
Speeding up Graph Edit Distance Computation
with a Bipartite Heuristic1

(Extended Abstract)

Kaspar Riesen, Stefan Fankhauser and Horst Bunke2

1 Introduction

Graph edit distance is a dissimilarity measure for arbitrarily structured and
arbitrarily labeled graphs. In contrast with other approaches, it does not suf-
fer from any restrictions and can be applied to any type of graph, including
hypergraphs [1]. Graph edit distance can be used to address various graph
classification problems with different methods, for instance, k-nearest-neighbor
classifier (k-NN), graph embedding classifier [2], or classification with graph
kernel machines [3]. The main drawback of graph edit distance is its computa-
tional complexity which is exponential in the number of nodes of the involved
graphs. Consequently, computation of graph edit distance is feasible for graphs
of rather small size only. In order to overcome this restriction, a number of fast
but suboptimal methods have been proposed in the literature (e.g. [4]).

In the present paper we aim at speeding up the computation of exact graph
edit distance. We propose to combine the standard tree search approach to
graph edit distance computation with the suboptimal procedure described in [4].
The idea is to use a fast but suboptimal bipartite graph matching algorithm as a
heuristic function that estimates the future costs. The overhead for computing
this heuristic function is small, and easily compensated by the speed-up achieved
in tree traversal. Since the heuristic function provides us with a lower bound of
the future costs, it is guaranteed to return the exact graph edit distance of two
given graphs.

2 Graph Edit Distance

Graph edit distance defines the dissimilarity of two graphs by the minimum
amount of distortion that is needed to transform one graph into another [1].
The distortions, or edit operations ei, considered in the present paper consist of
insertions (ε → v), deletions (u → ε), and substitutions (u → v) of nodes and
edges. A sequence of edit operations (e1, . . . , ek) that transform a graph g1 into
a graph g2 is commonly referred to as edit path between g1 and g2. In order to
represent the degree of modification imposed on a graph by an edit path, a cost
function is introduced measuring the strength of the change caused by each edit
operation. Consequently, the edit distance of graphs is defined by the minimum
cost edit path between two graphs. Note that the edit operations on edges can
be inferred by edit operations on their adjacent nodes, i.e. whether an edge is
substituted, deleted, or inserted, depends on the edit operations performed on
its adjacent nodes.

1This work has been supported by the Swiss National Science Foundation (200021-
113198/1).

2All authors are with the Institute of Informatics and Applied Mathematics, University of
Bern, Neubrückstrasse 10, CH-3012 Bern, Switzerland, {riesen, bunke}@iam.unibe.ch

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Bern Open Repository and Information System (BORIS)

https://core.ac.uk/display/33054885?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


A widely used method for edit distance computation is based on the A* al-
gorithm [5]. This algorithm explores the space of all possible mappings between
two graphs by means of an ordered tree. Such a search tree is constructed dy-
namically at runtime by iteratively creating successor nodes linked by edges to
the currently considered node in the search tree. In order to determine the node
which will be used for further expansion of the actual mapping in the next iter-
ation, a heuristic function is usually used. Formally, for a node p in the search
tree, g(p) represents the cost of the partial edit path accumulated so far, and
we use h(p) for denoting the estimated costs from p to a leaf node representing
a complete solution. The sum g(p) + h(p) gives us the total cost assigned to an
open node in the search tree. Obviously, the partial edit path p that minimizes
g(p) + h(p) is choosen next for further expansion. Given that the estimation of
the future costs h(p) is lower than, or equal to, the real costs, an optimal path
from the root node to a leaf node is guaranteed to be found [5].

3 Bipartite Heuristic

In the simplest scenario of an A* algorithm, the estimation of the lower bound
h(p) of the future costs for the current node p is set to zero for all p (Plain-A*).
In the other extreme h(p) would return the exact future costs in exponential time
complexity which is unreasonable, of course. To solve the problem of estimating
a lower bound h(p) for the costs from the current node p to a leaf node, one
maps the unprocessed nodes and edges of graph g1 to the unprocessed nodes
and edges of graph g2 such that the resulting costs are minimal. This mapping
should be done in a faster way than the exact computation and return a good
approximation of the true future cost. Note that the smaller the difference
between h(p) and the real future cost is, the fewer nodes will be expanded by
the A* algorithm. For our heuristic function we first define a cost matrix Cn

which contains the individual costs of all possible node assignments.

Definition 1 (Cost Matrix) Let us assume that n nodes {u1, . . . , un} of graph
g1 and m nodes {v1, . . . , vm} of graph g2 are unprocessed so far. The cost matrix
C is defined by

Cn =





c1,1 · · · c1,m c1,ε ∞
.
.
.

. . .
.
.
.

. . .
cn,1 · · · cn,m ∞ cn,ε

cε,1 ∞
. . . 0

∞ cε,m





where ci,j denotes the cost of a node substitution c(ui → vj), ci,ε the cost of a
node deletion c(ui → ε), and cε,j the costs of a node insertion c(ε → vj).

Note that for the unprocessed edges of both graphs a cost matrix for edge as-
signments Ce can be constructed analogously. On the basis of the cost matrices
Cn and Ce, Munkres’ algorithm [6] given in Alg. 1 can be executed seperately
for nodes and edges. This algorithm finds the optimal, i.e. the minimum cost,
assignment of the elements (nodes or edges) represented by the rows to the ele-
ments represented by the columns of matrix Cn or Ce in polynomial time. That
is, in the worst case the maximum number of operations needed is O((n+m)3),

2



where (n + m) is the dimensionality of the cost matrix3. Note that Munkres’
algorithm, used in its original context, is optimal for solving the assignment
problem. However, it provides us with a suboptimal solution for graph edit dis-
tance only since node edit operations are considered indiviudally and no implied
operations on the edges can be inferred.

