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Abstract: Approximate Bayesian computation (ABC)
constitutes a class of computational methods rooted in
Bayesian statistics. In all model-based statistical inference,
the likelihood function is of central importance, since it
expresses the probability of the observed data under a
particular statistical model, and thus quantifies the
support data lend to particular values of parameters and
to choices among different models. For simple models, an
analytical formula for the likelihood function can typically
be derived. However, for more complex models, an
analytical formula might be elusive or the likelihood
function might be computationally very costly to evalu-
ate. ABC methods bypass the evaluation of the likelihood
function. In this way, ABC methods widen the realm of
models for which statistical inference can be considered.
ABC methods are mathematically well-founded, but they
inevitably make assumptions and approximations whose
impact needs to be carefully assessed. Furthermore, the
wider application domain of ABC exacerbates the
challenges of parameter estimation and model selection.
ABC has rapidly gained popularity over the last years and
in particular for the analysis of complex problems arising
in biological sciences (e.g., in population genetics,
ecology, epidemiology, and systems biology).

This is a ‘‘Topic Page’’ article for PLOS Computational Biology.

History

The first Approximate Bayesian computation (ABC)-related

ideas date back to the 1980s. Donald Rubin, when discussing the

interpretation of Bayesian statements in 1984 [1], described a

hypothetical sampling mechanism that yields a sample from the

posterior distribution. This scheme was more of a conceptual

thought experiment to demonstrate what type of manipulations

are done when inferring the posterior distributions of parameters.

The description of the sampling mechanism coincides exactly with

that of the ABC-rejection scheme, and this article can be

considered to be the first to describe approximate Bayesian

computation. Another prescient point was made when Rubin

argued that in Bayesian inference, applied statisticians should not

settle for analytically tractable models only but instead consider

computational methods that allow them to estimate the posterior

distribution of interest. This way, a wider range of models can be

considered. These arguments are particularly relevant in the

context of ABC.

In 1984, Peter Diggle and Richard Gratton suggested using a

systematic simulation scheme to approximate the likelihood

function in situations where its analytic form is intractable [2].

Their method was based on defining a grid in the parameter

space and using it to approximate the likelihood by running

several simulations for each grid point. The approximation was

then improved by applying smoothing techniques to the

outcomes of the simulations. While the idea of using simulation

for hypothesis testing was not new [3,4], Diggle and Gratton

seemingly introduced the first procedure using simulation to do

statistical inference under a circumstance where the likelihood is

intractable.

Although Diggle and Gratton’s approach had opened a new

frontier, their method was not yet exactly identical to what is now

known as ABC, as it aimed at approximating the likelihood rather

than the posterior distribution. An article of Simon Tavaré et al.

[5] was first to propose an ABC algorithm for posterior inference.

In their seminal work, inference about the genealogy of DNA

sequence data was considered, and in particular the problem of

deciding the posterior distribution of the time to the most recent

common ancestor of the sampled individuals. Such inference is

analytically intractable for many demographical models, but the

authors presented ways of simulating coalescent trees under the

putative models. A sample from the posterior of model parameters

was obtained by accepting/rejecting proposals based on compar-

ing the number of segregating sites in the synthetic and real data.

This work was followed by an applied study on modeling the

variation in human Y chromosome by Jonathan K. Pritchard et al.

[6] using the ABC method. Finally, the term Approximate

Bayesian Computation was established by Mark Beaumont et al.

[7], extending further the ABC methodology and discussing the

suitability of the ABC-approach more specifically for problems in

population genetics. Since then, ABC has spread to applications
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outside population genetics, such as systems biology, epidemiol-

ogy, or phylogeography.

Method

Motivation
A common incarnation of the Bayes’ theorem relates the

conditional probability (or density) of a particular parameter value

h given data D to the probability of D given h by the rule:

p(hDD)~
p(DDh)p(h)

p(D)
,

where p(hDD) denotes the posterior, p(DDh) the likelihood, p(h) the

prior, and p(D) the evidence (also referred to as the marginal

likelihood or the prior predictive probability of the data).

