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ABSTRACT
Low-powered and resource-constrained devices are forming a greater

part of our smart networks. For this reason, they have recently been

the target of various cyber-attacks. However, these devices often

cannot implement traditional intrusion detection systems (IDS), or

they can not produce or store the audit trails needed for inspection.

Therefore, it is often necessary to adapt existing IDS systems and

malware detection approaches to cope with these constraints.

We explore the application of unsupervised learning techniques,

specifically clustering, to develop a novel IDS for networks com-

posed of low-powered devices. We describe our solution, called

Clust-IT (Clustering of IoT), to manage heterogeneous data col-

lected from cooperative and distributed networks of connected de-

vices and searching these data for indicators of compromise while

remaining protocol agnostic. We outline a novel application of OP-

TICS to various available IoT datasets, composed of both packet

and flow captures, to demonstrate the capabilities of the proposed

techniques and evaluate their feasibility in developing an IoT IDS.
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1 INTRODUCTION
In recent years we have observed an increased prevalence of Inter-

net of Things (IoT) devices being used to assist in our day-to-day

activities and tasks. Great technological strides have been made

since the early, simple devices and this can be seen by the num-

ber of homes adopting the technology. A study [25] of 83M IoT

devices, across 16M homes in North America, shows that ~70% of

homes have at least one IoT device. However, even a single un-

sophisticated device can be utilised as an attack vector for, e.g.,

privilege escalation and create problems within a network. Even

more, cooperatively, a vast number of devices can perform coordi-

nated tasks including those of a malicious nature such as distributed

denial of service attacks (DDoS). A notable example of which being

the IoT malware Mirai [6] launching a devastating attack on the
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"Krebs on Security" website, exceeding 600Gbps [24]. According

to a Kaspersky Lab IoT report [26], the first half of 2018 saw IoT

devices attacked by over 120,000 unique malware samples – three

times as many as observed in the entirety of 2017. This alarming

increase in attacks has shown a similar trend through to 2019 [27],

and highlights the need for adequate protection against malware

specific to IoT devices.

Current literature in the field proposes several approaches to

tackling this problem, from host-based detection [9] through to

network-based detection [21], using various techniques: in par-

ticular, a growing trend to defend against IoT threats is the use

of supervised machine learning (ML) [3]. Many existing solutions

have shown to have great accuracy, performance and the ability to

understand and reason about threats in a way that humans may

never be able to [42]. One of the most common classes of ML cur-

rently being explored in the literature is that of Artificial Neural

Networks (ANN). Whilst these algorithms are highly effective [1],

they have some drawbacks. In particular, they require labelled data,

they often do not produce explainable models and are largely black-
box, and suffer from issues in construction complexity. For instance,

an issue often arises when we need to supply labelled data and

training models. The range of possible manufacturers, protocols,

and behaviours that a single IoT device may exhibit makes it dif-

ficult for an ANN to model a smart home network fully. Often a

solution utilised is to identify the IoT devices in the network by

type, to then train individual ANNs per type.

Another issue that arises is that IoT devices are often resource-

constrained to allow for a small form factor in applying the con-

necting element to a standard device, such as a fridge or television.

These resource constraints force developers to often only program

for very limited and specific capabilities: this presents a natural

method for device identification as well as malicious activity detec-

tion. These varying behaviours could bemodelled as having varying

densities in some n-dimensional space, which some existing cluster-

ing algorithms and techniques could address. So far, many of the

proposed solutions to identifying the IoT device rely on clustering

the network behaviours of the devices in a benign setting and using

the resultant clusters as types to train on. Although clustering has

been used in the security context for a number of purposes [17]

[37] [7] [44], with varying results, research tackling the area of IoT

are few and far between [40] [18].

With this work, we want to explore the applicability of clustering

to the IoT field. In particular, we aim to make the case for a greater

exploration of unsupervised learning in IoT IDS development and

more specifically density-based clustering. To this end, we explore

the feasibility of density-based clustering in anomaly detection by

putting forward a candidate algorithm, namely Ordering Points To
Identify the Clustering Structure (OPTICS) [5], along with a suite

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Royal Holloway - Pure

https://core.ac.uk/display/328914264?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.1145/3407023.3409201
https://doi.org/10.1145/3407023.3409201
https://doi.org/10.1145/3407023.3409201


ARES 2020, August 25–28, 2020, Virtual Event, Ireland Robert P. Markiewicz and Daniele Sgandurra

of supporting methods. With benignness modelled, and devices

being different enough from each other in behaviour, the question

arises whether these clusters could uncover enough information for

anomaly detection without the need for further supervised learning

steps. Additionally, whether clustering in itself can provide ade-

quate detection for smart homes. This work will show the potential

for models to be developed that allow for greater interpretability,

and handle feature extraction and selection for such models that

allow for protocol agnosticism which, in the field of IoT, would

allow for greater coverage of protection.

