus93, J. Backus Mayes143, E. Badescu26a, P. Bacciach132a,132b, P. Bagnas132a,132b, Y. Bai3a,
P. Banerjee15, Sw. Banerjee173, D. Banfi18, A. Bangert149, V. Bansal169, H.S. Bansil19, L. Barak172,
S.P. Baranov94, T. Barber98, E.L. Barberio86, D. Barbaro60a,50b, M. Barbero83, D.Y. Bardin64,
T. Barillari99, M. Barisonzi17, T. Barklow143, N. Barlow28, B.M. Barnett129, R.M. Barnett155,
A. Baroncelli134a, G. Barone94, A.J. Barr118, F. Barreiro80, J. Barreiro Guimaraes da Costa37,
R. Bartoldus143, A.E. Barton71, V. Bartsh149, A. Basy165, R.L. Bates53, L. Batkova144a, J.R. Batley26,
A. Battaglia17, M. Battistin30, F. Bauer136, H.S. Bawa144a, S. Beale98, T. Beaumont138, P.H. Beauchemin161,
R. Beccherle50a, P. Becchi21, H.P. Beck17, K. Becker175, S. Becker98, M. Beckingham138a, K.H. Becks175,
A.J. Beddall19c, A. Beddall19c, S. Bediak176, V.A. Bednyakov64, C.P. Bieor3, L.J. Beebe105,
T.A. Beermann5, M. Begel25b, C. Belanger-Champagne85, P.J. Bell49, W.H. Bell19, G. Bello153,
L. Bellagamba20a, A. Bellerive99, M. Bellomo30, A. Belloni57, O. Belorodova107a,b, K. Belotskiy96,
O. Beltramello30, O. Benay53, D. Benheche135a, K. Bendt146a,146b, N. Benekos165,
Y. Benhammou153, E. Benhar Noccioli49, J.A. Benitez Garcia159b, D.P. Benjamin15, J.R. Bensinger23,
K. Benschlomo130, S. Bentley105, D. Berger130, E. Beezaas Kunnmann16, N. Berger5, F. Berghaus169,
E. Berglund105, J. Beringer17, P. Bernat77, R. Bernhard48, C. Bernius25, F.U. Bernlochner169, T. Berry76,
C. Bertella3, F. Bertolucci122a,122b, M.I. Besana89a,89b, G.J. Besjes104, N. Besson136, S. Bethke99,
W. Bhiumji46, R.M. Bianchi30, L. Bianchini23, M. Bianco72a,72b, O. Biebel98, S.P. Bieniek77,
K. Bierwagen3, J. Biesiada15, M. Biglitti134a, H. Bilokon47, M. Bindi20a,20b, S. Binet15, A. Bingul9c,
C. Bini132a,132b, C. Biscarati178, B. Bittner99, C.W. Black130, J.E. Black143, K.M. Black2, R.E. Blair6,
J.-B. Blanchard19b, T. Blazek144a, I. Bloch12, C. Blocker23, J. Bloch39, W. Blum81, U. Blumenschein54,
G.J. Bobbink135, V.S. Bobrovnikov107, S.S. Bocchetta79, A. Bocci45, C.R. Boddie118, M. Boehler48,
J. Boek175, T.T. Boek175, N. Boelaert3a, J.A. Bogard107, A. Bogdanchikov107, A. Bogouci50a,
C. Bohl146a, J. Bohl145, V. Boisvert76, T. Bold39a, V. Boldca26a, N.M. Bolnet136, M. Bombe87,
M. Bona75, M. Boonekamp136, S. Bondioni88, C. Borer17, A. Borisov128, G. Borisso671, I. Borjanovic13a,
M. Borri62, S. Borrioni42, J. Bortfeld98, V. Bortolotto134a,134b, K. Bos105, D. Boscherini20a, M. Bosman12,
H. Boterenbrood105, J. Bouchami51, J. Boudreau123, E.V. Bouhova-Thacker11, D. Boumediene14,
C. Bourdarios115, N. Bousson83, S. Boutouli135a, A. Boveia31, J. Bowl80, I.R. Boyko94,
I. Bozovic-Jelisavcevic13b, J. Bracink18, P. Branchini134a, A. Brandt8, G. Brandt118, O. Brandt54,
School of Physics, University of Melbourne, Victoria, Australia
Department of Physics, The University of Michigan, Ann Arbor MI, United States of America
Department of Physics and Astronomy, Michigan State University, East Lansing MI, United States of America
Department of Physics, University of Michigan, Ann Arbor MI, United States of America
