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Abstract

Responses of many real-world problems can only be eval-
uated perturbed by noise. In order to make an efficient
optimization of these problems possible, intelligent opti-
mization strategies successfully coping with noisy evalua-
tions are required. In this article, a comprehensive review
of existing kriging-based methods for the optimization of
noisy functions is provided. In summary, ten methods
for choosing the sequential samples are described using
a unified formalism. They are compared on analytical
benchmark problems, whereby the usual assumption of ho-
moscedastic Gaussian noise made in the underlying mod-
els is meet. Different problem configurations (noise level,
maximum number of observations, initial number of obser-
vations) and setups (covariance functions, budget, initial
sample size) are considered. It is found that the choices of
the initial sample size and the covariance function are not
critical. The choice of the method, however, can result in
significant differences in the performance. In particular,
the three most intuitive criteria are found as poor alter-
natives. Although no criterion is found consistently more
efficient than the others, two specialized methods appear
more robust on average.

1 Introduction

The use of kriging for modeling and optimizing determin-
istic computer simulations has a long and successful tra-
dition [30, 20, 37, 21]. In recent years, there has been
an increasing interest in the study of “stochastic” simula-
tors, whose outputs can only be observed in the presence
of noise. Examples of such simulators can be found in
a wide range of applications, including nuclear safety as-
sessment [9], discrete event simulation [1], acoustic wave
propagation in turbulent fluids [17], airfoil optimization
[23], design of composite materials [32, 31] and experi-
mental measurements in mechanical engineering [4].

The variety of applications has resulted in different
approaches for Noisy Kriging-based Optimization (NKO)
over the last years [10, 15, 39, 25, 26, 38, 35]. Thereby,
most NKO algorithms use the same formulation of the
kriging model. Consequently, their differences mainly base
on different variants of the criterion for selecting the next
evaluation point(s) – the so-called infill sampling criterion.
The ideas behind these criteria range from a pure explo-
ration of the design space to an intensive reevaluation of

the currently best solution(s). Since these approaches have
been developed within different disciplines, they have been
only compared to state-of-the-art approaches in their re-
spective fields, but not between them.
The class of optimization problem addressed by most

NKO algorithms usually takes the form of a deterministic
objective function y : x ∈ D ⊂ R

d → y(x) ∈ R with box-
constrained decision space, where experiments can only
provide noisy observations ỹi = y(xi) + ǫi of the true re-
sponses y(xi) (1 ≤ i ≤ n). Such a general formulation
covers a wide variety of scenarii that can be encountered
in real-world applications. A complete coverage of all pos-
sible subdomains is thus not possible. For instance, the
performances of NKO strategies depends on the nature
of the noise (Gaussian or not, homo- or heteroskedastic,
autocorrelated, correlated or not with the response), the
nature of the objective function (regularity, uni- and multi-
modality, search space dimensions) or on the cost of ob-
servation restricting the experimental budget.
In this paper, we focus on a comprehensive review and

benchmark of the different NKO algorithms considering
the nature of the objective function and the effect of the
experimental budget. This is accomplished based on a
set of analytical test functions covering important prob-
lem properties, such as uni- and multi-modality, low and
moderate search space dimensions, and different noise lev-
els (variances). In order to keep the experiments within a
realistic amount, we restrict our investigation to a partic-
ular noise model. The ǫi’s are considered as being random
realizations of i.i.d Gaussian noise variables. The observed
values might hence differ for different measurements of y
at the same x. As kriging models rely on Gaussian pro-
cesses, this noise model perfectly copes with the model
assumptions. The approaches are thus evaluated under
optimal conditions. In this context, it has been shown that
many practical problems can be reduced to this particu-
lar case by applying suitable transformations [41]. Based
on these assumptions, a comparison to non kriging-based
approaches would be unfair and is thus out of the scope
of the present article. A review of alternative approaches
is performed in [3].
Based on the benchmark, the relative strengths and

drawbacks of the different NKO approaches are disclosed.
Since all NKO approaches are based on a kriging model
which is sequentially refined by new observations, they
share important parameters, such as the size of the ini-
tial design of experiments and the choice of the covari-
ance kernel. A systematic analysis of these parameters
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can thus assist in finding suitable settings and in iden-
tifying interactions between them and the corresponding
NKO approach. This is the basis for a fair comparison of
the NKO algorithms. The computational amount required
for allowing all these parameters to be considered in order
to obtain reliable and (relatively) case-independent con-
clusions in a noisy context is only possible due to the use
of fast-to-evaluate test functions. An artificial perturba-
tion of a more complex deterministic simulator is thus not
considered.
Before the design and the results of the benchmark are

presented, the kriging model is described. Then, the dif-
ferent infill criteria of the NKO algorithms are presented
and formally compared. The implementation of the bench-
mark and solutions to some subproblems are explained in
section 4.3. Finally, the experiments are described and
the results are discussed. The paper is concluded with a
summary of the results and an outlook on further research
topics in NKO.

2 The Kriging model

Kriging [24] is a functional approximation method origi-
nally coming from geosciences [22], and having been pop-
ularized in the computer experiments [30] and machine
learning [28] communities. In such frameworks, Kriging is
often build upon the assumption that the objective func-
tion y is one realization of a Gaussian random field Y .
Here, we particularly focus on Ordinary Kriging (OK),
which is described in the following.

2.1 Ordinary kriging

In the OK framework, the random field Y is commonly
assumed to be of the form:

Y (x) = µ+ Z(x) (1)

where µ ∈ R is an unknown constant trend, and Z
is a centered Gaussian field (or process) with station-
ary (translation-invariant) covariance kernel k : (x,x′) ∈
D2 → k(x,x′) = σ2r(x − x′;ψ), where r is an admissible
correlation function with parameters ψ.
Under such hypotheses 1, the Kriging model can be writ-

ten in terms of conditional expectation and variance of Y
knowing the observations:

m(x) = E[Y (x)|Y (xi) = yi, 1 ≤ i ≤ n] (2)

s2(x) = Var[Y (x)|Y (xi) = yi, 1 ≤ i ≤ n] (3)

The function m is called the Kriging mean. It provides
an interpolator for each observation xi by enhancing the
constant trend based on the correlation to the existing
observations. s2(x) denotes the Kriging variance, which
can be seen as a pointwise quantification of the prediction
uncertainty. After conditioning on n observations, the OK

1Assuming further that µ is independent of Z and follows an

improper uniform distribution over R.

mean and variance functions are given by the following
equations:

mn(x) = µ̂n + kn(x)
TK−1

n (yn − µ̂n1n), (4)

s2n(x) = σ2 − kn(x)
TK−1

n kn(x) +

(
1− 1T

nK
−1
n kn(x)

)2

1T
nK

−1
n 1n

,

(5)
with:

• yn = (y1, . . . , yn)
T ,

• Kn =
(
k(xi,xj)

)
1≤i,j≤n

,

• kn(x) = (k(x,x1), . . . , k(x,xn))T ,

• 1n is a n× 1 vector of ones, and

• µ̂n = 1T
nK

−1
n yn/1T

nK
−1
n 1n is the best linear unbiased

estimate of µ.

The Kriging mean is a weighted sum of the yi’s:

mn(x) = λ
n(x)yn, (6)

with λ
n(x) =

(
kn(x)

T +
(1−kn(x)

T
K

−1

n
1n)

1T
n
K

−1

n 1n

1T
n

)
K−1

n . Fur-

thermore, kriging can be characterized in terms of its es-
tablished properties as best linear unbiased predictor.