Structure of the paper. In Sect. 2 we will cover the related work in

the field, while in Sect. 3 we will outline the inner workings of the

existing clustering algorithms underlying our proposed system. In

Sect. 4, we will propose Clust-IT, a novel application of OPTICS-OF

to various IoT datasets. Section 5, will present the results of our

tests, while Sect. 6 will discuss the main findings. Finally, Sect. 7

will conclude the paper.

2 RELATEDWORK
Intrusion detection, and specifically anomaly detection, has been an

actively explored area of research for some years with a great num-

ber of techniques and systems proposed. However, fewer works are

exploring the application of these detection techniques in IoT set-

tings. Recent work fromMirsky et al. [32] proposes and implements

a plug-and-play system based on an ensemble of autoencoders. An

autoencoder is a type of unsupervised artificial neural network

where, by keeping the number of layers and visible neurons to a

minimum, the authors can achieve accuracy scores that are com-

parable to other state-of-the-art models, with the benefit of being

able to learn in an online setting. However, utilising techniques

stemming from neural networks have the pitfall of lacking any

form of explainability or even interpretability, with the system’s

output simply being a function evaluating the error (e.g., Root Mean

Square Error, RMSE) of the reconstruction error given an input.

With this work, we hope to further explore algorithms which could

provide greater scope for interpretability. Additionally, the data set

provided for training uses only a handful of IoT devices with little

diversity in class, and as such we hope to analyse datasets which

can fully explore the range of heterogeneity available in current

IoT devices.

Nguyen et al. [33] also propose a system utilising artificial neural

networks with the use of Gated Recurrent Units (GRU) [13] in con-

junction with a system comprising of multiple federated models to

be aggregated. GRUs are based on the principles and construction of

Long Short Term Memory (LSTM) [16] networks but require fewer

parameters and lacks an output gate. While this allows for fast and

efficient processing, they are outperformed by LSTMs in a vari-

ety scenarios such as learning languages and machine translation

[43] [11]. Although allowing for the sharing of models by utilising

a network-connected and federated approach, this increases the

complexity in the necessary setup of a system.

Midi et. al. [31] propose a system based on knowledge-driven

detection. By combining an external expert-system [28] with locally

collected observations, the system can provide a level of protec-

tion and decision-making that an everyday user could not provide

themselves. While performing very efficiently (if run on a separate

IoT board), the proposed IDS suffers from the need for extensive

expert knowledge. This process can be labour-intensive and, while

knowledge database may be updated given constant connection to

a server, there may be periods in the execution where new attacks

are observed but the system may lack the adequate knowledge of

such behaviours. In this paper, we endeavour to provide a candidate

solution that requires minimal knowledge of the network setup and

can learn in an unsupervised manner.

Within the field research of IoT IDS and security, many papers

explore the impact, patterns of, and solutions to a variety of at-

tacks, such as routing attacks [38] [2] [30], DDoS [22] [45] [19],

spoofing and replay attacks [14] [15], and specific cases and proof-

of-concept implementations of botnet attacks and campaigns [8]

[41] [4]. Whilst many of these solutions focus on building a detec-

tion mechanism for a single class of attack, our proposed system

aims to be attack-agnostic, detecting any shift from the normal be-

haviour expected. Furthermore, because our system focuses on the

specific behaviours of devices of the network, our system provides

a solution which may identify the early stages of a botnet campaign,

infection and propagation, whereas many works focus on attacks

launched by the botnet.

3 UNSUPERVISED LEARNING AND
CLUSTERING

To describe and motivate our work, we begin by establishing some

key ideas on which our system is built. We start by describing

clustering and unsupervised learning before defining OPTICS and

LOF, our candidate algorithms used in Clust-IT, to better understand

their applicability within a smart home or general IoT context.

Where the general definition for supervised learning aimed to

generate 𝑔 : 𝑋 → 𝑌 , where 𝑋 and 𝑌 are the input and output

spaces resulting training pairs {(𝑥1, 𝑦1), (𝑥2, 𝑦2), . . . , (𝑥n, 𝑦n)}, un-
supervised clustering takes as input as set of input Observations

𝑋 with no corresponding label set. In other words, unsupervised

learning tasks deal with unlabelled data, i.e., features given without

their corresponding outputs from the system. This definition can

also be extended to describe problems which aim to infer struc-

tures, features and dependencies within a data set. There is a great

range of algorithms to perform such tasks with distinct properties

and results. Examples include dimensionality reductions such as

Principle Component Analysis (PCA) [34] [35], a common use of

which is to reduce a datasets dimensional space for visualisation

purposes, and clustering.