The prior represents beliefs about h before D is available, and it

is often specified by choosing a particular distribution among a set

of well-known and tractable families of distributions, such that

both the evaluation of prior probabilities and random generation

of values of h are relatively straightforward. For certain kinds of

models, it is more pragmatic to specify the prior p(h) using a

factorization of the joint distribution of all the elements of h in

terms of a sequence of their conditional distributions. If one is only

interested in the relative posterior plausibilities of different values

of h, the evidence p(D) can be ignored, as it constitutes a

normalising constant, which cancels for any ratio of posterior

probabilities. It remains, however, necessary to evaluate the

likelihood p(DDh) and the prior p(h). For numerous applications, it

is computationally expensive, or even completely infeasible, to

evaluate the likelihood [8], which motivates the use of ABC to

circumvent this issue.

The ABC Rejection Algorithm
All ABC-based methods approximate the likelihood function by

simulations, the outcomes of which are compared with the

observed data [9–11]. More specifically, with the ABC rejection

algorithm—the most basic form of ABC—a set of parameter

points is first sampled from the prior distribution. Given a sampled

parameter point h, a dataset D̂D is then simulated under the

statistical model M specified by h. If the generated D̂D is too

different from the observed data D, the sampled parameter value

is discarded. In precise terms, D̂D is accepted with tolerance e§0 if:

r(D̂D,D)ƒe,

where the distance measure r(D̂D,D) determines the level of

discrepancy between D̂D and D based on a given metric (e.g., the

Euclidean distance). A strictly positive tolerance is usually

necessary, since the probability that the simulation outcome

coincides exactly with the data (event D̂D~D) is negligible for all

but trivial applications of ABC, which would in practice lead to

rejection of nearly all sampled parameter points. The outcome of

the ABC rejection algorithm is a sample of parameter values

approximately distributed according to the desired posterior

distribution and, crucially, obtained without the need of explicitly

evaluating the likelihood function (Figure 1).

Summary Statistics
The probability of generating a dataset D̂D with a small distance

to D typically decreases as the dimensionality of the data increases.

This leads to a substantial decrease in the computational efficiency

of the above basic ABC rejection algorithm. A common approach

to lessen this problem is to replace D with a set of lower

dimensional summary statistics S(D), which are selected to

capture the relevant information in D. The acceptance criterion

in ABC rejection algorithm becomes:

r(S(D̂D),S(D))ƒe:

If the summary statistics are sufficient with respect to the model

parameters h, the efficiency increase obtained in this way does not

introduce any error [12]. Indeed, by definition, sufficiency implies

that all information in D about h is captured by S(D).
As elaborated below, it is typically impossible, outside the

exponential family of distributions, to identify a finite-dimensional

set of sufficient statistics. Nevertheless, informative, but possibly

nonsufficient, summary statistics are often used in applications

where inference is performed with ABC methods.

Example

An illustrative example is a bistable system that can be

characterized by a hidden Markov model (HMM) subject to

measurement noise (Figure 2). Such models are employed for

many biological systems: they have for example been used in

Development, signaling, activation/deactivation, logical process-

ing, and non-equilibrium thermodynamics. For instance, the

behavior of the Sonic Hedgehog (Shh) transcription factor in

Drosophila melanogaster can be modeled with a HMM [13]. The

(biological) dynamical model consists of two states: A and B. If the

probability of a transition from one state to the other is defined as

h in both directions, the probability to remain in the same state at

each time step is 1{h. The probability to measure the state

correctly is c (conversely, the probability of an incorrect

measurement is 1{c).

Due to the conditional dependencies between states at different

time points, calculation of the likelihood of time series data is

somewhat tedious, which illustrates the motivation to use ABC. A

computational issue for the basic ABC is the large dimensionality

of the data in an application like this. This can be reduced using

the summary statistic S, which is the frequency of switches

between the two states. As a distance measure r(:,:), the absolute

difference is used, combined with a tolerance e~2. The posterior

inference about the parameter h can be done following the five

steps presented in Figure 1:

Step 1: Assume that the observed data are the state sequence

AAAABAABBAAAAAABAAAA, which was generated using

h~0:25. The associated summary statistic, the number of switches

between the states in the experimental data, is vE~6.

Step 2: Assuming nothing is known about h, a uniform prior in

the interval 0,1½ � is employed. A number n of parameter points are

drawn from the prior, and the model is simulated for each of the

parameter points hi,i~1, . . . ,n, which results in n sequences of

simulated data. In this example, n~5, with each drawn parameter

and simulated dataset recorded in Table 1, column 2–3. In

practice, n would need to be much larger to obtain an appropriate

approximation.