2.2 Kriging with noisy observations

In the framework of noisy observations, the ỹi can be con-
sidered as realizations of random variables Ỹi := Y (xi)+εi,
and Kriging amounts to conditioning Y on the noisy ob-
servations ỹi (1 ≤ i ≤ n). As shown earlier in [11], pro-
vided that Y and the Gaussian measurement errors εi are
stochastically independent, the process Y is still Gaussian
conditionally on the noisy observations ỹi (1 ≤ i ≤ n). Its
conditional mean and variance functions are given by sim-
ilar OK equations, with the difference that Kn is replaced
by K̃n := Kn+τ

2In at every occurrence in themn, s
2
n and

µ̂n fomula, where τ2 is the variance of the noise variables
εi.
In computer experiments, the alternative formulation

R̃n = (σ2 + τ2)−1K̃n is often used in order to write the
kriging equations in terms of correlations. In this case,
R̃ij = 1 if i = j, and (1 − ν)r(xi,xj) otherwise, where

τ2 is commonly called nugget and ν = τ2

σ2+τ2 scaling fac-

tor [34]. Note that an equivalent formulation, using vari-
ograms, was called ns-kriging in [31].
In the case of heterogeneous noise variances, i.e. when

the τ2i := var(Ỹi) are not all equal, τ2In is replaced by
diag(

[
τ21 . . . τ

2
n

]
) [11, 42]. In our framework, the obser-

vation noise is homoscedastic, but a generalized model is
used for the EQI criterion computation (see 3.5). Note
that heterogeneous noise variances could be used to han-
dle repetitions and reduce the size of the covariance matrix
of the model. For the sake of brevity, we consider here that
we have one observation for each input set, but the xi are
not necessarily all distinct.
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Contrarily to the noiseless case, mn(.) is not interpo-
lating noisy measurements and s2n(.) does not vanish at
that points. Figure 1 shows an example of Kriging based
on noisy observations. Therewith, the model presented
in the paper slightly differs from the so-called kriging with
nugget effect of the geostatistics literature [24, 6], where τ2

also appears in the covariance vector kn(x) (when x = xi),
which makes it a discontinuous, interpolating model.

0 0.2 0.4 0.6 0.8 1
−1

−0.5

0

0.5

1

1.5

2

2.5

3

Figure 1: Actual function (bold gray), Kriging mean (bold
black) and 90% confidence intervals (mixed line); the cir-
cles are the observation values ỹi, the bars show the noise
amplitude (±2τ).

2.3 Covariance functions

A large variety of covariance kernels are available in the
literature (see , e. g., [33] or [28] for a detailed summary).
The choice of the kernel and the value of its parameters
determine the shape (smoothness, amplitude of the pre-
diction variance, ...) of the kriging model. In this work,
two kernels are considered:

• the Gaussian anisotropic kernel:

k(x,x′) = σ2 exp


−

d∑

j=1

(
xj − x′j
θj

)2

 (7)

• the Matérn tensor-product kernel with ν = 3/2:

k(x,x′) = σ2


1 +

√
3

d∑

j=1

∣∣xj − x′j
∣∣

θj




× exp


−

d∑

j=1

∣∣xj − x′j
∣∣

θj


 (8)

with x = [x1 . . . xd]. Both kernels depend on a set of
parameters, σ2 and {θ1, . . . , θd}, which are often referred
to respectively as process variance and ranges.

2.4 Covariance parameter estimation

Covariance parameters are usually estimated based on the
observation vector ỹn. To accomplish this, several meth-
ods are available, e. g., maximum-likelihood approaches,
variogram estimation, or cross-validation. Here, we focus
on maximum-likelihood estimation (MLE): σ2 and the θi’s
are estimated by maximizing the probability density of ỹn

seen as a function of the covariance parameters, under a
Gaussian assumption on Ỹn:

L = (2π)
−n

2 det
[
K̃n

]− 1

2

exp

(
−1

2
(ỹn − µ̂n1n)

T
K̃−1

n (ỹn − µ̂n1n)

)
(9)

or equivalently by minimizing a negative multiple of the
log-likelihood (omitting constants):

l = log
(
det
[
K̃n

])
+ (ỹn − µ̂n1n)

T
K̃−1

n (ỹn − µ̂n1n)

(10)
In the noiseless case, there exists an explicit expression

for the optimal σ2 as a function of the θi, which allows
the problem to be simplified to the optimization of the
θi (”concentrated” or ”profile” log-likelihood). Unfortu-
nately, the superimposed noise variance τ2 prevents us
from doing so here, so the optimization of equation 10
needs to be performed with respect to the whole vector of
parameters:

[σ̂2, θ̂1, . . . , θ̂n] = argmin l(σ2, θ1, . . . , θn) (11)

where the dependency of l on the parameters appears
through K̃n and µ̂n. If τ

2 is unknown, it can also be con-
sidered as a variable in the likelihood maximization. Here,
we set it to the known variance of the superimposed ho-
moscedastic noise according to the idea of benchmarking
the approaches under ideal conditions.

3 Infill criteria

In the sequential procedure of most kriging-based optimiz-
ers, the design point to be evaluated next is determined
based on the optimization of a so-called infill criterion.
This infill criterion uses information of the current meta-
model in order to assess the utility of evaluating any can-
didate design on the actual problem. In this section, we
present the definitions of and the ideas behind the infill
criteria analyzed in our benchmark.

3.1 The classical (noiseless) Expected Im-
provement

The Expected Improvement (EI) has probably become the
most popular infill sampling criterion for kriging-based
global optimization of expensive-to-evaluate deterministic
functions following the seminal paper of Jones et al. [20].
Let

In(x) := (min(Y (Xn))− Y (x))
+

(12)
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denote the improvement obtained by evaluating Y at x

after the nth iteration, where (.)+ := max(0, .), Xn ={
x1, . . . ,xn

}
and Y (Xn) =

(
Y (x1), . . . , Y (xn)

)T
(same

convention is used later for Ỹ (Xn), mn(X
n) and y(Xn).

EIn is defined as the expectation of In conditionally on
the observations:

EIn(x) = E [In(x)|Y (Xn) = yn]

= E[(ymin − Y (x))+|Y (Xn) = yn] (13)

where ymin := min(y(Xn)) denotes the currently known
minimum at the nth iteration.
As shown in [20], the EI is fortunately analytically

tractable

EIn(x) = (ymin −mn(x))Φ

(
ymin −mn(x)

sn(x)

)

+ sn(x)φ

(
ymin −mn(x)

sn(x)

)
,

(14)

where Φ and φ denote the Gaussian cumulative distribu-
tion function and probability density, respectively.
In the EGO algorithm, the next measurement is per-

formed where EI is maximum:

xn+1 = argmax
x∈D

EIn(x). (15)

By construction, EIn is always non-negative, strictly in-
creasing with sn and decreasing with mn

2. Furthermore,
for an interpolating kriging model, ∀x ∈ Xn, EIn(x) = 0
holds. Hence, maximizing EIn never leads to re-evaluating
y at already sampled points.
In the framework of noisy observations, EI will depart

from this property since sn is not necessarily 0 at x ∈ Xn.
Moreover, the true minimum min(y(Xn)) at time n is not
exactly known due to the noise on the observations.

3.2 Expected improvement with “plug-
in” (PI)

One possibility to deal with the fact that min1≤i≤n(y(x
i))

is not exactly known at time n is to replace it by some
arbitrary target T , meant to be an efficient representative
of ymin. This leads to the so-called Expected Improvement

with plugin, denoted here by EIT,n:

EIT,n(x) = E[(T − Y (x))+|Ỹ (Xn) = ỹn] (16)

The choice of T is an important issue, since too high
or too low values have a significant influence on the shape
of EIT,n and thus change its behavior relatively to EI
with known ymin [19]. A first “naive” approach consists
in choosing T = min (ỹn), but this plugin lacks robustness
since it suffices to have one noisy observation with a low
value to severely underestimate ymin for the rest of the
optimization. Following the approach mentioned in [39],

2We consider minimization problems in this paper.