3.1 Clustering
Clustering is the ML task that groups observations, or elements,

in a dataset according to their similarities; an element in cluster 𝐴

is more similar to the rest of its elements than those in cluster 𝐵.

There is a great range of methods for defining similarity and cluster

membership with just as large a variety of metrics to calculate those

similarities. A simple clustering algorithm, though widely used, is

K-Means Clustering [29].

The number of centroids, k, is specified by the user before run-

time and represents the number of final clusters produced. Whilst

this algorithm has successful uses, it does have several shortcom-

ings. First of all, the necessity for an initial value for k can be a
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problem in a task where the number of clusters in a set is unknown

and is the aim of the task. There are variants, such as X-Means

Clustering [36], which aim to solve the issue of defining an initial

k, but an issue remains: forced cluster membership. The K-Means

(as well as X-Means) algorithm insists that all observations belong

to a cluster. However, this may not be necessary or helpful in every

situation. This could present similar issues to those discussed earlier

in supervised learning and classification tasks. If we consider IoT

environments, where the output space is unknown, and theoreti-

cally of any size, a restricted output space may not be the desired

solution, especially in the presence of new IoT malware variants, or

even updated benign software updates and devices. This presents

even more problems when an algorithm is exposed to datasets with

noise or anomalous points. The K-means algorithms centroid and

membership decision rely on the total sum of member points, and

so the presence of erroneous or anomalous points may drastically

alter the shape and membership of the clusters. Clustering algo-

rithms, which allow for the presence of noise, and function without

the need for an initial cluster number should be explored further

for the security context.

3.2 OPTICS
A candidate solution to address shortcomings of DBSCAN and

similar density-based clustering algorithms is OPTICS (Ordering

Points To Identify the Clustering Structure). OPTICS requires two

parameters to be set before running, namely 𝜀 which describes the

maximum distance or radius to be considered, and𝑀𝑖𝑛𝑃𝑡𝑠 , which

describes the minimum number of points necessary to form a clus-

ter. Using these values, OPTICS then proceeds to calculate two

more values for each point in order to form a cluster ordering: core-
distance and reachability-distance. These parameters allow OPTICS

to consider points from more densely packed structures in its deci-

sion process. This enables OPTICS to produce and consider clusters

of varying density while retaining the ability to have nested clus-

ters. The 𝑐𝑜𝑟𝑒-𝑑𝑖𝑠𝑡𝜀,𝑀𝑖𝑛𝑃𝑡𝑠 is defined as the smallest distance to the

𝑀𝑖𝑛𝑃𝑡𝑠-𝑡ℎ to achieve a neighbourhood of𝑀𝑖𝑛𝑃𝑡𝑠 when less than

the given 𝜀, otherwise it is set to undefined. A point 𝑝 is said to be a

core point if at least𝑀𝑖𝑛𝑃𝑡𝑠 are found within its 𝜀-neighbourhood

𝑁𝜀 (𝑝). The 𝑟𝑒𝑎𝑐ℎ𝑎𝑏𝑖𝑙𝑖𝑡𝑦-𝑑𝑖𝑠𝑡𝜀,𝑀𝑖𝑛𝑃𝑡𝑠 (𝑜, 𝑝) of a point 𝑞 from point

𝑝 is set as either the distance between 𝑜 and 𝑝 or the 𝑐𝑜𝑟𝑒-𝑑𝑖𝑠𝑡 of 𝑝 ,

whichever is larger, but only if 𝑝 is a core point.

Unlike traditional clustering algorithms, OPTICS produces a

cluster ordering as opposed to cluster labels in the traditional sense,

however, a clustering can be obtained through techniques similar

to those used in hierarchical clusterings that produce dendograms

of the similarities of observations. The cluster ordering is produced

with the steps described in Alg. 1.

