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Abstract

With the advent of high through-put sequencing (HTS), the emerging science of metagenomics is transforming our
understanding of the relationships of microbial communities with their environments. While metagenomics aims to
catalogue the genes present in a sample through assessing which genes are actively expressed, metatranscriptomics can
provide a mechanistic understanding of community inter-relationships. To achieve these goals, several challenges need to
be addressed from sample preparation to sequence processing, statistical analysis and functional annotation. Here we use
an inbred non-obese diabetic (NOD) mouse model in which germ-free animals were colonized with a defined mixture of
eight commensal bacteria, to explore methods of RNA extraction and to develop a pipeline for the generation and analysis
of metatranscriptomic data. Applying the Illumina HTS platform, we sequenced 12 NOD cecal samples prepared using
multiple RNA-extraction protocols. The absence of a complete set of reference genomes necessitated a peptide-based
search strategy. Up to 16% of sequence reads could be matched to a known bacterial gene. Phylogenetic analysis of the
mapped ORFs revealed a distribution consistent with ribosomal RNA, the majority from Bacteroides or Clostridium species.
To place these HTS data within a systems context, we mapped the relative abundance of corresponding Escherichia coli
homologs onto metabolic and protein-protein interaction networks. These maps identified bacterial processes with
components that were well-represented in the datasets. In summary this study highlights the potential of exploiting the
economy of HTS platforms for metatranscriptomics.
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Introduction

Boosted by the advent of high through-put sequencing (HTS)

platforms, metagenomics has emerged as a powerful approach for

analyzing complex bacterial communities [1,2]. Typically such

studies focus on the random (shotgun) sequencing of DNA to

define the relative abundance of genes within a community [3,4].

Further inferences on community structure can be gleaned

through 16S rRNA gene surveys which provide information on

relative species abundance [5,6]. As such, functional insights are

limited to cataloguing genes within a sample, either through direct

sequence identification (shotgun sequencing) or inference through

reference genomes (16S rRNA gene surveys). Understanding the

functional relationships within bacterial communities would be

significantly enhanced by the analysis of bacterial gene/protein

expression [7]. Previous metatranscriptome studies have relied on

cDNA-RFLP and microarray approaches [8–10] and have been

largely limited to the analysis of known genes. More recently,

several groups have reported metatranscriptomic studies with

HTS platforms [11–17]. These studies report several challenges

for optimizing the yield of informative reads, HTS data analyses

and presentation of these complex data.

Choice of HTS platform has a significant impact on the yield of

informative reads. In most recent RNA HTS (RNA-Seq) studies,

mRNA are mapped onto reference genomes for a single species
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(e.g. mouse, human) [18,19]. For complex bacterial communities,

such as the rodent or human intestine, complete sets of reference

genomes are lacking. Furthermore, given the extensive sequence

diversity that can occur even between related bacterial species,

generation of a complete set of reference genomes is currently

beyond current sequencing capabilities. To increase the probabil-

ity of obtaining a significant match to previously identified

sequences, metatranscriptomic studies have relied on the 454

Titanium (Roche) platform [12,14,20] which generates longer

reads than the Illumina [21] and SOLiD (Applied Biosystems,

Carlsbad, Ca) platforms. However, the SOLiD and Illumina

platforms offer a significant improvement in read coverage over

454 for the same unit cost enhancing interest in their application

to metatranscriptomics. One solution is to use a hybrid approach

in which 454 is used first to assemble a series of reference DNA

sequences onto which Illumina- or SOLiD-generated transcript

data can be mapped [22]. A second factor affecting yields of

informative reads is RNA sample preparation. In addition to

purification of high quality RNA, it is desirable to reduce the

proportion of ribosomal RNA (rRNA) sequences with commercial

kits that remove 16S and 23S rRNA molecules providing

enrichment for the high complexity mRNA [7]. However,

questions remain about the effectiveness and potential bias of

the rRNA removal approaches.

Bioinformatics analyses of metatranscriptomics datasets are an

intensive area of research and development. Previous approaches

have focused on matching sequences to gene families as defined by

knowledgebases such as the Clusters of Orthologous Groups

(COG), Gene Ontology (GO) and SEED resources [23–25]. Such

annotation schemes provide high-level comparisons across broad

functional categories. To provide more detailed, molecular level

insights, recent studies are beginning to explore the use of

biochemical pathway analyses [3,26]. For example, the iPath tool

[27] has been used to map reads onto metabolic pathways defined

by the Kyoto Encyclopedia of Genes and Genomes (KEGG [28])

to produce an integrated view of the metabolic capabilities of an

environmental sample [3]. With the availability of high quality

protein interaction datasets, the opportunity exists to exploit these

exceptional datasets as functionally coherent scaffolds on which to

organize and interpret metatranscriptomic data. As such, these

datasets offer the possibility to extend systems-based analyses

beyond metabolism to capture additional bacterial subsystems

such as protein complexes or signaling and transport pathways.

Here we are interested in exploring the feasibility of using the

Illumina HTS platform to perform metatranscriptomics on a

model gut microbiome. Our choice of experimental system is

guided by the recent appreciation of the considerable role that

commensal flora in the human gut play in human health and

disease. For example, metagenomic surveys have already illumi-

nated potential mechanisms by which inflammatory bowel diseases

(IBD), metabolic syndrome and type 2 diabetes develop and persist

[3,29–31]. Furthermore, studies of IBD patient microbiota, reveal

loss of potentially beneficial commensal microorganisms compared

to control subjects [31–33]. At the same time, the role of intestinal

bacteria in other inflammatory diseases such as type 1 diabetes is

just beginning to be explored [34]. Motivated by the need to

extend metagenomic analyses beyond the simple interrogation of

gene catalogues, this study seeks to establish the potential of

metatranscriptomics as a platform for investigating the mechanis-

tic contributions of the gut microbiome on health and disease.

Here we applied RNA-Seq on RNA preparations obtained from

the intestinal contents of aged-matched non-obese diabetic (NOD)

mice colonized with eight commensal bacteria. By focusing on a

relatively simple community, our investigation centers on

developing and optimizing experimental and analytical pipelines

targeted specifically for metatranscriptomics.