T = min (mn(X
n)) seems a sensible option. A general-

ization considered here is to take the minimum of kriging
β-quantiles at Xn, for a level β ∈]0, 1[ tuned by the user.
In [25], an almost similar EI with plugin was proposed

(in a bayesian kriging framework, which we do not consider
here): T = minsn(xi)≤e

(
mn(x

i)
)
, for some parameter e,

in order to restrict the choice to the observations with
relatively high accuracy.
Whatever the chosen value for T , a nice fact aboutEIT,n

is that it can be analytically calculated, as well as its gra-
dient, just as the classical EI:

EIT,n(x) = (T −mn(x))Φ

(
T −mn(x)

sn(x)

)

+ sn(x)φ

(
T −mn(x)

sn(x)

)
.

(17)

However, one drawback of EIT,n for noisy optimization
is that it does not take into account the noise of the fu-
ture observation: the improvement is defined and its ex-
pectation is calculated as if the next evaluation would be
deterministic. The AEI criterion presented in the next sec-
tion addresses this issue by adding a multiplicative term
to EIT,n, penalizing the points whose kriging variance s2n
is small compared to the noise level τ2.

3.3 Augmented Expected Improvement
(AEI)

The AEI criterion was proposed by Huang et al. ([15] for
the noisy framework and [14] for multi-fidelity). The idea
of replacing the unknown ymin by the value of the kriging
mean at some point is also used. But this time, instead
of considering T = min (mn(X

n)), T is taken as mn(x
∗∗),

where the so-called effective best solution x∗∗ is obtained
by minimizing mn +αsn over the already observed points
in order to have a plugin less sensitive to noise. In other
words, T is the kriging mean value at the design point with
lower β-quantile, where Φ−1(β) = α. The value α = 1
(corresponding with β = 0.84) is recommended by the
authors.
Additionally, a multiplicative penalty is introduced in

order to account for the noise variance of the next evalu-
ation:

AEIn(x) = EIT,n(x)×
(
1− τ√

s2n(x) + τ2

)
, (18)

AEI reduces to the original EI function whenever τ =
0. Huang et al. justify the penalty to “account for the di-
minishing return of additional replicates as the predictions
become more accurate”. In fact, it penalizes designs with
small prediction variance s2n(x) and therefore enhances ex-
ploration.

3.4 The reinterpolation procedure (RI)

The reinterpolation method was proposed by Forrester et
al. [10]. Instead of modifying the EI criterion for the noisy
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case, the authors propose to use simultaneously a kriging
with noisy observations (as defined in equations 4 and 5)
-called the regressing model- and an interpolating kriging,
which is built as follows: The covariance structure and pa-
rameters of the regressing model, as well as the design of
experiments (DOE), are inherited, but the kriging mean
predictions of the regressing kriging at the DOE points
are used as observation vector. Since this latter model is
noise-free, the classical EI can be used as an infill crite-
rion. Summarizing, the reinterpolation procedure consists
of four steps:

1. Build a kriging based on the noisy observations ỹn

2. Compute the kriging predictor at the DOE points
mn(x

1), . . . ,mn(x
n)

3. Build an interpolating kriging model using Xn and
yn = [mn(x

1), . . . ,mn(x
n)]T

4. Solve x∗ = argmaxEIn(x) using the interpolating
model.

Note that this procedure was initially designed for “de-
terministic” noise, due to numerical instabilities and ill-
posedness of the simulated system. In that case, two very
close designs would return different results, but repeat-
ing the same experiment would return the same output.
Hence, the reinterpolating procedure does not allow repe-
titions since EI

(
xi
)
= 0, 1 ≤ i ≤ n.

3.5 Expected Quantile Improvement
(EQI)

The main idea behind the EQI criterion, as detailed in
[26], is that in a noisy situation, the model predictor
may be closer to the actual value than the original data;
hence, an improvement should refer to the effect of a new
observation on the model. Taking the kriging quantile
qn(x) = mn(x) + Φ−1(β)sn(x) (with β ∈ [0.5, 1[) as a
measure of reference, an improvement between steps n and
n+ 1 is defined, similarly to the noiseless case, as:

In(x) :=

(
min

1≤i≤n
(Qn(x

i))−Qn+1(x)

)+

(19)

where Qn+1 is the quantile of the kriging updated with
a new measurement at xn+1 = x. EQI is defined as
E[In(x)|Ỹ (Xn) = ỹn], the expectation being taken con-
ditionally on the n current measurements and on the fact
that a new measurement is made at xn+1, the new mea-
surement Ỹ (xn+1) being (at step n) a Gaussian random
variable with mean mn(x

n+1) and variance s2n(x
n+1) +

τ2n+1. It has been shown that the conditional distribution
of Qn+1(x) is Gaussian and analytically derivable, which
leads to the following formula for the EQI:

EQIn(x) = (qmin −mQ(x))Φ

(
qmin −mQ(x)

sQ(x)

)

+ sQ(x)φ

(
qmin −mQ(x)

sQ(x)

)
,

(20)

where qmin := min1≤i≤n(qn(x
i)) is the current best quan-

tile and mQ and sQ denote the mean and standard devia-
tion of the future quantile Qn+1(x), respectively.
In practice, mQ and sQ take the simple following form:

mQ(x) = mn(x) + Φ−1(β)

√
τ2news

2
n(x)

τ2new + s2n(x)
(21)

s2Q(x) =

[
s2n(x)

]2

τ2new + s2n(x)
(22)

The future noise τ2new accounts for the limited optimiza-
tion budget, and is set to τ2/(N − n), where N is the
maximum number of observations. It is thus assumed that
the remaining budget is completely spent for this solution,
which is actually not desired. The above-defined rule can
be seen as a heuristic in order to slightly shift the focus
of the optimization from exploration to exploitation along
the iterations.

3.6 Approximate knowledge gradient
(AKG)

The knowledge-gradient policy that has been proposed in
[35] aims at measuring the global effect of a new mea-
surement on the kriging mean. The knowledge improve-

ment is defined as the difference between the minima over
D of the functions mn and mn+1. Since it requires two
global searches over D, no closed-form equation for con-
tinuous optimization exists, but an efficient approximation
has been proposed, termed approximated knowledge gra-
dient (AKG). The knowledge improvement is then defined
as:

In(x) = min
[
Mn

(
Xn+1

)]
−min

[
Mn+1

(
Xn+1

)]
(23)

where Xn+1 = {Xn,x}, and Mn+1 denotes the mean of
the kriging updated with a measurement at xn+1 = x.
Note that Mn+1 = Qn+1 for β = 0.5, so conditionally for
the n first observations Mn+1 is a Gaussian process with
known distribution.
In other words, an improvement is obtained if the mini-

mum of the new kriging mean is smaller that the minimum
of the old kriging mean, both minima being taken over the
n+ 1 sample points. In contrast, EQI considers the min-
imum of the old kriging quantile over the n past sample
points, and the new kriging quantile at the new sample
point only.
AKG is defined as E[In(x)|Ỹ (Xn) = ỹn;xn+1 = x].

