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Abstract

Background: The impact of polymorphic cytochrome P450 CYP2D6 enzyme on oxycodone’s metabolism and clinical
efficacy is currently being discussed. However, there are only spare data from postoperative settings. The hypothesis of this
study is that genotype dependent CYP2D6 activity influences plasma concentrations of oxycodone and its metabolites and
impacts analgesic consumption.

Methods: Patients received oxycodone 0.05 mg/kg before emerging from anesthesia and patient-controlled analgesia
(PCA) for the subsequent 48 postoperative hours. Blood samples were drawn at 30, 90 and 180 minutes after the initial
oxycodone dose. Plasma concentrations of oxycodone and its metabolites oxymorphone, noroxycodone and
noroxymorphone were analyzed by liquid chromatography-mass spectrometry with electrospray ionization. CYP2D6
genotyping was performed and 121 patients were allocated to the following genotype groups: PM (poor metabolizer: no
functionally active CYP2D6 allele), HZ/IM (heterozygous subjects, intermediate metabolizers with decreased CYP2D6
activity), EM (extensive metabolizers, normal CYP2D6 activity) and UM (ultrarapid metabolizers, increased CYP2D6 activity).
Primary endpoint was the genotype dependent metabolite ratio of plasma concentrations oxymorphone/oxycodone.
Secondary endpoint was the genotype dependent analgesic consumption with calculation of equianalgesic doses
compared to the standard non-CYP dependent opioid piritramide.

Results: Metabolism differed between CYP2D6 genotypes. Mean (95%-CI) oxymophone/oxycodone ratios were 0.10 (0.02/
0.19), 0.13 (0.11/0.16), 0.18 (0.16/0.20) and 0.28 (0.07/0.49) in PM, HZ/IM, EM and UM, respectively (p = 0.005). Oxycodone
consumption up to the 12th hour was highest in PM (p = 0.005), resulting in lowest equianalgesic doses of piritramide versus
oxycodone for PM (1.6 (1.4/1.8); EM and UM 2.2 (2.1/2.3); p,0.001). Pain scores did not differ between genotypes.

Conclusions: In this postoperative setting, the number of functionally active CYP2D6 alleles had an impact on oxycodone
metabolism. The genotype also impacted analgesic consumption, thereby causing variation of equianalgesic doses
piritramide : oxycodone. Different analgesic needs by genotypes were met by PCA technology in this postoperative cohort.
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Introduction

While morphine represents the standard analgesic in a

postoperative setting, other opioids might be also suitable or even

advantageous. Oxycodone has been marketed since 1917 and has

found widespread use for the treatment of chronic pain,

specifically since a controlled-release formula is available. An

intravenous formula is now on the market or has been re-launched

in several countries. However, intravenous oxycodone is not a

standard opioid for postoperative pain management in most

countries, including Germany.

As polymorphic cytochrome P450 enzymes (CYP) are involved

in the metabolism, a pharmacogenetic impact on oxycodone’s

efficacy is discussed [1–3]. Formation of the active metabolite

oxymorphone depends on CYP2D6, whereas N-demethylation by

CYP3A via the major pathway produces noroxycodone, a

metabolite with weak antinociceptive properties. Both metabolites,

oxymorphone and noroxycodone, are further degraded to

noroxymorphone by CYP2D6 and CYP3A.

Previous experimental trials have demonstrated an impact of

CYP2D6 and CYP3A genotypes and enzyme activity on

oxycodone’s pharmacokinetics, pharmacodynamics and safety in

volunteers [2]. In contrast, there are sparse data from postoper-

ative settings and these have not confirmed genotype specific

oxycodone consumption and analgesic efficacy [1]. However,

surgeries resulted only in minor to medium pain intensities and no

difference in opioid consumption could be detected [1]. One

might speculate that the impact of genotypes on oxycodone

therapy is considerably more profound after major surgeries,

which necessitate higher postoperative opioid doses. Thus, possible

genotype associated differences in opioid needs may become

detectable.