The resulting output is the list of points ordered by the respective

reachabilities from the previous point with observations belong-

ing to the same cluster being close to each other. As the produced

list also contains the reachability distances, a graph showing the

inter-point relationship can be visualised using a reachability graph

as shown in Fig. 1. This allows for interpretation from the user in

deciding the point at which to separate clusters but also to gain

insight into the dataset which is, after all, what we are aiming

for. When compared to other density-based clustering techniques,

Algorithm 1: OPTICS Algorithm for Cluster Ordering

1 OPTICS (𝐷, 𝜀,𝑀𝑖𝑛𝑃𝑡𝑠,𝑄);
Input :Dataset D,neighbourhood distance 𝜀,𝑀𝑖𝑛𝑃𝑡𝑠 ,

Queue 𝑄

Output :Cluster Ordering, Reachability Distances

2 Select random point 𝑝 and set reachability to UNDEFINED;

3 while 𝑄 is not empty do
4 Identify 𝜀-neighbours of 𝑝;

5 Write 𝑝 to ordering output;

6 Update 𝑄 with the identified neighbours of 𝑝;

7 Update reachability distances of all points in 𝑄 and rank

according to distance;

8 Select nearest point in 𝑄 and assign as new 𝑝;

9 end
10 return Cluster Ordering and Reachability Distances;

OPTICS also offers other advantages. As mentioned previously, it

offers the possibility to produce clusters of varying densities. When

considering the IoT landscape, where devices have wide-ranging

capabilities, this is a crucial feature. Also, in comparison to DB-

SCAN, it is much less sensitive to parameter adjustments. DBSCAN

is known to be very sensitive to its input parameter, whereas OP-

TICS is much less so. Not only can an infinite value be given for

𝜀 (this could consider the whole dataset for neighbourhood mem-

berships), but when changing 𝑀𝑖𝑛𝑃𝑡𝑠 , the resultant reachability

graph can still produce interpretable results with similar results

to those of differing𝑀𝑖𝑛𝑃𝑡𝑠 values. These features are key in the

design and effectiveness of the proposed IDS solution outlined in

further sections.

Figure 1: Example OPTICS Output

3.3 Local Outlier Factor
Local Outlier Factor (LOF) [10] is an algorithm that was proposed

by the authors of OPTICS. It provides a score for the deviation of the
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density of a point for its k-nearest neighbours. By utilising concepts

outlined in OPTICS, namely reachability-distance, it assesses the
neighbourhood density of a point and those of its neighbours to de-

termine if it is an outlier. The benefits of such a scheme, and its use

of comparisons to nearest neighbours, is that it allows for anoma-
lousness to be location specific and dependant on local densities

and not be measured by a global density.

The reachability distance used in LOF differs slightly from that

used in OPTICS. It is defined as being either the k-distance of B, the
distance to the k-th point from B, or the direct distance from A to B
– whichever is greater. Formally we can say:

reachability-distance𝑘 (𝐴, 𝐵) = max{k-distance(𝐵), 𝑑 (𝐴, 𝐵)}

This definition of the reachability density is used to calculate the

local reachability density (lrd), which is the inverse of the average

distance at which A can be reached from its neighbours. These

values for all k-neighbours of point A are then compared:

LOF𝑘 (𝐴) :=
∑
𝐵∈𝑁𝑘 (𝐴) lrd(𝐵)

|𝑁𝑘 (𝐴) |
/lrd(𝐴)

which is the average local reachability density of the neighbours

of A divided by the local reachability of A. A resulting value A
> 1 indicates a lower density for A than its neighbours (outlier),

whereas a valueA < 1 indicates a higher density than its neighbours

(inlier). Values of A ~ 1 indicate a similar density to its neighbours.

In the context of this work, we will discuss later how the LOF value

produced is used in tandem with the output of OPTICS to identify

outliers; the former providing a faster, albeit more localised view

into the context of points.

4 CLUST-IT
Many previous works have highlighted behavioural patterns as a

key feature of IoT devices, and use this as an operational step in their

solution for device identification. Many solutions use clustering

for this step, but this is where the use of supervised learning often

stops. We will outline the operational steps of our novel system,

Clust-IT, making greater use of unsupervised learning than existing

methods. We begin by outlining a set of requirements we aim to

satisfy with Clust-IT as well as describing an assumed threat model

we intend to work with. We finish the section by describing the

architecture of our proposed system and its operational steps.

4.1 System Requirements and Threat Model
In this section we describe the requirements of the system, from a

practical point of view and from a security point of view.

We design Clust-IT to address some key functionality require-

ments:

• Interpretable. A key issue of current supervised ML solu-

tions is the difficulty in producing and interpretable model.

Clust-IT addresses this by building into the system itself a

degree of interpretability and explainability. Unsupervised

learning, and more specifically clustering, aims to create

subgroups in datasets. These groups can provide a platform

for further manual analysis and even be used as inputs for

more fine-grained clustering. Having a contextual view of

portions of data is key in tackling issues of malicious activity

and anomaly detection.