The difficulty here lies in the computation of the condi-
tional expectation of min

[
Mn+1

(
Xn+1

)]
, since it is the

minimum of a Gaussian vector. However, the problem
can be reformulated as

min
[
Mn+1

(
Xn+1

)]
= min

i∈{1,...,n+1}

[
mn(x

i) + sM (xi)Z
]

(24)
where Z is standard normal (scalar), and:

sM (xi) =
cn(x

i,x)√
s2n(x) + τ2

(25)
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with

cn(x,y) = k(x,y)− kn(y)
TK−1

n kn(x)

+

(
1− kn(y)K

−1
n 1n

) (
1− 1T

nK
−1
n kn(x)

)

1T
nK

−1
n 1n

(26)

Then, the expectation of the maximum takes the follow-
ing form:

E

[
minMn+1

(
Xn+1

)
|Ỹ (Xn) = ỹn;xn+1 = x

]
=

ñ∑

i=1

ãi (Φ (c̃i+1)− Φ (c̃i)) + b̃i (φ (c̃i)− φ (c̃i+1)) (27)

where ã, b̃ and c̃ are determined by running a small algo-
rithm (see Table 1 in [35]).

3.7 Minimal quantile criteria (MQ)

The last method considered in this benchmark is perhaps
the most natural of the metamodel-based procedures and
acts as a baseline for the other criteria. It consists of per-
forming the next measurement where the current kriging
mean or quantile is minimum:

xn+1 = argmin
x∈D

mn(x) + Φ(β)−1 × sn(x) (28)

This criterion can be found in [5] or [38]. In [38], Φ(β)−1 is
an increasing function of the number of iterations in order
to ensure asymptotic convergence.
Although recognized as less efficient compared to the

EI in the case of deterministic experiments [19], this
method seems worth studying in this benchmark because
it does not need any modification to handle noise. It also
has shown successful applications in kriging-based multi-
objective optimization [8, 27].

3.8 Integral criteria

Alternatively to pointwise-based criteria, two strategies
have been proposed that rely on global measures of im-
provement: the Informational Approach to Global Opti-
mization (IAGO) [40] and the Integrated Expected Con-
ditional Improvement (IECI) [12]. The IAGO strategy
maximizes the gain of information, i.e. selects for the next
evaluation the point that minimizes the expected condi-
tional entropy of the minimizer; the IECI evaluates by how
much a candidate measurement at a given point would af-
fect the expected improvement over the design space. Both
strategies can handle noise naturally. The major draw-
back of such criteria is that they cannot be computed in
closed form and rely on numerical integration (contrarily
to the other criteria presented here, for which the value,
and also the derivatives, can be calculated in an exact
way, whatever the dimension). Comparing pointwise and
integral criteria brings up additional questions about the
choice of the integration method in moderate/high dimen-
sion (which can become very expensive rapidly). For those
reasons, we did not include these two criteria into the cur-
rent benchmark.

4 Design of the benchmark

4.1 Analytical test functions

As test problems, we employed six widely used analytical
benchmark problems [7]. Their definitions are given in Ta-
ble 1. The original functions have been rescaled to map
their search space to D = [0, 1]d, their mean to zero, and
their variance to one (for a random design with uniform
distribution over D). For the separable sphere function,
the input vectors are shifted and rotated before evalua-
tion. These functions being deterministic, the observation
noise is added artificially using i. i. d. Gaussian random
variables. The noise variance is chosen as explained in
section 4.2.
The test functions are chosen to cover a large variety

of problem properties and dimensions. Rosenbrock4 and
Sphere6 are unimodal functions. The valley of the global
minimum is easy to find, however fine convergence to the
global minimum is difficult. Branin-Hoo, Goldstein-Price,
Hartman4 and Hartman6 are multimodal functions with a
moderate number of optima. In addition, the smoothness
of the function differs from a constant curvature (Sphere6)
to a strong bend response surface with a steep optimum
region (Goldstein-Price).

4.2 Algorithmic factors

A large number of factors can influence the quality of the
different kriging-based procedures, whereby two types of
factors can be distinguished:

• The factors related to the parameterization of the
problem or optimization task.

• The factors for setting up the approach (usually tuned
by the user).

In this benchmark, we consider the problem factors
which we expect to have a significant influence on the per-
formance of the different criteria. These factors are the
noise level and the allowed budget of evaluations (a similar
classification can be found in [18]). For the tuning factors,
we selected the ones which have been changed within dif-
ferent studies [2, 4], i. e., the proportion of observations for
the initial DOE and the choice of the covariance kernel.
For each factor to be considered, we have chosen two

to three different values, as listed in Table 4.2. The noise
level is expressed in terms of the proportion of the function
standard deviation (SD) (which is one for all functions).
The noise levels vary between moderate (5%) to extremely
noisy (50%). In addition, for a given setup of all these pa-
rameters (including the infill criterion), results can depend
on the initial DOE and on the noise realizations. To ac-
count for this variability, for each configuration 40 runs are
performed with different initial DOEs and random seeds.
The total number of optimization runs performed for the

benchmark is nfct × nnoises × ncriteria × ncov × nbudgets

× nDOEsizes × nruns=63, 360.
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Table 1: Test functions.

Branin-Hoo (2D) y(x) = 1
51.95

[ (
x̄2 − 5.1x̄2

1

4π2 + 5x̄1

π
− 6
)2

+
(
10− 10

8π

)
cos(x̄1)− 44.81

]

with: x̄1 = 15× x1 − 5, x̄2 = 15× x2

Goldstein-Price (2D) y(x) = 1
2.427

[
log
[(

1 + (x̄1 + x̄2 + 1)2(19− 14x̄1 + 3x̄21 − 14x̄2 + 6x̄1x̄2 + 3x̄22)
)

(
30 + (2x̄1 − 3x̄2)

2 (
18− 32x̄1 + 12x̄21 + 48x̄2 − 36x̄1x̄2 + 27x̄22

) )]
− 8.693

]

with: x̄ = 4× x− 2

Rosenbrock4 (4D) y(x) = 1
3.755×105

[
∑3

j=1

(
100(x̄j+1 − x̄2j )

2 + (1− x̄i)
2
)
− 3.827× 105

]

with: x̄ = 15× x− 5

Hartman4 (4D) y(x) = 1
0.839

[
1.1−∑4

i=1 Ci exp
(
−∑4

j=1 aji (xj − pji)
2
)]

with:

C = [1.0, 1.2, 3.0, 3.2] a =




10.00 0.05 3.00 17.00
3.00 10.00 3.50 8.00
17.00 17.00 1.70 0.05
3.50 0.10 10.00 10.00
1.70 8.00 17.00 0.10
8.00 14.00 8.00 14.00



, p =




0.1312 0.2329 0.2348 0.4047
0.1696 0.4135 0.1451 0.8828
0.5569 0.8307 0.3522 0.8732
0.0124 0.3736 0.2883 0.5743
0.8283 0.1004 0.3047 0.1091
0.5886 0.9991 0.6650 0.0381




Hartman6 (6D) y(x) = −1
1.94

[
2.58 +

∑4
i=1 Ci exp

(
−∑6

j=1 aji (xj − pji)
2
)]

Sphere6 (6D) y(x) = 1
899

[∑6
j=1 x

2
j × 2j − 1745

]

Table 2: Summary of the benchmark factors and levels.
Factor Values

Noise SD 5%, 20%, 50%
(of the objective function SD)

Maximum number 20× d, 40× d
of evaluations
Number of 4× d, 10× d
initial evaluations
Covariance kernel matern3/2, Gauss

The choice of the design type of the initial DOE is also
probably a significant factor; however, here we fix it to be
a latin hypercube sampling (LHS) optimized with respect
to the maximin criterion, which is common practice in the
kriging community. Other factors of minor importance,
not considered here, may include the use of replications
on the initial design [2], the choice of the method for co-
variance parameters estimation, the re-estimation or not
of the covariance parameters during optimization, or the
choice of the kriging trend (for aUniversal Kriging model).