The hypothesis of this study is that oxymorphone plasma

concentrations measured during the crucial early postoperative
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period after major surgeries vary according to CYP2D6 genotypes

with an impact on analgesic consumption. In order to translate

pharmacogenetic findings into clinical practice, CYP2D6 geno-

type dependent equianalgesic doses were calculated and compared

to piritramide, which is the standard opioid used in Germany. Its

metabolism is not dependent on CYP2D6 activity. Thus,

equianalgesic intravenous piritramide : oxycodone doses might

be helpful for clinicians as there is little experience with oxycodone

in a postoperative setting in many countries.

Methods

Patients
Approval for this prospective, observational association study

was obtained from the institutional review board of the Medical

Faculty of the University of Bonn. One-hundred-thirty-one

patients scheduled for elective major abdominal surgery or

thoracotomy gave written informed consent and were instructed

in the details of the study, the use of the patient-controlled

analgesia (PCA) device and the numeric rating scale for pain

intensities (NRS: 0 denotes no pain, 100 denotes worst pain

imaginable). Exclusion criteria were alcoholism, drug dependence,

use of CYP3A inducing or inhibiting substances, clinically relevant

compromised kidney or liver function, psychiatric diseases,

epilepsy, contraindication for the use of study medications, known

opioid intolerance, laparoscopic surgery, perioperative epidural

analgesia, serious perioperative complications and changes in

anesthetic procedure. Preexisting medication was documented and

discontinued only for the day of surgery with the exception of

drugs necessary for major co-morbidity, e.g. cardiac and

pulmonary diseases.

Clinical Study Protocol
General anesthesia was conducted according to a standardized

protocol [1,4]: propofol 2–3 mg/kg, fentanyl 0.15 mg and cis-

atracurium for induction and remifentanil, isoflurane and cis-

atracurium for maintenance of anesthesia. About 30 minutes

before termination of anesthesia oxycodone 0.05 mg/kg i.v.

(oxycodone hydrochloride: OxygesicH injekt, Mundipharma,

Germany) was given with a maximum intraoperative dose of

5 mg. Additionally, dipyrone 1 g i.v. or in case of contraindica-

tions to dipyrone acetaminophen 1 g i.v. was infused. Patients’

genotypes were unknown during the clinical part of the study.

Prophylactic antiemetic treatment before emergence of surgery

was performed in high risk patients for postoperative nausea and

vomiting (Apfel’s validated risk score $3, [5]) according to the

department’s protocol. After emergence from anesthesia, patients

were transferred to the postoperative anesthesia care unit (PACU).

The analgesic regimen in the PACU consisted of further doses of

oxycodone 1–2 mg if pain scores were .40 at rest. For subsequent

analgesic treatment on the general ward, patients could self-

administer intravenous bolus doses of 1 ml corresponding to

oxycodone 1 mg via a patient-controlled analgesia (PCA) device

(InjektomatH-CP PACOM, Fresenius AG, Bad Homburg, Ger-

many) with a lock-out time of eight minutes and no background

infusion. If pain management via oxycodone PCA had to be

terminated prematurely due to lacking efficacy or side effects, e.g.

emesis which could not be controlled by antiemetic medication,

the analgesic regimen could be changed to the standard treatment

piritramide. Dipyrone 5 g/day and in case of contraindications

acetaminophen 4 g/day was infused i.v. as basic non-opioid

analgesic regimen in all participants. This is according to the

hospital’s standard procedure and complies with the national

guidelines of a multimodal analgesic regimen [6].

During the 48-hour study period following initial opioid

administration, pain scores under rest and exercise/coughing

were recorded by the patients using the NRS. Nausea and

vomiting (absence or presence) were assessed regularly and treated

with antiemetics if needed. Observation time points were hourly

up to the eighth hour, at the twelfth hour, and then every six hours

up to the forty-eighth hour. Opioid consumption was documented,

and the analgesic consumption administered via the PCA device

was transferred to an electronic data base. As individual

experience and subjective estimation of pain and side effects

might differ considerably between investigators and patients, an

additional questionnaire was completed by the patients after

48 hours. The questions considered overall patient assessment of

pain management and whether the quantity of analgesics was

sufficient.

Genotyping
Blood samples were drawn at 30, 90 and 180 minutes after

opioid administration. After centrifugation, blood cells and plasma

were frozen separately at -80uC. All laboratory analyses were

performed after enrollment of the last patient, and the laboratory

staff were blinded to the patients’ data.