• Adaptable. Current supervised learning solutions often strug-
gle in the presence of new attack paradigms and new fami-

lies of malware. In a typical scenario, the used ML model is

trained with both benign and malicious samples. However,

this will show a degradation in performance as the definition

of what it means for something to be malicious changes –

a problem known as concept drift. Clust-IT addresses this

issue by focussing on the key step of modelling benign be-

haviours, and including model retraining as a key step in

maintaining information of the current state of the system

and seen attacks.

• Deployable. Clust-IT aims to keep the necessary skill level

to a minimum from a users perspective, and not rely on man-

ufacturers to cooperate in usage of protocols or standards.

• Passive. To address both computational and complexity is-

sues, Clust-IT works with data which will be passively cap-

tured form the home network, to remove the performance

overhead and any issues of software interoperability.

• Heterogeneous. Clust-IT would aim to manage IoT het-

erogeneity issues by looking at the devices from a higher-

level view, that is, using higher-level protocols relying on IP,

namely TCP and UDP.

These solution and system requirements motivate our work and

design choices. We hope that, by touching on these concepts, we

may build a solution that is both scientifically sound as well as

applicable to a wide range of scenarios, as is often the case in IoT

networks.

Concerning Clust-IT’s threat model, we focus on the threats

that are due to IoT malware executing on, and interacting with the

network. As we intend to build our model on the idea of benignness

we take any action acting outside of this scope to be malicious. This

could be activity originating from the device itself or the device

being the target. With this approach, we can consider attacks at

various stages in their operation from infection and propagation

to carrying out the intended malicious action, as well as user mis-

configurations which may lead to unintended consequences. These

details may lead to further vulnerability and must be treated as

anomalous.

We assume that malware traffic will often be opaque, that is to
say, in some way made unreadable to the user or a monitoring

solution through obfuscation, packing or encryption. We, therefore,

alter our monitoring and collection strategy to account for such

cases. Note that we do not employ deep packet inspection or general

packet analysis, and we only deal with packet header statistics.

4.2 System Design
We assume Clust-IT to be running on a smart home network with

a variety of devices in range of device types such as entertainment,

safety, kitchen and others. We deploy Clust-IT on a single point of

entry in a typical smart home environment, i.e. the router where

we mirror all traffic to our system. This allows Clust-IT to passively

capture and detect all activities without affecting the performance

either computationally or in communication speeds of the devices.

The architecture and the application scenario is depicted in Fig. 2.
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Figure 2: Clust-IT Architecture

The model itself considers that IoT adoption in homes will become

more prevalent, with more heterogeneous devices being connected.

Please note that, although in this work we primarily focus on the

algorithmic efficacy of deploying clustering algorithms for detection

purposes in this deployment scenario, we design Clust-IT with a

series of high-level operational steps as tomake it applicable beyond

this potential scenario.

Clust-IT’s detection system begins with a phase of collection.
That is to say, the system would monitor and store the traffic to

be processed. Although in our threat model we assume benign

activity during this process, the stored activities present a ground

truth for expected behaviour, and as such still allow for us to detect

anomalies within our system. Additionally, through our use of

the noise-tolerant OPTICS, we would expect behaviours that vary

wildly from the usual defined device range to be discovered in our

initial cluster generation.

Using the initial monitor period data, we prepare our data for

use and construct our clusters utilising the aforementioned OPTICS

cluster generation algorithm. The expected cluster output would

aim to encapsulate most devices’ limited activity within coherent

clusters with little noise. We then assign the resultant cluster labels

to each data point encapsulated. During normal operation of the

proposed system, the computed clusters will be compared with

previous runs to determine wildly varying shifts in behaviours

shown by the devices. Furthermore, activities which fall outside of

known labelled clusters, or labelled as noise, will be regarded as

anomalous and as such malicious.

To allow for stream detection capabilities we employ a combi-

nation of k-nearest neighbours (KNN) and LOF. Once clusters are

generated and labels have been propagated, we have a baseline

for expected behaviours. A new incoming packet, once processed

as done with packets clustered, will be assigned a label according

to KNN. To add a level of confidence, and to avoid excessive false

positives and negatives, we utilise LOF to determine how similar

the point is with respect to its neighbours and their classes. We set a

threshold for LOF, with points that fall as outliers being detected as

anomalies. While with work we preliminary evaluate this method

on the whole dataset, we may further expand on this by restricting

the cluster membership detection by only considering previous

instances of its behaviour or instances of a certain class of devices

such as entertainment or lighting.

To maintain the cluster novelty, and to adjust for changes in de-

vice usage, or other interferences in normal usage, such as protocol

or software updates, we recompute the clusters after a given elapsed

time period. To be consistent with current IoT networks, the re-

computation happens on a daily basis, although shorter (e.g., every

few hours) or longer periods (e.g., every week) might be required

depending on the network activity and updates in the configuration.