Algorithm 1 Computation of the minimum future cost by Munkres’ algorithm
Input: A cost matrix C with dimensionality k
Output: The minimum-cost node or edge assignment

1: For each row r in C, subtract its smallest element from every element in r
2: For all zeros zi in C, mark zi with a star if there is no starred zero in its row or column
3: STEP 1:
4: for Each column containing a starred zero do
5: cover this column
6: end for
7: if k columns are covered then GOTO DONE else GOTO STEP 2 end if
8: STEP 2:
9: if C contains an uncovered zero then

10: Find an arbitrary uncovered zero Z0 and prime it
11: if There is no starred zero in the row of Z0 then
12: GOTO STEP 3
13: else
14: Cover this row, and uncover the column containing the starred zero GOTO STEP 2.
15: end if
16: else
17: Save the smallest uncovered element emin GOTO STEP 4
18: end if
19: STEP 3: Construct a series S of alternating primed and starred zeros as follows:
20: Insert Z0 into S
21: while In the column of Z0 exists a starred zero Z1 do
22: Insert Z1 into S
23: Replace Z0 with the primed zero in the row of Z1. Insert Z0 into S
24: end while
25: Unstar each starred zero in S and replace all primes with stars. Erase all other primes and

uncover every line in C GOTO STEP 1
26: STEP 4: Add emin to every element in covered rows and subtract it from every element in

uncovered columns. GOTO STEP 2
27: DONE: Assignment pairs are indicated by the positions of starred zeros in the cost-matrix.

Summing up all values of the minimum cost node and edge assignment results
in an approximation of the real future costs. Obviously, this approximation does
not consider any structure preserving constraints, whereas exact edit distance
computation by means of a tree search considers the structure of the graphs
under consideration. Hence, the distance found by Alg. 1 is lower than, or equal
to, the exact edit distance, i.e. it provides us with a lower bound of the future
costs. Consequently, using Alg. 1 in order to compute the function h(p) in an A*
implementation results in a procedure that is guaranteed to return the optimal
edit distance. In the remainder of this paper we will refer to this method as
Bipartite-A*, or BP-A* for short.

4 Experimental Results

To empirically show the speed-up of graph edit distance by means of the heuris-
tic function used in BP-A* over the standard tree search (Plain-A*), both
algorithms are applied to four different real world graph sets (Letter, Image,
Fingerprint, and Molecule) measuring the mean computation time and the

3With a brute force algorithm a O((n + m)!) complexity is required.

3



Table 1: Average running time and average number of open paths

Plain-A* BP-A* Improvements

Database Time [ms] Paths Time [ms] Paths Speed-Up Reduction

Letter 465 477.6 14 72.2 33.2 6.6
Image 0.5 8.8 0.5 3.7 - 2.4
Fingerprint 6140 2465.1 374 507.1 16.4 4.9
Molecule 3799 2195.4 2 18.0 1899.5 122.0

mean number of expanded paths during the search. Note that all databases
have been used in graph classification experiments before [2].

In Table 1 the average running time per edit distance computation and the
mean number of expanded paths are given. It turns out that the standard tree
search algorithm can be substantially sped up by means of the BP-A* heuristic.
On all datasets, except for the image graphs where BP-A* is not faster than
Plain-A*, the speed-up factors are reported in Table 1. The strong reduction
of the average number of open paths during the tree search by means of the
novel heuristic function (note the reduction factors in Table 1) explains this
speed-up plausibly.

5 Conclusions

Defining a heuristic h(p) is a major task in A* based graph matching algorithms.
A crucial point is the trade-off between the precision of the estimation of the
true future costs and its fast computation. In the present paper we propose a
novel heuristic which returns a good approximation of the future cost in polyno-
mial time complexity. With several experiments, using real world data of quite
diverse nature, we demonstrate that a significant speed-up of exact graph edit
distance computation by means of our heuristic can be achieved. Consequently,
it is potentially useful for various machine learning and pattern recognition tasks
that use graph representations.

References
[1] H. Bunke and G. Allermann. Inexact graph matching for structural pattern recognition.

Pattern Recognition Letters, 1:245–253, 1983.

[2] K. Riesen, M. Neuhaus, and H. Bunke. Graph embedding in vector spaces by means of
prototype selection. Acc. for 6th Int. Workshop on Graph-based Representation in Pattern
Recognition.

[3] M. Neuhaus. Bridging the Gap Between Graph Edit Distance and Kernel Machines. PhD
Thesis, University of Bern, Institute of Informatics and Applied Mathematics, 2006.

[4] K. Riesen, M. Neuhaus, and H. Bunke. Bipartite graph matching for computing the edit
distance of graphs. Acc. for 6th Int. Workshop on Graph-based Representation in Pattern
Recognition.

[5] P.E. Hart, N.J. Nilsson, and B. Raphael. A formal basis for the heuristic determination of
minimum cost paths. IEEE Transactions of Systems, Science, and Cybernetics , 4(2):100–
107, 1968.

[6] J. Munkres. Algorithms for the assignment and transportation problems. In Journal of
the Society for Industrial and Applied Mathematics, volume 5, pages 32–38, March 1957.

4