Genotyping for CYP2D6 *3, *4, *5, *6, *7, *8, *10, *41 and

gene duplication/multiduplication as well as for CYP3A5*3 (rs

776746, G6986A) was performed by PCR and real-time PCR as

described previously [4,7]. All alleles with no indicators for one of

the genetic variants investigated were categorized as ‘‘wild-type’’

(wt). For translation of the genotypes into a qualitative measure of

phenotype, CYP2D6 activity score of each subject was calculated

as the sum of the values assigned to each single allele [8]. Alleles

*3,*4,*5,*6,*7,*8 were assigned a value of 0, alleles *10,*41 a value

of 0.5, the wt allele a value of 1, and wtxN a value of 2 [8]. Four

CYP2D6 activity groups were compared: activity score 0

representing poor metabolizers (PM); activity score 0.5–1 repre-

senting heterozygous subjects carrying one non-functional allele or

a combination of a non-functional with an allele showing reduced

function (HZ/IM); activity score of 1.5–2 representing extensive

metabolizers or a combination of wild-type allele and reduced

function allele (EM); activity score 3 representing ultrarapid

metabolizers (UM) with a duplication/multiduplication of a

functional allele. Because some authors [2,9] also suggested a

contribution of CYP3A to plasma disposition of metabolites and

analgesic efficacy the CYP3A5*3 variant was investigated explor-

atively. Individuals were assigned to the group of low expressors

(CYP3A5*3/*3) or high expressors carrying at least one

CYP3A5*1 allele [10].

Plasma Concentrations of Oxycodone and Its Metabolites
Oxycodone, the metabolites oxymorphone, noroxycodone, and

noroxymorphone as well as the deuterated standards oxycodone-

d3, noroxycodone-d3, oxymorphone-d3 and hydromorphone-d3

were purchased from Cerilliant Corporation (Round Rock, TX,

USA). Methanol, water, formic acid (all of HPLC grade),

acetonitrile (hypergrade for LC/MS), borate buffer (pH 11), and

ammonium formiate were purchased from Merck (Darmstadt,

Germany); n-chlorbutane (for HPLC) was obtained from Sigma-

Aldrich (Steinheim, Germany).

HPLC mobile phase A consisted of water (HPLC grade) and

acetonitrile (90:10, v/v), mobile phase B consisted of water (HPLC

grade) and acetonitrile (10:90, v/v), both with 0.005 M ammoni-

um formiate and pH was adjusted to 3.5 by addition of formic

acid.

Quantification of oxycodone, oxymorphone, noroxycodone and

noroxymorphone was performed by a liquid chromatographic-

CYP2D6 Genotype and Oxycodone Metabolism
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mass spectrometric method with electrospray ionization in positive

mode. A previous procedure showed ion suppression effects for the

hydrophilic metabolites [11] and was modified: A mixture of

0.2 ml plasma, 20 ml methanolic internal standard solution (1 mg/

ml of oxycodone-d3, noroxycodone-d3, oxymorphone-d3 and

hydromorphone-d3) and 0.1 ml borate buffer were extracted with

1 ml n-chlorbutane. After centrifugation (40006g, 8 min), the

organic phase was transferred and evaporated to dryness under a

stream of nitrogen at 60uC. The residue was dissolved in 0.1 ml of

mobile phase B and a 10 ml-aliquot was used for chromatography.

LC-MS/MS system consisted of a Shimadzu LC 20 series

(Duisburg, Germany) high-performance liquid chromatography

system (binary pump, degasser, controller and autosampler)

coupled with an Applied Biosystems (Darmstadt, Germany) API

4000 QTrap triple quadrupole mass spectrometer. Chromato-

graphic separation was achieved on a Phenomenex (Aschaffen-

burg, Germany) Hydro RP column (150*2 mm; 4 mm) with a flow

of 0.5 ml/min and with following gradients: 0–15 min from 10%

to 100% mobile phase B, 15–20 min 100% mobile phase B, 20–

21 min from 100% to 10% mobile phase B, 21–25 min

equilibration with 10% mobile phase B. For mass spectrometric

detection in multiple ion monitoring mode (MRM), following

transitions from the molecular ions ([M+H+]+) were used:

oxycodone (316.1R298.0, 241.0), oxycodon-d3 (319.1R301.1,

244.1), oxymorphone (302.1R284.0, 227.2), oxymorphone-d3

(305.1R287.1, 230.1), noroxycodone (302.2R284.0, 187.0),

noroxycodone-d3 (305.1R287.0, 230.2), and noroxymorphone

(288.1R270.0, 213.0). For quantification, peak area ratios of the

analytes to the corresponding deuterated standards were calculat-

ed as a function of the concentration of the substances.