When a re-computation happens, packets that have been deemed

malicious or anomalous may be removed or labelled as such and be

added to the datasets to allow for cluster labels to span attacks, or

to address the issue of a newly added device to the network whose

new behaviour was deemed anomalous. This re-computation step

also allows for attacks that may have previously been detected as

benign to be detected in the context of the behaviour of the whole

network. The operational behaviour of Clust-IT is summarised in

Alg. 2.

Algorithm 2: Operation of Clust-IT

Input : Logs L, LOF threshold T, new activity a, previous
clusters C

Output : Detection decision and updated clusters

1 Compute clusters for L with OPTICS;

2 Take mode of true labels of cluster members and apply to

whole cluster;

3 while Clust-IT is in stream detection do
4 for each new activity a do
5 Store in 𝐿;

6 Take 𝑘-nearest neighbours;

7 Take mode of their cluster labels from 𝐶;

8 Perform LOF including k-nearest neighbours;

9 if LOF(𝑎) < 𝑇 then
10 Label as noise;

11 Raise alarm;

12 end
13 else if LOF(𝑎) >= 𝑇 and mode = malicious then
14 Label as malicious and raise alarm;

15 end
16 else
17 Store 𝑎 in 𝐿;

18 end
19 end
20 if End of Detection Period then
21 Recompute Clusters with 𝐿;

22 end
23 end
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Figure 3: PCA Data Scatter with Ground Truth Labels of Dataset [23] and [32]

Figure 4: Quantile Violin Plots of 2 IoT devices: A NEST Pro-
tect Smoke Alarm and a Withings Smart Scale

5 EVALUATION
To evaluate the efficacy of clustering for detection in an IoT or

smart home setting, we test our candidate algorithms and solutions

on numerous available IoT datasets; malicious and benign. We

evaluate each candidate algorithm on every collected dataset, as

well as comparing against the current state of the art solutions that

have used the given dataset. By evaluating against all datasets we

hope to determine the transferability of the models to differing

network setups. Recent work such as [25] has studied the extent to

which devices are sued in the home as well as what specific types of

devices are used. With Clust-IT, we use a variety of datasets which

have their view of a smart home, as a testbed for our configuration.

Among the types of devices used across the used datasets include

smart televisions, Amazon Alexas, smart switches and a wide range

of others.

5.1 Datasets
Several datasets [39] [23] [32] are used to evaluate the efficacy

and performance of our proposed approach. Across the datasets,

a set of common features is used, albeit in potentially an altered

state. These features are: (i) Time, (ii) Size, (iii), Ethernet Source

and Destination, (iv) IP Source and Destination, (v) IP Protocol, (vi)

Port Source and Destination.These features are obtainable from

packet headers and are protocol agnostic outside of IP protocols

and satisfy our requirements outlined in Sect. 4.2.

We will first refer to the dataset collected from 30 IoT devices

spanning a period of 20 days by researchers at the University of

New South Wales Sydney [39]. We use this dataset as a model in an

attempt to better illustrate Clust-IT expected behaviours in benign

IoT settings, and to answer our first research question: do IoT de-

vices, with their limitations in resource and therefore in behaviour,

display certain patterns in data transmission for adequate identi-

fication when under the analysis of clustering? The data includes

traces from a network consisting of 28 different IoT devices run

under the assumption of no malicious activity present. Figure 4,

depicting violin plots of the distribution of packet sizes sent for 2

different devices per day, presents a consistent behaviour for each

monitored day. We, therefore, test the hypothesis that such a uni-

form behavioural pattern emerging from devices can be used to

form coherent clusters which can then be used for intrusion and

anomaly detection.

Utilising these same features, we use the dataset [23], and after

reducing with PCA we display along with a ground truth in Fig. 3,

showing the beginnings of logical cluster structures. Although,

PCA could be said to be performing much of the anomaly detection

here we show that in a differing dataset from [32] that less clear

structures are present. Finally, to compare against current state of
the art solutions we use datasets as used in [32] and [23] which

both contain both malicious and benign observations and, in the

case of [23] (BOT-IoT) a unified dataset with a variety of attacks.
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Kitsune: Mirai Kitsune: Fuzzing Kitsune: OS Scan BOT-IoT

Clust-IT

DR: 0.936

FPR: 0.053

DR: 0.803

FPR: 0.234

DR: 0.958

FPR: 0.025

DR: 0.912

FPR: 0.039

K-Means

DR: 0.899

FPR: 0.114

DR: 0.812

FPR: 0.180

DR: 0.959

FPR: 0.023

DR: 0.791

FPR: 0.117

Birch

DR: 0.840

FPR: 0.002

DR: 0.801

FPR: 0.238

DR: 0.960

FPR: 0.041

DR: 0.769

FPR: 0.194

Kitsune [32]

DR: 0.997

FPR: 0.001

DR: 0.995

FPR: 0.001

DR: 0.010

FPR: 0.001

Table 1: Clust-IT and Candidate Algorithm Detection Performance for Malicious Datasets [32] and [23]

The datasets presented in [32] also provides a range of attacks, but

as separated instances and datasets.