The reinterpolation procedure does not depend on any
parameter; the AEI criterion depends on the penalization
level α for the choice of the effective best solution, and is
set to 1, as recommended by Huang et al. The EI with
plugin of a quantile, EQI, and the quantile minimization
(MQ) depend on the quantile level β. For those methods,
two levels (β = 0.5 and β = 0.9) are tested. Since it is
almost similar to using β = 0.5, the plugin of [25] is not
considered here. Using a varying β for quantile minimiza-

Table 3: Summary of the infill criteria.
Criterion Parameter Abbreviation
Random search - RS
Reinterpolation - RI
AEI α = 1 AEI
EQI β = 0.5 EQ50

β = 0.9 EQ90
EI with T = min

(
ỹi
)

PIy
plugin T = min (mn(X

n)) PI50
T = min (qn(X

n)) PI90
with β = 0.9

Quantile β = 0.5 MQ50
minimization β = 0.1 MQ10
AKG - AKG

tion as in [38] is critical mostly in asymptotic conditions,
while in our benchmark we consider only small numbers
of observations. Besides, no rule-of-thumb is provided for
tuning β. For those reasons, we limit our present study to
the fixed β case. A random search is performed as a base-
line for the optimization performance. Table 3 summarizes
the criteria and parameters tested in the benchmark.

In order to minimize the external variance in the com-
parison of the problem and tuning factors, the initial
DOEs and observations have been re-used as much as pos-
sible. For instance, the same LHS is used for all the test
functions of the same dimension. The same LHS is used
to generate the initial observations for the four different
noise levels. The same set of initial observations is used

7



for all the infill criteria.

4.3 Implementation issues and solutions

4.3.1 Optimization of the kriging parameters

In all kriging-based procedures, providing accurate covari-
ance parameters is a crucial point. In particular, the range
parameters (θj in eqs. 7 and 8) reflect the predicted activ-
ity (or smoothness) of the objective function, which have
a great effect on the shape of the infill criteria.
The parameter estimation is here done by maximum

likelihood, as defined in section 2.4, using the R package
DiceKriging [29]. Since the likelihood is known to often
have local maxima for values corresponding to either very
small range (white noise) or very large range (constant
response), the covariance parameters are bounded to sen-
sible intervals. These intervals have been found by per-
forming pre-experiments on the chosen test functions and
are wide enough to cover the requirements of the different
criteria.
Since Rosenbrock4 and Sphere6 have a very low activity,

the covariance bounds for the range parameters are cho-
sen as [0.5, 5], which allows to have a very smooth kriging
model. For Branin-Hoo, Goldstein-Price, Hartman4 and
Hartman6, the range bounds are set to [0.1, 1], which al-
lows to model high activity responses.
In our setup, the parameters are estimated first using

the initial DOE, and re-estimated after each additional
measurement. The old parameters are included as poten-
tial candidates for the likelihood optimization, so the new
parameters cannot be worse (in terms of likelihood) than
the old ones. Nevertheless, it has been found that for
some criteria, the parameter re-estimation may fail due to
numerical instability in the inversion of the covariance ma-
trix. When this occurs, the model is updated based the old
covariance parameters. In particular, the reinterpolation
technique is sensitive to these problems since it uses an
interpolating kriging on smoothed data. In case of failure,
a small nugget is added to the interpolating model (in or-
der to ease the covariance matrix inversion). If the model
computation is still not possible, the run is terminated and
the results for the last feasible iteration are used.

4.3.2 Optimization of the infill criteria

At each optimization step, the infill criterion is maximized
overD in order to choose the next measurement. This task
can often become challenging, since the Expected Improve-
ment and its “noisy” variants are known to be highly mul-
timodal with some large “flat” regions where the criterion
takes values below the machine accuracy. Figure 2 shows
an example of contour lines of the AEI criterion that illus-
trate these properties. Although the criteria are relatively
inexpensive to compute (about 5 milliseconds for the EQI
based on a kriging model with 50 points on a 2.9 GHz
processor), an exhaustive search on a grid is not possible
in dimensions higher than two because this optimization
is performed in each iteration.
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0.0020
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0.6
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Figure 2: Contour lines of the AEI during a typical op-
timization run (Goldsteinprice function, 29 points (trian-
gles), noise level 20%).

Here, we chose to optimize the infill criteria using the
genoud algorithm (GENetic Optimization Using Deriva-
tives, [36]), which implements a hybrid of evolutionary
algorithms and gradient descent. This algorithm allows
the local optima to be accurately found thanks to the gra-
dient descent while still having a good exploration of the
search space due to the evolutionary algorithm. The ana-
lytical gradients of all the criteria for the ordinary kriging
model have been calculated and implemented into DiceK-

riging [29]. To account for the increase of the complexity
of the optimization with increasing search space dimen-
sion while ensuring a reasonable computational effort, the
genoud parameters have been set to the values presented
in Table 4.3.2. With that setup, the global optima of the
criteria are found in the vast majority of the cases for all
considered configurations.

4.4 Research questions

The research questions addressed in the benchmark are di-
rectly related to the effects and interactions of the exper-
imental and algorithmic factors varied in the benchmark.
With respect to the algorithmic factors, it is of practical
interest to know whether there is a specific best over all
considered test instances. If this is not the case, the inter-
actions between the factors of the problem instance and
the algorithmic factor become important in order to assist
in choosing the right NKO approach for a specific problem
instance.
Based on the algorithmic factors considered in the

benchmark, the main questions are: Is it possible to choose
an optimal

1. covariance kernel,
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Table 4: Parameterization of the genoud algorithm for infill criteria optimization..
Parameter Name in the control variable of genoud value

Population size pop.size 6× 2d

Evolutionary generations max.generations 20
Maximum evaluations within a gradient descent BFGSmaxit 6× 2d

Target tolerance of the optimization solution.tolerance 0
Maximum generations without improvement wait.generations 2
Evolutionary generations before first gradient descent BFGSburnin 0

2. size of the initial design, and

3. infill criterion

with respect to all considered

1. maximum budgets of evaluations,

2. noise levels of the test functions,

3. modalities of the test functions, and

4. decision space dimensions of the test functions

or are there specific choices depending on the level of the
latter.

5 Results

5.1 Analysis of average performance using
ANOVA

5.1.1 Procedure

We start by analyzing the results quantitatively using the
true objective value y(x∗) of the design, which is identified
as the current best by the corresponding infill criterion for
each run. In more detail, for PIy, x∗ is the design point
with the best noisy observation, for AKG, RI, PI50, EQ50,
MQ50 and RS, x∗ is the design point with the best kriging
mean, and for AEI, PI90 and EQ90, x∗ is the one with the
best kriging quantile.
In order to analyze the very large amount of data over

different configurations, we proceed in two steps. First, we
use ANOVA to analyze the effects of the factors, provide
a first comparison of the methods and remove the least
efficient ones. Then, detailed results are provided in the
form of boxplots.
We start our analysis by a screening phase, and consider

the significance of the effects of the different algorithm pa-
rameters. The full factorial structure of the benchmark
allows the effects of each parameter to be estimated in an
unbiased way, i. e., the change of performance obtained
by changing a parameter can be assessed over all combina-
tions of the remaining parameters. To do so, we postulate,
for each test function, a linear model with second order in-
teractions for the performance response, in the fashion of
[16]. Each factor (noise level, budget, initial DOE size,
covariance, LHS instance, criterion) is treated as categor-
ical, and the model is generated using deviation coding