Step 3: The summary statistic is being computed for each

sequence of simulated data, vS,i,i~1, . . . ,n (Table 1, column 4).

Step 4: The distance between the observed and simulated

transition frequencies r(vS,i,vE)~DvS,i{vE D is computed for all

parameter points (Table 1, column 5). Parameter points for which

the distance is smaller than or equal to e are accepted as

approximate samples from the posterior (Table 1, column 6).
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Step 5: The posterior distribution is approximated with the

accepted parameter points. The posterior distribution should have

a nonnegligible probability for parameter values in a region

around the true value of h in the system, if the data are sufficiently

informative. In this example, the posterior probability mass is

evenly split between the values 0:08 and 0:43.

Figure 3 shows the posterior probabilities obtained by ABC and

a large n using either the summary statistic combined with (e~0
and e~2) or the full data sequence. These are compared with the

true posterior, which can be computed exactly and efficiently using

the Viterbi algorithm. The used summary statistic is not sufficient,

and it is seen that even with e~0, the deviation from the

theoretical posterior is considerable. Of note, a much longer

observed data sequence would be required to obtain a posterior

that is concentrated around the true value of h (h~0:25).

This example application of ABC used simplifications for

illustrative purposes. A number of review articles provide pointers

to more realistic applications of ABC [9–11,14].

Model Comparison with ABC

Besides parameter estimation, the ABC-framework can be used

to compute the posterior probabilities of different candidate

models [15–17]. In such applications, one possibility is to use the

rejection-sampling in a hierarchical manner. First, a model is

sampled from the prior distribution for the models; then, given the

model sampled, the model parameters are sampled from the prior

distribution assigned to that model. Finally, a simulation is

performed as in the single-model ABC. The relative acceptance

frequencies for the different models now approximate the posterior

Figure 1. Parameter estimation by Approximate Bayesian Computation: a conceptual overview.
doi:10.1371/journal.pcbi.1002803.g001
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distribution for these models. Again, computational improvements

for ABC in the space of models have been proposed, such as

constructing a particle filter in the joint space of models and

parameters [17].

Once the posterior probabilities of models have been estimated,

one can make full use of the techniques of Bayesian model

comparison. For instance, to compare the relative plausibilities of

two models M1 and M2, one can compute their posterior ratio,

which is related to the Bayes factor B1,2:

p(M1DD)

p(M2DD)
~

p(DDM1)

p(DDM2)

p(M1)

p(M2)
~B1,2

p(M1)

p(M2)
:

If the model priors are equal (p(M1)~p(M2)), the Bayes factor

equals the posterior ratio.

In practice, as discussed below, these measures can be highly

sensitive to the choice of parameter prior distributions and

summary statistics, and thus conclusions of model comparison

should be drawn with caution.

Pitfalls and Remedies

As for all statistical methods, a number of assumptions and

approximations are inherently required for the application of

ABC-based methods to real modeling problems. For example,

setting the tolerance parameter e to zero ensures an exact result

but typically makes computations prohibitively expensive. Thus,

values of e larger than zero are used in practice, which introduces

a bias. Likewise, sufficient statistics are typically not available, and

instead, other summary statistics are used, which introduces an

additional bias due to the loss of information. Additional sources of

bias—for example, in the context of model selection—may be

more subtle [12,18].

At the same time, some of the criticisms that have been directed

at the ABC methods, in particular within the field of

phylogeography [19–21], are not specific to ABC and apply to

all Bayesian methods or even all statistical methods (e.g., the

choice of prior distribution and parameter ranges) [9,22].

However, because of the ability of ABC-methods to handle much

more complex models, some of these general pitfalls are of

particular relevance in the context of ABC analyses.

This section discusses these potential risks and reviews possible

ways to address them (Table 2).