Results and Discussion

Metatranscriptomic data from the intestines of non-
obese diabetic (NOD) mice

To assess molecular protocols and computational analyses for

Illumina-based metatranscriptomics, we sequenced RNA prepared

from the flushed cecum and colon of age-matched NOD mice

weeks prior to diabetes onset. The mice were the progeny of NOD

animals that had been re-derived by embryo transfer into a

completely germ-free environment and then colonized with an

Altered Schaedler flora (ASF) containing eight known species

[35,36]: Lactobacillus acidophilus, L. salivarius, Parabacteroides distasonis,

Mucispirillum schaedleri, three members of Clostridium cluster XIV

and a relatively uncharacterized species of Firmicutes. All but P.

diastonis (a member of the phylum Bacteroidetes) and M. schaedleri

(a member of the phylum Deferribacteres) are members of the

phylum Firmicutes. Although reference genome sequences of

strains related to the two Lactobacillus spp. are available, we note

that the two reference genomes for L. acidophilus (strains 30SC and

NCFM) display considerable genomic variation, with 2037 and

1864 putative open reading frames (ORFs), respectively. Since the

objective of many research groups is to apply metatranscriptomic

methods to complex environmental and mammalian-host-associ-

ated bacterial communities that will exhibit diverse previously

uncharacterized species, we selected the altered ASF colonized

NOD intestinal samples, as a relatively simple pilot, to examine

our ability to agnostically assign HTS reads to samples for which

no reference genome is available.

We compared two RNA preparation methods: Qiagen

RNAEasy (Qiagen, Valencia, CA), which selects for longer RNAs;

and Invitrogen mirVANA (Invitrogen, Carlsbad, CA), which also

purifies microRNAs. In addition, we examined the use of the

Invitrogen RiboMinus Bacterial kit to selectively deplete rRNA,

thereby enriching the high complexity mRNA. Twelve combina-

tions of RNA preparation conditions were used and the samples

were multiplexed and sequenced in a single lane of an Illumina

Genome Analyzer IIx flow cell. Sequence reads have been made

available for download from the National Center for Biotechno-

logical Information (NCBI) Sequence Read Archive (SRA, http://

www.ncbi.nlm.nih.gov/Traces/sra: Accession number:

SRA051354). After filtering for HTS read quality, these samples

produced 21.7 million single-end 76-nt reads (Table 1). rRNA

sequences were identified through BLAST comparisons to an in-

house database of rRNA sequences including sequences represen-

tative of all eight ASF species. Depending on sample, the use of the

Qiagen RNAEasy kit alone resulted in 60–95% rRNA, while

application of the Invitrogen RiboMinus kit to the same RNA

samples reduced rRNA to 40–70% of total RNA. In contrast, the

Invitrogen mirVANA protocol reduced rRNA to 30–40% of total

RNA reads even in the absence of an rRNA depletion step.

Phylogenetic analysis of metatranscriptomic rRNA
sequence data

Because the mice used in this study were colonized with a

defined set of bacteria, we could use the expected distribution of

bacteria in the sample set to evaluate the utility of using relatively

short rRNA reads to classify microorganisms. ASF comprises eight

bacterial species representing three phyla (Firmicutes, Deferribac-

teres, and Bacteroidetes) and five families (Firmicutes: Lachnospir-

aceae, Ruminococcaceae, and Lactobacillaceae; Deferribacteres: Deferri-

bacteraceae; and Bacteroidetes: Porphyromonadaceae). Although the

Mouse Intestinal Metatranscriptomics

PLoS ONE | www.plosone.org 2 April 2012 | Volume 7 | Issue 4 | e36009



T
a

b
le

1
.

Se
q

u
e

n
ce

yi
e

ld
s

fo
r

1
2

d
if

fe
re

n
t

sa
m

p
le

p
re

p
ar

at
io

n
s.

N
u

m
b

e
r

o
f

R
e

a
d

s
M

a
tc

h
in

g
:

%
o

f
N

o
n

-A
d

a
p

to
r

R
e

a
d

s
M

a
tc

h
in

g
:

S
a

m
p

le
ID

M
o

u
se

A
n

a
to

m
y

M
e

th
o

d
T

o
ta

l
R

e
a

d
s

A
d

a
p

to
r

rR
N

A
M

o
u

se
tr

a
n

sc
ri

p
ts

M
o

u
se

g
e

n
o

m
e

B
a

ct
e

ri
a

l
tr

a
n

sc
ri

p
ts

(n
t)