Noroxymorphone was quantified by referring its peak area to

the peak area of oxymorphon-d3 due to the lack of its deuterated

analogue. The limits of quantification were between 0.08 and

0.11 ng/ml. Precisions and matrix effects were checked according

to international guidelines and all criteria were fulfilled [12] The

data are summarized in Table 1.

Statistical Analysis
The primary study endpoint was the influence of CYP2D6

genotypes on metabolism and plasma concentrations of oxycodone

and its metabolites. As on demand administered drugs per se

require an alternative approach for analyses of drug and

metabolite concentrations due to varying amounts of oxycodone

being administered according to individual needs, mean metab-

olite ratios of oxymorphone/oxycodone plasma concentrations

were compared between genotype groups (ANOVA, consecutive

post hoc analysis using the Tukey-test). These ratios reflect the

CYP2D6 activity-related plasma concentrations of both ocyco-

done and oxymorphone at the time points for blood sampling [1].

From previous data it was conservatively assumed that in PM this

ratio was about one third of that in EM and UM with a standard

deviation being as high as the means of PM [1,13]. For CYP2D6

7–10% of Caucasian individuals are PM. A total minimum

number of at least 120 patients was calculated to provide sufficient

pharmacokinetic data for the PM group. The x2-goodness of fit

test was applied to all SNPs to ascertain whether they were in

Hardy-Weinberg equilibrium.

As a secondary endpoint, a comparison of genotype-dependent

cumulative analgesic consumption that measured titration doses in

the recovery room as well as delivered PCA bolus doses was

performed (repeated measures ANOVA). For analysis of equian-

algesic doses, a comparison to a cohort receiving the standard

treatment with piritramide, a synthetic opioid structurally related

to meperidine, was used. Depending on their body weight, patients

received piritramide 4–8 mg i.v. before the end of surgery. In the

PACU, further doses of piritramide 2–3 mg were titrated if pain

scores were .40 at rest. The setting used on the PCA device was

identical to the oxycodone group, however, the 1 ml bolus dose

consisted of piritramide 2 mg. This ratio was chosen due to a

lower relative analgesic potency of piritramide compared to

morphine [14,15].

Equianalgesic ratios piritramide : oxycodone were calculated

from piritramide doses versus oxycodone doses titrated in the

recovery room and from the delivered amount of the respective

opioid via PCA. For the opioid consumption via PCA the first

eight hours were represented in hourly intervals. Thereafter,

opioid consumption up to the 12th, 18th, 24th, 30th, 36th, 42nd and

48th hour (15 observation time points) was extracted from

electronic PCA protocols. Patients were allocated to genotype

dependent CYP2D6 activity groups with no (PM), one (HZ/IM)

or at least two active CYP2D6 alleles (EM+UM). Mean overall

equianalgesic ratios piritramide : oxycodone with standard

deviations (SD) and 95%-confidence intervals (95%-CI) were

calculated and compared by ANOVA followed by post-hoc

analysis.

For all analyses level of significance was defined as p,0.05 with

subsequent correction for multiple testing. Analyses were per-

formed by using the statistical software STATISTICA 10 (Stat

Soft, Inc. Tulsa, OK, USA).

Results

Demographic Data and Genotypes
In this trial, a total of 131 patients were enrolled. Complete data

for 121 patients on oxycodone could be analyzed (major urologic

surgery: 80 patients, major abdominal: 29, liver/pancreatic

surgery: 5, thoracotomy 4, major gynecological laparotomy: 3

patients). Ten patients had to be excluded due to violation of the

study protocol, need for prolonged postoperative mechanical

ventilation or surgical complications. Demographic and surgery-

related as well as frequency of genotype groups are displayed in

Table 2.