Approximation of the Posterior
A nonnegligible e comes with the price that one samples from

p(hDr(D̂D,D)ƒe) instead of the true posterior p(hDD). With a

sufficiently small tolerance, and a sensible distance measure, the

resulting distribution p(hDr(D̂D,D)ƒe) should often approximate

the actual target distribution p(hDD) reasonably well. On the other

hand, a tolerance that is large enough that every point in the

parameter space becomes accepted will yield a replica of the prior

distribution. There are empirical studies of the difference between

p(hDr(D̂D,D)ƒe) and p(hDD) as a function of e [23], and theoretical

results for an upper e-dependent bound for the error in parameter

estimates [24]. The accuracy of the posterior (defined as the

expected quadratic loss) delivered by ABC as a function of e has

also been investigated [25]. However, the convergence of the

distributions when e approaches zero, and how it depends on the

distance measure used, is an important topic that has yet to be

investigated in greater detail. In particular, it remains difficult to

disentangle errors introduced by this approximation from errors

due to model mis-specification [9].

As an attempt to correct some of the error due to a non-zero e,

the usage of local linear weighted regression with ABC to reduce

the variance of the posterior estimates has been suggested [7]. The

method assigns weights to the parameters according to how well

simulated summaries adhere to the observed ones and performs

linear regression between the summaries and the weighted

parameters in the vicinity of observed summaries. The obtained

regression coefficients are used to correct sampled parameters in

the direction of observed summaries. An improvement was

suggested in the form of nonlinear regression using a feed-forward

neural network model [26]. However, it has been shown that the

posterior distributions obtained with these approaches are not

always consistent with the prior distribution, which did lead to a

reformulation of the regression adjustment that respects the prior

distribution [27].

Finally, statistical inference using ABC with a non-zero

tolerance e is not inherently flawed: under the assumption of

Figure 2. A dynamic bistable hidden Markov model.
doi:10.1371/journal.pcbi.1002803.g002

Table 1. Example of ABC rejection algorithm.

i hi Simulated Datasets (Step 2) Summary Statistic vS,i (Step 3) Distance r (vS,i,vE) (Step 4) Outcome (Step 4)

1 0.08 AABAAAABAABAAABAAAAA 8 2 accepted

2 0.68 AABBABABAAABBABABBAB 13 7 rejected

3 0.87 BBBABBABBBBABABBBBBA 9 3 rejected

4 0.43 AABAAAAABBABBBBBBBBA 6 0 accepted

5 0.53 ABBBBBAABBABBABAABBB 9 3 rejected

doi:10.1371/journal.pcbi.1002803.t001
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measurement errors, the optimal e can in fact be shown to be not zero

[25,28]. Indeed, the bias caused by a non-zero tolerance can be

characterized and compensated by introducing a specific form of noise

to the summary statistics. Asymptotic consistency for such ‘‘noisy

ABC’’ has been established, together with formulas for the asymptotic

variance of the parameter estimates for a fixed tolerance [25].

Figure 3. Posterior of h obtained in the example (red), compared with the true posterior distribution (black), and ABC simulations
with large n. The use of the insufficient summary statistic v introduces a bias, even when requiring e= 0 (light green).
doi:10.1371/journal.pcbi.1002803.g003

Table 2. Potential risks and remedies in ABC-based statistical inference.

Error Source Potential Issue Solution Subsection

Nonzero tolerance e The inexactness introduces a bias in
the computed posterior distribution.

Theoretical/practical studies of the
sensitivity of the posterior distribution to
the tolerance. Noisy ABC.

Approximation of the posterior

Nonsufficient summary statistics The information loss causes inflated
credible intervals.

Automatic selection/semi-automatic
identification of sufficient statistics.
Model validation checks (e.g.,
Templeton 2009 [19]).

Choice and sufficiency of summary
statistics

Small number of models/mis-
specified models

The investigated models are not
representative/lack predictive power.

Careful selection of models. Evaluation
of the predictive power.

Small number of models

Priors and parameter ranges Conclusions may be sensitive to the
choice of priors. Model choice may
be meaningless.

Check sensitivity of Bayes factors to the
choice of priors. Some theoretical results
regarding choice of priors are available.
Use alternative methods for model
validation.

Prior distribution and parameter ranges

Curse-of-dimensionality Low parameter acceptance rates.
Model errors cannot be distinguished
from an insufficient exploration of the
parameter space. Risk of overfitting.

Methods for model reduction if
applicable. Methods to speed up the
parameter exploration. Quality
controls to detect overfitting.

Curse-of-dimensionality

Model ranking with summary statistics The computation of Bayes factors on
summary statistics may not be related
to the Bayes factors on the original
data, which may therefore render the
results meaningless.