B
a

ct
e

ri
a

l
tr

a
n

sc
ri

p
ts

(p
e

p
ti

d
e

)
M

o
u

se
tr

a
n

sc
ri

p
ts

/
g

e
n

o
m

e
rR

N
A

B
a

ct
e

ri
a

l
tr

a
n

sc
ri

p
ts

N
O

D
5

0
1

C
e

cQ
N

5
0

1
C

e
cu

m
Q

ia
g

e
n

1
,3

4
3

,0
9

5
3

6
1

,8
6

8
9

0
7

,7
6

7
7

4
2

1
,2

5
2

5
,5

0
5

1
7

,7
0

1
0

.2
9

2
.5

2
.0

N
O

D
5

0
1

C
e

cQ
Y

5
0

1
C

e
cu

m
Q

ia
g

e
n

*
2

,0
7

1
,1

6
5

8
9

3
,3

1
7

4
5

8
,1

6
8

1
4

,5
6

2
2

2
,3

2
2

3
1

,7
2

2
3

0
5

,9
9

1
3

.1
3

8
.9

2
8

.2

N
O

D
5

0
1

C
o

lQ
N

5
0

1
C

o
lo

n
Q

ia
g

e
n

1
,3

0
5

,9
6

0
2

5
,2

0
3

1
,2

4
0

,5
7

7
7

6
1

1
,6

7
9

3
,3

5
1

1
1

,5
9

8
0

.2
9

6
.9

1
.1

N
O

D
5

0
2

C
e

cQ
N

5
0

2
C

e
cu

m
Q

ia
g

e
n

2
,0

6
5

,7
3

3
4

5
8

,4
0

1
1

,4
7

7
,9

9
1

1
,5

5
4

3
,2

1
1

1
1

,0
7

4
3

2
,2

2
3

0
.3

9
2

.0
2

.4

N
O

D
5

0
2

C
e

cQ
Y

5
0

2
C

e
cu

m
Q

ia
g

e
n

*
1

,4
0

9
,4

9
4

6
8

8
,9

0
3

5
1

4
,6

9
3

5
,1

5
6

5
,8

6
0

1
1

,6
4

9
6

1
,7

6
6

1
.5

7
1

.4
9

.7

N
O

D
5

0
2

C
o

lQ
N

5
0

2
C

o
lo

n
Q

ia
g

e
n

1
,0

9
0

,3
7

3
6

3
,8

2
3

8
8

8
,8

7
9

1
6

,5
3

0
4

0
,6

9
8

5
,6

0
3

2
3

,3
7

6
5

.6
8

6
.6

2
.5

N
O

D
5

0
3

C
e

cM
N

5
0

3
C

e
cu

m
In

vi
tr

o
g

e
n

2
,0

7
3

,1
3

6
3

6
0

,7
1

1
7

2
6

,3
9

2
7

0
,7

4
4

1
9

1
,7

6
0

3
6

,8
5

5
2

8
8

,1
1

1
1

5
.3

4
2

.4
1

8
.1

N
O

D
5

0
3

C
e

cQ
N

5
0

3
C

e
cu

m
Q

ia
g

e
n

1
,5

6
6

,2
4

3
2

4
4

,1
9

2
1

,2
2

7
,8

6
4

8
9

0
2

,4
4

9
8

,0
6

5
2

7
,4

8
3

0
.3

9
2

.9
2

.4

N
O

D
5

0
4

C
e

cM
N

5
0

4
C

e
cu

m
In

vi
tr

o
g

e
n

2
,5

6
2

,5
7

1
3

7
1

,2
9

9
6

5
3

,1
1

0
2

4
0

,1
3

3
4

1
3

,6
9

9
4

7
,1

6
7

1
8

8
,3

5
8

2
9

.8
2

9
.8

9
.5

N
O

D
5

0
4

C
e

cQ
N

5
0

4
C

e
cu

m
Q

ia
g

e
n

1
,9

1
8

,2
6

8
3

2
4

,5
1

3
1

,4
5

3
,9

0
5

2
,2

8
6

6
,8

8
9

1
2

,4
7

1
2

9
,3

9
3

0
.6

9
1

.2
2

.2

N
O

D
5

0
4

C
e

cQ
Y

5
0

4
C

e
cu

m
Q

ia
g

e
n

*
2

,6
2

6
,7

3
5

1
,0

1
2

,1
9

9
1

,1
5

2
,3

7
9

1
6

,3
7

2
1

4
,5

9
7

2
7

,7
5

6
1

3
0

,5
8

1
1

.9
7

1
.4

9
.3

N
O

D
5

0
4

C
o

lQ
N

5
0

4
C

o
lo

n
Q

ia
g

e
n

1
,6

4
7

,2
5

5
2

4
1

,1
6

9
8

3
6

,4
2

7
3

7
,3

2
9

1
2

9
,2

1
7

1
9

,4
3

5
1

1
7

,8
1

9
1

1
.8

5
9

.5
9

.1

1
2

ce
ca

l
an

d
co

lo
n

d
e

ri
ve

d
sa

m
p

le
s

w
e

re
p

re
p

ar
e

d
fr

o
m

fo
u

r
d

if
fe

re
n

t
N

O
D

m
ic

e
u

si
n

g
a

va
ri

e
ty

o
f

R
N

A
e

xt
ra

ct
io

n
p

ro
to

co
ls

.S
am

p
le

s
w

e
re

m
u

lt
ip

le
xe

d
o

n
a

si
n

g
le

Ill
u

m
in

a
se

q
u

e
n

ci
n

g
ru

n
to

g
e

n
e

ra
te

2
1

.7
m

ill
io

n
se

q
u

e
n

ce
s.

O
f

th
e

se
,

1
.5

m
ill

io
n

(,
1

0
%

)
co

u
ld

b
e

m
ap

p
e

d
to

a
kn

o
w

n
b

ac
te

ri
al

tr
an

sc
ri

p
t

e
it

h
e

r
vi

a
B

W
A

ag
ai

n
st

b
ac

te
ri

al
g

e
n

o
m

e
s

(n
t)

o
r

vi
a

B
LA

ST
X

ag
ai

n
st

th
e

p
ro

te
in

n
o

n
-r

e
d

u
n

d
an

t
d

at
ab

as
e

(p
e

p
ti

d
e

).
U

se
o

f
th

e
In

vi
tr

o
g

e
n

e
xt

ra
ct

io
n

ki
t

re
su

lt
e

d
in

th
e

m
o

st
co

n
si

st
e

n
t

g
e

n
e

ra
ti

o
n

o
f

a
h

ig
h

p
ro

p
o

rt
io

n
o

f
b

ac
te

ri
al

tr
an

sc
ri

p
ts

.
‘*

’in
d

ic
at

e
s

th
e

ad
d

it
io

n
al

u
se

o
f

th
e

R
ib

o
M

in
u

s
ki

t.
d

o
i:1

0
.1

3
7

1
/j

o
u

rn
al

.p
o

n
e

.0
0

3
6

0
0

9
.t

0
0

1

Mouse Intestinal Metatranscriptomics

PLoS ONE | www.plosone.org 3 April 2012 | Volume 7 | Issue 4 | e36009



three expected phyla were most often represented in the sequence

dataset (.99% of reads), other phyla not representative of ASF

species were detected, including Actinobacteria and Spirochaetes

(Table 2). These aberrant classifications could have arisen from 1)

small levels of other microorganisms in the germ-free colonies; 2)

contamination of gut content samples following collection; or 3)

misclassification. In both the cecum and colon, members of the

phylum Bacteroidetes were the most abundant microorganisms,

accounting for .85% of the SSU and LSU rRNA reads.

However, at the family-level the expected and observed results

differed drastically. Although all five ASF families were observed

(Table 2), other related families were abundant in the dataset. For

example, 40.2% of sequences were classified as Bacteroidaceae,

rather than Porphyromonadaceae (19.6%). Similarly, 16.8% of

sequences were classified as Clostridiaceae, rather than the related

families Lachnospiraceae (17.5%) or Ruminococcaceae (0.12%). We

interpret these results as evidence that short reads (50–76 nt)

obtained by shotgun sequencing are inherently noisy markers of

phylogeny; since shotgun reads may be generated from any sub-

sequence of an rRNA transcript, reads originating from moder-

ately to highly conserved gene segments may not contain sufficient

numbers of unique characters to distinguish among low-level

phylogenetic groups.