Table 1. Limits of detection (LOD; signal-to-noise ratio 3), limits of quantification (LOQ; three times the LOD), precision (at 100 ng/
mL), and matrix effects (comparison of analyte responses of post-extraction spiked samples to those of spiked samples).

LOD ng/ml LOQ ng/ml Precision % Matrix Effect %

Oxycodone 0.02 0.08 8.4 105.6

Oxymorphone 0.03 0.09 9.8 88.8

Noroxycodone 0.03 0.09 11.8 92.5

Noroxymorphone 0.04 0.11 14.9 78.8

doi:10.1371/journal.pone.0060239.t001

CYP2D6 Genotype and Oxycodone Metabolism
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CYP2D6 and CYP3A Genotypes
Of the participants enrolled, 104 were of German descent, the

remainder from other European countries (13), Arabia or Africa

(4). Genotyping was successful in all blood samples. The observed

CYP2D6 allele frequencies were 2.0% (95%-CI: 0.9/4.7) for *3,

17.4% (13.1/22.6) for *4, 2.9% (1.4/5.9) for *5, 0.6% (0.4/3.6) for

*6, 4.5% (2.6/7.9) for *10, 7.9% (5.1/11.9) for *41 and 2.1% (0.9/

4.7) for wtxN. The CYP2D6*7 allele was not detected. For

CYP3A5, the allele frequency of *3 was 94.1% (91.7/95.9). Allele

frequencies did not differ when considering subjects of European

descent only. There was no deviation of allele frequencies from

Hardy-Weinberg equilibrium (p-values .0.05) and results were in

agreement with data reported previously [16,17]. Considering

genotype dependent metabolic activity 6.6% and 4.1% of the

patients carried a CYP2D6 dependent activity score of 0 or 3

(Table 2). For CYP3A, 10.7% high expressors with at least one wt-

allele were detected (Table 2).

Genotype-Dependent Plasma Concentrations
Plasma concentrations of oxycodone and oxymorphone were

dependent on CYP2D6 activity groups. The resulting metabolite

ratio oxymorphone : oxycodone was lowest in PM and highest in

UM (p = 0.001; Figure 1). The time course of plasma concentra-

tions showed lowest oxymorphone doses in PMs (comparison of

genotype groups by repeated measures ANOVA, p = 0.004;

Figure 2). There was no difference in plasma concentrations for

noroxymorphone among CYP2D6 genotypes (concentrations at

30 minutes: PM 2.863.2, HZ/IM 2.261.7, EM 3.462.5, UM

2.962.5 ng/ml; p = 0.9). For CYP3A5*3/*3 carriers neither

plasma concentrations of oxycodone (p = 0.5), nor the concentra-

tions of noroxycodone (p = 0.4) or noroxymorphone (p = 0.8)

differed compared to those subjects carrying at least one wt-allele.

Analgesic Consumption and Efficacy
Sixty patients (PM: 3, HZ/IM: 24, EM: 32, UM: 1) needed an

additional oxycodone dose (3.364.3 mg) in the recovery room (no

difference between CYP2D6 genotypes). The cumulative oxyco-

done consumption up to the twelfth hour varied between the

CYP2D6 activity groups (Figure 3, repeated measures ANOVA,

p = 0.005; post-hoc analysis PM versus EM: p,0.001; PM versus

carriers of at leat one active allele: p = 0.002). For CYP3A activity

groups, no difference in analgesic consumption could be detected

(CYP3A high ecxpressors 20.769.6 mg oxycodone up to the

twelfth hour, CYP3A low expressors: 20.0610.5 mg). Pain scores

at rest and movement did not differ between CYP2D6 genoytpye

groups (Table 3) and none of the patients had to be switched to

analgesic rescue medication. The postoperative questionnaire

revealed a high-degree of patient satisfaction. Only two individuals

on oxycodone (PM:1, EM:1) judged pain management as

insufficient. Twelve patients (PM: 2, HZ/IM:4, EM:6, UM:0)

answered ‘‘no’’ to the question whether delivered opioid doses

were high enough.

For comparison of equianalgesic doses, an additional cohort of

125 patients on piritramide were analyzed. Demographic and

sugery-related data as well as genotypes and pain scores were

comparable to the oxycodone group (Tables 2–4). Equianalgesic

doses of piritramide versus oxycodone differed between CYP2D6

genotypes (Table 5). For the combined group of EM and UM this

ratio was higher compared to PM and HZ/IM (p,0.001).