B.I. Stepanov Institute of Physics, National Academy of Sciences of Belarus, Minsk, Republic of Belarus
National Scientific and Educational Centre for Particle and High Energy Physics, Minsk, Republic of Belarus
Department of Physics, Massachusetts Institute of Technology, Cambridge MA, United States of America
Group of Particle Physics, University of Montreal, Montreal QC, Canada
P.N. Lebedev Institute of Physics, Academy of Sciences, Moscow, Russia
Institute for Theoretical and Experimental Physics (ITEP), Moscow, Russia
Moscow Engineering and Physics Institute (MEPhI), Moscow, Russia
Graduate School of Science and Kobayashi-Maskawa Institute, Nagoya University, Nagoya, Japan
INFN Sezione di Napoli; Dipartimento di Scienze Fisiche, Università di Napoli, Napoli, Italy
Department of Physics and Astronomy, University of New Mexico, Albuquerque NM, United States of America
Institute for Mathematics, Astrophysics and Particle Physics, Radboud University Nijmegen/Nikhef, Nijmegen, Netherlands
Nikhef National Institute for Subatomic Physics and University of Amsterdam, Amsterdam, Netherlands
Department of Physics, Northern Illinois University, DeKalb IL, United States of America
Budker Institute of Nuclear Physics, SB RAS, Novosibirsk, Russia
Department of Physics, New York University, New York NY, United States of America
Ohio State University, Columbus OH, United States of America
Faculty of Science, Okayama University, Okayama, Japan
Homer L. Dodge Department of Physics and Astronomy, University of Oklahoma, Norman OK, United States of America
Department of Physics, Oklahoma State University, Stillwater OK, United States of America
Palacký University, RCPTM, Olomouc, Czech Republic
Center for High Energy Physics, University of Oregon, Eugene OR, United States of America
LAL, Université Paris-Sud and CNRS/IN2P3, Orsay, France
Graduate School of Science, Osaka University, Osaka, Japan
Department of Physics, University of Oslo, Oslo, Norway
Department of Physics, Oxford University, Oxford, United Kingdom
INFN Sezione di Pavia; Dipartimento di Fisica, Università di Pavia, Pavia, Italy
Department of Physics, University of Pennsylvania, Philadelphia PA, United States of America
Petersburg Nuclear Physics Institute, Gatchina, Russia
INFN Sezione di Pisa; Dipartimento di Fisica E. Fermi, Università di Pisa, Pisa, Italy
Department of Physics and Astronomy, University of Pittsburgh, Pittsburgh PA, United States of America
(instrumentacao e Fisica Experimental de Particulas - LIP, Lisboa, Portugal;
Departamento de Fisica Teorica y del Cosmos and CAFPE, Universidad de Granada, Granada, Spain
Institute of Physics, Academy of Sciences of the Czech Republic, Praha, Czech Republic
Czech Technical University in Prague, Praha, Czech Republic
Faculty of Mathematics and Physics, Charles University in Prague, Praha, Czech Republic
State Research Center Institute for High Energy Physics, Protvino, Russia
Particle Physics Department, Rutherford Appleton Laboratory, Didcot, United Kingdom