The RiboMinus protocol uses biotinylated antisense oligonu-

cleotides with broad-specificities for bacterial small- and large-

subunit rRNAs to selectively remove bacterial rRNA from

samples. Because sequence heterogeneity and the kinetics of

oligonucleotide hybridization with highly structured rRNA

molecules potentially could result in biased rRNA depletion, we

compared the phylogenetic distributions of mRNA and rRNA

transcripts in depleted and non-depleted samples. Although

ostensibly universal oligonucleotides were used to hybrid-capture

and remove rRNA molecules, the frequencies with which bacteria

were identified differed greatly following rRNA-depletion. For

example, the phyla Bacteroidetes and Firmicutes were over- and

under-represented following rRNA depletion of samples from

animals 502 and 504 (Table 2). Thus, bacterial community

composition within a sample cannot be reliably ascertained if prior

removal of rRNA transcripts is performed.

Mapping metatranscriptomic reads to transcripts
requires a peptide-centric approach

Next we attempted to map the 5 million putative mRNA reads

to known sequences. First we applied the sequence mapping tool,

BWA [37], to filter and assign mouse-derived sequences

(transcripts and genome). In total, 1,240,692 (,24%) of the

putative mRNA reads mapped to a mouse sequence. For most

samples, we identified approximately twice as many mouse

sequences through comparisons to the mouse genome compared

Table 2. Family-level distribution of small-subunit RNA sequences1.

Animal: 501 502 503 504

Anatomy2: Cec Cec Col Cec Cec Col Cec Cec Cec Cec Cec Col

RNA Prep3: Qia Qia Qia Qia Qia Qia Inv Qia Inv Qia Qia Qia

RiboMinus4: N Y N N Y N N N N N Y N

Taxon5 Total Reads ASF Species6

Actinobacteria

Microbacteriaceae 5620 0.4 0.1 0.2 0.3 0.2 0.2 0.4 0.2 0.3 0.2 0.1 0.1

Bacteroidetes

Bacteroidaceae 994924 35.8 37.1 44.2 34.0 45.6 45.5 29.8 41.7 31.3 38.0 48.8 58.0

Porphyromonadaceae 485948 1 24.3 25.6 22.7 22.9 26.0 21.6 12.4 17.1 10.6 19.4 23.5 13.4

Flavobacteriaceae 16570 0.7 0.8 0.9 0.7 0.8 0.9 0.6 0.6 0.6 0.5 0.6 0.5

Deferribacteres

Deferribacteraceae 1454 1 0.1 0.1 0.0 0.0 0.2 0.0 0.2 0.0 0.2 0.0 0.1 0.1

Firmicutes

Clostridiaceae 415630 21.1 20.6 8.7 19.2 14.1 9.1 23.3 14.3 31.8 19.6 12.5 10.3

Lachnospiraceae 434676 3 13.2 11.0 17.9 17.6 9.8 17.2 27.5 21.4 19.4 18.1 11.1 13.8

Ruminococcaceae 3055 1 0.1 0.1 0.1 0.2 0.0 0.1 0.2 0.1 0.1 0.1 0.1 0.1

Veillonellaceae 43627 2.6 2.0 0.8 2.7 1.3 0.9 2.1 1.5 2.3 1.8 1.4 0.9

Lactobacillaceae 37903 2 0.7 0.9 2.9 1.1 0.7 3.0 1.2 1.8 1.2 1.2 1.0 1.8

Spirochaetes

Spirochaetaceae 2764 0.1 0.1 0.0 0.1 0.2 0.0 0.5 0.1 0.4 0.0 0.1 0.1

Other reads: 31312 2544 753 4173 4881 632 2510 2793 4158 2242 3660 795 2171

Total reads: 2473483 251317 45213 245426 413910 50317 171243 153079 341282 129166 352836 105089 214605

1Values are percents of total reads for sample.
2Anatomic location of sample. Cec = Cecum contents. Col = Colon contents.
3RNA extraction kit. Qia = Qiagen RNEasy. Inv = Invitrogen.
4RiboMinus removal of bacterial rRNA from sample.
5Phylum and family classifications of rRNA reads.
6Number of Altered Schaedler Flora species belonging to bacterial family.
doi:10.1371/journal.pone.0036009.t002
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to mouse transcripts, suggesting the majority of mouse derived

sequences represent unspliced introns, 39 or 59 UTR’s or other

non-coding RNAs. In the absence of reference genomes for any of

the eight ASF species, we then applied BWA to map reads to 1078

microbial genomes. Only 92,594 of the 5 million putative bacterial

mRNA reads could be mapped by this approach. The less

stringent sequence similarity search tool, megaBLAST, mapped

only an additional 128,059 non-mouse reads. Since these tools rely

on the identification of nucleotide matches, the low frequency of

mapped reads presumably reflects the high level of sequence

diversity that can occur even between different strains of the same

species [38–40]. Such diversity may result from differences in

codon usage that do not impact peptide sequences.

Consequently, we performed BLASTX comparisons (translated

nucleotide v. protein) of putative mRNA reads against the protein

non-redundant database (protein-nr). This strategy was more

successful, with 1,234,400 of non-mouse-derived reads (32%)

mapping to 237,570 unique bacterial transcripts. Most matches

(.70–80% depending on sample) were high quality ($85%

sequence similarity over .65% of the read length - Figure S1).

Notably, minimal overlap (,0.1%) occurred between reads

matching bacterial transcripts through BLASTX comparisons

and reads mapping to the mouse genome through BWA. Two

samples (NOD501CecQN and NOD502CecQN) displayed con-

siderably fewer high-quality mapped transcripts compared to the

other 10 samples (48% and 62% matches .85% sequence

similarity over .65% of sequence length respectively). These

observations suggest that analysis of read matches may represent a

useful quality control step. Of the other 10 samples, one prepared

with the RiboMinus kit (NOD501CecQY) provided the highest

proportion of mapped bacterial reads (28.2%), while the two

Invitrogen mirVANA preparations also resulted in a relatively

high proportion of reads mapped to a bacterial transcript (9.7 and

18.1% respectively - see Table 1).

Due to relatively short read lengths, a concern in these analyses

is that matches to known transcripts are not meaningful. For a 25-

residue peptide, allowing for only a single mismatch results in a bit

score ,50, while matches even with 60% identity result in E-

values in excess of 10. To ensure that the bacterial transcripts

identified through the BLASTX comparisons were consistent with

the types of transcripts expected from the ASF bacteria, we

examined the phylogenetic distribution of the assignable tran-

scripts (Figure 1). To control for differences in transcript length

[41], we converted raw read abundance to Reads Per Kilobase of

transcript per Million reads mapped (RPKM - See Methods).