Discussion

In patients receiving oxycodone for postoperative analgesia after

major surgery, the CYP2D6 genotype influenced the ratio of

plasma concentrations of oxymorphone/oxycodone as well as

analgesic consumption via PCA during the first 12 postoperative

hours. This confirms our hypothesis and demonstrates that

sufficiently high pain scores resulting in relevant analgesic needs

are necessary to detect genotype dependent differences.

Influences of CYP2D6 Genotypes on Plasma
Concentrations

The CYP2D6-dependent metabolite oxymorphone has a 40 to

45-fold higher m-opioid receptor binding affinity than oxycodone

[18–21] and has proved to be a more potent m-opioid receptor

agonist. However, its impact on analgesia is controversial since

formation of oxymorphone is not considered the major metabolic

pathway [18,22].

In a previous trial, plasma concentrations were measured

25 minutes after i.v. injection of oxycodone 5 mg (PM: 0.04 ng/

Table 2. Demographic and Perioperative Data.

PMa HZ/IMa EMa UMa

Number of patients (%) 8 (6.6) 38 (31.4) 70 (57.9) 5 (4.1)

Male/female 5/3 21/17 48/22 3/2

Age (years) 6369 58613 56615 50612

Body weight (kg) 82616 81633 86630 88620

Height (cm) 177610 165624 167632 17663

Duration of surgery (min) 192645 200682 203691 193673

ASA I/II/III/IVb 1/6/1/0 5/22/10/1 11/36/22/1 1/2/2/0

CYP3A5 *1/*1 or *1/*3
or *3/*3

0/0/8 0/4/34 0/9/62 0/0/5

Patients were clustered according to CYP2D6 genotypes. Measures represent
mean6SD or number (%) of patients.
a: PM = poor metabolizers, HZ/IM = heterozygous subjects or intermediate
metabolizers, EM = extensive metabolizers, UM = ultrarapid metabolizers.
b: ASA = American Society of Anesthesiologists physical status; I = healthy patient,
II = mild systemic disease, III = severe systemic disease, IV = severe systemic disease
that is a constant threat to life.
doi:10.1371/journal.pone.0060239.t002

Figure 1. Mean Ratio of Oxymorphone/Oxycodone Plasma
Concentrations depending on CYP2D6 Genotype Groups.
Boxes represent 1st and 3rd quartile; whiskers the 5th and 95th

percentiles. ANOVA p = 0.001; Tukey-test: PM vs. UM: p = 0.009, HZ/IM
vs. UM: p = 0.005).
doi:10.1371/journal.pone.0060239.g001

CYP2D6 Genotype and Oxycodone Metabolism
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ml; EM: 0.12 ng/ml) [1]. Similar to the present findings

oxymorphone concentrations and the metabolite ratio oxymor-

phone : oxycodone varied depending on CYP2D6 genotypes, but

overall substance concentrations measured in plasma were lower

than in the present study, which might be due to different

laboratory techniques [1]. Furthermore, another panel of SNPs

was investigated resulting in a different classification of CYP2D6

activity status [1].

A decrease of oxymorphone concentrations and a shift to the N-

demethylation pathway was reported in subjects with blocked

CYP2D6 activity (by comedication with quinidine), which

resembles the PM status [23]. In 20 chronic-pain patients, co-

administration of paroxetine decreased plasma AUC of oxymor-

phone by 67% and increased AUC of noroxycodone by 100%, but

had no effect on oxycodone analgesia or the use of rescue

medication [22]. In contrast, the effect of paroxetine on plasma

concentrations of one single i.v. dose of oxycodone was negligible

in an experimental setting [3]. In these previous investigations,

either no genotyping was performed or no sufficient number of

subjects was enrolled to perform a genetic association study.