Table 5: Goodness-of-fit statistics of the linear models.
Test R2 R2

adj

Branin 0.48 0.47
Goldstein-Price 0.44 0.43
Hartman4 0.62 0.61
Rosenbrock 0.22 0.21
Hartman6 0.66 0.65
Sphere 0.70 0.70

(see [13], chap. 5). For the LHS, only the main effect is
considered in order to integrate out its effect on the per-
formance, e. g., the inclusion of a point close to the true
optimum. It is thus is used as blocking variable; no inter-
actions with the other factors are considered. Note that
such analysis considers average performances only, and, in
particular, it does not allow us to assess the robustness
of a given setup, which is crucial in optimization. Hence,
here we aim at identifying general trends, the other issues
being treated in Section 5.2. The performance response
is chosen as the logarithm of the difference between the
function value at the best point and the actual minimum
of the function (log of optimality gap):

y = log(y(x∗)− y∗). (29)

The logarithmic transformation is used to provide approx-
imately normally distributed residuals to the linear model
of the ANOVA. The R2 and R2

adj values of each model
are reported in Table 5. The relatively low values indicate
that a large part of the variance of the performance cannot
be explained by the model, and is due to the observation
noise realizations during the optimization.
The main effects are given on Table 6. The complete

ANOVA tables are reported in Appendix B (Tables 7, 8,
9, 10, 11 and 12).
In the following, we organize our observations by the

factors tunable by the user: the size of the initial design,
the covariance kernel and the infill criterion.

5.1.2 Influence of the initial design size

The initial design size has a significant main effect (Ap-
pendix 9) on Branin, Hartman4, Rosenbrock and Sphere,
for which the large doe is slightly preferred (except for
Rosenbrock for which the fit of the ANOVA is worse).
However, we see that, on average (Table 6), there is very
little difference between the small and large initial DOE
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Table 6: Main effect of the factors for each test function. Best results among methods are in bold fonts.
Branin Goldstein-Price Hartman4 Rosenbrock Hartman6 Sphere

Constant -1.69 -0.64 -1.00 -1.89 -1.13 -1.24
budget=20 0.09 0.13 0.09 0.03 0.05 0.05
budget=40 -0.09 -0.13 -0.09 -0.03 -0.05 -0.05
noise=5 -0.61 -0.42 -0.47 -0.22 -0.35 -0.46
noise=20 0.10 0.01 0.06 0.05 0.04 0.05
noise=50 0.52 0.41 0.41 0.17 0.31 0.41
init=4 0.01 0.01 0.01 -0.01 0.00 0.02
init=10 -0.01 -0.01 -0.01 0.01 0.00 -0.02
cov=G -0.02 0.08 -0.01 0.00 -0.02 0.00
cov=M32 0.02 -0.08 0.01 0.00 0.02 0.00
method=AEI -0.10 -0.40 -0.38 -0.04 -0.14 -0.22
method=AKG -0.12 -0.29 -0.48 -0.06 -0.19 -0.24

method=EQ50 -0.07 -0.06 -0.12 -0.05 -0.11 -0.13
method=EQ90 -0.04 0.14 0.06 -0.10 -0.08 -0.05
method=MQ10 -0.08 -0.11 -0.11 -0.08 -0.14 -0.09
method=MQ50 0.15 0.42 0.54 -0.12 0.23 0.26
method=PI50 -0.05 -0.03 -0.03 -0.04 -0.09 -0.04
method=PI90 0.02 0.24 0.25 -0.10 0.00 0.08
method=PIy 0.11 -0.32 -0.11 0.27 0.10 0.07
method=RI -0.07 -0.15 -0.32 0.09 -0.11 -0.22
method=RS 0.26 0.56 0.72 0.23 0.53 0.59

size. Considering the interactions, particularly the ones
with the noise level and criterion are significant. Whereas
the effect of the noise level on on the preferred design is
different depending on the test functions, one can remark
that a smaller design size is slightly better with AKG and
AEI, and larger designs are better with MQ50, the other
criteria being indifferent. Hence, we can conclude that, for
our benchmark, the DOE size has little influence on the
optimization results, or its influence is limited to a few
particular configurations.

5.1.3 Influence of the covariance kernel

The covariance has a significant main effect (Appendix
9) only on the multimodal functions: Branin, Goldstein-

Price, Hartman4, Hartman6. Thereby, no clear trend can
be observed. Overall the values (Table 6) are small com-
pared to the ones associated with the criteria.
Interactions with noise are significant on Branin,

Goldstein-Price, Hartman4 and Rosenbrock. Interactions
with criterion are significant on all test functions, but
Branin. Hence, these interactions are more closely in-
spected in the following.

5.1.4 Influence of the infill criterion and interac-

tion with covariance

A first look at Table 6 shows that two methods seem to
provide good performances on average: AEI and AKG,
and two seem less efficient: MQ50 and PI90. MQ50 per-
forms consistently poorly (except on Rosenbrock); hence,
for this family of criteria, using a low quantile such as
MQ10 seems a lot better alternative. Similarly, it can

be noted that on almost all the configurations (except on
Rosenbrock), PI90 is less efficient than PI50. We can then
conclude that the plugin of the kriging mean outperforms
the plugin of a high kriging quantile. At this point, the
picture is not clear between PI50 and PIy.
Interactions of criteria with noise level, budget and co-

variance are significant on almost all test functions (Ap-
pendix 9), meaning that at least some criteria react differ-
ently to a change of these factors, and analyzing the main
effects does not allow to rank the methods with precision.
In order to measure the effects of interactions, we draw
the model predictors and confidence intervals of the linear
evaluation models (ANOVA) (Figure 3) for all the com-
binations of budgets, noise levels, covariances and criteria
(except MQ50 and PI90, which are already identified as
poor solutions). The effects and interactions of the ini-
tial design are averaged out for visual clarity based on the
minor effect of this factor.
First, we analyze the effect of the covariance. Overall,

we see that, the choice of the kernel is mostly negligible,
with several exceptions:

• On Branin (Figure 3 A), for most methods the Gaus-
sian covariance seems significantly better with 5%
noise.

• On Goldstein-Price (Figure 3 B), the Matern co-
variance (circles) seems consistently better than the
Gaussian one (triangles). This effect is particularly
strong for the successful criteria (AEI, AKG, PIy, RI)
and is getting weaker with 20% and 50% noise.

• On Hartman4 (Figure 3 C), the effect of the covari-
ance is important only for AKG and RI (Matern being
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Figure 3: Average performances predicted by the linear model on the six test functions. On the x-axis, the left number
represented the noise level and the right number the budget level. The vertical bars show the 95% confidence interval
on the predictors. Bars are staggered to improve readability. Increasing the budget or decreasing the noise improve
the performance of all methods, which is expected.
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slightly better) and PI50 and MQ10, where Gauss is
superior.

• On Hartman6 (Figure 3 E), the Matern covariance is
slightly better for AKG with 20% and 50% noise.

• On Sphere (Figure 3 F), the Gauss covariance is
slightly better for AKG with 20% and 50% noise.

Ranking between the methods is configuration depen-
dent, and no method clearly appears as best here. How-
ever, we can observe that:

• AKG, AEI, RI and PIy form a group of more effi-
cient methods on Goldstein-Price, especially with the
Matern covariance.

• AKG is best on Hartman4, regardless of the budget
or noise level, and on Hartman6 and Sphere for the
20% and 50% noise levels.

• EQ90 is best on Rosenbrock for the 20% and 50%
noise levels.

Inversely, some methods are significantly less efficient
on some configurations:

• EQ90 and PI50 work poorly on Goldstein-Price with
high noise and on Hartman4.