Consistent with the known ASF bacterial species, the majority

of mapped transcripts derived from Bacteroidetes or Clostridia

(Figure 1). Interestingly, many of the Bacteroidetes transcripts derive

from the Porphyromonadaceae which includes the ASF species

Parabacteroides distasonis. Furthermore, the phylogenetic distribution

of the reads differed significantly from that of the entire set of

bacterial proteins in protein-nr, which is dominated by Proteobacteria.

Comparisons to the taxonomic distribution of the samples using

the previously filtered small- and large-subunit rRNA reads

revealed that, while the same three dominant taxa were observed

in ORF and rRNA datasets, their relative representation in the

datasets differed. For example, the representation of ‘Bacteroi-

detes/Others’ within the transcript dataset ranged from ,5–28%

in the mRNA dataset compared with ,50–73% in the rRNA

dataset. Although it is possible that this may reflect differences in

relative activities between these taxa, these differences may also be

a consequence of the relative paucity of mRNA sequence data that

has previously been generated for this taxon. Alternatively as

noted above, this discrepancy may also be driven at least in part by

biases in the rRNA-depletion protocol. Finally, as noted above,

inaccuracies in rRNA classifications may skew the comparisons of

mRNA- and rRNA-based taxonomic distributions. For example,

the mapped transcript dataset also contained sequences of

actinobacterial or proteobacterial origin even though these were

not represented within the ASF bacteria resident in the NOD

mouse intestinal samples. We speculate that these transcripts may

represent orthologs of Bacteroidetes or Clostridium genes for which no

sequence representation exists in protein-nr. The dominance of

expected taxa in the mapped transcript datasets suggests that they

reflect the underlying distribution of mRNAs in the samples.

Functional analysis of metatranscriptome datasets
RNA-Seq data derived from organisms with a reference genome

can yield detailed gene-by-gene analysis of expression patterns. In

contrast, for metatranscriptomic datasets, BLASTX-based map-

ping requires alternative methods that avoid the need to identify

the precise source of a read. Instead, focus must shift to analyzing

differences in expression levels of functional classes of genes [42].

Previous metatranscriptomics analyses have relied on broad

functional categories such as those defined by the Clusters of

Orthologous Groups (COG) of proteins database and the Gene

Ontology (GO) resource [25,43]. However, the generality of the

functional vocabulary in these resources provide limited functional

insights so that recent efforts have focused on specific functional

classes such as gene families [26,44]. Mapping reads to transcripts

and, transcripts to gene families, reduces the need for gene-centric

based approaches that require accurate transcript mappings to

reference genomes. Reasoning that a gene family-based mapping

approach may result in functional insights, we have analyzed the

mouse metatranscriptome dataset in terms of gene families as well

as three types of functional entities: COG functional categories;

metabolic networks; and a protein-protein interaction network

derived for E. coli.

Gene families. We applied the Markov clustering algorithm

(MCL) to the 237,570 unique transcripts identified from our 12

samples to define 12,784 gene families on the basis of sequence

similarity scores (see Methods). Summing the RPKM values for

each transcript in a class was used to derive the relative abundance

of each gene family. The size of the 500 gene families with the

highest number of transcripts assigned did not correlate well with

their relative expression (Figure S2). This suggests that gene family

expression patterns did not merely reflect the abundance of

transcripts identified in the initial mapping effort. Note here we

use the term ‘expression’ to represent transcript abundance; as

such it is important to consider that in addition to rates of

transcription, ‘expression’ may also be driven through overall

abundance of specific species. Table 3 shows the top 20 most

represented gene families for the NOD503CecMN sample. The

greatest correspondence in rankings of relative expression between

samples occurred between samples that produced the largest

number of reads that were reliably mapped to a known bacterial

transcript (NOD504CecMN; NOD504ColQN, NOD501CecQY

and NOD504CecQY). Eight of the top 20 most abundant families

are annotated as hypothetical, of which three (GF8057, GF5525

and GF3794) are ranked in the top three across the majority of

samples. GF8057, consisted of two members, both from

Parabacteroides spp. (gi|154490247 and gi|218259679) while

GF5525 contained five members, all from the order Clostridiales

(gi|153812042, gi|154482409, gi|154482396, gi|154482831 and

gi|169343363). Given their predicted relative expression, these

hypothetical proteins merit further functional investigation.

Among gene families that could be ascribed a putative function,

eight were implicated in regulatory roles (e.g. GF1 - TonB-

Mouse Intestinal Metatranscriptomics
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Figure 1. Phylogenetic distribution of transcripts mapped to known bacterial genes. (A) Distribution of mRNA transcripts. (B) Distribution
of rRNA transcripts. Results are shown for the 12 independent samples described in Table 1. Consistent with 16S rRNA studies, the vast majority of
identified mRNA transcripts derive from Parabacteroides, Bacteroides or Clostridial species.
doi:10.1371/journal.pone.0036009.g001
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dependent receptor; GF3 - RagB/SusD domain protein; GF2 and

GF9 - two component response regulators). The ability to map

RNA-Seq data onto a defined set of gene families thus provides a

surrogate for elucidating functional components from

metatranscriptome data.

COG functional categories. To examine the distribution of

reads assigned to general functional categories, we assigned

transcripts to COG categories on the basis of best BLAST

matches to the COG database. RPKM values were then used to

calculate the frequency of representation for each COG category.

It should be noted in these analyses that as for the phylogenetic

analyses, we observed consistency across samples (Figure 2). For

many categories, the distribution for each sample reflected the

underlying distribution of COG category assignment for all

proteins in the COG database highlighting the limitations of

using such a broad-category approach. Nonetheless, in addition to

the ‘Uncharacterized’ category, three categories show significant

(Z-score.2) differences between the samples and the COG

library: [M] - Cell wall/membrane/envelope biogenesis; [C]

Energy production and conversion; and [G] Carbohydrate

transport and metabolism. The intestinal microbial

transcriptome enrichment of these categories may therefore

reflect exploitation of carbohydrates for the production of

biomass. On the other hand, in these analyses it is important to

note that observed differences represent relative (as opposed to

absolute) enrichments that could simply reflect decreases in other

categories (e.g. ‘Uncharacterized’).