Only use summary statistics that fulfill the
necessary and sufficient conditions to
produce a consistent Bayesian model
choice. Use alternative methods for
model validation.

Bayes factor with ABC and summary
statistics

Implementation Low protection to common
assumptions in the simulation
and the inference process.

Sanity checks of results. Standardization
of software.

Indispensable quality controls

doi:10.1371/journal.pcbi.1002803.t002
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Choice and Sufficiency of Summary Statistics
Summary statistics may be used to increase the acceptance rate

of ABC for high-dimensional data. Low-dimensional sufficient

statistics are optimal for this purpose, as they capture all relevant

information present in the data in the simplest possible form [11].

However, low-dimensional sufficient statistics are typically unat-

tainable for statistical models where ABC-based inference is most

relevant, and consequently, some heuristic is usually necessary to

identify useful low-dimensional summary statistics. The use of a set

of poorly chosen summary statistics will often lead to inflated

credible intervals due to the implied loss of information [11],

which can also bias the discrimination between models. A review

of methods for choosing summary statistics is available [29], which

may provide valuable guidance in practice.

One approach to capture most of the information present in

data would be to use many statistics, but the accuracy and stability

of ABC appears to decrease rapidly with an increasing numbers of

summary statistics [9,11]. Instead, a better strategy is to focus on

the relevant statistics only—relevancy depending on the whole

inference problem, on the model used, and on the data at hand

[30].

An algorithm has been proposed for identifying a representative

subset of summary statistics, by iteratively assessing whether an

additional statistic introduces a meaningful modification of the

posterior [31]. One of the challenges here is that a large ABC

approximation error may heavily influence the conclusions about

the usefulness of a statistic at any stage of the procedure. Another

method decomposes into two main steps [30]. First, a reference

approximation of the posterior is constructed by minimizing the

entropy. Sets of candidate summaries are then evaluated by

comparing the ABC-approximated posteriors with the reference

posterior.

With both of these strategies, a subset of statistics is selected

from a large set of candidate statistics. Instead, the partial least

squares regression approach uses information from all the

candidate statistics, each being weighted appropriately [32].

Recently, a method for constructing summaries in a semi-

automatic manner has attained a considerable interest [25]. This

method is based on the observation that the optimal choice of

summary statistics, when minimizing the quadratic loss of the

parameter point estimates, can be obtained through the posterior

mean of the parameters, which is approximated by performing a

linear regression based on the simulated data.

Methods for the identification of summary statistics that could

also simultaneously assess the influence on the approximation of

the posterior would be of substantial value [33]. This is because

the choice of summary statistics and the choice of tolerance

constitute two sources of error in the resulting posterior

distribution. These errors may corrupt the ranking of models

and may also lead to incorrect model predictions. Indeed, none of

the methods above assess the choice of summaries for the purpose

of model selection.

Bayes Factor with ABC and Summary Statistics
It has been shown that the combination of insufficient summary

statistics and ABC for model selection can be problematic [12,18].

Indeed, if one lets the Bayes factor based on the summary statistic

S(D) be denoted by Bs
1,2, the relation between B1,2 and Bs

1,2 takes

the form [12]:

B1,2~
p(DDM1)

p(DDM2)
~

p(DDS(D),M1)

p(DDS(D),M2)

p(S(D)DM1)

p(S(D)DM2)
~

p(DDS(D),M1)

p(DDS(D),M2)
Bs

1,2:

Thus, a summary statistic S(D) is sufficient for comparing two

models M1 and M2 if and only if:

p(DDS(D),M1)~p(DDS(D),M2),

which results in that B1,2~Bs
1,2. It is also clear from the equation

above that there might be a huge difference between B1,2 and Bs
1,2 if

the condition is not satisfied, as can be demonstrated by toy

examples [12,16,18]. Crucially, it was shown that sufficiency for M1

or M2 alone, or for both models, does not guarantee sufficiency for

ranking the models [12]. However, it was also shown that any

sufficient summary statistic for a model M in which both M1 and

M2 are nested is valid for ranking the nested models [12].

Table 3. Software incorporating ABC.

Software Keywords and Features Reference

DIY-ABC Software for fit of genetic data to complex situations. Comparison of competing models. Parameter estimation.
Computation of bias and precision measures for a given model and known parameters values.