5.2 Experiment Setup
To evaluate Clust-IT and compare against the varying datasets and

solutions we create a pipeline which we apply to all our chosen

datasets. We begin with a step of feature pre-processing, a standard
step in ML tasks, removing missing features and standardising all

features and scaling to unit variance. Following this step we apply

Principal Component Analysis (PCA) to all datasets with n=3 for
the number of principal components. We split our datasets into

train and test partitions, with our test set totalling 0.2 of the whole

dataset.

We construct our models utilising the scikit-learn API [12], using

their existing implementations of OPTICS, LOF, K-Means, and K-

Neighbors, and do so as individual instances for each evaluation

dataset. Once clusters have been achieved and extracted, for each

cluster, we take the mode of the true labels within each cluster and

assign it to the whole cluster. Therefore, each resulting test that

would be placed within the area of this produced cluster would take

the clusters derived label. In the case of K-Means, assigning a cluster

label to new input is simply locating the nearest centroid to the

point. In the case of OPTICS, we take n-nearest neighbours, taking
the average of the labels, as well as taking the LOF for the extracted

neighbours. Combining this score we determine if the new point

belongs to the designated cluster label or should be treated as noise.

We measure the performance of Clust-IT using measures of

Detection Rate (DR) and False Positive Rate (FPR). We define DR as

the ratio of observations correctly labelled as malicious, and we

define (𝐹𝑃𝑅 = 𝐹𝑃
𝐹𝑃+𝑇𝑁 ). We aim for as high a value for DR while

minimising FPR; an abundance of false alarms in intrusion detection

systems may lead to overuse of resources and both computationally

as well as human interaction needed to investigate said alarms.

5.3 Results
Table 1 presents our results across the used datasets. The state-of-
the-art results presented are those presented in the original papers

which constructed the relevant dataset. As shown from our results,

Clust-IT has a high performance rate when compared to a naive

clustering algorithm, such as K-Means and BIRCH (balanced iter-

ative reducing and clustering using hierarchies), and can achieve

high detection rates comparable to those presented by other solu-

tions or algorithms. In the case of fuzzing detection, we do observe

a high FPR and lower DR than achieved in other datasets. Although

we train separate instances of OPTICS for each dataset presented,

we retain the exact same settings and parameters during the train-

ing and cluster generation process. Additionally, we apply the same

pre-processing steps to all datasets. For example, once the data has

been cleaned, we apply a dimensionality reduction algorithm PCA

to the dataset, with an n=3 for the number of principle components.

With further data preparation, including reduction of observations

used, we would expect positive changes in the performance specific

to each case. However, even in the case of the reduced performance,

especially compared to the other algorithms, we observe that Clust-

IT has a more consistent high performance across all datasets. We

make the decision to apply the same settings to all datasets in an at-

tempt to show the applicability and transferability of our proposed

system.

The solution presented in [32] relies on training the solution to

achieve a maximum false-positive rate and as such the statistics

for its FPR remain the same. Although the combined performance

achieves great detection and true positive rates, it shows a great

decline in its detection when analysing OS Scan data. Our solution,

Clust-IT, manages to achieve a high detection rate, further showing

the potential for transferability.

6 DISCUSSION
Whilst having secure detection mechanisms in place for malicious

activity, many current solutions lack inherent further analysis of

security problems. Whilst not fully explored in this work, clustering

by design is a tool whose use is most suited to data exploration.