Metabolic networks. We next examined functional

representation within our datasets by representation of metabolic

pathways. Previous analyses have focused on KEGG

representations of metabolic pathways [3,7] which may not

capture alternative pathways that utilize different suites of

enzymes to achieve similar functions [45]. Here we adopted a

network-based approach to identify neighbourhoods of

functionally related genes (Figure 3A). From these analyses we

identified several pathways that were well represented across

datasets. These pathways included starch and sucrose metabolism,

amino acid biosynthesis, glycerolipid metabolism, peptidoglycan

biosynthesis as well as components of purine metabolism. These

latter components are largely associated with the production of

RNA and DNA from purine precursors (data not shown).

Reassuringly, pathways specific to eukaryotes such as N-glycan

biosynthetic pathways [46], were poorly represented across our

datasets. As for the COG analyses, we found a high degree of

correlation in the expression of enzymes that were inferred across

samples. Perhaps surprisingly, high correlations were observed

between cecum and colon-derived samples despite the presumably

different environment to which the microbes in these sites were

exposed (Figure 3B).

To demonstrate how a network-based approach may transcend

traditional KEGG defined pathways, we constructed a subnetwork

of enzymes for the top 100 expressed enzymes (in terms of RPKM)

represented in the NOD503CecMN dataset (Figure 3C). Within

this network we identified a link between enzymes in the valine,

leucine and isoleucine biosynthetic pathway, which appear to feed

acetyl-CoA, produced from the synthesis of alpha-isopropylmalate

by isopropylmalate synthase (EC:2.3.3.13), into part of the TCA

cycle. In a second example, components of glycosphingolipid,

sphingolipid, starch and sucrose metabolism are linked to

glycolysis and the pentose phosphate pathway, suggestive of the

breakdown of compounds associated with the former to feed

glycolysis and the production of ribose. In a final example,

components of nucleotide metabolism are linked to alanine,

aspartate and glutamate metabolism through the production of

adenylosuccinate by adenylosuccinate synthase (EC:6.3.4.4).

Together these pathways are indicative of the biochemical routes

adopted by the microbiome driving the production of biomass.

Adopting a network approach facilitates the identification of

nodes that mediate important roles within the network. Between-

ness centrality is a metric that assesses the importance of the node

to the network through determining the proportion of shortest

path lengths that pass through that node [47]. Focusing on nodes

of high betweenness centrality, we observe differences between

samples (Figure 4). For example, although both the NOD502-

CecQN and NOD503CecMN samples show similar levels of

expression of beta-galactosidase (EC:3.2.1.23), the former has

higher levels of aldehyde reductase (EC:1.1.1.21) and aspartate

transaminase (EC:2.6.1.1). On the other hand, the NOD503-

CecMN sample has higher levels of 59-nucleotidase (EC:3.1.3.5);

glucosamine–fructose-6-phosphate aminotransferase (EC:2.6.1.16)

and protein-Np-phosphohistidine—sugar phosphotransferase

(EC:2.7.1.69). Such differences may indicate subtle changes in

the reliance of these key enzymes for directing flux within the

network.

Consistent with previous metagenomic analyses, these studies

have highlighted the importance of metabolic activities involved in

the production of biomass. More importantly, the use of the

network for mapping metatranscriptomic datasets shows how

groups of functionally related enzymes, differentially expressed

across samples, can be readily identified.

E. coli protein-protein interaction networks. Compendia

of physical and functional interactions are now available for

bacteria that can be exploited as scaffolds onto which RNA-Seq

data may be mapped [48–53]. Although the focus of these datasets

on E. coli will undoubtedly preclude the identification of systems

specific to particular taxa (e.g. Bacteroides and/or Clostridiales),

many processes such as cell wall biogenesis, transcription and

translation are well conserved throughout bacteria. We may

therefore expect these analyses to yield insights into the activity of

basic core processes. First, we identified E. coli homologs of each

transcript on the basis of InParanoid-derived relationships [54].

The relative abundance of each E. coli gene was then generated

from the sum of RPKM values of the transcripts that map to each

gene. Correlation across samples varied (Spearman correlation

coefficients 0.45–0.90) but was greatest between samples with the

most mapped reads (Figure 5A). Within a single sample, E. coli

gene abundance ranged from 1 to 12,936 reads, a dynamic range

of four orders of magnitude with the most highly expressed for

eight samples being FepA (an outer membrane receptor associated

with the ferric enterobactin transport system). As noted above, the

focus on E. coli suggests that the relative expression of each gene

may correlate with its relative level of conservation. This might

imply that our mapping simply reflects underlying conservation

biases and indeed we note some correlation between expression

and conservation (Figure 5A). However, mapping these data onto

a high quality protein-protein interaction template readily

identifies components of several diverse bacterial processes with

expression profiles that do not correlate with conservation

(Figure 5B–D). For example, we identify both components that

are poorly expressed but well conserved (e.g. murC, murF and

murG involved in cell wall biogenesis) as well as components that

are well expressed but poorly conserved (e.g. fepA, fecI and fecR

involved in iron transport). Furthermore, for a selected group of

transporters, although many are well conserved, we note that only

those components associated with spermidine transport (potA,

potB, potC and potD) are also well expressed, suggesting a

biologically meaningful role for this transport function within our

samples. Finally, it is important to highlight a recent
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metatranscriptomic study that showed expressed genes to be

significantly more evolutionarily conserved than non-expressed

genes [55], demonstrating the biological relevance of the

relationship between conservation and expression.

Summary and Future Perspectives
Here we have shown that in the absence of reference genomes,

RNA-Seq technology may be applied to environmental samples.