[53]

ABC R package Several ABC algorithms for performing parameter estimation and model selection. Nonlinear heteroscedastic regression
methods for ABC. Cross-validation tool.

[54]

ABC-SysBio Python package. Parameter inference and model selection for dynamical systems. Combines ABC rejection sampler, ABC
SMC for parameter inference, and ABC SMC for model selection. Compatible with models written in Systems Biology
Markup Language (SBML). Deterministic and stochastic models.

[55]

ABCtoolbox Open source programs for various ABC algorithms including rejection sampling, MCMC without likelihood, a particle-based
sampler, and ABC-GLM. Compatibility with most simulation and summary statistics computation programs.

[56]

msBayes Open source software package consisting of several C and R programs that are run with a Perl ‘‘front-end.’’ Hierarchical
coalescent models. Population genetic data from multiple co-distributed species.

[57]

PopABC Software package for inference of the pattern of demographic divergence. Coalescent simulation. Bayesian model choice. [58]

ONeSAMP Web-based program to estimate the effective population size from a sample of microsatellite genotypes. Estimates of
effective population size, together with 95% credible limits.

[59]

ABC4F Software for estimation of F-statistics for dominant data. [60]

2BAD Two-event Bayesian ADmixture. Software allowing up to two independent admixture events with up to three parental
populations. Estimation of several parameters (admixture, effective sizes, etc.). Comparison of pairs of admixture models.

[61]

doi:10.1371/journal.pcbi.1002803.t003
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The computation of Bayes factors on S(D) may therefore be

misleading for model selection purposes, unless the ratio between

the Bayes factors on D and S(D) would be available, or at least

could be approximated reasonably well. Alternatively, necessary

and sufficient conditions on summary statistics for a consistent

Bayesian model choice have recently been derived [34], which can

provide useful guidance.

However, this issue is only relevant for model selection when the

dimension of the data has been reduced. ABC-based inference, in

which the actual datasets are directly compared—as is the case for

some systems biology applications (e.g., see [35])—circumvents

this problem.

Indispensable Quality Controls
As the above discussion makes clear, any ABC analysis requires

choices and tradeoffs that can have a considerable impact on its

outcomes. Specifically, the choice of competing models/hypoth-

eses, the number of simulations, the choice of summary statistics,

or the acceptance threshold cannot currently be based on general

rules, but the effect of these choices should be evaluated and tested

in each study [10].

A number of heuristic approaches to the quality control of ABC

have been proposed, such as the quantification of the fraction of

parameter variance explained by the summary statistics [10]. A

common class of methods aims at assessing whether or not the

inference yields valid results, regardless of the actually observed

data. For instance, given a set of parameter values, which are

typically drawn from the prior or the posterior distributions for a

model, one can generate a large number of artificial datasets. In

this way, the quality and robustness of ABC inference can be

assessed in a controlled setting, by gauging how well the chosen

ABC inference method recovers the true parameter values, and

also models if multiple structurally different models are considered

simultaneously.

Another class of methods assesses whether the inference was

successful in light of the given observed data, for example by

comparing the posterior predictive distribution of summary

statistics to the summary statistics observed [10]. Beyond that,

cross-validation techniques [36] and predictive checks [37,38]

represent promising future strategies to evaluate the stability and

out-of-sample predictive validity of ABC inferences. This is

particularly important when modeling large datasets, because

then the posterior support of a particular model can appear

overwhelmingly conclusive, even if all proposed models in fact are

poor representations of the stochastic system underlying the

observation data. Out-of-sample predictive checks can reveal

potential systematic biases within a model and provide clues on to

how to improve its structure or parametrization.

Interestingly, fundamentally novel approaches for model choice

that incorporate quality control as an integral step in the process

have recently been proposed. ABC allows, by construction,

estimation of the discrepancies between the observed data and

the model predictions, with respect to a comprehensive set of

statistics. These statistics are not necessarily the same as those used

in the acceptance criterion. The resulting discrepancy distributions

have been used for selecting models that are in agreement with

many aspects of the data simultaneously [39], and model

inconsistency is detected from conflicting and codependent

summaries. Another quality-control-based method for model

selection employs ABC to approximate the effective number of

model parameters and the deviance of the posterior predictive

distributions of summaries and parameters [40]. The deviance

information criterion is then used as measure of model fit. It has

also been shown that the models preferred based on this criterion

can conflict with those supported by Bayes factors. For this reason,

it is useful to combine different methods for model selection to

obtain correct conclusions.