• With Gaussian covariance, RI works poorly on Rosen-

brock.

• PIy is the worst method on Branin, Rosenbrock, Hart-

man6 and Sphere, regardless of the configuration.

Interaction between method and budget is limited to
a few configurations. Indeed, the slope between budgets
20 and 40 is almost independent of the noise level and the
method, except for the worst and best methods. The effect
is particularly strong on Rosenbrock, where the slope even
becomes positive for PIy and RI, implying that a higher
budget results in a worse solution. Inversely, on Goldstein-

Price, it appears clearly that the best methods tend to
make a better use of the additional budget.

5.2 Detailed analysis of infill criteria us-
ing boxplots

In this section, we propose a detailed comparison of the
methods. Based on the previous observations, we limit
now our analysis to the following criteria: AKG, RI, AEI,
EQ50, EQ90, PI50 and MQ10. The performance measure
is the absolute difference between the function value at the
best point (y(x∗) and the actual minimum of the function
(y∗) rescaled by the function standard deviation (σy , here
always equal to one):

D =
|y(x∗)− y∗|

σy
(30)

We represent the results in the form of boxplots for each
method, test function and noise level. To limit the amount

of figures, we show the results for the high budget only,
since from Figure 3 it can be seen that the contrasts are
slightly higher. We show the results with the Matern co-
variance and the small initial DOE, which have been found
to have little influence of the results, but which provide
superior numerical stability and have a small beneficial
interaction with the appropriate methods.

On Branin (A), with 5% noise, all the criteria accu-
rately identify one of the minima, which is expected since
this function is very easy to optimize. With 20% noise, all
the median performances are very good, although some
outliers can be observed. With 50% noise, all the crite-
ria fail at identifying one of the minima with precision,
although with such a high noise the performances can be
considered as quite satisfactory. While AKG and AEI were
identified as slightly better than the other criteria by the
linear model (Table 6) on this function, no differences are
measurable by the boxplots in the high noise case. In par-
ticular, the performance of AEI improves with increasing
noise.

On Goldstein-Price (B), with 5% noise, we see that all
the median performances but MQ10 and PI50’s are very
good, but heavy tails can also be observed for EQ50 and
EQ90. Indeed the basin of the global minimum is rela-
tively small and was not found for several runs. With 20%
noise, the difference is clear between AKG, RI and AEI,
which almost always capture the global minimum, and the
other criteria, which capture it approximately 25% of the
time. With 50% noise, results show a high variability, al-
though the criteria identified as best by the linear model
(Table 6 and Figure 3 B) perform globally better than the
others (AKG and AEI). For this function, the more ex-
ploratory criteria are clearly superior, which is expected
since the function is multimodal and the optimal region is
narrow. One may notice that this effect is much stronger
than on the main effect table, as only the results for the
Matern covariance are considered.

On Hartman4 (C), again with 5% noise all the median
results are very close to the actual optimum, but only
AKG and RI do not have outliers. MQ10 and PI50 per-
form worst in terms of upper quartile. With 20% and 50%
noise, AKG, AEI and RI are globally better than the other
methods, and EQ90 and PI50 are slightly worse, which
confirms the main effect values.

On Rosenbrock (D), differences are difficult to distin-
guish, as expected from the main effect table. For all
methods, the optimum region is identified for more than
75% of the runs for all noise levels. Note that the better
performance of EQI detected on Figure 3 D) does not ap-
pear, as the results with the Gaussian covariance are not
used here.

On Hartman6 (E), only PIy appears as a poor alter-
native. The medians are relatively close to the optimum
value for all noise levels. With 50% noise, several runs
failed at providing a good solution. The global better per-
formance of AKG, indicated by the linear model, is visible
in this graph, but also AEI and RI provide satisfactory
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results.
On Sphere (F), with 5% noise only PI50 and MQ10 are

slightly worse than the other methods. With 20% noise,
EQ90, PI50 and MQ10 show larger variation. With 50%
noise, AKG and RI are slightly better than the other meth-
ods with respect to robustness as measured by their upper
quartile.

6 Discussion

The first conclusion of this benchmark analysis is the lim-
ited influence of the initial design size on the optimization
results compared to other parameters. Using smaller ini-
tial DOEs results in more optimization steps, which seems
intuitively more efficient. However, using larger initial
DOEs ensures a good initial exploration, which reduces
the risk of converging to a local optimum, and tends to
produce more accurate models. These effects seem to bal-
ance out each other regarding the optimization efficiency.
For the user, this choice is thus not a critical one, re-
gardless of the budget, noise, function modality or space
dimension.
Another parameter of limited influence is the choice of

the covariance kernel, which is surprising since the two
kernels considered here imply very different assumptions
on the shape of the objective function (C1 for Matern
3/2, C∞ for Gauss). Here it seems to be non-critical,
except for one specific function (Goldstein-Price). Signif-
icant interactions appear only with criteria, but tend to
be configuration-dependent (e.g., the better performance
of EQI and Gauss on Rosenbrock. The strongest influence
is detected with RI, as the reinterpolation step tends to
lack robustness with Gauss, particularly on the smooth
functions. In general, Matern may be preferred, as it may
provide a better numerical stability for smooth functions
and allows a better detection of narrow optimal regions.
The third parameter to be set up by the user is the infill

criterion. We found that no criterion outperforms the oth-
ers on all configurations. However, out of the 10 criteria
tested here, three can be considered as poor alternatives:
PI90, PIy andMQ50. The criterionMQ50 was proposed
essentially because it is relatively common practice in sur-
rogate modeling to sequentially sampling at the minimum
of the best predictor. Although known as a bad solution
for deterministic functions [19], the question was left open
in the noisy case. It is found that theMQ50 performances
are also poor in presence of noise so this solution is not
competitive with other criteria.
The poor performances of PI90 and PIy can be ex-

plained by looking at the EI equation 17. For PI90, by
plugin a high quantile for T , the quantity T −mn is likely
to be positive and large: we indeed replace ymin by a tar-
get that is very easy to reach, which makes the existing
points look more interesting that they actually are and
hinders exploration.
With PIy, we also use a biased estimate (min(ỹ)) of

ymin. With high noise in particular, ymin is likely to be

strongly underestimated, which results in increased explo-
ration. Forcing exploration seems beneficial on Goldstein-
Price, for which the minimum is indeed in a small valley,
but for most of the configurations it was found inefficient.
Note that similar results may be obtained with a low quan-
tile plugin, PI10 for instance. Overall the criterion PI50
(with an unbiased plugin) appears as a better alternative.
This becomes particularly obvious on Rosenbrock where
the predicted performance of PIy deteriorates with larger
budget, which can be caused by an increased probability
of observing an extreme positively biased outlier within
more iterations.

The RI and EQ90 criteria show contrasted perfor-
mances depending on the configurations. By construction,
the RI criterion is quite exploratory (in particular, it does
not allow replications), which can be beneficial for opti-
mization and eases the covariance parameter estimation
step (at least for the smoothed model), which explains the
very good performances in some cases. However, one can
observe that the RI performances decrease with higher
budget and higher noise. This can be imputed to the sub-
sequent reinterpolation step, which may lack robustness in
those cases.

The relatively disappointing performances of EQ90
(with regard to its complexity) can be explained by the
fact that it is designed to return a solution with small
error, which may favor repetitions or clustering instead of
exploration, and this benefit is not apparent in an analysis
based on the actual response values only. An illustration
of this characteristic is proposed in Appendix A.