CYP3A Activity
The CYP3A4 pathway is described as quantitatively more

important [18] with the N-demethylated metabolite noroxycodone

showing poor antinociceptive effects [19,24,25]. CYP3A is the

most abundant CYP protein in the human liver, and the influence

of genetic variants on metabolism has been demonstrated in

immunosuppressive drugs with a narrow therapeutic index and

frequent side effects [26–28]. In contrast, data on other widely

used drugs metabolized by CYP3A are sparse. For healthy

volunteers, Samer and co-workers stated that oxycodone’s

pharmacokinetics is also modulated by CYP3A activity [29]. A

Figure 2. Plasma Concentrations of Oxymorphone. Oxymorphone concentrations were clustered to CYP2D6 genotype activity groups PM, HZ/
IM, EM and UM. Measures represent means with -SD. Comparison of genotype groups by repeated measures ANOVA, p = 0.004.
doi:10.1371/journal.pone.0060239.g002

Figure 3. Cumulative Oxycodone Consumption. Patients were allocated to CYP2D6 genotype groups. Data are presented as mean with -SD.
Repeated measures ANOVA, p = 0.005 for consumption up to the 12th hour. Thereafter, there was no significant difference after correction for
multiple testing.
doi:10.1371/journal.pone.0060239.g003

CYP2D6 Genotype and Oxycodone Metabolism
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higher noroxycodone/oxycodone ratio and a higher daily

oxycodone escalation rate was described in cancer patients

carrying the CYP3A5*3/*3 genotype [9], however, an association

of plasma concentrations and analgesic consumption to CYP3A5

genotype could not be confirmed in the present trial. It is well

described that comedication with voriconazole, itraconazole,

telithromycin, rifampin or ketoconazol produces considerable

changes in oxycodone’s pharmacokinetic [2,3,29–33] and even

foods like grapefruit juice can inhibit CYP3A activity with

respective interactions [34]. Several authors have pointed out that

dose adjustment of oxycodone might be necessary, when used

concomitantly with CYP inducers or inhibitors to either maintain

adequate analgesia or prevent overdosing [31,32]. However, data

from large-scale clinical studies are lacking thus far.

Genotype and Opioid Consumption
The central nervous system effects of oxycodone were described

as governed by the parent drug, with a negligible contribution

from its oxidative and reductive metabolites [18,22]. This

hypothesis was mainly based on the low contribution of CYP2D6

to the overall metabolism of this opioid [18,22], however, this

hypothesis was not confirmed in all human trials. Specifically in

some volunteer studies, oxymorphone did play a role for analgesic

efficacy in parallel to the clear-cut pharmacokinetic effects

described in nearly all publications in which this issue has been

addressed [1,13,29].

In experimental pain models enrolling a limited number of

volunteers, oxycodone analgesia was reduced in PM compared to

EM, whereas increased pharmacodynamic effects were described

in two UM [13,29]. Some case reports [35–38] as well as the

present results are in line with these findings. In contrast, no

Table 3. Pain Scores at Rest and Coughing/Movement.

Oxycodone Piritramide

PMa HZ/IMa EMa UMa

On arrival at the PACUb 40 (30/50) 43 (30/51) 30 (15/45) 27 (20/62) 40 (30/50)

2 hrs at rest 40 (30/40) 40 (30/45) 30 (20/40) 27 (20/37) 36 (30/44)

2 hrs at coughing 65 (60/70) 60 (50/70) 57 (50/70) 70 (50/80) 60 (50/70)

6 hrs at rest 27.5 (20/39) 30 (22/38) 26.6 (20/35) 25 (27/30) 30 (20/37)

6 hrs at coughing 55 (50/60) 57.5 (50/70) 50 (41/60) 70 (60/70) 50 (40/60)

12 hrs at rest 24 (16/30) 30 (20/33) 25 (15/30) 30 (30/30) 20 (11/30)

12 hrs at coughing 50 (48/60) 52.5 (50/60) 50 (40/60) 60 (60/70) 40 (39/50)

Patients treated with oxycodone were clustered according to CYP2D6 genotype groups. Additionally, the results of the piritramide groups are displayed. Pain scores are
presented as medians (1st/3rd quartile).
a: PM = poor metabolizers, HZ/IM = heterozygous subjects or intermediate metabolizers, EM = extensive metabolizers, UM = ultrarapid metabolizers.
b: PACU = post anesthesia care unit.
doi:10.1371/journal.pone.0060239.t003

Table 4. Demographic and Perioperative Data of 125 Patients receiving Piritramide.