Quality controls are achievable and indeed performed in many

ABC-based works, but for certain problems, the assessment of the

impact of the method-related parameters can be challenging.

However, the rapidly increasing use of ABC can be expected to

provide a more thorough understanding of the limitations and

applicability of the method.

General Risks in Statistical Inference Exacerbated in ABC
This section reviews risks that are strictly speaking not specific to

ABC, but also relevant for other statistical methods as well.

However, the flexibility offered by ABC to analyze very complex

models makes them highly relevant to discuss here.

Prior distribution and parameter ranges. The specifica-

tion of the range and the prior distribution of parameters strongly

benefits from previous knowledge about the properties of the

system. One criticism has been that in some studies the

‘‘parameter ranges and distributions are only guessed based upon

the subjective opinion of the investigators’’ [41], which is

connected to classical objections of Bayesian approaches [42].

With any computational method, it is typically necessary to

constrain the investigated parameter ranges. The parameter

ranges should if possible be defined based on known properties

of the studied system but may for practical applications necessitate

an educated guess. However, theoretical results regarding

objective priors are available, which may for example be based

on the principle of indifference or the principle of maximum

entropy [43,44]. On the other hand, automated or semi-

automated methods for choosing a prior distribution often yield

improper densities. As most ABC procedures require generating

samples from the prior, improper priors are not directly applicable

to ABC.

One should also keep the purpose of the analysis in mind when

choosing the prior distribution. In principle, uninformative and

flat priors that exaggerate our subjective ignorance about the

parameters may still yield reasonable parameter estimates.

However, Bayes factors are highly sensitive to the prior

distribution of parameters. Conclusions on model choice based

on Bayes factor can be misleading unless the sensitivity of

conclusions to the choice of priors is carefully considered.

Small number of models. Model-based methods have been

criticized for not exhaustively covering the hypothesis space [21].

Indeed, model-based studies often revolve around a small number

of models, and due to the high computational cost to evaluate a

single model in some instances, it may then be difficult to cover a

large part of the hypothesis space.

An upper limit to the number of considered candidate models is

typically set by the substantial effort required to define the models

and to choose between many alternative options [10]. There is no

commonly accepted ABC-specific procedure for model construc-

tion, so experience and prior knowledge are used instead [11].

Although more robust procedures for a priori model choice and

formulation would be beneficial, there is no one-size-fits-all

strategy for model development in statistics: sensible character-

ization of complex systems will always necessitate a great deal of

detective work and use of expert knowledge from the problem

domain.

Some opponents of ABC contend that since only few models—

subjectively chosen and probably all wrong—can be realistically

considered, ABC analyses provide only limited insight [21].

However, there is an important distinction between identifying a

plausible null hypothesis and assessing the relative fit of alternative
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hypotheses [9]. Since useful null hypotheses, that potentially hold

true, can extremely seldom be put forward in the context of

complex models, predictive ability of statistical models as

explanations of complex phenomena is far more important than

the test of a statistical null hypothesis in this context. It is also

common to average over the investigated models, weighted based

on their relative plausibility, to infer model features (e.g.,

parameter values) and to make predictions.

Large datasets. Large datasets may constitute a computa-

tional bottleneck for model-based methods. It was, for example,

pointed out that in some ABC-based analyses, part of the data

have to be omitted [21]. A number of authors have argued that

large datasets are not a practical limitation [10,42], although the

severity of this issue depends strongly on the characteristics of the

models. Several aspects of a modeling problem can contribute to

the computational complexity, such as the sample size, number of

observed variables or features, time or spatial resolution, etc.

However, with increasing computing power, this issue will

potentially be less important.

Instead of sampling parameters for each simulation from the

prior, it has been proposed alternatively to combine the

Metropolis-Hastings algorithm with ABC, which was reported to

result in a higher acceptance rate than for plain ABC [33].

Naturally, such an approach inherits the general burdens of

MCMC methods, such as the difficulty to assess convergence,

correlation among the samples from the posterior [23], and

relatively poor parallelizability [10].