The criteria MQ10, EQ50, AEI and AKG proved in
our context to be competitive; the differences between
them depending on the configurations, although no par-
ticular pattern regarding the problem parameters (noise,
budget, dimension or modality) could be identified by the
linear model or the boxplots. The most contrasted results
were obtained on Goldstein-Price with low and moderate
noise, in favor of the most exploratory criteria, as the op-
timal region is narrow and difficult to detect.

On average, the AEI criterion seems a good option for
our benchmark, since it is several times the best method,
and is rarely very bad. As discussed, the plugin of the krig-
ing mean, also used in AEI, is a sensible option, and the
exploration enhancement due to the penalization function
(see equation 18) seems also beneficial.

The AKG criterion provided the best performances on
several configurations, and is also a sensible choice on av-
erage. Two relatively poor performances with small noise
(on Goldstein-Price and Sphere) might indicate that it is
more efficient with large noise. Indeed, contrarily to PI50,
RI, EQ90 or AEI, AKG does not reduce to the classical
EI in absence of noise.

Overall, one important practical result of this bench-
mark is that on many configurations, seven of the different
methods provide relatively similar results. Hence, if AEI
and AKG are identified as slightly better, another choice
can be made based on the user preference, in order to
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Figure 4: Boxplots of performances (differences between the function value at best point and the actual minimum) for
all criteria, test functions and noise levels. The vertical bar shows the overall median performance.
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avoid replications (RI) or enhance uncertainty reduction
(EQ90).
For all methods, it seems that the results mainly depend

on the capability of kriging to fit the function based on
a very small amount of information (small, noisy DOE).
When it is the case (Hartman4, Hartman6, Sphere), all
the criteria lead to satisfying results, which means here,
considering the difficulty of the optimization setup, an ap-
proximate identification of the optimum region.
It should be noted that the discussion proposed here

is specific to our framework (Gaussian, independent noise
with constant known variance), and might vary in a dif-
ferent context. In particular, in the case of known het-
eroscedastic noise, it is reasonable to conjecture that cri-
teria that account for the noise amplitude (EQI, AKG)
will have better performances than the other ones. In-
versely, when little information is available for the noise,
some criteria might prove to be more robust (RI, PI50,
MQ10).

7 Conclusion

In this research, a comprehensive review of kriging-based
methods for the optimization of noisy functions is pro-
posed in a unified framework. The different methods
are compared in the case of independent, Gaussian, ho-
moscedastic noise, based on a benchmark of analytical test
functions with a large variety of setups that covers a wide
range of potential applications. Variations on factors com-
mon to all NKO procedures, such as the size of the initial
set of experiments or the choice of the covariance kernel,
are included in the analysis in order to assess their in-
fluence as well as provide a comparison between methods
independent of critical arbitrary choices. An extensive ex-
perimental design and statistical tools are used to provide
a robust and unbiased performance analysis.
First, we found that, apart from a small number of ex-

ceptions, the size of the initial DOE is not critical, which
means that the effect of having less sequential steps (with
larger initial DOE) is counterbalanced by the benefit of
a better initial exploration and surrogate model. Hence,
the effect of this factor can be neglected without intro-
ducing bias in future work. The covariance function is
also not a very important factor, which implies that, in
the noisy context, the exploration / exploitation trade-
off sought for global optimization is achieved regardless
of this choice. The numerical stability of the approaches,
however, can be often improved by avoiding the Gaussian
kernel. In our benchmark, this particularly holds for the
RI criterion. If some prior knowledge about the shape
of the response surface (smooth or rugged, uni- or multi-
modal) exists, the kernel should be chosen accordingly, as
shown on the Goldstein-Price function in our benchmark.
Out of the criteria (and variants) detailed in this paper,

we found that several are either poor alternatives (PI90,
MQ50) or lack robustness (PIy). The other criteria have
relatively similar performances, although, on average, the

augmented expected improvement (AEI) and the approx-
imate knowledge gradient (AKG) were found as best al-
ternatives. In our framework, the practical or statistical
considerations that motivated the multiplicity of the cri-
teria seem dominated by the kriging modeling error due
to the very small amount of information available. Hence,
the choice of the criterion may be based on user preference
(to avoid replications, enhance uncertainty reduction, im-
prove implementation robustness, etc.) without a critical
deterioration of the performance.

Future research may address the evaluation of the NKO
algorithms performances for heteroscedastic noise scenarii,
such as variance depending on input parameters (indepen-
dently of the response), or noise linearly correlated with
the response, which are likely to be found in real word
problems.
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8 Appendix A: sample results for

four infill criteria

The research questions addressed in the actual benchmark
are particularly interesting for a practical user. For the
research on NKO, also the effect of using specific informa-
tion in the infill criteria is of interest. This section aims
at illustrating some differences between the infill criteria
and provide some insight on the performance differences
observed in section 5. We particularly focus on the effects
of the consideration of the current accuracy of an obser-
vation (e. g., by using a Kriging quantile rather than the
Kriging mean) and the use of replications (Forrester’s ap-
proach does not perform any replications while other infill
criteria may do). The runs results shown here are some-
how typical, but there are of course many situations for
which the above comments do not apply.

We show here four runs of the AKG, AEI, EQ90 and RI
criteria on the Goldsteinprice with 50% noise, large initial
DOE and small budget. Out of the four, EQ90 (Figure 5
C) is clearly less exploratory, since almost all the added
observations form a single cluster. This cluster reduces
a lot the kriging uncertainty locally, but does not allow
global exploration or accurate convergence. Inversely, RI
((Figure 5 D)) does not allow repetitions which results
here in very good exploration, but prevents from identi-
fying the valley of the global optimum. The two other
criteria, on this example, offer the right trade-off, with a
relatively wide exploration and accurate identification of
the optimum region.
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Figure 5: Sample of optimization results obtained on the Goldsteinprice with 50% noise, large initial DOE and small
budget. Initial observations are represented with filled triangles. The contour lines represent the actual function.
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9 Appendix B: ANOVA tables of
the linear models

Table 7: ANOVA table for the Branin test function.
Source Sum Sq. d.f. F p-val
budget 89.6 1 308.79 **
noise 2312.42 2 3984.63 **
noise*budget 1.76 2 3.03 -
init 1.41 1 4.87 *
init*budget 0.23 1 0.8 -
init*noise 8.56 2 14.75 **
cov 4.99 1 17.19 **
cov*budget 0.48 1 1.65 -
cov*noise 32.82 2 56.55 **
cov*init 0.94 1 3.25 -
meth 143.31 10 49.39 **
meth*budget 11.79 10 4.06 **
meth*noise 78.19 20 13.47 **
meth*init 13.64 10 4.7 **
meth*cov 5.17 10 1.78 -
lhs 62.92 39 5.56 **
Error 3031.09 10446
Total 5799.32 10559

Significance codes: 0 ‘**’ 0.01 ‘*’ 0.05 ‘-’ 1

Table 8: ANOVA table for the Goldstein-Price test func-
tion.

Source Sum Sq. d.f. F p-val
budget 182.73 1 467.59 **
noise 1194.92 2 1528.86 **
noise*budget 7.33 2 9.38 **
init 0.41 1 1.04 -
init*budget 0.1 1 0.26 -
init*noise 15.71 2 20.1 **
cov 75.85 1 194.09 **
cov*budget 6.39 1 16.35 **
cov*noise 2.6 2 3.32 *
cov*init 7.03 1 17.98 **
meth 913.87 10 233.85 **
meth*budget 53.03 10 13.57 **
meth*noise 129.96 20 16.63 **
meth*init 19.33 10 4.95 **
meth*cov 64.51 10 16.51 **
lhs 545.58 39 35.8 **
Error 4082.16 10446
Total 7301.5 10559
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