Physics Department, University of Regina, Regina SK, Canada

Ritsumeikan University, Kusatsu, Shiga, Japan

(a) INFN Sezione di Roma I; (b) Dipartimento di Fisica, Università La Sapienza, Roma, Italy

(a) INFN Sezione di Roma Tor Vergata; (b) Dipartimento di Fisica, Università di Roma Tor Vergata, Roma, Italy

(a) INFN Sezione di Roma Tre; (b) Dipartimento di Matematica e Fisica, Università Roma Tre, Roma, Italy

(a) Faculté des Sciences Ain Chock, Réseau Universitaire de Physique des Hautes Energies - Université Hassan II, Casablanca; (b) Centre National de l’Energie des Sciences Techniques Nucléaires, Rabat;

(c) Faculté des Sciences Semlalia, Université Cadi Ayyad, LPHEA-Marrakech; (d) Faculté des Sciences, Université Mohamed Premier and LPTPM, Oujda; (e) Faculté des sciences, Université Mohammed V-Agdal, Rabat, Morocco

DSM/IRFU (Institut de Recherches sur les Lois Fondamentales de l’Univers), CEA Saclay (Commissariat à l’Energie Atomique et aux Energies Alternatives), Gif-sur-Yvette, France

Santa Cruz Institute for Particle Physics, University of California Santa Cruz, Santa Cruz CA, United States of America

Department of Physics, University of Washington, Seattle WA, United States of America

Department of Physics and Astronomy, University of Sheffield, Sheffield, United Kingdom

Department of Physics, Shinshu University, Nagano, Japan

Fachbereich Physik, Universität Siegen, Siegen, Germany

Department of Physics, Simon Fraser University, Burnaby BC, Canada

SLAC National Accelerator Laboratory, Stanford CA, United States of America

(a) Faculty of Mathematics, Physics & Informatics, Comenius University, Bratislava; (b) Department of Subnuclear Physics, Institute of Experimental Physics of the Slovak Academy of Sciences, Kosice, Slovak Republic

Department of Physics, University of Johannesburg, Johannesburg; (b) School of Physics, University of the Witwatersrand, Johannesburg, South Africa

Department of Physics, Stockholm University; (b) The Oskar Klein Centre, Stockholm, Sweden

Physics Department, Royal Institute of Technology, Stockholm, Sweden

Departments of Physics & Astronomy and Chemistry, Stony Brook University, Stony Brook NY, United States of America

Department of Physics and Astronomy, University of Sussex, Brighton, United Kingdom

School of Physics, University of Sydney, Sydney, Australia

Institute of Physics, Academia Sinica, Taipei, Taiwan

Department of Physics, Technion: Israel Institute of Technology, Haifa, Israel

Raymond and Beverly Sackler School of Physics and Astronomy, Tel Aviv University, Tel Aviv, Israel

Department of Physics, Aristotle University of Thessaloniki, Thessaloniki, Greece

International Center for Elementary Particle Physics and Department of Physics, The University of Tokyo, Tokyo, Japan

Graduate School of Science and Technology, Tokyo Metropolitan University, Tokyo, Japan

Department of Physics, Tokyo Institute of Technology, Tokyo, Japan

Department of Physics, University of Toronto, Toronto ON, Canada

(a) TRIUMF, Vancouver BC; (b) Department of Physics and Astronomy, York University, Toronto ON, Canada

Faculty of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Japan

Department of Physics and Astronomy, Tufts University, Medford MA, United States of America

Centro de Investigaciones, Universidad Antonio Narino, Bogota, Colombia

Department of Physics and Astronomy, University of California Irvine, Irvine CA, United States of America

(a) INFN Gruppo Collegato di Udine; (b) ICTP, Trieste; (c) Dipartimento di Chimica, Fisica e Ambiente, Università di Udine, Udine, Italy