Despite the low statistical significance associated with sequence

matches, the phylogenetic assignments of the mapped transcripts

were skewed towards those expected of ASF-colonized mice,

suggesting that this approach is biologically meaningful. By placing

transcripts into functional classes, functional insight can be gained

either on the basis of associated annotations of e.g. representative

gene families, or through more sophisticated systems-based

approaches that exploit network relationships. In this study, we

note several areas that would benefit from recent technological

developments as well as the development of new algorithms. First,

we were able to map only a limited number of reads to known

bacterial mRNA transcripts. The development of paired-end reads

allied to increases in read length associated with the Illumina HTS

platform should enhance homolog detection. In addition, given

sufficient depth of sequencing coverage, it may be possible to

combine reads into larger ‘contigs’ that would increase the

information content of the reads. However, currently available

short-read assembler algorithms [56,57] have not been optimised

for assembling metatranscriptomic data and our initial attempts

applying the Velvet short read assembler [57] resulted in few

Figure 2. Distribution of COG functional annotations. (A) Distribution of COG functional annotations of reads mapping to known bacterial
transcripts for the 12 samples analysed in this study. Also shown is the distribution of COG assignments for all proteins in the COG database
(background). Asterisk’s indicate COG categories with significant (Z-score.2) differences in relative frequency between samples and the background
(Z-score is indicated). (B) Pearson correlation coefficients of frequency of reads assigned to each COG category across the 12 samples.
doi:10.1371/journal.pone.0036009.g002
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Figure 3. Metatranscriptome data mapped in the context of a global metabolic network. (A) Network map highlighting metabolic
enzyme expression for reads obtained from the NOD503CecMN sample. Size of node indicates relative expression. Colour of node indicates
functional category of enzyme as defined by KEGG superclasses (see key for details). Several example pathways are indicated. (B) Spearman rank
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contigs longer than individual reads (data not shown). A significant

challenge in the field is the expected shallow coverage of

transcripts found in samples, such as mammalian commensal

communities, containing hundreds or thousands of bacterial

species, and the need to avoid the generation of chimeric contigs.

An interesting question thus arises as to what is the depth of

sequencing required to inform on a specific community. Factors to

consider include diversity of species associated with the community

as well as the size of their genomes. On the other hand, while it is

clear as sequencing costs continue to fall, that high sequencing

depths will become readily attainable and further development of

analytical pipelines such as those presented here will be critical to

avoid major bottlenecks in evaluation of these datasets.

At present, there is no combination of metagenomic analyses

that can accurately and comprehensively define the composition

and function of a complex bacterial community. This limitation

reflects a nascent field characterised by a paucity of annotated

bacterial genomes, the inability to culture most environmental

species, error from PCR primer bias and high throughput

sequencing and reliance on models for mapping sequence reads.

For example, surveys of 16S rRNA gene sequences between

samples may be functionally informative if the abundances of

bacterial groups differ significantly. However, closely related

bacterial strains that differ in their gene expression between sets

of environments or disease states would not be detected by this

approach. While current computational tools for metatranscrip-

tomics analysis cannot yet assign genes to unique species, we show

that this approach has the potential to reveal the functional

architecture of all genes expressed by a defined community.

Moving to the future, we envisage that a complete characterization

of the organization and interrelationships of microbial communi-

ties will require the integration of several complementary datasets

including: metagenomics, metatranscriptomics, 16S rRNA gene

surveys as well as proteomics and metabolomics. On the other

correlation coefficients of relative enzyme expression across the 12 samples. In general there is a high degree of consistency in enzyme expression
across samples. (C) Top 100 expressed enzymes in the NOD503CecMN sample. For three subnetworks, links are apparent that extend beyond the
boundaries of KEGG defined pathways.
doi:10.1371/journal.pone.0036009.g003

Figure 4. Samples display subtle differences in expression of enzymes of high betweenness centrality. For each enzyme in the network,
betweenness centrality was calculated and mapped to node colour. Between the two samples we identify differences in the expression of nodes of
high betweenness, suggesting an altered reliance on pathway flux within the network.
doi:10.1371/journal.pone.0036009.g004
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hand, these studies will require considerable investment in

resources; consequently pilot studies such as the one presented

here are essential if we are to address issues of feasibility before

committing to large scale investments.

Materials and Methods

Housing and handling of mice
The mice used in the RNA sequencing study were born from

NOD dams that were the progeny of mating pairs born in a

completely germ-free environment following axenic (sterile)

embryo transfer into germ-free pseudo-pregnant females. The

germ-free status of mice in the facility is maintained by housing in

flexible-film isolators and monitored by qPCR analysis of fecal

DNA preparations using pan-specific bacterial 16S primers, and

culture of cecal contents under anaerobic (blood agar) and aerobic

(Luria broth) culture conditions. In addition DNA staining of cecal

contents with Sytox green is used to confirm the bacterial absence.

The absence of parasites, bacteria and virus contamination was

independently confirmed quarterly by shipment of sentinel mice

for analysis at a commercial facility.

Once GF status was confirmed as described, GF NOD mice

were colonized by co-housing with gnotobiotic mice colonized

with defined cultured bacterial species (Altered Schaedler’s flora;

ASF - [35]) which were prepared in the laboratory from cloned

bacteria using sterile technique. The ASF consists of Lactobacillus

acidophilus (ASF 360), Lactobacillus murinus (ASF 361), Bacteroides

distasonis, (ASF 519), Mucispirillum schaedleri (ASF 457), Eubacterium

plexicaudatum (ASF 492), a Fusiform-shaped bacterium (ASF 356)

and two Clostridium species (ASF 500, ASF 502). These ASF-

colonized gnotobiotic mice were then bred in isolators to ensure

no additional species were introduced. The presence of the ASF

species was confirmed by species-specific bacterial qPCR [58].

Preparation of samples and sequencing
Four gnotobiotic NOD mice colonized with ASF were sacrificed

at 12 weeks of age. The intestinal tract was immediately removed

and splayed open through a longitudinal incision. Luminal

contents from the small intestine (SI), cecum, and colon were

collected individually, by scraping biomass from intestinal wall

with a sterile scalpel. Specimens were placed in separate

Figure 5. Metatranscriptome data mapped in the context of a global E. coli protein interaction network. (A) Spearman correlation
coefficients of abundance of reads mapping to E. coli homologs across samples. (B)–(D) Comparison between conservation, as defined by number of
bacterial genomes in which a putative ortholog has been identified and relative expression of E. coli homologs for three selected subsystems derived
from the transcriptome data for a single sample (NOD503CecMN). Subsystems are defined from a previously generated high quality protein-protein
interaction network [53]. Colours of nodes indicate genes involved in common functional modules. Size of nodes indicate either number of genomes
or relative expression in terms of RPKM (largest = .900 genomes/transcripts). (B) Proteins involved in cell division and cell wall biogenesis. (C)
Proteins involved in iron transport and tryptophan metabolism. (D) Proteins involved in select transport pathways - note of the ones shown, despite
many being highly conserved, only components involved in spermidine transport (PotA-D) are abundant within our sample.
doi:10.1371/journal.pone.0036009.g005
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microcentrifuge tubes, frozen at 280C, and shipped to the