Likewise, the ideas of sequential Monte Carlo (SMC) and

population Monte Carlo (PMC) methods have been adapted to the

ABC setting [23,45]. The general idea is to iteratively approach the

posterior from the prior through a sequence of target distributions.

An advantage of such methods, compared to ABC-MCMC, is that

the samples from the resulting posterior are independent. In

addition, with sequential methods the tolerance levels must not be

specified prior to the analysis, but are adjusted adaptively [46].

It is relatively straightforward to parallelize a number of steps in

ABC algorithms based on rejection sampling and sequential

Monte Carlo methods. It has also been demonstrated that parallel

algorithms may yield significant speedups for MCMC-based

inference in phylogenetics [47], which may be a tractable

approach also for ABC-based methods. Yet an adequate model

for a complex system is very likely to require intensive

computation irrespectively of the chosen method of inference,

and it is up to the user to select a method that is suitable for the

particular application in question.

Curse-of-dimensionality. High-dimensional datasets and

high-dimensional parameter spaces can require an extremely

large number of parameter points to be simulated in ABC-based

studies to obtain a reasonable level of accuracy for the posterior

inferences. In such situations, the computational cost is severely

increased and may in the worst case render the computational

analysis intractable. These are examples of well-known phenom-

ena, which are usually referred to with the umbrella term curse-of-

dimensionality [48].

To assess how severely the dimensionality of a dataset affects the

analysis within the context of ABC, analytical formulas have been

derived for the error of the ABC estimators as functions of the

dimension of the summary statistics [49–50]. In addition, Blum

and François have investigated how the dimension of the summary

statistics is related to the mean squared error for different

correction adjustments to the error of ABC estimators. It was

also argued that dimension reduction techniques are useful to

avoid the curse-of-dimensionality, due to a potentially lower

dimensional underlying structure of summary statistics [49].

Motivated by minimizing the quadratic loss of ABC estimators,

Fearnhead and Prangle have proposed a scheme to project

(possibly high-dimensional) data into estimates of the parameter

posterior means; these means, now having the same dimension as

the parameters, are then used as summary statistics for ABC [50].

ABC can be used to infer problems in high-dimensional

parameter spaces, although one should account for the possibility

of overfitting (e.g., see the model selection methods in [39–40]).

However, the probability of accepting the simulated values for the

parameters under a given tolerance with the ABC rejection

algorithm typically decreases exponentially with increasing dimen-

sionality of the parameter space (due to the global acceptance

criterion) [11]. Although no computational method (based on ABC

or not) seems to be able to break the curse-of-dimensionality,

methods have recently been developed to handle high-dimensional

parameter spaces under certain assumptions (e.g., based on

polynomial approximation on sparse grids [51], which could

potentially heavily reduce the simulation times for ABC). However,

the applicability of such methods is problem dependent, and the

difficulty of exploring parameter spaces should in general not be

underestimated. For example, the introduction of deterministic

global parameter estimation led to reports that the global optima

obtained in several previous studies of low-dimensional problems

were incorrect [52]. For certain problems, it might therefore be

difficult to know whether the model is incorrect or, as discussed

above, whether the explored region of the parameter space is

inappropriate [21]. A more pragmatic approach is to cut the scope

of the problem through model reduction [11].

Software for Application of ABC

A number of software packages are currently available for

application of ABC to particular classes of statistical models. An

assortment of ABC-based software is presented in Table 3.

The suitability of individual software packages is dependent on

the specific application at hand, the computer system environ-

ment, and the algorithms required.

Conclusion

In conclusion, ABC represents a class of well-founded and

powerful methods for Bayesian statistical inference. However,

reliable application of ABC requires additional caution to be

considered, due to the approximations and biases introduced at

the different stages of the approach. In its current incarnation, the

ABC toolkit as a whole is best suited for inference about

parameters or predictive inferences about observables in the

presence of a single or few candidate model(s). How to make ABC

practically feasible for problems involving large sets of models

and/or high-dimensional target parameter spaces is currently

largely an open issue. Since the computation of the likelihood

function is bypassed, it can be tempting to attack high-dimensional

problems using ABC, but inevitably this comes bundled with new

challenges that investigators need to be aware of at each step of

their analyses.
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