Institution
Department of Physics, University of Illinois, Urbana IL, United States of America
Department of Physics and Astronomy, University of Uppsala, Uppsala, Sweden
Instituto de Física Corpuscular (IFIC) and Departamento de Física Atómica, Molecular y Nuclear and Departamento de Ingeniería Electrónica and Instituto de Microelectrónica de Barcelona (IMB-CNMI), University of Valencia and CSIC, Valencia, Spain
Department of Physics, University of British Columbia, Vancouver BC, Canada
Department of Physics and Astronomy, University of Victoria, Victoria BC, Canada
Department of Physics, University of Warwick, Coventry, United Kingdom
Waseda University, Tokyo, Japan
Department of Particle Physics, The Weizmann Institute of Science, Rehovot, Israel
Department of Physics, University of Wisconsin, Madison WI, United States of America
Fakultät für Physik und Astronomie, Julius-Maximilians-Universität, Würzburg, Germany
Department of Physics, Yale University, New Haven CT, United States of America
Yerevan Physics Institute, Yerevan, Armenia
Centre de Calcul de l’Institut National de Physique Nucléaire et de Physique des Particules (IN2P3), Villeurbanne, France
Also at Department of Physics, King’s College London, London, United Kingdom
Also at Laboratorio de Instrumentaccao e Física Experimental de Partículas - LIP, Lisboa, Portugal
Also at Faculdade de Ciencias and CFNUL, Universidade de Lisboa, Lisboa, Portugal
Also at Particle Physics Department, Rutherford Appleton Laboratory, Didcot, United Kingdom
Also at TRIUMF, Vancouver BC, Canada
Also at Department of Physics, California State University, Fresno CA, United States of America
Also at Novosibirsk State University, Novosibirsk, Russia
Also at Department of Physics, University of Coimbra, Coimbra, Portugal
Also at Università di Napoli Parthenope, Napoli, Italy
Also at Institute of Particle Physics (IPP), Canada
Also at Department of Physics, Middle East Technical University, Ankara, Turkey
Also at Louisiana Tech University, Ruston LA, United States of America
Also at Dep Física and CEFITEC of Faculdade de Ciencias e Tecnologia, Universidade Nova de Lisboa, Caparica, Portugal
Also at Department of Physics and Astronomy, Michigan State University, East Lansing MI, United States of America
Also at Department of Financial and Management Engineering, University of the Aegean, Chios, Greece
Also at Department of Physics, University of Cape Town, Cape Town, South Africa
Also at Institute of Physics, Azerbaijan Academy of Sciences, Baku, Azerbaijan
Also at Institut für Experimentalphysik, Universität Hamburg, Hamburg, Germany
Also at Manhattan College, New York NY, United States of America
Also at CPPM, Aix-Marseille Université and CNRS/IN2P3, Marseille, France
Also at School of Physics and Engineering, Sun Yat-sen University, Guangzhou, China
Also at Academia Sinica Grid Computing, Institute of Physics, Academia Sinica, Tâi-peı̂, Taiwan
Also at Laboratoire de Physique Nucléaire et de Hautes Energies, UPMC and Université Paris-Diderot and CNRS/IN2P3, Paris, France
Also at School of Physical Sciences, National Institute of Science Education and Research, Bhubaneswar, India
Also at Dipartimento di Fisica, Università La Sapienza, Roma, Italy
Also at DSM/IRFU (Institut de Recherches sur les Lois Fondamentales de l’Univers), CEA Saclay (Commissariat à l’Energie Atomique et aux Energies Alternatives), Gif-sur-Yvette, France
Also at Section de Physique, Université de Genève, Geneva, Switzerland
Also at Departamento de Física, Universidade de Minho, Braga, Portugal
Also at Department of Physics, The University of Texas at Austin, Austin TX, United States of America
Also at Department of Physics and Astronomy, University of South Carolina, Columbia SC, United States of America
States of America

"a" Also at Institute for Particle and Nuclear Physics, Wigner Research Centre for Physics, Budapest, Hungary

"a" Also at DESY, Hamburg and Zeuthen, Germany

"a" Also at International School for Advanced Studies (SISSA), Trieste, Italy

"a" Also at LAL, Université Paris-Sud and CNRS/IN2P3, Orsay, France

"a" Also at Faculty of Physics, M.V.Lomonosov Moscow State University, Moscow, Russia

"a" Also at Nevis Laboratory, Columbia University, Irvington NY, United States of America

"a" Also at Department of Physics, Oxford University, Oxford, United Kingdom

"a" Also at Discipline of Physics, University of KwaZulu-Natal, Durban, South Africa

* Deceased