laboratory of Dr. Frank on dry ice. Upon thawing, approximately

30 mg luminal biomass was suspended in two volumes (mass/vol)

of phosphate buffered saline (pH7.4), producing a 100 ml slurry of

biomass. Two RNA extraction protocols were compared: 1) Cell

lysis in RNAzol B Reagent (IsoTex Diagnostics, Inc., Friends-

wood, TX) followed by RNA purification using the RNeasy kit

(Qiagen Inc., Valencia, CA [59]); and 2) Cell lysis in mirVanaTM

lysis/binding buffer (Invitrogen, Inc. Carlsbad, CA) followed by

RNA purification using the mirVanaTM kit (using the total RNA

procedure). In both procedures, 100 ml of sample slurry was added

to 1 ml of lysis buffer and ca. 250 mg of 0.1 mm zirconium beads

(Biospec Inc. Bartlesville, OK). Specimens were disrupted by bead-

beating for 2 min in a Mini-Beadbeater-8 (Biospec Products Inc,

Bartlesville, OK) followed by purification following the manufac-

turers’ protocols. Furthermore, 3 mg aliquots of three total RNA

samples (from the Qiagen-based protocol) were depleted of

bacterial rRNA molecules by application of the RiboMinusTM

Transcriptome Isolation Kit and RiboMinusTM Concentration

Module (Invitrogen, Inc. Carlsbad, CA). Aliquots of total RNA

were separated by 1% agarose/TBE gel electrophoresis and

visualized by ethidium bromide staining. RNA prepared from

cecum and colon was dominated by distinct rRNA bands, whereas

samples prepared from SI appeared degraded. Consequently, SI

samples were not subjected to sequencing. A total of 12 RNA

samples were submitted for next-generation sequencing (Table 1).

Sequencing was performed with the Illumina Genome Analyzer

IIx (GaIIx) platform at the Center for Advanced Genomics

(TCAG - Hospital for Sick Children). After deconvolution of the

barcodes used for multiplexing, 21,680,028 76 bp reads were

generated on a single flow cell. Reads are available for download

from the National Center for Biotechnology Information (NCBI)

Sequence Read Archive (SRA, http://www.ncbi.nlm.nih.gov/

Traces/sra: Accession number: SRA051354). Poor quality bases

were removed by iterating a 5 nt window across the 59 and 39 ends

of each sequence and removing nucleotides in windows with a

mean quality score ,20; iteration was stopped when the mean

quality score was .20. Adaptor sequences were removed using

Cross_match (http://www.phrap.org) to search a database of

Illumina adaptor sequences. Following trimming and adaptor

removal, reads with lengths less than 50 nt were discarded. Due to

the poor performance obtained from applying the Ribosomal

Database Project (RDP) classifier [60] to relatively short reads,

putative rRNA transcripts were identified by BLAST sequence

similarity searches (bit score .50) against an in-house database of

rRNA sequences constructed from the All-species Living Tree

Project SSU database [61], supplemented with ASF SSU

sequences [35] and 5S and LSU sequences [62] representative

of intestinal microbes. Blast hits with bit scores .50 were removed

from mRNA datasets. In all, 5,096,278 reads of putative mRNA

transcript origin were identified and subjected to further analyses.

Sequence processing
To identify potential host contaminants, putative mRNA

transcripts were mapped to: 1) a database of mouse derived

transcripts (Ensemble release V.59 – http://www.ensembl.org); 2)

the mouse genome; and 3) a database of 1078 bacterial genomes

downloaded from the NCBI (June, 2010), using the software tool

BWA [37]. Subsequent searches were performed using BLASTX

[63] against the set of bacterial proteins extracted from the protein

non-redundant database. To account for expression bias due to

transcript length, each sample transcript expression was normal-

ized to provide values of Reads Per Kilobase of transcript per

Million reads mapped (RPKM - [41]) using the formula:

R~109C
�

NL

where C = number of reads that could be mapped in that sample

to the specific bacterial transcript, L = the length of the transcript

and N = total number of reads that could be mapped to bacterial

transcripts in that sample.

Assigning functional classes
To generate gene family assignments for each transcript, we

performed an all-vs-all BLAST search of the 236,769 unique

transcripts identified from our 12 samples (E-value,1025). The

Markov clustering algorithm (MCL - [64]) was then applied using

an inflation parameter of 2.6 to place each transcript into one of

13,278 gene families. For each sample, the relative expression of

each gene family was derived from the sum of RPKM values for

each transcript associated with that gene family. COG category

[65] assignments were performed through BLAST-based similarity

searches to identify the closest matching sequence in the COG

database (E-value,1023). Enzyme classification (EC) assignments

were assigned by performing a BLASTP (E-value,e210) search of

the 246,538 transcripts against a database of 127,478 enzyme

proteins annotated by SwissProt Version 57.0 [66]. A slightly more

stringent E-value is used here to reduce the number of false

positives that arise when sequence similarity is used for enzyme

classification purposes [67]. Metabolic networks were constructed

as previously described [68]: enzymes (EC numbers) are

represented as nodes and substrates connecting two enzymes are

represented as edges in the network. Enzyme-substrate relation-

ships were inferred from KEGG [28]. E. coli homolog mapping

was performed through BLAST-based similarity searches to

identify the closest matching sequence in the set of E. coli K12

transcripts (E-value,1023). The relative abundance of each COG

category, EC number and E. coli homolog was derived from the

sum of RPKM values for each transcript that maps to the specific

category, number or homolog in question. The relative conserva-

tion of E. coli genes was generated through the systematic

identification of putative orthologs of each E. coli gene in the set

of 1078 bacterial genomes using the tool InParanoid [69].

Network metrics were computed using the BGL library in MatLab

(http://www.mathworks.com/matlab).

Supporting Information

Figure S1 Distribution of sequence matches from
BLASTX searches against a set of bacterial transcripts.
For each sample, we show the frequency of reads that have a

match to a known bacterial transcript at a specific threshold of %

sequence identity and % of read length.

(EPS)

Figure S2 RPKM values of the top 500 largest gene
families. The graphs indicate the RPKM values associated with

each gene family as a function of the number of members

associated with that family. For each sample we observe only weak

correlation between the size of the family and its relative

expression within the datasets.

(EPS)
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