Past the point of detection, clustering offers a greater level of inter-
pretability than other supervised or unsupervised solutions. Being

able to have deep dive in clusters whose members are deemed to

be mathematically similar, or significant when analysing noise or

outliers from LOF, is a feature that could show applicability beyond

smart homes. With the rise of smart cities and businesses more

widely using IoT devices in their operations, a SOC team could

gather vital intel using more techniques allowing this greater level

of data exploration. Further work would explore this potential for

threat intelligence post-detection.
With this work, we have highlighted some common issues ex-

perienced in ML-driven solutions to detection in IoT, as well as

provided some insight into the feasibility of clustering as a solu-

tion, which offer potential directions for research to tackle these

problems. Although our results described in Sect. 5 show signs
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of promise, they are not without their shortcomings. One such

shortcoming is the problem of runtime. If we are to assume our

training phase to be cluster generation then, similar to many su-

pervised learning algorithms, it may necessitate significant time

and computing power. However, following this stage, a classifica-

tion model, such as a k-NN or SVM, will be able to classify new

inputs at speed. Querying for cluster membership on new data in

the case of a K-Means output too requires little time, needing only

to find its nearest centroid. However, in the case of OPTICS, this

is not possible without recomputing the entire cluster ordering.

The shortcoming of this algorithm is the basis on which we have

developed our operational steps, to allow for quick, stream like

detection with LOF and k-NN, but then require re-computation of

the clusters at regular time intervals. Furthermore, both in the case

of OPTICS and K-Means, as well as many other clustering algo-

rithms, the presence of new points may hugely alter the structure

and shape of the resultant clusters, again making re-computation

necessary at regular intervals. However, this could be compared to

the issue of concept drift [20] experienced in supervised learning

solutions to malware detection.

There are further caveats with clustering when considering clus-

ter quality. Many ML classification algorithms have a score function
inherent to its running, especially when in its training phase. This

enables methods, such as grid search, to be employed to help with

parameter and features optimisation. Cluster algorithms when used

in the way we propose present problems in assessing the cluster

quality and resultant detection capabilities for optimisation. Mea-

sures, such as correctly clustered, can become difficult to assess

especially when working with an undefined number of clusters.

Clusters themselves can be assessed with measures as used in 5,

such as homogeneity, completeness and v-measure. However, the
correct use of these assessments relies on deep knowledge of the

dataset and expected cluster output. With an algorithm such as

OPTICS which may output a variable number of clusters and noise,

such measures may hinder optimisation. For example, an instance

of traffic containing few malicious or different from normal obser-
vations, may be optimised such that all data registered as noise as

such a cluster output would optimise the resultant homogeneity or

completeness scores. Further issues arise with other cluster assess-

ment scores such as Silhouette Coefficient Score. This score evaluates
the intra-cluster distance andmean nearest-cluster distance for each
sample. This assumes a relatively uniform clustering structure with

logical centroids assignable to each. In the case of OPTICS, which

relies on a density-based approach and its ability to produce clus-

ters of arbitrary shape and size, as well as allowing for sub-clusters,

the silhouette score for our resultant clusters may often be very

low, but not indicative of the true cluster quality. Further work

would explore adequate cluster scoring mechanisms to determine

the quality of our produced model.

Whilst the datasets used for our evaluation are developed with

real IoT devices, there are questions concerning the data being con-

sidered as a real-world scenario. In the case of [32], the network is

composed of a combination of virtual machines and IoT devices. Al-

though the presence of virtual machines may not be too far-fetched,

the limited range and scope of devices used in the dataset may

hinder the transferability of the dataset. Additionally, the attacks

deployed on the network are run independently of each other on

isolated instances, and while it is clear the work shows the effi-

cacy of their solution within an IoT network, a case which includes

a variety of attacks could help develop more complex detection

mechanisms. In the case of the dataset used for [23], although the

dataset is used as a dataset for botnet detection and correlation,

the data split of malicious/benign observations is weighted heavily

toward the malicious. Whilst it may serve its purpose in its works

presented use-case, it presents an unrealistic environment for real-

world solutions for intrusion detection and model building. This

highlights the issue present in the IoT and smart home field that

datasets are hard to come by, and their activity shows very specific

behaviour. That is to say, the datasets are not in and of themselves

flawed, but the general lack of datasets in IoT research presents

challenges for researchers hoping to evaluate potential solutions.

7 CONCLUSION
IoT is becoming ever more pervasive in our lives and is increas-

ingly heterogeneous. This increases the potential attack landscape

for would-be malicious actors. This expanded threat landscape re-

quires us to create solutions which can be easily applied to systems

containing many differing devices, and susceptible to a variety of

attacks. We have explored the feasibility of clustering in IoT land-

scapes for intrusion detection and our preliminary results show

the promise of our proposed solution, called Clust-IT. Addition-

ally, we have outlined the caveats of utilising clustering, and more

specifically density-based clustering, as a solution to this field. We

propose further work which would seek to develop optimisation

strategies that incorporate the whole detection pipeline of the sys-

tem to improve the runtime. In addition, we aim to to factor in

realistic proportions of malicious traffic when introducing attacks.
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