Piritramide

Male/Female 69/56

Age (years) 56615

Body weight (kg) 79620

Height (cm) 170617

Duration of surgery (min) 210678

ASA I/II/III/IVa (no. patients) 18/71/33/3

Kind of surgery (no. patients)

Urologic (nephrectomy/enucleation of kidney tumor, prostatectomy) 81

Major abdominal (bowel resection) 32

Liver/pancreatic surgery 4

Thoracotomy (lung resection, thymectomy) 6

Major gynecological laparotomy 2

CYP2D6 genotype group: PM/HZ/IM/EM/UMb 13/39/69/4

CYP3A5 *1/*1 or *1/*3 or *3/*3 3/10/112

Data represent number of patients and means6SD.
a: ASA: American Society of Anesthesiologists physical status; I = healthy patient, II = mild systemic disease, III = severe systemic disease, IV = severe systemic disease that is
a constant threat to life.
b: PM = poor metabolizers, HZ/IM = heterozygous subjects or intermediate metabolizers, EM = extensive metabolizers, UM = ultrarapid metabolizers.
doi:10.1371/journal.pone.0060239.t004
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genotype dependent difference in analgesic consumption was

detected in a previous PCA study [1], but, no differentiation of

UM and HZ/IM was performed, surgical procedures were less

invasive and the 24 h oxycodone consumption was considerably

lower with about 40% of the patients not using the PCA device at

all [1]. The overall low analgesic needs might have masked

possible differences between genotypes. Stubhaug and co-workers

stated that a sufficiently strong base-line pain is necessary to

discriminate between drugs [39] or as in this case between

different genotypes. As hypothesized in the present trial, enrolling

patients undergoing major surgery PM needed more oxycodone.

A substantial change in the analgesic regimen for postoperative

PCA seems not to be necessary as PM could compensate higher

analgesic needs by demanding additional PCA bolus doses and

titrating themselves to comfortable low pain intensities. This is also

reflected by comparable pain scores in the different CYP2D6

activity groups.

The definition of equianalgesic doses of oxycodone to morphine

has been described as difficult due to pharmacokinetic differences

of the drugs [40]. For morphine:oxycodone a ratio of about 1.5

has been suggested [41–43]. In a further trial reporting a ratio of

1.0 in patients undergoing non-abdominal surgeries, high PCA

bolus doses (oxymorphone 30 mg/kg) might have contributed to

an increased overall opioid consumption [44]. Thus, possible

differences in opioid potency may have been concealed.

Equianalgesic doses of piritramide:oxycodone have not been

reported up to now. They are useful for clinicians in the case of

opioid switching. Piritramide is the preferred opioid in a

postoperative setting in several European countries due to rapid

onset, absence of active metabolites, and unproblematic use, also

in the case of impaired renal function [14,15]. Due to higher

oxycodone consumption in PM, the present trial revealed a

respective change in equianalgesic dose ratios piritramide:oxyco-

done compared to subjects carrying at least two wild-type alleles.

There are some limitations in the current study. First, the

overall number of patients included in this trial is limited.

Nevertheless, the results show a significant association between

CYP2D6 genotypes and oxycodone metabolism and consumption

at a statistical power of 80%. Second, for analysis of equianalgesic

doses piritramide:oxycodone a double-blinded study design might

have been suitable as well. However, as the patients’ genotypes

were unknown during the clinical part of the trial and the drugs

were administered via PCA by the patients themselves, the

influence of physicians and nurses on analgesic consumption

should be negligible. For more detailed evaluation of genotype-

associated oxycodone effects and side effects a larger patient

cohort needs to be investigated in a future trial. Additionally, the

influence of concomitant medication interfering with CYP activity

has to be addressed in a postoperative setting.

Conclusions

In this patient cohort recovering from major surgery and

requiring clinically relevant opioid doses, a CYP2D6 genotype-

dependent effect on plasma concentrations of oxycodone and

oxymorphone was detected. The higher oxycodone consumption

in PM resulted in genotype specific equianalgesic doses of

piritramide:oxycodone. PCA technology overcomes differences

in doses needed by various genotype groups, so that the PM also

experienced sufficient pain relief from oxycodone in this postop-

erative setting.
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